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Single-electron second-order correlation function G (2) at nonzero temperatures
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The single-particle state is not expected to demonstrate second-order coherence. Here I analyze the injection
of electrons into a conductor and show that, at a nonzero temperature, the underlying Fermi sea causes the
single-particle injected state to exhibit second-order coherence. For this purpose, I calculate the second-order
correlation function, G(2), of electrons injected on top of the Fermi sea. At zero temperature, the function G(2)

unambiguously demonstrates whether the injected state is a single- or a multiparticle state: G(2) vanishes in the
former case, while it does not vanish in the latter case. However, at nonzero temperatures, when the injected state
is a mixed state, a purely single-particle contribution makes the function G(2) nonvanishing even in the case of
injection of one electron. The single-particle contribution puts the lower limit on the second-order correlation
function and thereby limits its use as a single-particle injection test at nonzero temperatures. The existence of a
single-particle contribution to G(2) can be verified experimentally by measuring the cross-correlation electrical
noise.
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I. INTRODUCTION

Quantum coherent electronics [1,2], also known as elec-
tron quantum optics [3], and single-electron electronics [4],
is an actively developing platform for quantum information
processing [5], which is aimed at creating, manipulating, and
detecting individual electrons as carriers of information.

Recently, quite a lot of single-electron sources on-demand
have been experimentally realized [6–17]. One of the crucial
tests this source has to pass through is the verification of a
single-particle emission regime.

In quantum optics, the single-photon emission regime is
verified via the measurement of the second-order correlation
function, g(2), which characterizes the probability of joint
detection of two photons [18]. Such a verification is universal
and it does not rely on any specific properties of the source.
If the stream generated by a periodically working source
consists of nonoverlapping single photons, then the function
g(2)(τ ) vanishes at zero time delay between the two detec-
tions, τ = 0. In contrast, if there are multiphoton wave packets
in the stream, the two photons can be detected simultaneously
and the function g(2) is finite at τ = 0.

The measurement of the joint detection probability in the
optical frequencies range is possible due to availability of ef-
ficient single photon detectors. In the microwave frequencies
range, no efficient detectors are available. Nevertheless, the
single-particle emission regime for a source of microwave
photons [19] can be demonstrated via the linear amplification
of the magnitude of an electromagnetic field [20].

There are no efficient on-fly detectors available for single
electrons so far, and there is no way to measure the magnitude
of a fermionic field. This is why for the verification of a single-
electron emission regime, the various nonuniversal methods
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were used. The nonuniversality in this context means that
the given method can be good for one system, but not for
another. In particular, a strong decrease in an electrical noise
was used as an indicator of the single-particle emission regime
for a dynamical quantum dot [21] and for a quantum capacitor
[22–24], while this method does not work in the case of the
source of levitons [11]. Another method for validation of the
single-electron injection regime, which relies on the partition
noise [25,26] of an electron beam splitter, was demonstrated
in Refs. [11,27].

Nevertheless, in some systems it is possible to measure
directly the second-order correlation function for injected
electrons, G(2), which vanishes identically in the case of a
single-particle injection. Generally, in the case of electrons
injected into an electron waveguide, the second-order corre-
lation function contains several contributions: (i) One is due
to electrons belonging to the Fermi sea of the waveguide, (ii)
one more is due to the injected electrons, that is G(2), (iii) and,
finally, the last contribution is due to the joint contribution
of the injected electrons and Fermi-sea electrons [28–30]. As
it is pointed out in Ref. [29], when electrons are injected
into one of the two incoming channels of an electron beam
splitter, the cross-correlation noise of currents after the beam
splitter is directly related to the function G(2). The Fermi
sea electrons do not contribute to the cross-correlation noise
either directly or in conjunction with injected electrons. For
this to be true, the two conditions must be met. First, the
Fermi seas in both incoming channels have the same temper-
ature and the same chemical potential. Second, the incoming
and outgoing channels are spatially separated, which can be
achieved using chiral or helical edge states [31] as electron
waveguides.

Here I focus on the effect of temperature on the second-
order correlation function, G(2), of electrons injected on top
of the Fermi sea in conductors. The fact that at nonzero tem-
peratures the quantum state of injected electrons is a mixed
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state, [32,33] leads to existence of a purely single-particle
contribution to the correlation function G(2). This contribution
puts the lower limit to the second-order correlation function,
and it must be taken into account when the function G(2) is
used to distinguish single-electron and multielectron injected
quantum states.

The paper is organized as follows: In Sec. II, I discuss the
effect of temperature on the correlation function G(2) of elec-
trons injected on top of the Fermi sea. In Sec. III, the relation
between the function G(2) and the current correlation function
is given in frequency domain. The temperature dependence of
the functions G(2) for single- and two-electron excitations are
contrasted in Sec. IV. The conclusion is given in Sec. V. Some
details of calculations are presented in Appendixes A and B.

II. CORRELATION FUNCTION OF ELECTRONS
INJECTED AT NONZERO TEMPERATURES

If the single-electron source injects particles with an energy
close to the Fermi energy of the electrons in the conductor, the
injected quantum state becomes temperature dependent [33].
The relevant sources are, for example, the source of levitons
[11], and a source based on a quantum capacitor [7,34,35] in a
regime that is described by a model of a single quantum level
raising at a constant rapidity [36]. Namely, these sources are
assumed below.

The first-order coherence of injected electrons is con-
veniently characterized by the excess first-order correlation
function, G(1) [37–39]. To get rid of the contribution of
the underlying Fermi sea and keep track of the contri-
bution of injected electrons only, this function is defined
as the difference of the two terms, evaluated with the
source being switched on and off, respectively, G(1)(1; 2) =
〈�̂†(1)�̂(2)〉on − 〈�̂†(1)�̂(2)〉off. Here �̂ (j ) is an electron
field operator in second quantization evaluated at time tj and
point xj , j = 1, 2, behind the source. The effect of a working
source is encoded in these operators. The quantum statistical
average, 〈. . . 〉, is performed over the equilibrium state of
electrons in the conductor to which the waveguide is con-
nected. This state is characterized by the Fermi distribution
function with a temperature θ and a chemical potential μ.
In this paper, I suppose that the waveguide is a chiral one-
dimensional conductor. Since I am interested in time depen-
dence rather than spatial dependence, below, I only keep the
argument tj .

The excess first-order correlation function is experimen-
tally accessible. For instance, the function G(1) for a stream of
identically prepared separated electrons in a ballistic conduc-
tor was measured in Ref. [40] using the tomography protocol
suggested in Ref. [38].

On the contrary, the second-order coherence of injected
electrons is more difficult to access. The total second-order
correlation function is defined as follows, G (2)(t1, t2; t3, t4) =
〈�̂†(t1)�̂†(t2)�̂(t3)�̂(t4)〉 [28,29]. For the Fermi sea of
noninteracting electrons of interest here, this function is
calculated as the 2 × 2 Slater determinant composed of
G (1)(t1; t2) = 〈�̂†(t1)�̂(t2)〉 taken with corresponding argu-
ments.

When the source is on, this function, G (2)
on , which charac-

terizes the second-order coherence of the Fermi sea together

with injected electrons, contains three distinct contributions
[28,29]. One of them is of particular interest; it is due to
electrons injected by the source. This contribution, which I
denote as G(2), is composed of excess first-order correlation
functions, G(1), in the very same way as the total G (2) is
composed of the total G (1):

G(2)(t1, t2; t3, t4) = det

(
G(1)(t1; t4) G(1)(t1; t3)
G(1)(t2; t4) G(1)(t2; t3)

)
. (1)

Another contribution is due to electrons belonging to the
Fermi sea of a waveguide. This contribution can be calculated
with the source turned off, G (2)

off . This contribution charac-
terizes the second-order coherence of the Fermi sea alone.
Yet another contribution is due the joint effect of injected
electrons and electrons belonging to the Fermi sea of a waveg-
uide. It is this last contribution which prevents us from de-
termining G(2) as the excess G (2), that is, G(2) �= G (2)

on − G (2)
off .

Nevertheless, as it was argued in Ref. [29], the function G(2)

can be accessed directly through the cross-correlation noise.
Since G(2) is experimentally accessible, one can use it to
characterize the second-order coherence of injected electrons.
Bellow, I discuss in detail the properties of G(2).

First consider injection at zero temperature, when the
injected particles are in a pure quantum state. For a single-
particle state (N = 1) with wave function �1(t ), the first-
order correlation function is factorized into the product of
two terms that depend on one time each, G

(1)
N=1(t1; t2) =

�∗
1 (t1)�1(t2) [33,41]. Apparently, that in this case the second-

order correlation function vanishes identically, G
(2)
N=1 = 0.

However, already for a two-particle state (N = 2), when
G

(1)
N=2(t1; t2) = ∑2

j=1 �∗
j (t1)�j (t2), the second-order corre-

lation function is not zero. It is represented as follows,
G

(2)
N=2(t1, t2; t3, t4) = �

(2)∗
1,2 (t1, t2)� (2)

1,2(t4, t3), where the two-
particle wave function,

�
(2)
1,2(t1, t2) = det

(
�1(t1) �2(t1)
�1(t2) �2(t2)

)
, (2)

is the Slater determinant composed of wave functions of both
particles, �1 and �2.

In contrast, at nonzero temperatures, the electrons injected
by the source on top of the Fermi sea are in a mixed quantum
state. In the case of a two-particle state, the first-order corre-
lation function reads [33,41]

G
(1)
N=2(t1; t2) =

∫
dεpθ (ε)

2∑
j=1

�∗
jε (t1)�jε (t2), (3)

where the index j labels the mixed state of one of the two
particles, j = 1, 2. The components of such a mixed state
are parametrized by a continuous variable, the energy ε, with
the probability density pθ (ε) = −∂f (ε)/∂ε, where f (ε) =
(1 + e

ε
kB θ )

−1
is the Fermi distribution function, kB is the

Boltzmann constant, and ε is the energy counted from to the
Fermi energy, ε = E − μ, cf. the Fermi function definition
after Eq. (A4).
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Accordingly, to Eq. (1), the second-order correlation func-
tion becomes

G
(2)
N=2(t1, t2; t3, t4)

=
∫

dεpθ (ε)
∫

dε′pθ (ε′)
{
�

(2)∗
1ε,2ε′ (t1, t2)� (2)

1ε,2ε′ (t4, t3)

+
2∑

j=1

�∗
jε,jε′ (t1, t2)�jε,jε′ (t4, t3)

}
. (4)

Here the two-particle wave function �
(2)
1ε,2ε′ is determined by

Eq. (2) with �1 being replaced by �1ε and �2 being replaced
by �2ε′ . In addition, we have a new function �jε,jε′ dependent
of two times, which is determined by the Slater determinant
composed of different components of the same single-particle
mixed state,

�jε,jε′ (t1, t2) = 1√
2

det

(
�jε (t1) �jε′ (t1)
�jε (t2) �jε′ (t2)

)
. (5)

I name it the two-time wave function. Note that at coincident
times, t1 = t2, this function is zero, �jε,jε′ (t, t) = 0, which is
a manifestation of the fermionic nature of an electron.

The contribution to G(2) due to the two-time wave function
is present even in the case when N = 1 (that is, j = 1) in
Eq. (3). The corresponding state I call a single-particle mixed
state with components described by the single-particle cor-
relation functions G

(1)
1ε (t1; t2) = �∗

1ε (t1)�1ε (t2) appeared with
probability pθ (ε). Single particle means here that only one
component of the mixed state appears at a time. Therefore,
the number of particles described by this mixed state does not
fluctuate and is equal to one. The interpretation that only one
component of the mixed state appears at a time is in line with
the interpretation of the state of a finite-temperature Fermi
sea into which a particle is injected, see Eq.(7) in Ref. [42].
According to that interpretation, the quantum state of the
Fermi sea at nonzero temperature can be represented as the
mixed state, whose components are the Fermi seas with zero
temperature, completely filled up to the energy μ + ε, which
appear one at a time with probability pθ (ε).

So, for N = 1, Eq. (4) becomes

G
(2)
N=1(t1, t2; t3, t4) =

∫
dεpθ (ε)

∫
dε′pθ (ε′)

×�∗
1ε,1ε′ (t1, t2)�1ε,1ε′ (t4, t3). (6)

Note, at zero temperature, θ = 0, the probability density
becomes the delta function of energy, pθ (ε) = δ(ε − μ), and
the only component with Fermi energy, ε = μ, survives. Since
�jμ,jμ(t1, t2) = 0, the second-order correlation function van-

ishes at zero temperature, G(2)
N=1 = 0, as expected for a single-

particle state. In contrast, at nonzero temperatures, θ > 0,
when pθ (ε) �= δ(ε − μ), a single-particle state demonstrates
some degree of second-order coherence, which is quantified
by G

(2)
N=1 �= 0.

This is somewhat counterintuitive, since the quantities like
G(2) are considered essentially multiparticle in nature. Indeed,
in the case of a pure state, G(2)(t1, t2; t2, t1) = |� (2)(t1, t2)|2.
The conventional meaning of the wave function square is the
detection probability, the probability of a strong, projective

measurement. In our case, it is the joint probability of two
detections, at time t1 and at time t2.

In the case of a two-particle state, say, with wave functions
�1(t ) and �2(t ), both detections are possible. Let us suppose
that in the first measurement we detect a particle with wave
function �1 at time t = t1. The projective measurement means
that, after the detection, the wave function is collapsed; it is re-
duced to the delta function, �1(t ) ∼ δ(t − t1). Therefore, the
original wave function cannot be measured at any other times.
However, there is a second particle with wave function �2(t ),
which can be detected in the second measurement, say, at time
t = t2 �= t1. Hence, we are able to perform two measurements,
and the probability for such a joint measurement is given by
G

(2)
N=2(t1, t2; t2, t1) �= 0.
In the case of a single-particle state, we can perform a

projective measurement only once, say, at t = t1, and cannot
measure the same state again t = t2 �= t1. This fact is mani-
fested as G

(2)
N=1 = 0, which works perfectly well in the case of

injection at zero temperature.
However, in the case of injection at nonzero temperatures,

this logic seems to fail, G
(2)
N=1 �= 0, see Eq. (6) for θ > 0. To

resolve this seeming paradox, let’s remember that a classical
(nonquantum) particle can be measured as many times as we
need. Therefore, one can say that the Fermi sea at nonzero
temperatures causes an injected particle to behave classically
and to exhibit the second-order coherence.

A direct reading of Eq. (6) with t4 = t1 and t3 = t2 suggests
that a possible mechanism that would explain why a particle
in a mixed state would behave classically, that is, could be
measured more then once, is as follows. A particle in a mixed
state can be in several quantum states, components of the
mixed state, appearing with some probabilities. In Eqs. (6)
and (5), these states are �1ε for various ε. When we detect
a particle at time t = t1, we detect it in some particular
component state, say, in the state with ε = ε0. As a result,
this component is reduced to the delta function, �1ε0 (t ) ∼
δ(t − t1), and, therefore, cannot be measured at any other
times. But there are many other components of the mixed state
with ε′ �= ε0. Any of them is available for the next detection,
say, at time t = t2 �= t1.

The ability of a single-particle state injected at nonzero
temperature to demonstrate the second-order coherence can
be verified (or refuted) experimentally.

III. G(2) AND THE CROSS-CORRELATION NOISE

As it was pointed-out in Ref. [29], the second-
order correlation function with pairwise equal arguments,
G(2)(t1, t2; t2, t1), is directly related to the cross-correlation
symmetrized noise [43–46]. More precisely, it is related to
the currents, I3(t1) and I4(t2), and their correlation function,
P34(t1, t2), which are measured at the outputs of an electronic
interferometer [47–49], analogous to the Hanbury Brown and
Twiss (HBT) interferometer [50] known in optics, see Fig. 1.
The source of electrons is placed in one of the inputs. The
temperature of both input channels 1 and 2, with and without
an electron source, should be the same, θ1 = θ2 ≡ θ . Since
the source injects particles periodically with period T0, the
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P34

I3G(2)

I4
FIG. 1. Scheme of an electron HBT interferometer, where the

quantum state injected into one of the input channels (marked by
G(2)) is transmitted through and reflected at the wave splitter (shown
as a shaded thin rectangle). As a result, the outgoing current I3 and
I4 are generated. These currents, together with their cross-correlation
function P34, define the second-order correlation function of injected
state, G(2), according to Eq. (9). The arrows show the direction of
propagation of electrons.

resulting currents are periodic functions of time, Iα (t ) =
Iα (t + T0), α = 3, 4.

Since the measurement of a time-resolved noise is chal-
lenging, below I focus on a frequency-resolved noise [51–57],
which was measured more than once, see, e.g., Refs. [58–60]
and also Ref. [22], where, as I already mentioned, a frequency-
resolved noise was used for validation of the single-electron
injection regime.

Let us introduce the following Fourier transform:

G
(2)
� (ω) =

∫ T0

0
dtei��t

∫ ∞

−∞
dτeiωτG(2)(t + τ, t ; t, t + τ ),

(7)

where � = 2π/T0 and � is an integer. Then, G
(2)
� (ω) is

expressed in terms of the finite-frequency cross-correlation
noise power, P34,�(ω) and outgoing currents I3 and I4, as
follows (see Appendix A for the precise definition of P34,�(ω),
Eqs. (A3) and (A4), and for the corresponding derivation
within the Floquet scattering matrix approach):

v2
μG

(2)
� (ω) = P34,�(ω)

e2RT/T0

+ 1

e2RT

∫ T0

0
ei��tdt

∫ ∞

−∞
dτeiωτ I3(t + τ )I4(t ).

(8)

Here T and R = 1 − T are the transmission and reflection
probabilities of a wave splitter of an electron HBT interfer-
ometer, vμ is the Fermi velocity of electrons in a waveguide,
e is an electron charge.

In the special case, when the excitations produced during
different periods do not overlap, Eq. (8) can be simplified.
We take into account explicitly the fact that the current is
periodic, set T0 → ∞, and introduce a continuous frequency
ω� = �� instead of the series of discrete frequencies ��, see
Appendix A 4 for details. Then Eq. (8) becomes

v2
μG

(2)
� (ω) = P34,�(ω)

e2RT/T0
+ I3(ω)I4(ω� − ω)

e2RT/T 2
0

. (9)

This equation resembles Eq. (22) of Ref. [28], where the two-
energy distribution function was related to the zero-frequency
noise power and DC currents in the circuit with two energy

filters, quantum dots each with one working resonant quantum
level.

Below, I will use Eq. (9) and address the temperature de-
pendence of G

(2)
� (ω) for electrons injected by some particular

source, namely the source of levitons [11], that is capable
of generating single- as well as few-particle excitations [61–
66]. The aim is to find out whether the function G(2) in
frequency representation can uniquely distinguish a single-
particle state from a multiparticle state, with accounting for a
multiparticlelike behavior of a single-particle state at nonzero
temperatures. As can be seen from the example below, this
is not always possible if only one set of frequencies is
available. Measuring on multiple frequency sets can increase
confidence. However, only G(2) in the time domain can do this
job with full certainty.

IV. EXAMPLE: THE SOURCE OF LEVITONS

The sequence of the Lorentzian voltage pulses,

eV (t ) = N

∞∑
m=−∞

2h̄�τ

(t − mT0)2 + �2
τ

, (10)

applied to a metallic contact, generates the stream of excita-
tions with charge eN each in a ballistic channel attached to
the contact [67–69]. Here �τ is the half-width of a voltage
pulse. These excitations are named N -electron levitons or
N -levitons [70].

A. Correlation functions

In the regime, when the period is much larger then the
width of a voltage pulse, T0 � �τ , the excitations created
at different periods do not overlap. Then, we can restrict
ourselves to a single period only, say, m = 0, and send T0 →
∞ in the integrals we need to evaluate. In this case, the
first-order correlation function of excitations injected by the
source of levitons is represented as follows:

G(1)(t1; t2) =
∫

dεpθ (ε)
N∑

j=1

�∗
j,ε (t1)�j,ε (t2). (11)

Here �j,ε (t ) = e−it
μ+ε

h̄ ψj (t ) is the wave function of the j th
particles comprising an N -electron leviton (j = 1, . . . , N ).
The corresponding envelope function is the following
[71–73]:

ψj (t ) =
√

�τ

πvμ

1

t − i�τ

(
t + i�τ

t − i�τ

)j−1

. (12)

Using the fact that the envelope wave functions, ψj , are
independent of energy, we can integrate ε out in Eq. (11) and
get

G(1)(t1; t2) = η

(
t1 − t2

τθ

) N∑
j=1

ψ∗
j (t1)ψj (t2), (13)

where η(x) = x/ sinh(x) and the thermal coherence time is
τθ = h̄/(πkBθ ).

Substituting the above equation into Eq. (1), one can
calculate the second-order correlations function. For t1 = t4
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and t2 = t3 we have

G(2)(t1, t2; t2, t1)

=
N∑

j=1

N∑
k=1

{∣∣ψj (t1)
∣∣2∣∣ψk (t2)

∣∣2

− η2

(
t1 − t2

τθ

)
ψ∗

j (t1)ψj (t2)ψ∗
k (t2)ψk (t1)

}
.

(14)

Now I will analyze the above equation in two cases, N = 1
and N = 2.

B. A single-electron leviton, N = 1

For a single-particle leviton, N = 1, the function G(2)

becomes

v2
μG

(2)
N=1(t1, t2; t2, t1) = �2

τ

π2

1 − η2
(

t1−t2
τθ

)
(
t2
1 + �2

τ

)(
t2
2 + �2

τ

) . (15)

From this equation, we can conclude the following. First,
when the time difference is smaller then the thermal coherence
time, |t1 − t2|  τθ , the function η = 1, and the second-order
correlation function vanishes, G

(2)
N=1 = 0. This fact is a man-

ifestation of a single-particle nature of a quantum state in
question.

Second, at larger time difference, |t1 − t2| � τθ , the func-
tion η → 0, and the second order correlation function is fac-
torized into the product of two terms, each of which depends
only on one time, G

(2)
N=1(t1, t2; t2, t1) = |ψ1(t1)|2|ψ1(t2)|2.

Namely, the two-particle detection probability becomes the
product of two statistically independent single-particle detec-
tion probabilities. Such a property is expected for a classical
rather than a quantum state.

Nevertheless, the state of a leviton remains quantum and
respects the Pauli exclusion principle, which requires that
the function G(2) strictly vanishes at equal times (at any
temperature), G

(2)
N=1(t, t ; t, t ) = 0.

The frequency representation

Let us perform the Fourier transformation defined in
Eq. (7) on the function G(2) of a single leviton, Eq. (15). Using
the fact that T0 � �τ , we get

v2
μG

(2)
N=1,�(ω)

= e−|ω|�τ e−|ω−ω�|�τ − e−|ω�|�τ

× �τ

π

∫ ∞

−∞
dτ

η2
(

τ
τθ

)
τ 2 + 4�2

τ

{
cos (ωτ ) + cos ([ω − ω�]τ )

+ 2�τ

τ
sgn(ω�)[sin (ωτ ) − sin ([ω − ω�]τ )]

}
. (16)

As I already mentioned, this function is experimentally ac-
cessible through the finite-frequency noise measurement, see
Eq. (9).

In Fig. 2, I show G
(2)
N=1,�(ω), Eq. (16), as a function of

temperature for several fixed frequencies. The set of frequen-
cies chosen aims to illustrate various ways how noise can
approach zero with decreasing temperature. This is important

� � 0

� 2 � L�

� �2 � L�

� �3 � L�

5 10 15 20
kB � L

�1.0

�0.5

0.5

1.0

gN�1
(2) ( , )

FIG. 2. The second-order correlation function of a single levi-
ton, Eq. (16), normalized to its high-temperature asymptotics,
g

(2)
N=1(ω�, ω) = v2

μG
(2)
N=1,�(ω)/(e−|ω|�τ e−|ω−ω�|�τ ), is given as a func-

tion of temperature. The temperature, kBθ , and frequencies, h̄ω and
h̄ω�, are given in units of the energy of a leviton, EL = h̄/(2�τ ).

to be aware of, if measurement is only available with a fixed
frequency.

At strictly zero temperature, G
(2)
N=1,�(ω) = 0 for any fre-

quencies, demonstrating that the state in question is a genuine
single-particle state. At nonzero temperatures, the function
G(2) deviates from zero. It can first become positive, the two
upper lines in Fig. 2, or, first negative, and then positive, the
two lower lines in Fig. 2.

At high temperatures, when the thermal coherence
time becomes smaller than the width of a voltage pulse,
τθ  �τ , the second-order correlation function achieves its
high-temperature asymptotic behavior, v2

μ lim
θ→∞

G
(2)
N=1,�(ω) =

e−|ω|�τ e−|ω−ω�|�τ . This product form is characteristic of the
classical state.

Note, that the growth of G
(2)
N=1 with temperature is

also manifested in the reduction of a single-particle shot
noise[32,42,61], the effect that has already been measured in
Refs. [3,27,74,75].

The temperature dependence of the function G(2) for a
multielectron state is remarkably different. Namely, its zero
temperature limit is not universal. On the contrary, such a limit
depends strongly on frequency. To illustrate this statement, let
us consider the case of a two-electron leviton.

C. A two-electron leviton, N = 2

The correlation function of a two-electron leviton, G(2)
N=2, is

given in Eq. (11) with N = 2. The corresponding wave func-
tions are presented in Eq. (12). After performing the Fourier
transformation, according to Eq. (7), we obtain G

(2)
N=2,�(ω),

see Eq. (B4), which is shown in Fig. 3 as a function of
temperature for several fixed frequencies.

We can see that at zero temperature, the magnitude of
G

(2)
N=2,�(ω) is not zero, unlike the case of a plain leviton,

N = 1. Indeed, it strongly depends on the frequencies ω�

and ω. Such a nonuniversal frequency-dependent behavior is
characteristic of a multiparticle state, the two-particle state in
the present case.

Moreover, at some frequencies by chance, see the blue
dashed line in Fig. 3, the function G(2) can approach zero
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FIG. 3. The second-order correlation function of a two-electron
leviton, Eq. (B4), normalized to its high-temperature asymptotics,
g

(2)
N=2(ω�, ω) = v2

μG
(2)
N=2,�(ω)/(4e−|ω|�τ e−|ω−ω�|�τ ), is given as a func-

tion of temperature. The temperature, kBθ , and frequencies, h̄ω and
h̄ω�, are given in units of the energy of a leviton, EL = h̄/(2�τ ).

with decreasing temperature. This fact can be misinterpreted
as an indication of a single-particle state. To avoid this,
measurements at several frequencies are desirable.

Interestingly, the high-temperature asymptotics of the
second-order correlation function of a multielectron leviton is
universal: It is determined by the corresponding asymptotics
of the function G(2) of a single-electron leviton,

lim
θ→∞

G
(2)
N=N0

= N2
0 lim

θ→∞
G

(2)
N=1. (17)

This is a manifestation of the high-temperature fusion effect
(when the multielectron system behaves like one particle of
the total charge) discussed in Ref. [41].

Note that the low-temperature regime, for which Figs. 2
and 3 show different behavior, is achievable in present day
experiment. So, in Ref. [74], the voltage pulses with width
2�τ = 75 ps were used to generate levitons with energy EL ≈
320 mK. The experimental data on shot noise were reported
for the temperature range from θ1 = 40 mK to θ2 = 138 mK.
Correspondingly, the ratio θ/EL is changed from θ1/EL ≈
0.125 to θ2/EL ≈ 0.43. From Figs. 2 and 3, we see that for
these parameters the function G(2) allows one to uniquely dis-
tinguish single-particle and multiparticle states: The second-
order correlation function, G(2), is almost constant in the case
of a two-electron leviton, while it decreases rapidly to zero
with decreasing temperature in the case of a single-electron
leviton.

V. CONCLUSION

I have discussed the effect of temperature on the second-
order correlation function of electrons, G(2), which are in-
jected by an on-demand source on top of the Fermi sea in a
conductor.

The second-order correlation function is a universal tool
that is able to distinguish between single- and multiparticle
injection regime of an electron source. The function G(2) is
accessible via the cross-correlation electrical noise measure-
ment at the exit of an electron Hanbury Brown and Twiss
interferometer.

At zero temperature, the function G(2) is vanishing in the
case of a single-electron injection and does not vanish in
the case of multiparticle injection. In contrast, at nonzero
temperatures, the function G(2) does not vanish even in the
case of a single-electron injection. The reason is that at
nonzero temperatures, the single-particle quantum state is a
mixed state that demonstrates some degree of second-order
coherence, which is quantified by G(2) �= 0. The existence of
this single-particle contribution has to be taken into account,
when the second-order correlation function is used for the
verification of a single-particle injection into conductors at
nonzero temperatures.
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APPENDIX A: ELECTRON VERSUS ELECTRICAL
CORRELATION FUNCTIONS

The setup of interest consists of an electron wave splitter, a
quantum point contact [76,77], with two incoming, α = 1, 2,
and two outgoing, β = 3, 4, one-dimensional waveguides,
which are connected to respective metallic leads with the
same temperature θ and chemical potential μ, see Fig. 1. The
transmission T and reflection R = 1 − T probabilities of a
wave splitter are energy independent (within the energy range
relevant to our problem).

One of the incoming waveguides, say α = 1, is connected
to an electron source that periodically emits particles. The
period is denoted as T0. Within the scattering approach, the
periodically working source is characterized by the Floquet
scattering matrix SF dependent on two energies, E and En =
E + nh̄� with n being integer and the frequency � = 2π/T0

is dictated by the periodicity. By the virtue of definition,
SF (En,E) is a quantum-mechanical amplitude for the pro-
cess, when an electron with energy E passing by a source
changes its energy to En [78].

My aim here is to prove Eq. (8). For this, I use Eq. (1) and
write

G(2)(t1, t2; t2, t1)

= −∣∣G(1)(t1; t2)
∣∣2 + G(1)(t1; t1)G(1)(t2; t2). (A1)

The first-order correlation function at coincident times de-
fines an electrical current generated by the source, I(t ) =
evμG(1)(t ; t ) [79]. The outgoing currents are expressed in
terms of the incoming current I(t ), as follows, I3(t ) = RI(t )
and I4(t ) = T I(t ). The currents are periodic in time, I (t ) =
I (t + T0). Therefore, after the Fourier transform defined in
Eq. (7), the second line of Eq. (A1) reproduces the second
line of Eq. (8).

To prove that the first term on the right-hand side of
Eq. (A1) leads to the first term on the right-hand side of
Eq. (8), I express both the cross-correlation electrical noise
power of the outgoing currents, P34, and the excess first-order
correlation function of electrons injected by the source, G(1),
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in terms of the Floquet scattering matrix of the source, and
then relate them to each other.

1. Frequency-dependent electrical noise

The symmetrized cross-correlation function of electrical
currents I3 and I4 flowing out of the wave splitter, see Fig. 1,
is defined as follows [80]:

P34(t1.t2) = 1
2 〈�Î3(t )�Î4(t + τ ) + �Î4(t + τ )�Î3(t )〉,

(A2)

where �Îα (t ) = Îα (t ) − 〈Îα (t )〉, α = 3, 4, is an operator of
current fluctuations in second quantization. The angle brack-
ets 〈. . . 〉 denote a quantum-statistical average over the equi-
librium state of an incoming single-mode channel not affected
by the electron source. Such an equilibrium state is the Fermi
sea with a temperature θ and a chemical potential μ. The
other incoming channel of the wave splitter is in the same
equilibrium state, with the same temperature θ and the same
chemical potential μ.

For convenience, let us analyze this quantity in frequency
representation. In the general nonstationary case, the current
correlation function P34 depends on two frequencies. In the
case with periodic driving, the Floquet scattering theory cal-
culations give for our setup [81,82]:

P34(ω,ω′) = 2π

∞∑
�=−∞

δ(ω + ω′ − ��)P34,�(ω), (A3)

where the noise power P34,�(ω) is expressed in terms of the
Floquet scattering matrix elements of an electron source, SF ,
as follows:

P34,�(ω)

= −RT
e2

h

∫
dE

∑
n

∑
m

∑
q

f(Eq + h̄ω)f(E)

×{δn0δm+�,0 − S∗
F (En,E)SF (Em+�, E)}{δnqδmq

− S∗
F (Em + h̄ω,Eq + h̄ω)SF (En + h̄ω,Eq + h̄ω)}.

(A4)

Here n,m, q are integers, δnm is the Kronecker delta, and

f (E) = (1 + e
E−μ

kB θ )
−1

is the Fermi distribution function for
electrons in a metallic contact with temperature θ and chemi-
cal potential μ, kB is the Boltzmann constant.

It’s easy to see that in equilibrium, that is, when the source
is turned off and, accordingly, SF (En,Em) = δnm, the noise
power is zero, P34,�(ω) = 0. So, in our setup, where the
contacts β = 3 and β = 4 have no direct connection between
themselves, only the partition noise of injected particles, but
not the quantum noise [83], contributes to the measured noise.

For convenience of the subsequent comparison with the
electron correlation function, I represent the noise power as
the sum of four terms, P34,�(ω) = −RT e2

h

∑4
r=1 Br , with

B1 =
∫

dE
∑

n

∑
m

∑
q

f(Eq + h̄ω)f(E)

S∗
F (En,E)SF (Em+�, E)S∗

F (Em + h̄ω,Eq + h̄ω)

SF (En + h̄ω,Eq + h̄ω), (A5a)

B2 = −
∫

dE
∑

q

f(Eq + h̄ω)f(E)

S∗
F (Eq,E)SF (Eq+�, E), (A5b)

B3 = −
∫

dE
∑

q

f(Eq + h̄ω)f(E)

S∗
F (E−� + h̄ω,Eq + h̄ω)SF (E + h̄ω,Eq + h̄ω),

(A5c)

B4 = δ�0

∫
dEf(E + h̄ω)f(E). (A5d)

Now let us turn to the quantum description of the excita-
tions injected by the source.

2. Electron correlation function

As I discussed in Sec. II, the first-order correlation function
for these excitations, G(1), is defined as the difference of the
electron correlation functions with the source switched on
and off, G(1)(t ; t ′) = 〈�̂†(t )�̂(t ′)〉on − 〈�̂†(t )�̂(t ′)〉off. Here
�̂(t ) is a single-particle electron field operator in second
quantization at time t just downstream the source. The angle
brackets, 〈. . . 〉, denote the quantum-statistical average over
the state of the Fermi sea of electrons approaching the source
from the metallic contact α = 1 being in equilibrium. Note
that, as in the Heisenberg picture, the field operators, rather
than the state, are changed by a working source.

I adopt the wide band approximation and suppose that in
the waveguides the electron spectrum can be linearized. The
Floquet scattering theory expresses G(1) in terms of SF as
follows [32]:

G(1)(t ; t ′)

= 1

hvμ

∫
dEf(E)e

i
h̄
E(t−t ′)

×
{ ∞∑

n,m=−∞
ei�(nt−mt ′)S∗

F (En,E)SF (Em,E) − 1

}
.

(A6)

Note that the possibility to linearize an electron spectrum
is important to perform linear opticlike manipulations with
electrons. For instance, if we need to calculate G(1) at another
place, say, at a distance x from the source downstream, we
simply replace t → t − vμx with vμ being the Fermi velocity.

The wide band approximation is also crucial to get sim-
ple relations between electrical and quantum-mechanical
quantities.

3. The connection between the two

Now let us demonstrate that the electrical noise power and
the electron correlation function squared are related by the
following Fourier transformation:

P34,�(ω)

P0
= −

∫ T0

0
ei��tdt

∫ ∞

−∞
dτeiωτ |vμG(1)(t + τ ; t)|2.

(A7)
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Here P0 = e2RT/T0 is the circuit constant. This constant is
the shot noise caused by the scattering of single electrons
being in the pure state on a wave splitter at a rate of one
particle per period T0 [26].

The relation analogous to Eq. (A7) but for the zero-
frequency noise power was presented in Refs. [32,42].

To prove Eq. (A7), first, let us represent the square of the
correlation function, Eq. (A6), as the sum of four terms:

∣∣vμG(1)(t; t ′)
∣∣2 = 1

h2

4∑
s=1

As (t; t ′), (A8a)

A1(t; t ′) =
∫

dEf(E)e
i
h̄
E(t−t ′)

∫
dE′f(E′)e

−i
h̄

E′(t−t ′)
∑
n,m

ei�(nt−mt ′ )S∗
F (En,E)SF (Em,E)

×
∑
j,k

e−i�(j t−kt ′ )SF (E′
j , E

′)S∗
F (E′

k, E
′), (A8b)

A2(t; t ′) = −
∫

dEf(E)e
i
h̄
E(t−t ′)

∫
dE′f(E′)e

−i
h̄

E′(t−t ′ )
∑
n,m

ei�(nt−mt ′ )S∗
F (En,E)SF (Em,E), (A8c)

A3(t; t ′) = −
∫

dEf(E)e
i
h̄
E(t−t ′ )

∫
dE′f(E′)e

−i
h̄

E′(t−t ′)
∑
j,k

e−i�(j t−kt ′ )SF (E′
j , E

′)S∗
F (E′

k, E
′), (A8d)

A4(t; t ′) =
∫

dEf(E)e
i
h̄
E(t−t ′ )

∫
dE′f(E′)e

−i
h̄

E′(t−t ′ ). (A8e)

As the next step, let us perform the following Fourier transformation:

As,�(ω) = 1

h

∫ T0

0

dt

T0
ei��t

∫ ∞

−∞
dτeiωτAs (t + τ, t), (A9a)

and show that As,�(ω) is nothing but Bs , Eqs. (A5).
Let us start with A4,

A4,�(ω) = 1

h

∫ T0

0

dt

T0
ei��t

∫ ∞

−∞
dτeiωτ

∫
dEf(E)e

i
h̄
Eτ

∫
dE′f(E′)e

−i
h̄

E′τ = δ�0

∫
dEf(E)(E + h̄ω). (A9b)

This equation is exactly B4, Eq. (A5d).
The Fourier transform of A3, Eq. (A8d), gives us

A3,�(ω) = − 1

h

∫ T0

0

dt

T0
ei��t

∫ ∞

−∞
dτeiωτ

∫
dEf(E)e

i
h̄
Eτ

∫
dE′f(E′)e

−i
h̄

E′τ
∑
j,k

e−i�jτ e−i�t (j−k)SF (E′
j , E

′)S∗
F (E′

k, E
′)

= −
∫

dE
∑

j

f(E)f(E−j + h̄ω)S∗
F (E−� + h̄ω,E−j + h̄ω)SF (E + h̄ω,E−j + h̄ω). (A9c)

After replacing −j by q we recognize the above equation as B3, Eq. (A5c).
The next term is A2, Eq. (A8c),

A2,�(ω) = − 1

h

∫ T0

0

dt

T0
ei��t

∫ ∞

−∞
dτeiωτ

∫
dEf(E)e

i
h̄
Eτ

∫
dE′f(E′)e

−i
h̄

E′τ
∑
n,m

ei�nτ ei�t (n−m)S∗
F (En,E)SF (Em,E)

= −
∫

dE
∑

n

f(E)f(En + h̄ω)S∗
F (En,E)SF (En+�, E). (A9d)

This is the same as B2, Eq. (A5b).
And, finally, let us calculate the Fourier transform of A1, Eq. (A8b),

A1,�(ω) = 1

h

∫ T0

0

dt

T0
ei��t

∫ ∞

−∞
dτeiωτ

∫
dEf(E)e

i
h̄
Eτ

∫
dE′f(E′)e

−i
h̄

E′τ

×
∑

n,m,j,k

ei�(n−j )τ ei�t (n+k−m−j )

S∗
F (En,E)SF (Em,E)SF (E′

j , E
′)S∗

F (E′
k, E

′) =
∫

dE
∑
n,m,j

f(E)f(En−j + h̄ω)S∗
F (En,E)SF (Em,E)

× SF (En + h̄ω,En−j + h̄ω)S∗
F (Em−� + h̄ω,En−j + h̄ω). (A9e)
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We denote q = n − j instead of j , and get

A1,�(ω) =
∫

dE
∑

q

f(E)f(Eq + h̄ω)
∑
n,m

S∗
F (En,E)SF (Em,E)S∗

F (Em−� + h̄ω,Eq + h̄ω)SF (En + h̄ω,Eq + h̄ω). (A9f)

After the shift m − � → m, we find that this is nothing but B1, Eq. (A5a). Therefore, Eq. (A7) indeed holds.
The proof of Eq. (8) is completed.

4. The Fourier transformation for the product
of first-order correlation functions

Here I show how the second term on the right-hand side of
Eq. (9) is calculated from the corresponding term in Eq. (8) in
the limit of T0 → ∞.

The current generated by a periodically driven source is
periodic in time, Iα (t ) = Iα (t + T0), α = 3, 4. Therefore, we
can expand it into the Fourier series,

Iα (t ) =
∞∑

n=−∞
e−in�t Iα,n,

Iα,n =
∫ T0

0

dt

T0
ein�t . (A10)

In the limit of T0 → ∞, we introduce a continuous frequency
ωn = n�, replace

∑∞
n=−∞ → ∫

dωn/�, and introduce the
continuous Fourier transformation,

Iα (ωn) =
∫ ∞

−∞
dteiωnt Iα (t ),

Iα (t ) =
∫ ∞

−∞

dωn

�
e−iωnt Iα (ωn). (A11)

Then we use the second line of the above equation in Eq. (8)
and get the corresponding term in Eq. (9).

APPENDIX B: THE FOURIER TRANSFORM OF THE
FUNCTION G(2) FOR A TWO-ELECTRON LEVITON

The first-order correlation function of a two-electron levi-
ton, G

(1)
N=2, is given in Eqs. (11) and (12) for N = 2. The

corresponding second-order correlation function reads

G
(2)
N=2(t + τ, t; t, t + τ )

= −∣∣G(1)
N=2(t + τ ; t )

∣∣2 + G
(1)
N=2(t ; t )G(1)

N=2(t + τ ; t + τ ).

(B1)

Now let us apply the Fourier transformation defined in
Eq. (A7).

1. The first term

The Fourier transform of the first term on the right-hand
side of Eq. (B1) determines the finite-frequency noise power,

P34,�(ω)

P0
= −

∫ T0

0
dtei��t

∫ ∞

−∞
dτeiωτ

∣∣vμG
(1)
N=2(t + τ ; t )

∣∣2 = −�2
τ

π2

∫ T0

0
dtei��t

∫ ∞

−∞
dτeiωτ η2

(
τ

τθ

)

×
{

2
1

(t + τ )2 + �2
τ

1

t2 + �2
τ

+ 1

(t + τ − i�τ )2

1

(t + i�τ )2 + 1

(t + τ + i�τ )2

1

(t − i�τ )2

}
. (B2a)

In the case when the levitons created at different periods do not overlap, T0 � �τ , we can safely extend the limits of
integration over t to infinity and introduce a continuous frequency ω� = �� instead of the set of discrete frequencies ��. Then,
to integrate over t , we use the following auxiliary integrals:

2
�2

τ

π2

∫ ∞

−∞
dt

eiω�t

(t + τ )2 + �2
τ

1

t2 + �2
τ

= 2
�τ

π

e−|ω�|�τ

τ 2 + 4�2
τ

{
1 + e−iω�τ − i 2�τ

τ
(1 − e−iω�τ ), � > 0,

1 + e−iω�τ + i 2�τ

τ
(1 − e−iω�τ ), � < 0,

(B2b)

and

�2
τ

π2

∫ ∞

−∞
dt

eiω�t

(t + τ − i�τ )2

1

(t + i�τ )2

= �2
τ

π2

e−|ω�|�τ(
τ 2 + 4�2

τ

)2

⎧⎨
⎩e−iω�τ

[ − 2πω�

(
τ 2 − 4�2

τ + 4i�τ τ
) + 4π(8�3

τ −6�τ τ
2 )+4πi(τ 3−12�2

τ τ )
τ 2+4�2

τ

]
, � > 0,

2πω�

(
τ 2 − 4�2

τ + 4i�τ τ
) + 4π(8�3

τ −6�τ τ
2 )+4πi(τ 3−12�2

τ τ )
τ 2+4�2

τ
, � < 0.

(B2c)

The noise power becomes

P34,�(ω)

P0
= −e−|ω�|�τ

2�τ

π

∫ ∞

−∞
dτ

η2
(

τ
τθ

)
τ 2 + 4�2

τ

{
eiωτ + eiτ (ω−ω� ) − i

2�τ

τ
sgn(ω�)[eiωτ − eiτ (ω−ω� )] + eiτ (ω−ω� )A + eiωτA∗

τ 2 + 4�2
τ

}
,

A = �τ |ω�|
(
4�2

τ − τ 2
) − i4�2

τω�τ + 2�τ

(
8�3

τ − 6�τ τ
2
) + i sgn(ω�)

(
τ 3 − 12�2

τ τ
)

τ 2 + 4�2
τ

. (B2d)
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This equation satisfies the general symmetry properties, P�(ω) = P∗
−�(−ω) and P�(ω) = P�(�� − ω) [84]. To prove the latter

one, we need to change τ → −τ . Moreover, it’s easy to see, that Eq. (B2d) is real:

P34,�(ω)

P0
= −e−|ω�|�τ

4�τ

π

∫ ∞

0
dτ

η2
(

τ
τθ

)
τ 2 + 4�2

τ

{B[cos (ωτ ) + cos ([ω − ω�]τ )] + C[sin (ωτ ) − sin ([ω − ω�]τ )]},

B = 1 + �τ |ω�|4�2
τ − τ 2

τ 2 + 4�2
τ

+ 4�2
τ

4�2
τ − 3τ 2(

τ 2 + 4�2
τ

)2 ,

C = 2�τ

τ
sgn(ω�) − 4�2

τ

ω�τ

τ 2 + 4�2
τ

+ 2�τ sgn(ω�)
τ 3 − 12�2

τ τ(
τ 2 + 4�2

τ

)2 . (B2e)

Note the above equation is the total cross-correlation noise power, not the excess noise power, which is more convenient in the
case of the auto-correlation noise measurement, see, e.g., Ref. [24].

The noise power P34,�, Eq. (B2e), vanishes at large
frequencies, ω,ω� � �−1

τ . This fact tells us that quantum
noise[83], which grows with frequency, is not manifested
here.

2. The second term

I denote the Fourier transform of the second line of
Eq. (B1) as G(2),cl . Since this part survives at high tem-
peratures, which is expected for the classical contribution, I
introduce the superscript cl. This part is expressed in terms
of the Fourier transform of a current, carried by the levitons,
I (t ) = evμG

(1)
N=2(t ; t ), as follows:

G
(2),cl
� (ω) = 1

e2v2
μ

∫ T0

0
ei��tdt

∫ ∞

−∞
dτeiωτ I (t )I (t + τ ).

(B3a)

Then I use the periodicity condition and write, I (t ) =∑∞
n=−∞ e−in�t In. The above equation becomes

G
(2),cl
� (ω) = 2πT0

e2v2
μ

∞∑
n=−∞

δ(ω − n�)InI�−n.

(B3b)

In the long period limit, when the levitons emitted at different
periods do not overlap, I introduce a continuous frequency
ωn = n� and replace the sum by the integra,

∞∑
n=−∞

→
∫ ∞

−∞

dωn

�
. (B3c)

Correspondingly, the coefficients of a discrete Fourier trans-
formation are replaces by the coefficients of a continuous
Fourier transformation, In → I (ωn)/T0. Then Eq. (B3b) be-
comes

v2
μG

(2),cl
� (ω) = T 2

0

e2
I (ω)I (ω� − ω), (B3d)

with I (ω) = evμG
(1)
N=2(ω) and G

(1)
N=2(ω) = 2e−|ω|�τ .

According to Eq. (9), the sum of Eqs. (B2e) and (B3d)
defines the Fourier transform of the second-order correlation
function:

v2
μG

(2)
N=2,�(ω) = P34,�(ω)

P0
+ v2

μG
(2),cl
� (ω). (B4)

The above function is what is plotted in Fig. 3.
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