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We study the time evolution of the reduced density matrix for the Ohmic spin boson model out of an
uncorrelated but otherwise arbitrary initial state. We consider arbitrary bias ε and tunneling � at zero temperature
for a weak coupling α to the bosonic bath. Using the real-time renormalization group method, we present a
consistent weak-coupling expansion one order beyond the Bloch-Redfield approximation within a renormalized
perturbation theory with analytical results covering the whole crossover regime from small times �t � 1 to large

times �t � 1, where � =
√

ε2 + �̃2 denotes the Rabi frequency in terms of the renormalized tunneling �̃. In
addition, for exponentially small or large times, we perform a nonperturbative resummation of all logarithmic
terms. We show that standard Born approximation schemes calculating the effective Liouvillian of the kinetic
equation up to first order in α are not sufficient to account for various important corrections one order beyond the
Bloch-Redfield solution. (1) The resummation of all secular terms ∼(�t )n is necessary to obtain the correct
exponential decay of all terms of the time evolution with decay rate � or �/2, together with the correct
pre-exponential functions. (2) The resummation of all logarithmic terms at high and low energies leads to a
renormalized tunneling �̃ and to pre-exponential functions of logarithmic and power-law form. (3) The fact
that two eigenvalues of L(E) are close to each other by O(�) requires degenerate perturbation theory for times
�t ∼ O(1), where certain terms of the Liouvillian in O(α2) are needed to calculate the stationary state and
the time evolution of the nonoscillating purely decaying modes up to O(α). In contrast to the zero-bias case,
we find two further interesting results for the time dynamics of the oscillating modes. (4) The terms of the
pre-exponential functions with a strong time dependence show a leading long-time tail ∼α/(�t ), besides other
subleading terms ∼α/(�t )2 well-known from the zero-bias case. (5) The terms of the pre-exponential functions

with a weak (logarithmic) time dependence vary according to a power law ( 1
�t

)2α ε2

�2 for exponentially large
times. The power-law exponent depends on the bias and has to be contrasted to the one at exponentially small
times where it crosses over to the bias-independent result 2α. We discuss that the complexity to calculate one
order beyond Bloch-Redfield approximation is rather generic and applies also to other models of dissipative
quantum mechanics.
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I. INTRODUCTION

The study of the dynamics of two-state quantum systems
coupled weakly to a dissipative bath is a fundamental problem
of nonequilibrium statistical mechanics that has become of
further increasing importance due to possible future techno-
logical applications in quantum information processing. To
realize scalable and fault-tolerant quantum computation, very
low error thresholds are needed which requires an understand-
ing beyond Markov approximation schemes and lowest-order
perturbation theory in the coupling to the bath. As a generic
model for a bosonic bath the spin boson model has been
proposed [1] and its dynamical properties have been studied
with various methods [2,3]. This model consists of two levels
with level spacing (bias) ε, coupled by a direct tunneling
term �, and each level is linearly coupled to an Ohmic
bosonic bath. In the case of zero tunneling, the spin-boson
model can be solved exactly and the stability of surface-code
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error correction against realistic dissipation has been studied
recently for this model [4,5]. However, for finite tunneling and
the most important case of an Ohmic coupling to the bath,
we will show in this work that a consistent weak-coupling
expansion beyond the Bloch-Redfield Markov approximation
is still lacking at low temperatures. We will discuss various
subtleties to obtain a consistent perturbative expansion of
the time evolution in the dimensionless coupling constant α,
requiring an essentially nonperturbative treatment in a certain
sense, not yet accounted for completely in various previous
publications on the Ohmic spin boson model. Most impor-
tantly, our analysis shows that the systematic calculation of
errors to the Bloch-Redfield result is generically very complex
for all models of dissipative quantum mechanics, involving
many details of the underlying model, and is not specific to
the Ohmic spin boson model. Thus we expect that also the
analysis of other dissipative models describing realistic qubits
beyond Bloch-Redfield approximation will need a careful
consideration of our findings.

The concrete form of the time evolution depends crucially
on the form of the density of states of the bath and the energy
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dependence of the coupling constants gq of the local system
to the various bath modes ωq , conveniently taken together
in the spectral density (sometimes also called hybridization
function) J (ω) ∼ ∑

q g2
qδ(ω − ωq ). However, for a flat spec-

tral density (on the scale of the typical energy scales of the
local system) or for special cases as the Ohmic spin boson
model, where J (ω) ∼ αω, a rather generic discussion of the
typical form of the time evolution is possible and has been
provided in Ref. [6], based on the real-time renormalization
group method (RTRG), see Refs. [7,8] for reviews. Starting
at time t = 0 from an arbitrary initial state ρ0 = ρ(t = 0) of
the local system without any initial system-bath correlations
(i.e., the bath is assumed to be an infinitely large system
in (grand)canonical equilibrium), the time evolution for the
reduced density matrix ρ(t ) of the local system consists of
a sum of terms each of them being ∼Fi (t )e−izi t , with zi =
�i − i�i , i.e., exponentially decaying with decay rate �i > 0,
oscillating with frequency �i , together with a nonexponential
pre-exponential function Fi (t ), typically depending logarith-
mically or as some power law on time. The case �i = 0 is
exceptional and occurs only for systems with quantum critical
points, where the scaling behavior is not cut off by any decay
rate. For the Ohmic spin boson model, there are three modes
of a purely decaying mode z0 = −i� and two oscillating
modes with z± = ±� − i�/2. This form already suggests
where the complexity of calculating the time evolution beyond
the lowest-order Markovian Bloch-Redfield theory appears.
The Bloch-Redfield theory considers only the leading-order
term where Fi is basically a constant of O(1), independent
of the coupling α to the bath. However, there are additional
terms to each matrix element of the 2 × 2-matrix ρ(t ), where
Fi (t ) ∼ α, also containing an exponential function, usually
different from the one of the Bloch-Redfield term. Expanding
this exponential in � ∼ α leads to an ill-defined perturbation
expansion, since terms ∼α(�t )n appear, which all become of
O(α) already on timescales of the inverse decay rate (and even
diverge for time going to infinity). Therefore, for a consistent
calculation of the O(α) correction to the Bloch-Redfield
solution on timescales where the exponential damping is still
moderate, it is necessary to resum these terms in all orders
of perturbation theory to get the correct exponential behavior.
We note that these so-called secular terms (sometimes also
called van Hove singularities [9]) are usually only discussed
when expanding the exponentials of the Bloch-Redfield terms
in α, but similarly also appear in higher order terms, which
are more subtle. Technically, they can all be incorporated
by expressing the perturbative expansion for the effective
Liouvillian L(E) in Fourier space not in terms of the bare
Liouvillian but in terms of the full Liouvillian again by taking
all self-energy insertions into account. Within the diagram-
matic expansion developed in Refs. [7,8,10,11] it can be
seen that this is possible in all orders of perturbation theory.
This allows for a convenient analytic continuation of L(E)
into the lower half of the complex plane, from which the
position of all nonzero singularities zi (poles and branching
points) of the Fourier transform ρ(E) = i/(E − L(E))ρ0 can
be determined self-consistently, leading to the effect that all zi

acquire a finite imaginary part −i�i .
In connection with the Ohmic spin boson model at zero

bias, the occurrence of exponentials in the O(α) correction to

Bloch-Redfield solution has recently been noted and corrected
in Refs. [11,12]. Similar considerations have been performed
close to α ∼ 1

2 , see Refs. [13,14]. For finite bias, a Born
approximation has been used in Ref. [15] to calculate per-
turbatively one order beyond Bloch-Redfield approximation,
missing the exponentials in those corrections. In this paper,
we will present a perturbative calculation at arbitrary bias
including all exponentials and, moreover, show that the re-
summation of secular terms is also important to obtain the
correct energy scales in logarithmic terms of pre-exponential
functions. Furthermore, we will calculate all terms of the time
evolution for an arbitrary initial state of the local system,
whereas in Ref. [15] only the time evolution of the Pauli
matrix in z direction has been calculated for an initial state
without any spin in x and y directions.

Besides secular terms proportional to powers of time, there
are further subtleties in the calculation of the time evolution,
even in the case where potential logarithmic terms can be
treated perturbatively. A generic feature of the reduced density
matrix ρ(E) = i/(E − L(E))ρ0 in Fourier space is that there
occurs one singularity at E = 0 [determining the stationary
state from L(i0+)ρst = 0] and a pure decay pole at E = z0 =
−i� ∼ O(α). These two singularities are close to each other
within the expansion parameter α, and leads to the generic
feature that two eigenvalues of L(E) are close to each other by
O(α). Therefore degenerate perturbation theory is necessary
for the zero and purely decaying modes, and the calculation
of the corresponding projectors on the eigenstates of L(E)
up to O(α) requires the knowledge of the Liouvillian at least
up to O(α2). This fact has already been mentioned at the
end of Ref. [15], where the stationary state was calculated
up to O(α) and the influence on the time evolution for the
purely decaying mode was indicated. This again is a generic
problem for all models of dissipative quantum mechanics and
shows that lowest-order Born approximation is not sufficient
to account for all first-order corrections to the Bloch-Redfield
solution. In this paper, we will show that the special algebra
of the Ohmic spin model allows for a simplification of this
problem such that the results of Ref. [15] for the stationary
case up to O(α) can be used to calculate also all terms in
O(α) for the time evolution of the purely decaying mode.

The Ohmic spin boson model (and similar many other
models with a rather structureless spectral density of states)
has further problems in perturbation theory arising from
logarithmically divergent integrals at high and low energies,
which have to be treated by renormalization group. At high
energies logarithmic divergencies ∼α ln D/�c occur, where
D denotes the finite bandwidth and �c ∼ max{1/t,�}
is some high-energy cutoff determined by the largest
energy scale of the system. For large D, a nonperturbative
resummation of all powers of such terms is required. In
the short-time regime 1/t � �, this leads to well-known
terms ∼1/(Dt )2α , which can also be obtained from the
noninteracting blip approximation (NIBA) [1,2]. For the most
important regime of times which are not exponentially small
or large, where |α ln(�t )| � 1, we will show in this paper
that the logarithmic terms at high energies can be incorporated
into a renormalized tunneling �̃ = �(�/D)α , where
� =

√
ε2 + �̃2 is the renormalized Rabi frequency of the

local system, leading also to a renormalized decay rate � =
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πα�̃2/�. We note that the correct cutoff scale is �c = � and
not �̃ as first pointed out in Ref. [15], where the logarithmic
correction was calculated perturbatively in α. Furthermore,
we will show in this paper how the unrenormalized tunneling
occurring in various terms of perturbation theory has to be
replaced by the renormalized one. This is quite nontrivial
since both � and �̃ appear in the final solution. We
will achieve this goal by solving the RTRG equations
perturbatively with the result of a renormalized propagator
containing Z-factors with Z = �̃2/�2. Subsequently, we will
apply renormalized perturbation theory to calculate the time
evolution analytically in the whole crossover regime from
small times �t � 1 to large times �t � 1 with |α ln(�t )| �
1 such that logarithmic terms in time can be treated
perturbatively. We find that the leading-order terms in the
pre-exponential functions stem from branch cuts starting at a
pole position of ρ(E) giving rise to constant terms together
with terms ∼α ln(�t ) showing a rather weak logarithmic time
dependence. In contrast, branch cuts starting at branching
points unequal to the poles of ρ(E) lead to crossover functions
with a strong time dependence of the pre-exponential
functions which all can be expressed by the exponential
integral. Interestingly, for large times �t � 1, we find that the
leading order terms fall off ∼α/(�t ) for finite bias, in contrast
to the unbiased case, where all terms fall off ∼α/(�t )2.

After having got rid of logarithmic terms at high ener-
gies, one is still left with logarithmic terms at low energies
∼α ln �t . If the latter can be treated perturbatively, the so-
lution for the time evolution one order beyond the Bloch-
Redfield approximation follows from the above mentioned
renormalized perturbation theory with the proper replacement
of � by �̃. However, for intermediate couplings α ∼ 0.1–0.2
or for the case of high bias ε � �̃ (where the decay rate
� � α� is very small), it turns out that higher-order terms
∼(α ln �t )n with n > 1 become important already for times
scales t ∼ 1/�. In these cases, a nonperturbative resummation
is also necessary for the logarithmic terms at low energies
to determine the first-order correction to Bloch-Redfield ap-
proximation consistently. The only available method up to
date to achieve such a resummation is the RTRG method
[7,8,10,11], which can account simultaneously for logarithmic
terms at high and low energies in all orders to determine the
time evolution of models of dissipative quantum mechanics
in the weak coupling regime. The idea is not to consider
the perturbative expansion of the effective Liouvillian L(E)
but of the second derivative d2

dE2 L(E), together with a proper
resummation of self-energy insertions and vertex corrections.
This leads to a set of closed differential equations for the
effective Liouvillian and the effective vertices, which are well-
defined in the limit D → ∞ and contain no secular terms and
logarithmic divergencies at low and high energies. Therefore
the right-hand side (r.h.s.) of these differential equations are a
well-defined series in α and can be truncated systematically.
We will consider the RG equations in leading order and solve
them numerically for the Ohmic spin boson model at arbitrary
bias. Most importantly, we find for the leading-order terms
of the pre-exponential functions of the oscillating modes

a power-law behavior ∼1/(�t )2α ε2

�2 for exponentially large
times, where the power-law exponent interpolates between 0
for ε = 0 and 2α for ε � �̃. The bias-dependent power-law

exponent 2α ε2

�2 has also been proposed in Ref. [12] but we
stress that it is only correct for very large times and we will
show that, for small times, other logarithmic contributions
appear which lead to a complicated crossover to a power
law ∼1/(�t )2α for exponentially small times. As already
mentioned in Ref. [11], the determination of the correct long-
time behavior of pre-exponential functions depends crucially
on the vertex renormalization not taken into account in any
previous work. At zero bias this has lead to a correction of
the NIBA-result [11] and we stress that all our results for
nonzero bias presented in this paper can as well only be
derived correctly by including the vertex renormalization.

The paper is organized as follows. In Sec. II, we introduce
the Ohmic spin boson model and the kinetic equation to
calculate the time dynamics. We provide the perturbative
expansion of the effective Liouvillian in Fourier space and
explain its analytic structure together with the one of the
reduced density matrix. We also provide the propagator in
renormalized perturbation theory which will be derived in
Ref. [16] using RTRG. In Sec. III, we will explicitly calcu-
late the time dynamics in various time regimes. We review
the exact solution at zero tunneling and the Bloch-Redfield
solution in Secs. III A and III B as a reference. In Sec. III C,
we present the results from renormalized perturbation theory
and determine the time evolution in the regime of small times
in Sec. III C 1 and in the whole regime where time is not ex-
ponentially small or large in Sec. III C 2. The regime of expo-
nentially large times will be discussed in Sec. III D based on a
numerical solution of the RG equations presented in Ref. [16].
We close with a summary of our results in Sec. IV and discuss
their relevance for other models of dissipative quantum me-
chanics. We use the unit h̄ = 1 throughout this paper.

II. MODEL, KINETIC EQUATION, AND LIOUVILLIAN

In this section, we introduce the model under consider-
ation and set up the kinetic equation to determine the time
dynamics of the local reduced density matrix. In addition, we
provide the perturbative solution for the effective Liouvillian
in Fourier space. This form is very helpful to understand the
proper analytical continuation into the lower half of the com-
plex plane and the correct procedure to avoid the occurrence
of secular terms. Furthermore, we will present the perturbative
determination of the decay poles.

A. Model

The Hamiltonian for the spin boson model consists of
a local two-level system (described by Pauli matrices σi)
coupled linearly to a bosonic bath with energy modes ωq > 0:

Htot = H + Hbath + V, (1)

H = ε

2
σz − �

2
σx, (2)

Hbath =
∑

q

ωqa
†
qaq, (3)

V = 1

2
σz

∑
q

gq (aq + a†
q ), (4)

115425-3



CARSTEN J. LINDNER AND HERBERT SCHOELLER PHYSICAL REVIEW B 98, 115425 (2018)

where ε denotes the bias, � the tunneling, and the coupling
to the bath is described by the coupling parameters gq . We
note that by a convenient spin rotation the coupling to the bath
can always be chosen in the z direction and the y axis can
be chosen perpendicular to the local spin in the Hamiltonian
(the expectation value of the local spin will of course get all
components as function of time). The parameters ε, �, and
gq are real to guarantee hermiticity of Htot (please note that
the sign convention for � is sometimes chosen differently in
the literature). For convenience, we choose �, ε > 0, which
again can always be achieved by an appropriate spin rotation.

The microscopic details of the modes ωq and the coupling
constants gq enter the time dynamics of the local system only
via the energy dependence of the spectral density

J (ω) = π
∑

q

g2
qδ(ω − ωq ), (5)

which for the Ohmic spin boson model is parametrized as

J (ω) = 2παωθ (ω)Jc(ω), (6)

where α is a dimensionless coupling constant and Jc(ω) is a
high-energy cutoff function needed since frequency integrals
diverge logarithmically at high energies for all terms in the
perturbative series in α. In this paper, we choose a Lorentzian
cutoff function (in contrast to exponential cutoffs ∼e−ω/D

often used in the literature)

Jc(ω) = D2

D2 + ω2
, (7)

where D denotes the bandwidth. This choice is taken to sim-
plify frequency integrals and influences only some prefactors
of nonlogarithmic terms but not the scaling behavior. The
Ohmic spin boson model in weak coupling is defined by
the condition α � 1 such that a perturbative expansion in α

makes sense.
Since we will also work in a basis where the local Hamil-

tonian H is diagonal we introduce the unitary transformation

U = U † = U−1 = 1√
2�0

(−v− v+
v+ v−

)
, (8)

where v± = √
�0 ∓ ε and

�0 =
√

ε2 + �2 (9)

denotes the bare level splitting (Rabi frequency) of the local
system. With this unitary transformation we get UHU † =
1
2�0σz, i.e., the eigenvalues ±�0/2 with corresponding eigen-
vectors given by the two columns of U † = U .

B. Kinetic equation

We aim at calculating the time dynamics of the reduced
density matrix of the local system

ρ(t ) = Trbathρtot(t ) (10)

with an initial state for the total density matrix

ρtot(t = 0) = ρ0ρ
eq
bath (11)

factorizing into an arbitrary initial state ρ0 = ρ(t = 0) for the
local system and an equilibrium canonical distribution ρ

eq
bath

for the bath. For simplicity we set the temperature T = 0 in
the following. Using standard projection operator [17], path
integral [2], or diagrammatic [7,8] techniques one can show
that ρ(t ) can be determined from a formally exact kinetic
equation

iρ̇(t ) = L0ρ(t ) +
∫ t

0
dt ′�(t − t ′)ρ(t ′), (12)

where L0 = [H, ·] and �(t − t ′) are superoperators acting
on operators. The first term on the r.h.s. describes the time
evolution from the von Neumann equation of the isolated
local system, whereas the second term contains the dissipative
kernel �(t − t ′) leading to irreversible time dynamics into
a stationary state ρst = limt→∞ ρ(t ). The various methods
described in Refs. [2,7,8,17] just differ in the technique how
to calculate this kernel in perturbation theory in α. Since
all quantities are only defined for positive times, we define
the Fourier transform as for retarded correlation functions
(for convenience we use the same symbol for the Fourier
transform)

ρ(E) =
∫ ∞

0
dt eiEtρ(t ), �(E) =

∫ ∞

0
dt eiEt�(t ),

(13)

which are well-defined analytic functions in the complex
plane for all E with positive imaginary part (a proper analytic
continuation into the lower half of the complex plane will be
discussed later). From (12) we obtain the formal solution in
Fourier space as

ρ(E) = i

E − L(E)
ρ0, (14)

where L(E) = L0 + �(E) denotes the effective Liouvillian
in Fourier space with matrix elements Ls1s2,s

′
1s

′
2

(s denote
the states of the local system). The Liouvillian has the two
important properties [7,8]

TrL(E)· = 0, L(E)c = −L(−E∗), (15)

where Tr denotes the trace over the local system and the
c-transform is defined by L(E)c

s1s2,s
′
1s

′
2
= L(E)∗

s2s1,s
′
2s

′
1
. From

these properties one can show the conservation of probability
Trρ̇(t ) = 0 and the hermiticity of the density matrix ρ(t )† =
ρ(t ) [7,8].

Once L(E) is known, the time dynamics can be calculated
from inverse Fourier transform as

ρ(t ) = i

2π

∫
C
dE

e−iEt

E − L(E)
ρ0, (16)

where C is a straight line in the complex plane lying slightly
above the real axis, i.e. E = x + iη, with η = 0+ and x

running from x = −∞ to x = +∞ (the precise form of C
in the upper half is not important since ρ(E) is an analytic
function there). We note that we have used the Fourier and not
the Laplace transform [defined by e−Et in (13)] since it makes
the analogy to the analytic properties of retarded correlation
functions more transparent.

As pointed out in detail in Refs. [6–8,11] the most elegant
way to determine the integral over C is to close the integration
contour in the lower half of the complex plane and to use a
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convenient analytic continuation of L(E) and ρ(E) into the
lower half of the complex plane, such that all branch cuts
point into the direction of the negative imaginary axis and
start at the branching points zi = �i − i�i . For the Ohmic
spin boson model, we note that ρ(E) has one isolated pole
at E = 0 determining the stationary state from

L(i0+)ρst = 0, (17)

together with three branch cuts starting at the branching points
(or poles)

z0 = −i�, z± = ±� − i�/2, (18)

with � > 0, whereas L(E) has only branch cuts starting at
z0 and z± without any poles. If we denote the eigenvalues
of the 4 × 4 matrix L(E) by γi (E) with i = st, 0,±, the
pole positions of the propagator 1/(E − L(E)) follow from
γi (zi ) = zi and it follows from (15) that one eigenvalue must
be zero and −γi (E)∗ are the eigenvalues of L(−E∗). Thus
−γi (−E∗)∗ must be also an eigenvalue of L(E), leading to

γst = 0, (19)

γ0(E) = −γ0(−E∗)∗, (20)

γ+(E) = −γ−(−E∗)∗. (21)

As a consequence, the pole z0 is purely imaginary and z+ =
−z∗

−, in accordance with (18). Using the diagrammatic tech-
nique of Refs. [7,8,10,11] one can derive the analytic features
in all orders of perturbation theory but it is illustrative to study
them already from the perturbative solution for L(E) up to
O(α), which will be presented in the next section.

C. Liouvillian in perturbation theory

With the help of the diagrammatic technique used in
Ref. [11] for the Ohmic spin model at zero bias, we calculate
the Liouvillian up to O(α) in Appendix A. Denoting the
two states of the local system by i = 1, 2 [corresponding to
the original Hamiltonian H in (2)] and using the sequence
(11, 22, 12, 21) to numerate the matrix elements of superop-
erators, we find

L(E) = L0 + �a (E) + �s = La (E) + �s , (22)

L0 =
(

0 �τ−
�τ− εσz

)
, (23)

�s = iπα�

(
0 0
τ+ 0

)
, (24)

�a (E) = α
∑

i=0,±
Fi (E)Mi , Mi =

(
0 0
0 M̂i

)
, (25)

M̂0 = 2
�2

�2
0

τ−, (26)

M̂± = τ+ ± ε

�0
σz + ε2

�2
0

τ−, (27)

where τ± = 1
2 (1 ± σx ) and

Fi (E) = (E − λi (E))Li (E), (28)

Li (E) = ln
−i(E − λi (E))

D
. (29)

Here, λi (E) are the important functions

λ0(E) = −α
�2

�0

∑
σ=±

σLσ (E), (30)

λ±(E) = ±
(

�0 + α
�2

�0
L0(E)

)
, (31)

which determine the position of the poles (18) of the resolvent
1/(E − L(E)) [and also of ρ(E) due to (14)] by solving the
self-consistent equations

zi = λi (zi ). (32)

This can be seen from the derivation in Appendix A, where the
λi (E) are defined as the eigenvalues of the Liouvillian L̃�(E),
defined by

L̃�(E) = Z′(E)L�(E), Z′(E) = 1

1 − L′(E)
, (33)

where L�(E) and L′(E) follow from the decomposition

La (E) = L�(E) + EL′(E)

= L0 + ��(E) + EL′(E), (34)

with

��(E) = −α
∑

i=0,±
λi (E)Li (E)Mi, (35)

L′(E) = α
∑

i=0,±
Li (E)Mi. (36)

This decomposition is very helpful since it exhibits the purely
logarithmic superoperators L�(E) and L′(E), together with
the terms linear in E. The eigenvalues of L(E) and L̃�(E)
are different but the relation (note that �sLa = 0)

1

E − L(E)
= 1

E − La (E)

(
1 + �s

1

E

)

= 1

E − L̃�(E)
Z′(E)

(
1 + �s

1

E

)
(37)

shows that the poles of the two resolvents 1/(E − L(E)) and
1/(E − L̃�(E)) are the same, i.e., the solutions zi of the self-
consistent equations (32) provide indeed the nonzero poles of
the resolvent 1/(E − L(E)).

Most importantly, we see from the perturbative result (22)–
(25) that zi are not only the poles of the local density matrix
in Fourier space but at the same time determine the branching
points of the logarithmic functions Li (E), i.e., determine the
starting points for the branch cuts of L(E) in the lower half of
the complex plane. The logarithm in Eq. (29) is the natural
logarithm with a branch cut on the negative real axis, i.e.,
the branch cut with respect to the Fourier variable E points
into the direction of the negative imaginary axis, a choice
which will be most convenient for an analytical determination

115425-5



CARSTEN J. LINDNER AND HERBERT SCHOELLER PHYSICAL REVIEW B 98, 115425 (2018)

of the branch cut integral, see Sec. III. The fact that the
branching points of all logarithmic terms are the same as the
pole positions of the local density matrix is a very important
observation and can be shown to hold in all orders of pertur-
bation theory by using the diagrammatic method developed
in Refs. [6–8,11], see also some remarks in Appendix A.
Obviously, for this property it is very important to keep the
functions λi (E) in the argument of the logarithm and not to
expand Li (E) in α. As already mentioned in Ref. [8] in all
detail, such an expansion leads to secular terms (1/E)n for the
Liouvillian, e.g., for the expansion of αF0(E), one obtains

αF0(E) = α(E − λ0(E)) ln
−iE

D
− αλ0(E)

+ 1

2
αλ0(E)2 1

E
+ O(α4). (38)

We note that secular terms start at O(α3) due to the factor
E − λ0(E) in front of the logarithm. Therefore, even in a
calculation up to O(α2), one can not see the occurrence of
secular terms in L(E). The power of these secular terms
increases with increasing order in α and, therefore, have
to be resummed nonperturbatively. They appear directly in
the effective Liouvillian L(E) and have to be distinguished
from secular terms appearing by expanding the resolvent
1/(E − L0 − �(E)) in �(E). The resummation of the latter
are responsible to obtain the correct exponential behavior of
the leading-order Bloch-Redfield terms for the time evolution,
whereas the ones in L(E) have to be resummed to obtain the
exponential part of all correction terms to the Bloch-Redfield
solution. Essentially, the fact that logarithmic functions in all
orders of perturbation theory appear always in the form of
Li (E) is due to the property that all bare propagators of the
local system can be replaced by full propagators without any
double counting, see Appendix A. As a consequence the exact
eigenvalues of L̃�(E) appear in the perturbative series and not
the bare ones. This fact is very important to notice in order to
find the correct nonanalytic features in the lower half of the
complex plane. For example, by calculating F0(E) only by
the first term on the r.h.s. of (38), one obtains a logarithm
that has a branch cut starting at the origin leading to a term
of the time evolution, which is not exponentially decaying.
The expansion (38) is only well-defined for E ∼ �0, i.e.,
on timescales t ∼ 1/E ∼ 1/�0, where the solution is just
oscillating and the decay has not yet set in. In this regime,
the perturbative solution of Ref. [15] can be used but not for
larger timescales describing the crossover to the regime of
exponential decay.

We note that the perturbative solution (22)–(25) for L(E)
can only be used when the logarithmic terms are small
enough, i.e., the condition

α

∣∣∣∣ln −i(E − λi (E))

D

∣∣∣∣ � 1 (39)

should hold. This is obviously not fulfilled when E ap-
proaches the branching point zi or is too far away from it. Only
the RG method presented in Ref. [16] is capable of resumming
the logarithmic terms in all orders to find the correct scaling
behavior for large E or E close to zi . The condition (39) can
be reformulated in terms of time by replacing E − λi (E) →

1/t leading to

α| ln(Dt )| � 1, (40)

showing that the perturbative theory can not be used to
calculate the time evolution for exponentially small or large
times. However, as we will see in Secs. III C 1 and III D these
regimes can be studied as well by using the RTRG method.

As a consequence, one should also not be concerned by
the fact that the solution of the self-consistent equations (32)
with (30) and (31) is ill-defined due to the singularity of the
logarithm. For times in the regime (40), we need the functions
λi (E) only in the typical regime (39). Using z0 ∼ O(α)
and z± = ±�0 + O(α), this means that for |E − z0| ∼ αn�0

(with some integer n > 0) we can replace λ0(E) by

λ0(E) ≈ −α
�2

�0

∑
σ=±

σ ln
−i(−σ�0)

D
= −i�1, (41)

with

�1 = πα
�2

�0
, (42)

up to an error of O(nα2 ln α). Up to the same error, for |E −
z±| ∼ αn�0, we can replace λ±(E) by

λ±(E) ≈ ±
(

�0 + α
�2

�0
ln

−i(±�0)

D

)
= ±�1 − i�1/2,

(43)

with

�1 = �0 − α
�2

�0
ln

D

�0
. (44)

Therefore we conclude from the perturbative expansion that
the solution of (32) is given by

z
(1)
0 = −i�1 + O(α2 ln α), (45)

z
(1)
± = ±�1 − i�1/2 + O(α2 ln α). (46)

In Ref. [16], we will resum all logarithmic renormalizations
∼(α ln(�/D))n from high energies and show that �1 has to be
replaced by the renormalized Rabi frequency �, which has the
same form as �0 but the bare tunneling � has to be replaced
by the renormalized tunneling �̃:

� =
√

ε2 + �̃2, (47)

�̃ = �

(
�

D

)α

= �

(√
ε2 + �̃2

D

)α

. (48)

We note that the low-energy scale cutting off the logarithmic
terms in this expression is set by � but not by the renormalized
tunneling as has been stated, e.g., in Ref. [2]. This was already
mentioned in Ref. [15], where the oscillation frequency has
been calculated perturbatively up to the first logarithmic term,
as given by Eq. (44). Furthermore, we note that besides the
logarithmic terms there can be other regular terms ∼αn, which
depend on the specific high-energy cutoff function under
consideration. The logarithmic terms however are universal,
i.e., do not depend on the specific form of the high-energy
cutoff function. This will be explained in Ref. [16].
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Inserting the propagator (37) in (16) and using the pertur-
bative result (22)–(31) for L(E), one can systematically deter-
mine the time dynamics one order beyond Bloch-Redfield ap-
proximation using the scheme presented in Sec. III. However,
this calculation can be easily improved by using renormalized
perturbation theory, where the renormalized tunneling has
to be used at appropriate places and renormalizations of Z

factors are important. This will be described in the next
section.

D. Liouvillian in renormalized perturbation theory

Using the RTRG method from Ref. [11] we show in
Ref. [16] how the propagator 1/(E − L(E)) has to be slightly
modified to account for all logarithmic renormalizations from
high energies. There are two different kinds of logarithmic
terms, one involving powers of α ln(D/�) [which can be
resummed in the renormalized tunneling (48)], the other
containing powers of logarithmic terms α ln(�t ) in time. The
latter can be treated perturbatively provided that time is not
exponentially small or large. This defines the regime, which
we call the regime of times in the nonexponential regime,

|α ln(�t )| � 1, (49)

which corresponds in Fourier space to the regime∣∣∣∣α ln
−i(E − zi )

�

∣∣∣∣ � 1. (50)

This is the regime where renormalized perturbation theory can
be applied. In Ref. [16], we will show that in this regime, the
propagator can be written as

1

E − L(E)
≈ 1

E − L̃a (E)
Z′

(
1 + �s

1

E

)
, (51)

with

Z′ =
(

1 0
0 Z

)
, Z = �̃2

�2
, (52)

L̃a (E) = L̃0 + �̃a (E), (53)

L̃0 =
(

0 �τ−
Z�τ− εσz

)
, (54)

�̃a (E) = α
∑

i=0,±
Fi (E)Mi , Mi =

(
0 0
0 M̂i

)
, (55)

M̂0 = 2
�̃2

�2
τ−, (56)

M̂± = τ+ ± ε

�
σz + ε2

�2
τ−, (57)

where Fi (E) is defined by (28) with

λ0(E) = −α
�̃2

�

∑
σ=±

σLσ (E), (58)

λ±(E) = ±
(

� + α
�̃2

�
L0(E)

)
, (59)

and

Li (E) = ln
−i(E − λi (E))

�
. (60)

In comparison to the unrenormalized perturbation theory
(22)–(31), we see that the renormalized Rabi frequency and
the renormalized tunneling appear in �̃a (E) and λi (E) instead
of the bare ones and the bandwidth D is replaced by �

in the logarithmic function Li (E). In addition, L0 and the
propagator get a renormalization from the Z′ matrix con-
taining the Z factor Z = �̃2/�2. In Ref. [16], we will see
that Z can be obtained from a poor man scaling equation
for Z(E) = (−iE/D)2α cut off at E = i�. Our result shows
that renormalized perturbation theory is not obtained by just
replacing � → �̃ defining a local system with a renormalized
tunneling. Instead, the Liouvillian L̃0 is no longer Hermitian,
i.e., can essentially be not expressed as a commutator with a
renormalized local Hamiltonian.

Since the solutions of zi = λi (z) again define the positions
of the poles of the propagator, the logarithmic renormaliza-
tions from high energies lead, in analogy to (45) and (46), to
the renormalized pole positions

z0 = −i� + O(α2), (61)

z± = ±� − i�/2 + O(α2), (62)

with

� = πα
�̃2

�
. (63)

In Secs. III C 1 and III D, we will also discuss the regimes
of exponentially small or large times where the condition
(49) fails and higher powers of logarithmic terms have to be
resummed by a proper RG method for the ultraviolet regime
(small times or large energies) and the infrared regime (large
times or energies close to the pole positions). Although this
regime is certainly of minor interest to quantum information
processing, it is of high interest from a theoretical point of
view since various power laws appear, which are qualitatively
very different in the ultraviolet and infrared regime. Further-
more, these power laws are not only of academic interest in
unrealistic time regimes since they become clearly visible
for moderate α ∼ 0.05 and, moreover, second-order terms
∼(α ln(�t ))2 can become of order α already for time scales
t ∼ 1/� where the decay is still moderate depending on the
ratio of �/�̃. Using (63), we find for t ∼ 1/�

(α ln(�t ))2 ∼ α ⇔ �

�̃
∼ √

πα e1/(2
√

α), (64)

leading, e.g., to �/�̃ ∼ 4 for α = 0.05. These are quite real-
istic values showing that higher powers of logarithmic terms
contribute significantly on the same level as corrections ∼α

to the Bloch-Redfield solution. Although the terms ∼α ln(�t )
are the leading-order terms in this regime, the second-order
terms ∼(α ln(�t ))2 are clearly visible in the time dynamics
of the pre-exponential functions showing a significant devi-
ation from a straight line plotted logarithmically as function
of ln(�t ), see Sec. III D. Thus, for the spin boson model
at finite bias, the systematic calculation of corrections to
Bloch-Redfield approximation is quite subtle and requires an
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analysis of higher-order terms beyond O(α) for the Liouvil-
lian for various reasons.

In Sec. III D, we will see that the resummation of logarith-
mic terms in time is very complicated in the infrared regime
and requires a careful solution of the full RG equations, which
we will perform numerically. In contrast, the resummation
of time-dependent logarithmic terms in the ultraviolet regime
is quite straightforward since, for large energies, the energy
scales of the local system do not play an important role and
can be treated perturbatively. Therefore we state here also the
result for the propagator in the regime of small times defined
by

1

D
� t � 1

�
, (65)

corresponding to the regime of large energies,

� � |E| � D. (66)

We note that resumming all logarithmic terms ∼(α ln(E/D))n

or ∼(α ln(Dt ))n leads to a universal result for the time
evolution in the regime |α ln(�t )| ∼ 1 and t � 1/D (where
all corrections of O(α) and O(1/(Dt ) can be neglected),
in contrast to the nonuniversal regime t � 1/D, where bare
perturbation theory in α can be used to determine ρ(t ) and the
result depends crucially on the shape of the high-energy cutoff
function Jc(ω).

For large energies E ∼ 1/t � �, we neglect all terms of
relative order α�/E ∼ α�t in L̃�(E) and Z′(E) and show in
Ref. [16] that

L̃�(E) ≈ L̃0(E)(1 + O(α�/E)), (67)

Z′(E) ≈
(

1 0
0 Z(E)

)
(1 + O(α�/E)), (68)

with

L̃0(E) =
(

0 �τ−
�Z(E)τ− εσz

)
, (69)

Z(E) =
(−iE

D

)2α

. (70)

Since �s/E ∼ α�/E can also be neglected in (37), we find
for the propagator the approximation

1

E − L(E)
≈ 1

E − L̃0(E)

(
1 0
0 Z(E)

)
. (71)

In Ref. [16], we will see that the form for Z′(E) results from
a poor man scaling equation cut off at the largest energy scale
E, which corresponds to 1/t in time space. If E becomes of
the order �, the Z factor is cut off at E = i�, leading to the Z-
factor (52) used in the regime where time is not exponentially
small or large.

The form (71) can be used in the whole regime � � E �
D, irrespective of whether E is exponentially large or not.
Thus we can also use it in the regime where |α ln(−iE/�)| �
1, where we can expand Z(E) as

Z(E) = �̃2

�2

(
1 + 2α ln

−iE

�

)
, (72)

and, after a straightforward calculation, one finds that the
propagator (71) at high energies obtains the same form in
leading order in α and �/E as the propagator (51) in the
regime of nonexponentially large energies.

III. TIME DYNAMICS

In this section, we will present the time dynamics of the
local density matrix analytically in the regimes of small times
(including the case of exponentially small times) and for the
regime of times that are not exponentially small or large,
where renormalized perturbation theory can be applied using
the propagator presented in Sec. II D. The exact solution for
zero tunneling and the lowest-order Bloch-Redfield solution
will be rederived in Secs. III A and III B for reference. In
Sec. III C, we will present renormalized perturbation theory
to show how the Bloch-Redfield solution has to be modified,
together with the systematic calculation of the next correction
in O(α). For the most interesting regime of times, which are
not exponentially small or large, we note that our analytic
solution has never been obtained correctly in the literature
before.

A. Exact solution at zero tunneling

For zero tunneling, the time dynamics can be calculated
exactly even for an arbitrary spectral density and finite tem-
peratures [1,2]. In this case, the local Hamiltonian H = σzε/2
decouples from the rest and the coupling to the bath can
be eliminated by a unitary transformation shifting the field
operators of the bath,

Htot = H + eσzχHrese
−σzχ + c, (73)

χ =
∑

q

gq (aq + a†
q ), (74)

with an unimportant constant c = ∑
q ωqg

2
q dropping out

for the time dynamics. After a straightforward calculation,
the time dynamics for the diagonal and nondiagonal matrix
elements of ρ(t ) follows as

ρ(t )σσ = ρ(0)σσ , (75)

ρ(t )σ,−σ = e−iσ εt 〈e2(χ (t )−χ )〉resρ(0)σ,−σ , (76)

where σ = ± ≡ 1, 2 denotes the two local states, χ (t ) is the
Heisenberg picture with respect to Hres, and 〈· · · 〉res denotes
the expectation value with respect to the canonical equilib-
rium distribution of the reservoir. Calculating this average by
standard means gives the following result for the expectation
values of the Pauli matrices of the local system:

〈σx〉(t ) = e−h(t ) {cos(εt )〈σx〉(0) − sin(εt )〈σy〉(0)}, (77)

〈σy〉(t ) = e−h(t ) {sin(εt )〈σx〉(0) + cos(εt )〈σy〉(0)}, (78)

〈σz〉(t ) = 〈σz〉(0), (79)

with

h(t ) = 1

π

∫ ∞

0
dωJ (ω)(1 + 2n(ω))

1 − cos(ωt )

ω2
, (80)

115425-8



DISSIPATIVE QUANTUM MECHANICS BEYOND THE BLOCH- … PHYSICAL REVIEW B 98, 115425 (2018)

where n(ω) is the Bose distribution function, which vanishes
at zero temperature. Thus, at zero temperature, we get for the
Ohmic case

h(t ) = 2α

∫ ∞

0
dωJc(ω)

1 − cos(ωt )

ω
, (81)

which contains a logarithmic divergence at large ω. Therefore,
in the limit Dt � 1, we get the result

h(t ) ≈ 2α(γ + ln(Dt )), (82)

where γ is Euler’s constant. This leads to the universal power
law

e−h(t ) ≈ (1 − 2αγ )

(
1

Dt

)2α

= (1 − 2αγ )
�̃2

�2

(
1

�t

)2α

(83)

for the time dynamics, where we have written the factor
in front up to O(α) in order to compare it later on to our
perturbative solution for arbitrary tunneling. For the second
form, we have used (48) to write the result independent of D

parametrizing it by the ratio of the renormalized tunneling to
the unrenormalized one (which is finite even in the limit of
zero tunneling).

As one can see the result (83) contains a resummation of all
powers of logarithmic terms ∼(α ln(Dt ))n and, thus, can only
be obtained from the RG procedure presented in Ref. [16].
It will turn out that it holds even at finite tunneling �̃ � ε,
provided that the condition �t � 1 � �t holds.

B. Bloch-Redfield solution

The easiest way to derive the Bloch-Redfield solution is
to insert (37) in (16) and use the spectral decomposition
of the Liouvillian L̃�(E). This gives the formally exact
expression

ρ(t ) = i

2π

∑
i=st,0,±

∫
C
dE

e−iEt

E − λi (E)

×Pi (E)Z′(E)

(
1 + �s

1

E

)
ρ0. (84)

Here, λi (E) are the eigenvalues of L̃�(E) and Pi (E) are the
corresponding projectors. These quantities can be calculated
by solving for the right and left eigenstates of L̃�(E):

L̃�(E)|xi (E)〉 = λi (E)|xi (E)〉, (85)

〈x̄i (E)|L̃�(E) = 〈x̄i (E)|λi (E), (86)

Pi (E) = |xi (E)〉〈x̄i (E)|. (87)

The projectors fulfill the property

Pi (E)Pj (E) = δijPi (E),
∑

i

Pi (E) = 1. (88)

We note that the eigenvalues are complex since the superoper-
ator L̃�(E) is a non-Hermitian matrix. One of the eigenvalues
is zero (denoted by i = st) and the corresponding right/left

eigenstates are exactly known in all orders of perturbation
theory:

λst = 0, (89)

|xst〉 = 1√
2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠, 〈x̄st| = 1√

2

(
1 1 0 0

)
, (90)

Pst =
(

τ+ 0

0 0

)
. (91)

This can be seen from the matrix structure (35) and (36),
which holds in all orders of perturbation theory, see Ap-
pendix A for the proof. We note that the right eigenstate
|xst(E)〉 for E = i0+ does not give the stationary state ρst,
following from (17), since the eigenstates of L̃�(E) and L(E)
are different.

The eigenvalues λi (E) for i = 0,± have already been
provided in perturbation theory up to O(α) in (30) and (31).
Since PstZ

′(E) = Pst and 〈x̄st|�s = 0, we note that the second
term involving �s contributes only for i �= st.

The Bloch-Redfield solution is obtained by taking
Pi (E)Z′(E) ≈ P

(0)
i in the lowest order in α (which is in-

dependent of E) and taking the Markovian approximation
λi (E) ≈ λi (zi ) = zi , which again neglects O(α) contribu-
tions from the residua and further corrections arising from
possible branch cuts starting at zi . The pole positions are taken
from (45), (46), and zst = 0. This gives the result

ρ (0)(t ) = i

2π

∑
i=st,0,±

∫
C
dE

e−iEt

E − z
(1)
i

P
(0)
i

(
1 + �s

1

E

)
ρ0

= (e−iz(1)t − 1)
1

z
(1)
0

P
(0)
0 �Sρ0 + Pstρ0

+
∑

i=0,±
e−iz

(1)
i tP

(0)
i ρ0. (92)

The first term on the r.h.s. arises from the pole at E = 0
from the term �s/E. It is of O(1) since 1/z

(1)
0 = i/�1 ∼

1/α, in contrast to the contributions from 1/z
(1)
± = 1/(±�1 −

i�1/2) ∼ O(1), which lead to an O(α) correction to ρ(t ).
The projectors in lowest order are the ones for L0. We

note that there is no problem with degenerate perturbation
theory for the two eigenvalues λst = 0 and λ0 ∼ α (requiring
in general a knowledge of L̃� up to O(α) to calculate Pst

and P0 in lowest order) since the projector Pst is exactly
known from (91) in all orders of perturbation theory such that
P

(0)
0 = 1 − Pst − P

(0)
+ − P

(0)
− can be used. The projectors for

L0 can be most easily obtained by transforming the matrix L0

to the basis of the exact eigenstates of H , which, by using the
unitary matrix (8), is described by the unitary transformation
(A0)ij,kl = UikU

∗
j l leading to

A0 = A
†
0 = A−1

0 = 1

�0

(
�0τ+ + ετ− −�σzτ+

−�σzτ− −ετ+ − �0τ−

)
.

(93)
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In the new basis, L0 is given by

A0L0A
†
0 =

(
0 0
0 �0σz

)
, (94)

and the projectors obviously follow from

A0PstA
†
0 =

(
τ+ 0
0 0

)
, (95)

A0P
(0)
0 A

†
0 =

(
τ− 0
0 0

)
, (96)

A0P
(0)
σ A

†
0 =

(
0 0
0 1

2 (1 + σσz)

)
. (97)

Transforming back with the matrix A0 to the original basis,
one obtains straightforwardly the result

P
(0)
0 = 1

�2
0

(
ε2τ− −�εσzτ+

−�εσzτ− �2τ+

)
, (98)

P (0)
σ = 1

2�2
0

(
�2τ− �εσzτ+

�εσzτ− ε2τ+ + �2
0τ−

)

+ σ

2�0

(
0 �τ−

�τ− εσz

)
. (99)

Inserting (91), (98), (99), and (24) in (92), we obtain the
Bloch-Redfield solution. Using the formulas (45) and (46) for
the pole positions, we can decompose the time evolution of
the Pauli matrices generically as

〈σα〉(t ) = 〈σα〉st + F 0
α (t )e−�1t + Fc

α (t )e− �1
2 t cos(�1t )

+F s
α (t )e− �1

2 t sin(�1t ), (100)

with α = x, y, z. F 0,c,s
α (t ) denote the pre-exponential func-

tions, which become time independent in Bloch-Redfield
approximation:

〈σx〉st = �

�0
, 〈σy〉st = 0, 〈σz〉st = − ε

�0
, (101)

F 0
x = −〈σx〉st − �

�0
〈σ ′

z〉0, (102)

F 0
y = 0, (103)

F 0
z = −〈σz〉st + ε

�0
〈σ ′

z〉0, (104)

Fc
x = − ε

�0
〈σ ′

x〉0, (105)

Fc
y = 〈σy〉0, (106)

Fc
z = − �

�0
〈σ ′

x〉0, (107)

F s
x = − ε

�0
〈σy〉0, (108)

F s
y = −〈σ ′

x〉0, (109)

F s
z = − �

�0
〈σy〉0, (110)

where

σ ′
x = − 1

�0
(εσx + �σz), (111)

σ ′
y = −σy, (112)

σ ′
z = 1

�0
(εσz − �σx ) (113)

are the Pauli spin operators in the basis where the local
Hamiltonian is diagonal.

For later reference, we also state the form of the Bloch-
Redfield solution in the regime of small times where �0t �
1. Expanding the exponentials up to linear order in �1t and
neglecting �1t, (�1 − �0)t ∼ α�t , we obtain

〈σx〉(t ) = 〈σx〉0 − εt〈σy〉0, (114)

〈σy〉(t ) = 〈σy〉0 + εt〈σx〉0 + �t〈σz〉0, (115)

〈σz〉(t ) = 〈σz〉0 − �t〈σy〉0. (116)

C. Renormalized perturbation theory

Using the propagators provided in Sec. II D, we will now
apply renormalized perturbation theory to calculate the mod-
ification of the Bloch-Redfield solution in the lowest order
in α [but including all logarithmic corrections ∼(α ln(Dt ))n

and ∼(α ln(D/�))n from high energies in all orders] together
with the first systematic correction in O(α) to the Bloch-
Redfield solution. Since renormalized perturbation theory can
only be applied analytically in the regimes of small times
or large times, which are not exponentially large, we will
restrict our analysis to these two regimes and find that the
two solutions coincide for small but not exponentially small
times, so that also the crossover between these two regimes
can be described with our analytic results, providing a sys-
tematic analytic solution beyond Bloch-Redfield approxima-
tion in the most interesting regime for quantum information
where the exponential decay has not yet destroyed the time
dynamics completely. Only the regime of very large times
where higher powers of logarithmic terms like α2 ln2(�t )
become important is not treated analytically and will be
presented in Sec. III D via a numerical solution of the RG
equations.

1. Small times

For small times �t � 1 but still in the universal regime
t � 1/D, we take the form (71) for the propagator and, since
E ∼ 1/t � ε,�, we can expand the resolvent up to first order
in L̃0(E),

1

E − L̃0(E)
≈ 1

E
+ 1

E
L̃0(E)

1

E
. (117)

In this way, we keep all terms ∼L̃0/E ∼ εt,�t , which, for
�t ∼ α, can be of the same order as the first correction ∼α to
the Bloch-Redfield result.
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Inserting (117) and (71) in (16), using the integrals

I1(t ) = i

2π

∫
C
dEe−iEt Z(E)

E

= sin(2πα)

2πα
�(1 + 2α)

(
1

Dt

)2α

, (118)

I2(t ) = i

2π

∫
C
dEe−iEt Z(E)

E2
= −it

1 − 2α
I1(t ), (119)

where �(x) denotes the Gamma function with �(1 + x) =
1 − γ x + O(x2), and neglecting all terms of O(α2), O(αεt ),
and O(α�t ), we find for the local density matrix the follow-
ing result in the short-time limit:

ρ(t ) =
(

1 0
0 0

)
ρ0 +

(
1

Dt

)2α

×
(

0 −i�tτ−
−i�tτ− 1 − 2αγ − iεtσz

)
ρ0. (120)

For the time dynamics of the Pauli matrices, this gives

〈σx〉(t ) =
(

1

Dt

)2α

{(1 − 2αγ )〈σx〉0 − εt〈σy〉0}, (121)

〈σy〉(t ) =
(

1

Dt

)2α

{(1 − 2αγ )〈σy〉0 + εt〈σx〉0 + �t〈σz〉0},

(122)

〈σz〉(t ) = 〈σz〉0 −
(

1

Dt

)2α

�t〈σy〉0. (123)

We see that this solution contains a power law arising from a
resummation of all leading logarithmic terms ∼(α ln(Dt ))n,
which appears also in the NIBA approximation [1,2]. We note
that it is not allowed to set t = 0 since this result is only valid
for t � 1/D, i.e., terms ∼ε/D,�/D � εt,�t are neglected.

We can study the short-time solution in two different
regimes, the one for exponentially small times |α ln(�t )| ∼ 1
where we can neglect all terms ∼�t and ∼εt , and the one for
small but not exponentially small times |α ln(�t )| � 1 where
only terms of O(α), O(α ln(�t )), O(�t ), and O(εt ) need to
be considered. Using (48), we obtain for exponentially small
times

〈σx〉(t ) = �̃2

�2

(
1

�t

)2α

(1 − 2αγ )〈σx〉0, (124)

〈σy〉(t ) = �̃2

�2

(
1

�t

)2α

(1 − 2αγ )〈σy〉0, (125)

〈σz〉(t ) = 〈σz〉0, (126)

and for small but not exponentially small times

〈σx〉(t ) = �̃2

�2
{(1 − 2α(γ + ln(�t ))〈σx〉0 − εt〈σy〉0},

(127)

〈σy〉(t ) = �̃2

�2
{(1 − 2α(γ + ln(�t ))〈σy〉0 + εt〈σx〉0

+�t〈σz〉0}, (128)

〈σz〉(t ) = 〈σz〉0 − �̃2

�
t〈σy〉0. (129)

For zero tunneling � = 0, the short-time solution is
consistent with the exact solution (77)–(79), where we set
cos(εt ) ≈ 1 and sin(εt ) ≈ εt . In contrast, the Bloch-Redfield
solution (114)–(116) at small times misses all powers of
logarithmic terms α ln(D/�) (resummed in �̃) and α ln(�t )
together with the O(α) corrections for 〈σx〉(t ) and 〈σy〉(t ).

In the next section, we will show that our analytic solution
for times that are not exponentially small or large coincides
with (127)–(129) in the regime of small but not exponentially
small times. This shows that by combining the solution (121)–
(123) for small times with the solution of the next section
we have an analytic and systematic result one order be-
yond Bloch-Redfield approximation covering the whole time
regime from �/D � �t � 1 up to times �t � 1, which are
not exponentially large (i.e., |α ln(�t )| � 1).

2. Times in the nonexponential regime

We now study the regime of times, which are not expo-
nentially small or large defined by the condition |α ln(�t )| �
1. Here, we can use the propagator in the form presented
in (51)–(55) and apply renormalized perturbation theory to
study the modification of the Bloch-Redfield result and to
calculate the next correction in O(α). We want to determine
analytically the whole crossover regime from �t � 1 up
to �t � 1 provided that time is not exponentially small or
large such that all logarithmic terms ∼|α ln(�t )| � 1 can
be treated perturbatively and are on the same level as terms
∼α. In particular, this includes the long-time regime where
decay sets in such that �t ∼ 1 or �t ∼ 1/α � 1. In this
long-time regime, we have to be very careful not to expand
the resolvent 1/(E − L̃0 − �̃a (E)) in �̃a (E) ∼ α� ∼ 1/t ∼
|E − zi | since |E − zi | sets the scale of the lowest-order term
in the denominator of the resolvent for the pole contribu-
tions. This would be only allowed in the regime �t � 1
but can not be used to study the crossover to the long-time
regime. Furthermore, in order to calculate systematically the
first correction to the Bloch-Redfield result in the long-time
regime �t ∼ 1/α, it is also necessary to discuss carefully
terms ∼α2� ∼ α1/t ∼ α|E − zi | in �̃a (E). As we will see,
this requires a knowledge of certain terms in O(α2) of the
Liouvillian but it will turn out that the contributions of these
terms to the time dynamics of ρ(t ) can all be related to
the stationary solution up to O(α2), which can be calculated
quite efficiently in equilibrium via the partition function, see
Ref. [15].

To account for all these subtleties systematically we pro-
ceed as follows. Since we know in all orders of perturbation
theory that the nonanalytic features of the propagator are an
isolated pole at E = zst = 0 together with branch cuts starting
at E = zi , i = 0,±, pointing in the direction of the negative
imaginary axis, we can decompose the time dynamics of ρ(t )
in four contributions:

ρ(t ) = ρst +
∑

i=0,±
ρi (t ), (130)
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with

ρi (t ) = i

2π

∫
Ci

dEe−iEt 1

E − L̃0 − �̃a (E)

×Z′
(

1 + �s

1

E

)
ρ0, (131)

where Ci is a curve in the complex plane encircling clockwise
the nonanalytic feature around E = zi (i.e., an isolated pole
for i = st and a branch cut at E = zi − ix, x > 0, for i =
0,±). Since the zero eigenvalue of L̃0 + �̃a (E) is projected
out by the projector Pst given (in all orders of perturbation
theory) by (91), we get for the stationary state

ρst = Pstρ0 − 1

L̃0 + �̃a (0)
Z′�sρ0

= 1

2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠ − iπα�Z

L̃0 + �̃a (0)

1

2

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠, (132)

where we have taken (24) and (52) for �s and Z′, respectively,
and have used the normalization Trρ0 = 1. For i = 0,±, we
obtain with E = −ix ± η (η = 0+)

ρi (t ) = Fi (t )e−izi t , (133)

with the pre-exponential operator given by

Fi (t ) = 1

2π

∫ ∞

0
dx e−xt

×
{

1

E − L̃0 − �̃a (E)

∣∣∣∣
E=zi−ix+η

− (η → −η)

}

×Z′
(

1 + �s

1

zi − ix

)
ρ0. (134)

Due to the exponential part e−xt in (134), we get x ∼ 1/t .
The eigenvalues of L̃0 are either zero or ±� (see below),
and �̃a (E) ∼ α�. Thus, for times �t � 1, �̃a (E) is a small
correction in the denominator and we can expand the resolvent
in �̃a (E). However, for times �t ∼ 1/α or |E − zi | ∼ α�,
�̃a (E) ∼ α� ∼ 1/t becomes of the same order as x ∼ 1/t

and the expansion is no longer valid. To cover the crossover to
this regime as well, we leave the important term �̃a (zi ) ∼ α�

in the denominator, which is essential for the correct position
of the poles, and expand only in

�̃a (E) − �̃a (zi )

= αFi (E)Mi + α
∑

j = 0, ±
j �= i

(Fj (E) − Fj (zi ))Mj

≈ α(E − zi )

{
ln

−i(E − zi )

�
Mi +

∑
j = 0, ±

j �= i

dFj

dE
(zi )Mj

}

∼ α(E − zi ) ∼ α

t
� 1

t
∼ x, (135)

where we have used the form (55) and λi (zi ) = zi [see (32)],
together with the fact that Fj (E) can be expanded around E =
zi for j �= i.

Therefore a systematic expansion of the resolvent up to
O(α) valid in the whole nonexponential time regime is pro-
vided by

1

E − L̃0 − �̃a (E)
≈ 1

E − L̃0 − �̃i
a

+ 1

E − L̃i
a

δ�̃a (E)
1

E − L̃i
a

, (136)

where we have defined

L̃i
a = L̃0 + �̃i

a, �̃i
a = �̃a (zi ) (137)

and

δ�̃i
a (E) = �̃a (E) − �̃a (zi ). (138)

To complete the justification of this perturbative expansion
(136), we finally prove that the order of E − L̃0 − �̃i

a with
E = zi − ix is always larger than x ∼ 1/t in the regime
�t � 1. To show this, we denote the eigenvalues of L̃i

a by
γ̃ i

j , with i, j = st, 0,±. The lowest-order values are given by
the eigenvalues of the real but non-Hermitian Liouvillian L̃0,
which can be diagonalized by the transformation

A = A−1 = 1

�

(
�τ+ + ετ− −�σzτ+
−�Zσzτ− −ετ+ − �τ−

)
, (139)

which is the analog of (93) but with �0 → � and the Z factor
in the lower nondiagonal resulting in a nonunitary matrix. In
this basis, L̃0 is given by

AL̃0A =
(

0 0
0 �σz

)
, (140)

i.e., two eigenvalues are zero and two are identical to ±� in
lowest order in α. �̃i

a will shift these eigenvalues by O(α�)
such that, together with the symmetry relations (19)–(21), we
get

γ̃ i
st = 0, γ̃ 0

0 = z0, γ̃ σ
σ = zσ , (141)

γ̃ σ
0 = −(

γ̃ −σ
0

)∗ = O(α�), (142)

γ̃ σ
−σ = −(

γ̃ −σ
σ

)∗ = −σ� + O(α�), (143)

γ̃ 0
σ = −(

γ̃ 0
−σ

)∗ = σ� + O(α�). (144)

We note that (141) holds exactly in all orders of perturbation
theory since 1/(E − La (E)) = [1/(E − L̃a (E))]Z′ with Z′
given by (52) can be viewed as the definition of L̃a (E) and,
therefore, the pole positions of the two resolvents 1/(E −
La (E)) and 1/(E − L̃a (E)) must be exactly the same.

For E = zi − ix, (141)–(144) lead to

∣∣E − γ̃ i
j

∣∣ =
⎧⎨
⎩

x for j = i

|−ix + zi | for j = st

|−ix ± � + O(α�)| for j �= i, st
, (145)

i.e., for x ∼ 1/t � �, to the desired result∣∣E − γ̃ i
j

∣∣ � x. (146)
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Using the expansion (136) it is now straightforward to
write down the various terms for the time dynamics of ρi (t ).
Denoting the projectors on the eigenstates of L̃0 + �̃i

a by P̃ i
j ,

with i, j = st, 0,±, we get for i = 0,±,

ρi (t ) = i

2π

∫
Ci

dEe−iEt

{
1

E − γ̃ i
i

P̃ i
i

+
∑

j,j ′=0,±

1

E − γ̃ i
j

1

E − γ̃ i
j ′

P̃ i
j δ�̃

i
a (E)P̃ i

j ′

}

×Z′
(

1 + �s

1

E

)
ρ0. (147)

Here, we have used for the first term (in the first bracket)
on the r.h.s. that the other projectors P̃ i

j with j �= i lead
to an analytic function on the curve Ci with zero integral.
Furthermore, due to the matrix structure (135) of δ�̃i

a (E) and
the form (91) of P̃ i

st, we get P̃ i
stδ�̃

i
a (E) = δ�̃i

a (E)P̃ i
st = 0 and

only the terms with j, j ′ �= st contribute to the second term
(in the first bracket) on the r.h.s. Furthermore, we note that we
can omit all analytic terms ∼(E − zi )2 for δ�̃i

a (E) since they
lead to analytic contributions on the curve Ci in (147) with
zero integral. Thus we can use the form (135) for δ�̃i

a (E).
Inserting this form and leaving out all analytic functions on
Ci , we can split ρi (t ) obviously in pole and pure branch cut
contributions:

ρi (t ) = ρ
p

i (t ) + ρbc
i (t ), (148)

with

ρ
p

i (t ) = ρ
p1
i (t ) + ρ

p2
i (t ) + ρ

p3
i (t ), (149)

ρ
p1
i (t ) = P̃ i

i Z
′
(

1 + �s

1

zi

)
ρ0 e−izi t , (150)

ρ
p2
i (t ) = α

∑
j = 0, ±

j �= i

dFj

dE
(zi )P̃

i
i Mj P̃

i
i

×Z′
(

1 + �s

1

zi

)
ρ0 e−izi t , (151)

ρ
p3
i (t ) = α

i

2π

∫
Ci

dEe−iEt 1

E − zi

ln
−i(E − zi )

�

× P̃ i
i MiP̃

i
i Z

′
(

1 + �s

1

E

)
ρ0 (152)

for the pole contributions and

ρbc
i (t ) = α

i

2π

∫
Ci

dEe−iEt (E − zi ) ln
−i(E − zi )

�

×
∑

j, j ′ = 0, ±$j, j ′ ) �= (i, i)

1(
E − γ̃ i

j

)(
E − γ̃ i

j ′
)

× P̃ i
j MiP̃

i
j ′Z

′
(

1 + �s

1

E

)
ρ0 (153)

for the pure branch cut contributions. We note that the terms
involving �s/zi are very important for (150) to calculate the

terms in O(1) and O(α) consistently since

�s

1

z0
= −��

�̃2

(
1 − �(2)

�(1)

)(
0 0
τ+ 0

)
+ O(α2), (154)

�s

1

zσ

= iσπα
�

�

(
0 0
τ+ 0

)
+ O(α2), (155)

where we have used (24) for �s and expanded the pole
position z0 = −i� in α by using

� = �(1) + �(2) + O(α3), �(1) = πα
�̃2

�
, (156)

where we have taken (63) for �(1). This shows that also
second-order terms ∼α2 are needed for the Liouvillian to
calculate the pole position z0 up to second order needed to get
all terms in O(α) for the purely decaying mode of the time
evolution. A similar term will also occur for the stationary
state (see below).

In contrast, for the two other pole contributions (151) and
(152), the terms involving �s are only needed for the purely
decaying mode i = 0 and it is sufficient to take z0 up to O(α).
For the branch cut contribution (153), the term with �s can be
left out since it leads to a contribution in O(α2). Furthermore,
in (151)–(153), the projectors P̃ i

j and the eigenvalues γ̃ i
j can

be replaced by their values in the lowest order, all other terms
contribute in O(α2). Only for the first pole contribution (150)
the projector P̃ i

i is needed up to O(α). Denoting the projectors
in the lowest and in first order in α by P̃

(0)i
j and P̃

(1)i
j , we

show in Appendix B by a straightforward calculation that the
projectors transformed with the matrix A [see (139)] are given
by

AP̃
(0)i
0 A =

(
τ− 0
0 0

)
, (157)

AP̃ (0)i
σ A = 1

2

(
0 0
0 1 + σσz

)
, (158)

AP̃
(1)0
0 A = iπα

�̃2ε

��2

(
0 1

Z
τ−

τ− 0

)
, (159)

AP̃ (1)σ
σ A = 1

4
iπσα

�̃2

�2

(
0 0
0 τ+ − τ−

)
. (160)

Taking the projectors in the lowest order, the number of terms
contributing to (151)–(153) is considerably reduced due to

P̃
(0)0
j M0P̃

(0)0
j ′ �= 0 ⇔ j, j ′ �= 0, (161)

P̃
(0)σ
j Mσ P̃

(0)σ
j ′ �= 0 ⇔ j, j ′ �= −σ, (162)

P̃ (0)σ
σ M−σ P̃ (0)σ

σ = 0. (163)

As a consequence, we get

ρ
p1
0 (t ) =

{
P̃

(0)0
0 Z′

[
1 + i�s

1

�(1)

(
1 − �(2)

�(1)

)]

+ P̃
(1)0
0 Z′

}
ρ0 e−iz0t , (164)
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ρ
p2
0 (t ) = α

∑
σ=±

dFσ

dE
(z0)P̃ (0)0

0 MσP̃
(0)0
0

×Z′
(

1 + i�s

1

�(1)

)
ρ0 e−iz0t , (165)

ρ
p3
0 (t ) = 0, (166)

ρbc
0 (t ) = α

∑
σ,σ ′=±

i

2π

∫
C0

dEe−iEt ln
−i(E − z0)

�

× (E − z0)

(E − σ�)(E − σ ′�)
P̃ (0)0

σ M0P̃
(0)0
σ ′ Z′ρ0 , (167)

and

ρp1
σ (t ) =

{
P̃ (0)σ

σ Z′
(

1 + σ

�
�s

)
+ P̃ (1)σ

σ Z′
}
ρ0 e−izσ t , (168)

ρp2
σ (t ) = α

dF0

dE
(zσ )P̃ (0)σ

σ M0P̃
(0)σ
σ

×Z′
(

1 + i�s

1

�(1)

)
ρ0 e−izσ t , (169)

ρp3
σ (t ) = α

i

2π

∫
Cσ

dEe−iEt 1

E − zσ

ln
−i(E − zσ )

�

× P̃ (0)σ
σ Mσ P̃ (0)σ

σ Z′ρ0, (170)

ρbc
σ (t ) = α

i

2π

∫
Cσ

dEe−iEt ln
−i(E − zσ )

�

×
{

E − zσ

E2
P̃

(0)σ
0 MσP̃

(0)σ
0 + 1

E

(
P̃

(0)σ
0 MσP̃ (0)σ

σ

+ P̃ (0)σ
σ Mσ P̃

(0)σ
0

)}
Z′ρ0 . (171)

The first term on the r.h.s. of (164) and (168) leads to
the Bloch-Redfield result modified by the Z factor. All other
contributions to the time evolution are corrections in O(α).
The energy integrals can be calculated from

i

2π

∫
dEe−iEt 1

E − zi

ln
−i(E − zi )

�

= −(γ + ln(�t ))e−izi t , (172)

i

2π

∫
Ci

dEe−iEt 1

E − a
ln

−i(E − zi )

�

= e−izi t

∫ ∞

0
dye−y 1

y − i(a − zi )t

= e−izi tH ((a − zi )t ), (173)

i

2π

∫
Ci

dEe−iEt E − zi

(E − a)2
ln

−i(E − zi )

�

= e−izi t

∫ ∞

0
dye−y y

(y − i(a − zi )t )2

= e−izi t H̃ ((a − zi )t ), (174)

where γ is Euler’s constant, a �= zi , and H (x) and H̃ (x) can
be expressed via the exponential integral E1(−ix):

H (x) = e−ixE1(−ix), (175)

H̃ (x) = (1 − ix)H (x) − 1. (176)

It is important to note that, for the energy integrals occurring
in (171) and (167), the imaginary part of (a − zi )t is ∼−i�t

and can be neglected in H ((a − zi )t ) and H̃ ((a − zi )t ) (i.e.,
leading to higher orders in α) compared to the real part of
(a − zi )t , which is given by ±�t . This holds even in the
case �t ∼ 1, as can be seen from the integrals (173) and
(174). In contrast, for the exponential function e−izi t , it is not
possible to expand in the imaginary part of zi for �t ∼ 1.
As a consequence, only the crossover functions H (±�t ) and
H̃ (±�t ) will appear for the branch cut integrals.

Finally, the derivatives of Fi (E) can be obtained from (28),

dFi

dE
(E) = 1 + ln

−i(E − λi (E))

�
+ O(α), (177)

which gives

dF0

dE
(zσ ) = 1 − iσ

π

2
+ O(α), (178)

dFσ

dE
(z0) = 1 + iσ

π

2
+ O(α). (179)

Using all these relationships together with the form of the
various matrices, one can straightforwardly evaluate (164)–
(171) and calculate the expectation values of the Pauli matri-
ces. Decomposing the time dynamics according to (100) in
the various modes, we get for the pre-exponential functions
the following final result for the time dynamics in the nonex-
ponential time regime:

F 0
x (t ) = −〈σx〉st −

(
1 + 2α

�̃2

�2

)
�̃2

��
〈σ̃z〉0

+α
�̃4ε

�2�3
{(H ′

t − H̃ ′
t )〈σ̃x〉0 + (π + H̃ ′′

t )〈σy〉0},
(180)

F 0
y (t ) = πα

�̃2ε

��2
(1 + 〈σ̃z〉0) + α

�̃4

�2�2
{H̃ ′′

t 〈σ̃x〉0

+ (H ′
t + H̃ ′

t )〈σy〉0}, (181)

F 0
z (t ) = −〈σz〉st +

(
1 + 2α

�̃2

�2

)
ε

�
〈σ̃z〉0 − πα

�̃2ε2

��3
〈σy〉0

+α
�̃4

��3
{(H ′

t − H̃ ′
t )〈σ̃x〉0 + H̃ ′′

t 〈σy〉0}, (182)

Fc
x (t ) = −ft

�̃2ε

�2�
〈σ̃x〉0 − α

�̃4ε

�2�3

{
2H ′

t 〈σ̃x〉0

+
(π

2
+ 2H ′′

t

)
〈σy〉0

}

− 2α
�̃2

��3
(�̃2H̃ ′

t + ε2H ′
t )〈σ̃z〉0, (183)
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Fc
y (t ) = ft

�̃2

�2
〈σy〉0 − α

�̃2ε

��2
(π + 2H ′′

t 〈σ̃z〉0)

− π

2
α

�̃4

�2�2
〈σ̃x〉0, (184)

Fc
z (t ) = −ft

�̃2

��
〈σ̃x〉0 − π

2
α

�̃4

��3
〈σy〉0 + 2α

�̃2ε2

��3
(H ′

t 〈σ̃x〉0

+H ′′
t 〈σy〉0) − 2α

�̃2ε

�3
(H ′

t − H̃ ′
t )〈σ̃z〉0, (185)

F s
x (t ) = −ft

�̃2ε

�2�
〈σy〉0 + πα

�̃2ε2

��3
+ 2α

�̃4ε

�2�3
(H ′′

t 〈σ̃x〉0

−H ′
t 〈σy〉0) + 2α

�̃2

��3
(ε2H ′′

t + �̃2H̃ ′′
t )〈σ̃z〉0,

(186)

F s
y (t ) = −ft

�̃2

�2
〈σ̃x〉0 − πα

�̃4

�2�2
〈σy〉0 − 2α

�̃2ε

��2
H ′

t 〈σ̃z〉0,

(187)

F s
z (t ) = −ft

�̃2

��
〈σy〉0 + α

�̃2ε

�3
{π + 2(H ′′

t − H̃ ′′
t )〈σ̃z〉0}

− 2α
�̃2ε2

��3
(H ′′

t 〈σ̃x〉0 − H ′
t 〈σy〉0), (188)

where we have defined the quantities

H ′
t = ReH (�t ) = 1

2

∑
σ=±

H (σ�t ), (189)

H ′′
t = ImH (�t ) = − i

2

∑
σ=±

σH (σ�t ), (190)

H̃ ′
t = ReH̃ (�t ) = 1

2

∑
σ=±

H̃ (σ�t ), (191)

H̃ ′′
t = ImH̃ (�t ) = − i

2

∑
σ=±

σH̃ (σ�t ), (192)

σ̃x = − 1

�
(εσx + �σz), (193)

σ̃z = 1

�

(
εσz − �̃2

�
σx

)
, (194)

ft = 1 + α
�̃2

�2
− 2α(γ + ln(�t ))

ε2

�2
. (195)

We note that the operators σ̃x and σ̃z can not be interpreted as
the Pauli spin operators in the basis where the local Hamilto-
nian with � → �̃ is diagonal since both � and �̃ appear in
the definition in a subtle way. Only if the renormalization of
the tunneling is neglected these operators are identical to the
Pauli spin operators defined in (111)–(113).

The stationary values 〈σα〉st of the Pauli matrices follow
from

〈σx〉st = �̃2

��

(
1 − �(2)

�(1)

)
+ 2α

�̃4

��3
, (196)

〈σy〉st = 0, (197)

〈σz〉st = − ε

�

(
1 − �(2)

�(1)

)
− 2α

�̃2ε

�3
. (198)

This can be obtained from (132) via the spectral decom-
position of L̃st

a = L̃0 + �̃a (0). Denoting the eigenvalues and
projectors of this Liouvillian by γ̃ st

j and P̃ st
j , with j = st, 0,±,

we show in Appendix B that we get in analogy to (141)–(144)
and (157)–(160),

γ̃ st
st = 0, (199)

γ̃ st
0 = −i

(
�(1)

(
1 − 2α

�̃2

�2

)
+ �(2)

)
+ O(α3), (200)

γ̃ st
σ = σ� + O(α�), (201)

and

AP̃ st
st A =

(
τ+ 0
0 0

)
, (202)

AP̃
(0)st
0 A =

(
τ− 0
0 0

)
, (203)

AP̃ (0)st
σ A = 1

2

(
0 0
0 1 + σσz

)
, (204)

AP̃
(1)st
0 A = iπα

�̃2ε

��2

(
0 1

Z
τ−

τ− 0

)
. (205)

Inserting the spectral decomposition in (132) we get up to
O(α),

ρst = 1

2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠ − i�(1)

2�

{
�

γ̃ st
0

P̃
(0)st
0 + i

�

�(1)
P̃

(1)st
0

+
∑
σ=±

σ P̃ (0)st
σ

}⎛
⎜⎝

0
0
1
1

⎞
⎟⎠. (206)

Inserting (200) and (203)–(205), we find that the sum of the
last two terms on the r.h.s. is zero and we get for the stationary
density matrix up to O(α) the final result

ρst = 1

2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠ −

(
1 + 2α

�̃2

�2
− �(2)

�(1)

)
1

2�

⎛
⎜⎜⎝

ε

−ε

−�̃2/�

−�̃2/�

⎞
⎟⎟⎠,

(207)

which leads to the result (196)–(198) for the stationary values
of the Pauli matrices.

To calculate the ratio �(2)/�(1), we need an analysis of
all second-order terms ∼α2 of the Liouvillian L(i0+) to
get the stationary state up to O(α). This goes beyond the
scope of this paper. However, in Ref. [15], such an analysis
has been performed in bare perturbation theory (i.e., using
the unrenormalized tunneling) with the result (note that we
slightly changed the result such that it is valid for a Lorentzian
cutoff function in the bath)

〈σx〉st = �

�0
+ α

�3

�3
+ α

�

�3
0

(�2 + 2ε2) ln
�0

D
. (208)
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and it was shown that this agrees with the result from the
partition function proving the Ergoden hypothesis up to O(α).
This result is consistent with (196) if we take

�(2)

�(1)
= α

�̃2

�2
, (209)

such that our final result for the stationary values reads

〈σx〉st = �̃2

��
+ α

�̃4

��3
, (210)

〈σy〉st = 0, (211)

〈σz〉st = − ε

�
− α

�̃2ε

�3
. (212)

We note that the terms involving �(2) cancel out for the
full time dynamics of ρ(t ) in the limit �t � 1, where the
exponential e−�t ≈ 1. This is a generic feature since, in this
time regime, |E − L0| � �, and bare perturbation theory
can be used to expand the resolvent 1/(E − L0 − �(E)) in
�(E), without any need of the Liouvillian up to second order
in α to calculate all terms of the time dynamics up to O(α).
Therefore it is of no surprise that the time-dependent terms
involving �(2) can be related to the corresponding terms of
the stationary state.

We now discuss our central result (180)–(188) and com-
pare it with the literature. The leading-order term is consis-
tent with the Bloch-Redfield solution (102)–(110), provided
one neglects the renormalization of the tunneling. Our result
shows that the renormalized tunneling appears in a subtle way,
which can not be obtained by just replacing � → �̃. There is
a Z-factor renormalization Z = �̃2/�2 for Fc

x,y and F s
x,y , and

terms ∼� or ∼�3 in the Bloch-Redfield solution are replaced
by

√
Z� = �̃2/� and Z2�3 = �̃4/�, respectively.

The most interesting correction in O(α) is the slowly
varying logarithmic term α ln(�t ) appearing in the function
ft multiplying the leading-order terms of F

c/s
α . We note that

the correct energy scale in this logarithmic term is the renor-
malized Rabi frequency � and not the Lamb shift � − �0

as it was obtained in Ref. [15]. As was already mentioned in
Sec. II C via Eq. (38) the crucial point is not to neglect the
O(α) contributions in the logarithmic functions. For example,
if one considers the integral (172) for zi = z+ = � − i�/2
and neglects all O(α) contributions in the argument of the log-
arithm by setting ln(−i(E − z+)/�) ≈ ln(−i(E − �0)/�0),
one obtains

i

2π

∫
dEe−iEt 1

E − z+
ln

−i(E − �0)

�0

= ln
−i(z+ − �0)

�0
e−iz+t + H ((z+ − �0)t )e−i�0t , (213)

which is obviously quite different from the exact result −(γ +
ln(�t ))e−iz+t not only because of the incorrect exponential
appearing in the second term on the r.h.s. (which is just
oscillating with the unrenormalized Rabi frequency) but also
due to the incorrect pre-exponential functions of both terms
involving the energy scale of the Lamb shift δ� = � − �0.
This shows that the resummation of secular terms contained in
logarithmic contributions of the Liouvillian is not only impor-

tant to get the correct exponential part of the time dynamics
but also to obtain the correct pre-exponential functions. Only
in the limit �t, δ�t � 1, where |E − �0| � δ�,�, it is
allowed to neglect secular terms by disregarding the O(α)
terms in the argument of the logarithm. In this case, one can
use the approximation H ((z+ − �0)t ) ≈ −γ − ln(−i(z+ −
�0)t ) and e−iz+t ≈ e−i�0t in (213) leading to

i

2π

∫
dEe−iEt 1

E − z+
ln

−i(E − �0)

�0

= −(γ + ln(�0t ))e−i�0t , (214)

with the correct logarithmic time dependence involving the
Rabi frequency and not the Lamb shift.

For large times, �t ∼ 1/α � 1, where the damping is still
moderate due to �t ∼ O(1), the logarithmic term ∼α ln(�t )
is the most important correction to the leading-order terms. In
this regime, the functions Ht and H̃t lead only to very small
contributions and fall off according to

H ′
t = 1

(�t )2
+ O

(
1

(�t )4

)
, (215)

H ′′
t = 1

�t
+ O

(
1

(�t )3

)
, (216)

H̃ ′
t = − 1

(�t )2
+ O

(
1

(�t )4

)
, (217)

H̃ ′′
t = O

(
1

(�t )3

)
. (218)

The pure branch cut contributions arising from Ht and H̃t are
the only terms showing a significant time dependence whereas
the logarithmic terms are slowly varying in time. The most
important term is the one arising from H ′′

t , which falls off
only ∼1/(�t ). It arises only in the finite bias case for the
modes Fc

x/z and F s
x/z and has never been reported before. The

standard case treated in the literature [1,2] is the calculation
for the time dynamics of the Pauli matrix in z direction at zero
bias for the initial condition 〈σz〉0 = 1 and 〈σx/y〉0 = 0. In this
case and for �t � 1 our solution reduces to

〈σz〉(t ) ≈ (1 + α) cos(�̃t )e− �
2 t − 2α

1

(�̃t )2
e−�t , (219)

which, up to the missing exponential for the second term on
the r.h.s., agrees with the NIBA result [1,2] and the result
obtained from the Born approximation [15] (where also the
residuum has been calculated for the first term on the r.h.s.).
In Refs. [11,12], the correct exponential has been obtained
for the second term. The important new result for finite bias
is that, besides the appearance of many other terms falling
off ∼α/(�t )2, there are new terms falling off ∼α/(�t ). For
�t ∼ 1/α, these are terms in O(α2) and thus of the same
order as other constant terms ∼α2 or slowly varying logarith-
mic terms ∼α2 ln2(�t ) not covered by our analytic solution
in the nonexponential regime. However, the terms ∼α/(�t )
are consistent in the sense that they determine the leading
behavior of those contributions that show a significant time
dependence. In contrast, terms ∼α/(�t )2 are inconsistent in
this sense, since for finite bias there will be other strongly
varying terms ∼α2/(�t ) of the same order, which we have
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not calculated. Keeping only the consistent terms falling off
∼α/(�t ) we obtain for large times �t � 1:

F 0
x (t ) = −〈σx〉st −

(
1 + 2α

�̃2

�2

)
�̃2

��
〈σ̃z〉0

+ πα
�̃4ε

�2�3
〈σy〉0, (220)

F 0
y (t ) = πα

�̃2ε

��2
(1 + 〈σ̃z〉0), (221)

F 0
z (t ) = −〈σz〉st +

(
1 + 2α

�̃2

�2

)
ε

�
〈σ̃z〉0 − πα

�̃2ε2

��3
〈σy〉0,

(222)

Fc
x (t ) = −ft

�̃2ε

�2�
〈σ̃x〉0 − π

2
α

�̃4ε

�2�3
〈σy〉0

− 2α
�̃4ε

�2�3

1

�t
〈σy〉0, (223)

Fc
y (t ) = ft

�̃2

�2
〈σy〉0 − πα

�̃2ε

��2
− π

2
α

�̃4

�2�2
〈σ̃x〉0

− 2α
�̃2ε

��2

1

�t
〈σ̃z〉0, (224)

Fc
z (t ) = −ft

�̃2

��
〈σ̃x〉0 − π

2
α

�̃4

��3
〈σy〉0

+ 2α
�̃2ε2

��3

1

�t
〈σy〉0, (225)

F s
x (t ) = −ft

�̃2ε

�2�
〈σy〉0 + πα

�̃2ε2

��3
+ 2α

�̃4ε

�2�3

1

�t
〈σ̃x〉0

+ 2α
�̃2ε2

��3

1

�t
〈σ̃z〉0, (226)

F s
y (t ) = −ft

�̃2

�2
〈σ̃x〉0 − πα

�̃4

�2�2
〈σy〉0, (227)

F s
z (t ) = −ft

�̃2

��
〈σy〉0 + πα

�̃2ε

�3
+ 2α

�̃2ε

�3

1

�t
〈σ̃z〉0

− 2α
�̃2ε2

��3

1

�t
〈σ̃x〉0. (228)

For zero bias ε = 0 and large times �t � 1, we keep the
leading terms falling off ∼α/(�t )2 and obtain with the help of
ft = 1 + α, 〈σx〉st = (1 + α) �̃

�
, 〈σy〉st = 〈σz〉st = 0, 〈σ̃x〉0 =

−�

�̃
〈σz〉0, and 〈σ̃z〉0 = − �̃

�
〈σx〉0 the result

F 0
x (t ) = −(1 + α)

�̃

�
+ (1 + 2α)

�̃2

�2
〈σx〉0, (229a)

F 0
y (t ) = 0, (229b)

F 0
z (t ) = −2α

1

(�̃t )2
〈σz〉0, (229c)

Fc
x (t ) = −2α

1

(�t )2
〈σx〉0, (230a)

Fc
y (t ) = (1 + α)

�̃2

�2
〈σy〉0 + π

2
α

�̃

�
〈σz〉0, (230b)

Fc
z (t ) = (1 + α)〈σz〉0 − π

2
α

�̃

�
〈σy〉0, (230c)

F s
x (t ) = 0, (231a)

F s
y (t ) = (1 + α)

�

�̃
〈σz〉0 − πα

�̃2

�2
〈σy〉0, (231b)

F s
z (t ) = −(1 + α)

�̃

�
〈σy〉0, (231c)

which agrees with the result obtained in Ref. [11], except that
we have also calculated all time-independent corrections for
the pre-exponential functions in O(α) here.

One can check that in the limit of small but not exponen-
tially small times our solution (180)–(188) is consistent with
(124)–(126). The logarithmic terms are a result of a combina-
tion of logarithmic terms arising from the terms ∼α ln(�t )
appearing explicitly in (183)–(188) and those arising from
the functions Ht and H̃t , which, for small argument, can be
expanded as

H ′
t = −γ − ln(�t ) + O(�t ), (232)

H ′′
t = π

2
+ O(�t ), (233)

H̃ ′
t = −γ − ln(�t ) − 1 + O(�t ), (234)

H̃ ′′
t = π

2
+ O(�t ). (235)

Inserting this expansion in (180)–(188) and neglecting all
terms ∼α�t (with or without a logarithm), we obtain

〈σx/y〉st + F 0
x/y + Fc

x/y ≈ �̃2

�2
{1 − 2α(γ + ln(�t ))}〈σx/y〉0,

(236)

〈σz〉st + F 0
z + Fc

z ≈ 〈σz〉0, (237)

F s
x �t ≈ −�̃2

�2
εt〈σy〉0, (238)

F s
y �t ≈ �̃2

�2
{εt〈σx〉0 + �t〈σz〉0}, (239)

F s
z �t ≈ −�̃2

�2
�t〈σy〉0. (240)

Inserting this result in (100), expanding the exponential func-
tions up to linear order in �t and again neglecting all terms
∼α�t , we obtain precisely the expansion (127)–(129) for
small but not exponentially small times, showing that we
cover the correct crossover behavior by combining the solu-
tions (121)–(123) for small or exponentially small times with
(180)–(188) in the nonexponential regime.

For moderate times �t ∼ O(1), the logarithmic terms are
of the same order as all other corrections in O(α). In this
regime, our full solution (180)–(188) is needed to calculate all
terms one order beyond Bloch-Redfield approximation. In this
case, the time dependence of the pre-exponential functions
is governed by a complicated combination of slowly varying
logarithmic terms and terms arising from the functions Ht and
H̃t containing the exponential integral via (175) and (176).

Finally, we note that our solution in the nonexponential
regime at zero tunneling � = 0 is fully consistent with the
exact solution at zero tunneling presented in (77)–(79) and
(83).
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D. Exponentially large times

For exponentially large times, where higher powers in
α ln(�t ) become significant and can no longer be treated
in the lowest order to analyze the corrections to Bloch-
Redfield approximation, we need a solution of the Liouvillian
La (E) exponentially close to the branching points zi . This
requires a renormalization group analysis, which is presented
in Ref. [16] based on the RG equations derived in Ref. [11].
Analytically, such an analysis is very complicated for arbitrary
bias but can be done at zero bias, see Ref. [11]. For arbitrary
bias, we have studied the numerical solution of the RG
equations and will present a fit to an analytical ansatz in this
section.

The case of zero bias ε = 0 can be found in Ref. [11]. The
main result is that the result (229)–(231) for large times still
holds for exponentially large times, except for Fc

x (t ), which
contains an additional function s0(t ),

F c
x (t ) = −2α

s0(t )

(�t )2
〈σx〉0, (241)

where

s0(t ) = 1

(1 + α ln(�t ))[1 − ln (1 + α ln(�t ))]
, (242)

such that the complete solution for 〈σx〉(t ) reads

〈σx〉(t ) = 〈σx〉st(1 − e−�t ) + (1 + 2α)
�̃2

�2
e−�t 〈σx〉0

− 2α
s0(t )

(�t )2
cos(�t )e−�t/2〈σx〉0, (243)

with 〈σx〉st = (1 + α) �̃2

�2 . However, this result is not very
important since, at zero bias, the importance of higher orders
in α ln(�t ) for the pre-exponential function shows only up for
�t � 1, where the exponential damping leads to a negligible
result for the time dynamics. Only for α ∼ 1, the estimation
in (64) shows that higher powers of logarithmic terms are
important for times where the damping is moderate. Only
from an academic point of view, where the pre-exponential
function can be studied separately, exponentially large times
are also interesting at zero bias and the function s0(t ) can be
identified. As already discussed in Ref. [11], we note that
there is no change of the power-law exponent of the 1/t2

parts, in particular for the time dynamics of 〈σz〉(t ), see (219),
in contrast to the NIBA solution which predicts an incorrect
power-law exponent 2 − 2α [1,2].

As discussed in detail via the estimation (64), the impor-
tance of higher orders in α ln(�t ) changes significantly for
large bias. At arbitrary bias, we have checked numerically
that a power law appears for the leading-order term of the
oscillating modes in the regime of very large times, with
a bias-dependent exponent 2αε2/�2. This means that the
function ft in (223)–(228) has to be replaced by the power
law

ft →
(

1

�t

)2α ε2

�2
(

1 − 2αγ
ε2

�2
+ α

�̃2

�2

)
. (244)

with a power-law exponent depending on the bias. For ex-
ample, Fig. 1 shows the numerical solution for the pole
contribution of F

p,c
z (t ) [i.e., the first term on the r.h.s. of

FIG. 1. The numerical solution for the logarithm of the pole
contribution F c,p

z (t ) for α = 0.05, 〈σz〉0 = 1, 〈σx〉0 = 〈σy〉0 = 0,
and different values for �̃/ε plotted as a function of ln(�t ). For
very large times, a power law appears with exponent 2αε2/�2, in
agreement with (245) (solid lines). The bandwidth is chosen as
D/� = 106.

(225)] for various values of the bias. For large times, the
logarithm of this contribution shows indeed a straight line as
a function of ln(�t ) with a slope given by −2αε2/�2,

ln
(
Fp,c

z (t )
) = −2α

ε2

�2
ln(�t ) + const, (245)

where the constant term on the r.h.s. is independent of time
but depends on the bias.

With the replacement (244) for the function ft , the solu-
tion (180)–(188) together with (210)–(212) agrees with the
exact solution for zero tunneling � = 0 given by (77)–(79)
and (83) also for exponentially large times. The power-law
exponent for large times is furthermore consistent with the one
predicted in Ref. [12], where � was replaced by the unrenor-
malized Rabi frequency �0. However, in this reference, many
terms in higher order in �/�0 and α have been neglected and
a consistent RG analysis was lacking on whether additional
logarithmic terms appear which can change the power-law
exponent, e.g., from 2αε2/�2 to 2α. It turns out that this
analysis depends crucially on the time regime under consider-
ation. Whereas, for exponentially large times, it turns out that
the power-law exponent is indeed 2αε2/�2 for the oscillating
modes, a completely different result appears for exponentially
small times with a power-law exponent given by 2α, see
(124) and (125). There is a complicated crossover between
these two power laws since the real part of the functions H ′

t

and H̃ ′
t contains additional logarithmic terms for small times

�t � 1, see Eqs. (232) and (234). Only via our consistent RG
treatment presented in Ref. [16] one can be sure to include all
terms of the leading logarithmic series providing the correct
power-law exponents in O(α) for exponentially small and
large times, together with the correct crossover behavior in
the nonexponential regime.

IV. SUMMARY

In this work, we have presented the solution for the time
dynamics of the Ohmic spin boson model at finite bias by
systematically expanding one order beyond Boch-Redfield
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approximation. Using real-time RG and perturbation theory
we have set up a renormalized perturbation theory to study
analytically the whole time regime from exponentially small
(�t ∼ e−1/α) up to large times (�t � 1). For very large times,
we used the real-time RG method to sum up the leading
logarithmic series in α ln(�t ). As a result, we obtained several
interesting features for the time dynamics. (1) We showed how
both the unrenormalized (�) and renormalized tunneling (�̃)
enter the time dynamics and that it is not possible to account
for the renormalization by using a local Hamiltonian with a
renormalized tunneling. As in Ref. [15], we found that the
renormalized Rabi frequency enters as a high-energy cutoff
scale to determine �̃. (2) We found that all terms of the
time evolution are exponentially damped by summing up all
secular terms ∼(�t )n. This results from a self-consistent per-
turbation theory in analogy to the one presented in Ref. [12].
(3) For the pre-exponential functions of the oscillating modes
and in the nonexponential time regime, we found logarithmic
terms ∼α ln(�t ) containing the renormalized Rabi frequency
as the energy scale together with terms falling off as α/(�t ).
(4) We showed that some correction terms in O(α) to Bloch-
Redfield approximation require an analysis of the Liouvillian
up to second order in α. We were able to calculate these
terms by relating them to the stationary density matrix. (5) By
resumming the leading logarithmic series in α ln(�t ) in all or-
ders of perturbation theory, we found for the pre-exponential
functions of the oscillating modes an interesting crossover
from a power law ∼1/(�t )2α at exponentially small times to

a power law ∼1/(�t )2α ε2

�2 at exponentially large times. The
latter has also been proposed in Ref. [12] but the logarithms
determining the crossover to the power law at small times have
not been discussed there.

We have identified three important reasons why it is not
sufficient to calculate the kernel of the kinetic equation up to
first order in the coupling to the bath to obtain all terms of the
first correction to the Bloch-Redfield result. We now discuss
why these issues are quite generic and are expected to occur
also for other models of dissipative quantum mechanics.

First, for times of the order of the inverse decay rate
t ∼ �−1, where damping is still moderate, the distance of the
Fourier variable E to some of the poles zi of the propagator
is proportional to the decay rate |E − zi | ∼ �. In this case,
perturbation theory is quite subtle since the denominator
E − L(E) of the propagator is of O(�). The kernel �(E)
can no longer be considered as a small correction compared
to E − L0 and can not be expanded up to the numerator.
We solved this problem by expanding all analytic parts of
�(E) around E = zi and keeping �(zi ) in the denominator
whereas all other higher terms of the Taylor expansion are
at least of O(α2) and can be taken as a small correction.
The nonanalytic terms of �(E) are more subtle and are some
function fi (E − zi ) when E is close to zi , where fi (E) ∼ α

is a nonanalytic function with a branch cut on the negative
imaginary axis. For the Ohmic spin boson model, we get
fi (E − zi ) ∼ α(E − zi ) ln(−i(E − zi )) ∼ α2 such that it can
be considered as a small correction. For dissipative quantum
models with logarithmic divergencies at high and low ener-
gies, it is typical that �(E) has a logarithmic form, see, e.g.,
the Kondo model [18] or the interacting resonant level model

[19], see Ref. [8] for a review. For weak coupling problems
and E close to zi , �(E) contains either logarithmic terms
∼ ln(−i(E − zj )) with branching points zj �= zi (i.e., are ana-
lytic and can be expanded around E = zi) or are proportional
to (E − zi ) ln(−i(E − zi )) (such that they vanish at E = zi).
Terms ∼� ln(−i(E − zi )) with a constant energy scale in
front diverge at E = zi and are typical for strong coupling
problems like, e.g., the Kondo model. Most importantly, even
for weak coupling problems, it is never allowed to expand any
part of �(E) in α by setting zi = z

(0)
i + δzi , where z

(0)
i are the

pole positions without the bath and δzi ∼ O(α) denotes the
correction from the bath, since (E − z

(0)
i )/δzi is a parameter

of O(1). Thus, for any model of dissipative quantum mechan-
ics, it is very dangerous to use a naive perturbative expansion
of the kernel in the coupling to the bath. The positions zi

of the branching points of L(E) (or poles of the propagator)
should be kept nonperturbatively in a self-consistent way by
using the full propagator and not the bare one between the
vertices, as also emphasized in Ref. [12]. For a noninteracting
bath described by a quadratic form Hbath = ∑

q ωqa
†
qaq in

the field operators, the diagrammatic technique developed in
Ref. [7] shows that all bare propagators can be replaced by
full ones without any double counting such that a systematic
self-consistent perturbation theory can be set up. Whether this
is also possible for more complicated baths like, e.g., spin
baths is an open question.

Secondly, we have seen that degenerate perturbation theory
is generically needed since the decay poles zi = −i�i and
the stationary pole zst = 0 of the propagator are close to each
other within the decay rate �i ∼ α. Therefore second-order
terms are needed for the Liouvillian to calculate the stationary
state and all terms of the time evolution of the purely decaying
modes up to first order in α. Again, this problem occurs only
for times of the order of the inverse decay rate, since for
small times |E − L0| ∼ 1/t is much larger than � and can
be considered as the largest term in the denominator of the
propagator such that the full kernel �(E) can be expanded up
to the numerator. Thus, for two-state models with one purely
decaying and two oscillating modes, the complicated terms in
the stationary state and the purely decaying mode arising from
the second-order terms of the Liouvillian, must generically
cancel for small times. This simplifies the calculation of
those terms for the purely decaying mode since they can be
expressed via the stationary state which, for the equilibrium
case, can be easily calculated up to first order in α via the
partition function. This strategy has been taken over in this
work by using the stationary state calculated in Ref. [15]
up to O(α). However, for generic models with more than
two local states, several purely decaying modes can occur
and the problem of degenerate perturbation theory can no
longer be solved by just calculating the first correction to
Bloch-Redfield approximation of the stationary state.

Whereas the two aforementioned issues are important to be
considered for the calculation of the first correction to Bloch-
Redfield approximation on all timescales, there are further
problems with weak coupling expansions in the regimes of
exponentially small or large times. They arise for problems of
dissipative quantum mechanics with logarithmic divergencies
at high and low energies like the Ohmic spin boson model,
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the interacting resonant level model, quantum dot models, and
the Kondo model. They have to be treated by an appropriate
renormalization group method like the RTRG method [7,8].
For weak coupling problems, where the renormalized vertices
stay small in the whole complex plane, the RG equations
can be truncated systematically such that logarithmic terms
are summed up nonperturbatively in leading or subleading
order. Whereas logarithmic divergencies at high energies can
be incorporated in renormalized parameters from poor man
scaling equations, logarithmic divergencies at low energies
close to the branching points zi are quite subtle and require
a full solution of the RG equations. For models of dissipative
quantum mechanics without logarithmic divergencies, this
issue is not important.

Finally, as explained in detail at the end of Sec. II D, we
note that the observability of power laws is very questionable
but, nevertheless, logarithmic terms of second order in α can
become of the same order as first-order nonlogarithmic terms
in realistic time regimes where damping is not yet strong.
Therefore such second-order terms should be accounted for
when discussing the first correction to the Bloch-Redfield re-
sult although the regime of exponentially small or large times
is not of interest in a practical experiment. Exponentially
small times in the universal regime correspond to the con-
ditions 1/D � t � 1/� and |α ln(�t )| � 1, which requires
an exponentially large bandwidth relative to �. Exponentially
large times are not of interest since the exponential damping
will lead to an unmeasurable exponentially small signal. In
addition, we note that finite temperature effects will mask the
observability of power laws. Roughly speaking, the energy
scale T of the temperature will cut off the renormalization
group equations. For T > �, this means that the renormalized
tunneling (48) will contain T instead of � as cutoff scale
at high energies. At low energies, where 1/t is the ultimate
cutoff scale in the zero-temperature case, finite temperature
will change the result considerably since the branch cuts will
turn into a series of discrete poles with the Matsubara spacing
T/(2π ). Thus, in contrast to �, temperature will also serve
as a cutoff scale in the infrared regime. As a consequence,
power laws will be cut off by T in the long-time regime T >

1/t . Nevertheless, we note that the regimes D � T � �

and D � � � T are qualitatively quite different, concerning
the cutoff set by T . In the first case, T will serve as a
high- and low-energy cutoff, whereas it serves only as a
low-energy cutoff in the second case. As a consequence, the
consideration of logarithmic terms containing α ln(D/T ) or
α ln(�/T ) is quite subtle and can not be accounted for in a
straightforward way by renormalizing the tunneling since they
appear with different prefactors in the ultraviolett and infrared
regime. Furthermore, even if power laws are masked by finite
temperature, second-order terms ∼(α ln(�/T ))2 appearing
in the infrared regime can become of the same order as
first-order terms and have to be considered when calculating
systematically the first correction to the Bloch-Redfield result.
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APPENDIX A: LIOUVILLIAN IN PERTURBATION
THEORY

Here we calculate the Liouvillian up to first order in the
coupling α to the bath by using the diagrammatic technique
developed in Ref. [11], where an expansion in the coupling
to the bath is used together with the application of Wick’s
theorem to integrate out the phonon bath. In this reference,
it is shown for the Ohmic spin boson model that the kernel
�(E) = �s + �a (E) can be split into two parts, one stem-
ming from the symmetric and one from the antisymmetric
part of the Bose distribution function of the bath. At zero
temperature, this leads to Eq. (22) with �s given by (24). The
antisymmetric part �a (E) involves only the antisymmetric
part of the Bose distribution n(ω) of the bath,

na (ω) = 1
2 (n(ω) − n(−ω)) = 1

2 sign(ω), (A1)

since n(ω) = −θ (−ω) at zero temperature. The lowest-order
diagram for �a (E) is shown in Fig. 2, where the green line
indicates the contraction between the bath field operators
which involves the spectral density (6) of the bath and the
antisymmetric part of the Bose distribution function via

γa (ω) = 2αωJc(ω)na (ω) = α|ω| D2

D2 + ω2
. (A2)

Using the diagrammatic rules, the diagram is translated as

�a (E) =
∫

dωγa (ω)GRa (E + ω)G, (A3)

where G is the bare vertex given by

G =
(

0 0
0 σz

)
, (A4)

and Ra (E) = 1/(E − La (E)) is the local propagator of the
antisymmetric part only. To approximate the ω dependence
of Ra (E + ω), we exhibit the logarithmic parts by using the
decomposition (37) and use the spectral decomposition (85)–
(87) of L̃�(E):

R(E + ω)

= 1

E + ω − L̃�(E + ω)
Z′(E + ω)

=
∑

i

1

E + ω − λi (E + ω)
Pi (E + ω)Z′(E + ω).

(A5)

Neglecting the ω dependence of the logarithmic functions
λi (E + ω), Pi (E + ω), and Z′(E + ω) (leading to higher
orders in α), and using the integral (defined for Im(E) > 0
and analytically continued into the lower half of the complex

FIG. 2. The lowest-order diagram for the kernel �a (E). Here,
the circles represent the bare vertices G, the black line connecting
the vertices is the local propagator and the green line denotes the
bath contraction.
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plane by choosing the branch cut along the direction of the
negative imaginary axis)∫

dω|ω| D2

D2 + ω2

1

E + ω
= D2

D2 + E2
2E ln

−iE

D

D→∞−−−→ 2E ln
−iE

D
, (A6)

where ln(z) is the natural logarithm with branch cut on the
negative real axis, we find from (A3),

�a (E) = 2α
∑

i

Fi (E)GPi (E)Z′(E)G, (A7)

with Fi (E) defined in (28) and (29). Taking the projectors
Pi (E) and Z′(E) in the lowest order, given by (98) and (99)
and Z′(E)(0) = 1, and inserting (A4) for G, we find the result
(25)–(27).

We note that the nonanalytic features of �a (E) in the
lower half of the complex plane are located at E = zi −
ix, 0 < x < ∞, where zi are the positions of the poles of
Ra (E). This holds exactly and can be shown in all orders of
perturbation theory [7,8]. For example, for the lowest-order
diagram (A3), we can see that this holds even when we do not
use any approximation for the ω dependence of Ra (E + ω).
Closing the integration contour in the upper half and noting
that Ra (E + ω) is an analytic function there and γa (E) has
nonanalytic features only on the imaginary axis, we find the
result

�(E) = i

∫ ∞

0
dx{γa (ix + 0+) − γa (ix − 0+)}

×GRa (E + ix)G. (A8)

Since Ra (E + ix) has a pole at E + ix = zi , we find that
�(E) is nonanalytic for E = zi − ix with 0 < x < ∞. A sim-
ilar proof can be used to show this in all orders of perturbation
theory, see Refs. [7,8].

Furthermore, we note that the matrix structure

�a (E) =
(

0 0
0 �̂a (E)

)
(A9)

holds in all orders of perturbation theory. This is due to the fact
that the bare vertices G have the same structure, see (A4), and
for each diagram all intermediate propagators are sandwiched
between two vertices. A consequence of this matrix structure
is that the projector Pst on the zero eigenvalue of L̃�(E) is
exactly known and given by (91).

APPENDIX B: PROJECTORS FOR L̃0 + �̃i
a

To calculate the projectors of the matrix L̃0 + �̃i
a up to

O(α), we first set up the matrix �̃i
a = �̃a (zi ) by setting E =

zi in (55) and use

F0(0) ∼ O(α), F0(z0) = Fσ (zσ ) = 0,

Fσ (0) , Fσ (z0) , F0(zσ ) = −i
π

2
� + O(α),

F−σ (zσ ) = 2σ� ln 2 − iπ� + O(α). (B1)

This gives for �̃i
a transformed with the matrix A [see (139)]

up to O(α) the result

A�̃st
a A = A�̃0

aA = −iπα
1

�

(
�̃2τ− �ετ−σz

�̃2

�
εσzτ− ε2

)
,

(B2)

A�̃σ
a A = −iπα

�̃2

�

(
0 0
0 τ−

)
+ α

1

�
aσ

×
(

�̃2τ− �ετ−(σz − σ )
�̃2

�
ε(σz − σ )τ− ε2(1 − σσz)

)
, (B3)

where aσ = 2σ ln 2 − iπ . The transformed Liouvillian AL̃0A

is given by (140). Due to the matrix structure of �̃a (E),
one projector is exactly known [in all orders of perturbation
theory, see (91) and (A9)]:

AP̃ i
stA =

(
τ+ 0

0 0

)
. (B4)

Using usual perturbation theory it is straightforward to calcu-
late the projectors P̃ st,0,σ

σ in zero and first order in α as

AP̃ (0)i
σ A = 1

2

(
0 0
0 1 + σσz

)
, (B5)

AP̃ (1)st,0
σ A

= −1

2
iπα

�̃2ε

��2

(
0 1

Z
τ−(1 + σσz)

(1 + σσz)τ− 0

)
, (B6)

AP̃ (1)σ
σ A = 1

4
iπσα

�̃2

�2

(
0 0
0 τ+ − τ−

)
. (B7)

Using
∑

j=st,0,± AP̃ i
j A = 1, we find

AP̃
(0)i
0 A =

(
τ− 0
0 0

)
, (B8)

AP̃
(1)st,0
0 A = iπα

�̃2ε

��2

(
0 1

Z
τ−

τ− 0

)
. (B9)

This proves (157)–(160) and (202)–(205). We note that
although degenerate perturbation theory is needed to calculate
P̃ i

0 up to first order in α, we do not need any second-order
terms in α for the Liouvillian since the projector P̃ i

st is exactly
known. This is a particular advantage for the spin boson
model.

To derive the formula (200) for the eigenvalue γ̃ st
0 of

L̃a (0) up to second order in α, we relate it to the eigenvalue
γ̃ 0

0 = z0 = −i(�(1) + �(2) + O(α3)) of L̃a (z0). We first note
that, due to the matrix structure of AL̃st,0

a A [see (140) and
(B2)], the second-order contribution to the eigenvalues γ̃

st,0
0

is not influenced by the nondiagonal blocks of AL̃st,0
a A and

arises only from the upper left block. Denoting this block by
(AL̃st,0

a A)11 we expand

L̃a (0)11 = L̃a (z0)11 − d�̃a

dE
(0)11z0 + O(α3), (B10)

115425-21



CARSTEN J. LINDNER AND HERBERT SCHOELLER PHYSICAL REVIEW B 98, 115425 (2018)

and use (55) together with d
dE

Fσ (0) = 1 + iσ π
2 + O(α) to

get

L̃a (0)11 = L̃a (z0)11 + 2i�(1)α
�̃2

�2
τ− + O(α3), (B11)

such that

γ̃ st
0 = z0 + 2i�(1)α

�̃2

�2
+ O(α3), (B12)

which proves (200).
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