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One of the unique properties of graphene is its extremely high mechanical strength. Several studies have
shown that the mechanical failure of a graphene sheet under a tensile strain is due to the enhancement of the
Kohn anomaly of the zone boundary transverse optical phonon modes. In this work, we derive an analytical
expression of the Kohn anomaly parameter α �K of these phonons in graphene deformed by a uniaxial strain along
the armchair direction. We show that the tilt of Dirac cones, induced by the strain, contributes to the enhancement
of the Kohn anomaly under a tensile deformation and gives rise to a dominant contribution of the so-called outer
intervalley-mediated phonon processes. Moreover, the Kohn anomaly is found to be anisotropic with respect
to the phonon wave vectors around the K point. This anisotropy may be at the origin of the light polarization
dependence of the Raman 2D band of the strained graphene. Our results not only uncover the role of the Kohn
anomaly in the anisotropic mechanical failure of the graphene sheet under strains applied along the armchair and
zigzag directions, but they also shed light on the doping-induced strengthening of strained graphene.
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I. INTRODUCTION

Despite the unique features of graphene, several drawbacks
have to be overcome to integrate this material in optoelec-
tronic devices. In particular, the lack of a band gap is a prob-
lem standing in the way of using graphene in electronics [1,2].
Moreover, it has been proven that it is not possible to obtain
high-temperature intrinsic superconductivity in this material
regarding the weak electron-phonon coupling responsible for
the superconducting state [3].

In the past few years, strain engineering has emerged as a
powerful tool to control the optical and electronic properties
of two-dimensional (2D) materials [4–8]. Strained graphene
has recently become a hot topic of interest since it is expected
to pave the way for new applications for flexible electronic
devices in which the graphene sheet is manipulated like a
piece of origami paper [5,9].

Deformed graphene under strain may also offer new phys-
ical insights, e.g., the generation of exotic electronic states
under a giant pseudomagnetic field [10] and relatively high-
temperature superconductivity at Tc ∼ 30 K [11,12]. Al-
though the vibrational spectrum of graphene is significantly
changed under strain, no band gap has been induced in the
electronic dispersion up to the critical strain amplitude ε ∼
20% [13] before sample cracking [14–16]. However, it is
found that under uniaxial strain, the Dirac points shift from
the high-symmetry points K and K ′ located at the corner of
the hexagonal Brillouin zone [1,14,17].

The signature of the strain on the electronic and vibra-
tional properties of graphene could be probed by Raman
spectroscopy, which is found to be sensitive to the strain
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[18–31]. In particular, the G peak, originating from the
doubly degenerate E2g zone center phonons, splits into two
peaks whose intensities are strongly dependent on the inci-
dent light polarization [22]. This dependence is found to be
the fingerprint of the strain modified electronic dispersion,
which affects the Raman G band through the electron-phonon
interaction [32].

Due to its higher strain-induced frequency shift, the 2D
Raman peak is commonly used to determine the strength
and the direction of the applied strain [19,21,24,27,30,33,34].
This peak is due to the doubly resonant intervalley process
involving transverse optical boundary phonons with wave
vector �K [18]. The characteristic features of the 2D band
under strain are found to be substantially dependent on both
the electronic structure and the dispersion of the in-plane
transverse optical phonon (iTO) mode at the K point [27–30].
This dispersion is marked by a remarkable Kohn anomaly
(KA) revealed by a pronounced kink, which reflects strong
electron-phonon coupling (EPC) [35–40].

The KA occurs in metals due to the electron screening of
the ionic potential [41]. This anomaly appears in the phonon
branch as a sudden dip at a phonon wave vector �q connecting
two electronic states �k and �k′ on the Fermi surface satisfying
�k′ = �k + �q.

In graphene, the KA takes place at � (�q = �0) and at the
K point (�q = �K) since the Fermi surface was reduced to the
two points K and K ′ [42]. KA in nondeformed graphene has
been studied under close scrutiny [42–46] since it measures
electron-phonon coupling, which is a key parameter to under-
stand several properties of graphene, such as the electronic
transport, the stability of the superconducting state, and the
Raman spectra.

However, a few studies can be found in the literature on
the behavior of the KA in strained graphene. The role of the
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KA has been shown to be crucial for the mechanical failure
process of pure graphene [47,48]. Si et al. [48] reported,
based on first-principles calculations, that the strain-induced
enhancement of the KA in graphene could be counterbal-
anced by doping. Recently, Cifuentes-Quintal et al. [49]
showed that, besides the pronounced KA of the transverse
optical phonon modes, a new KA emerges under a uniaxial
strain in the longitudinal acoustic phonon branch around the
K point.

The outcomes of the studies, dealing with the behavior
of the KA in strained graphene, raised several open ques-
tions. In particular, it is not understood why the doping-
induced weakening of the KA is much more pronounced in
the strained graphene than in the unstrained lattice. On the
other hand, the origin of the anisotropic failure mechanism
of a graphene sheet under zigzag and armchair tensile defor-
mations is not completely unveiled [50–67]. Moreover, the
behavior of the 2D Raman band under strain is still under
debate. In addition to the vigorous debate on the type of
optical phonons responsible for these bands, the origin of
their light polarization dependence is still not fully understood
[30,31].

Based on an analytical analysis of the KA mechanism
in strained graphene, we try, in this paper, to provide some
answers to the above-mentioned puzzling points. We consider
a honeycomb lattice under uniaxial strain applied along the
armchair edges (y axis). We neglect, hereafter, the strain
component εxx along the x axis perpendicular to the strain
direction regarding the small value of the Poisson ratio of
graphene (ν = 0.165). This ratio relates the strain components
as εxx = −νεyy [14,32]. This approximation, which is useful
to derive an analytical expression for the KA slope, is justified
regarding the small values of the strain amplitude and the
Poisson ratio of graphene.

Moreover, we do not consider the strain effect on the
phonon band in order to highlight the signature of the elec-
tronic dispersion. Such an approximation was also used in
Ref. [30] to study the strain-induced splitting of the 2D Raman
band.

The main results of this work can be summarized in
the following points: (i) The strain-modified electronic dis-
persion affects substantially the KA. In particular, the tilt
of Dirac cones is found to enhance the KA under a ten-
sile deformation and to further the so-called outer phonon-
mediated intervalley electronic transitions. (ii) The KA shows
an anisotropic behavior as a function of the phonon wave
vector around the zone boundary K point. This anisotropy
contributes to the light polarization dependence of the 2D
Raman peak in strained graphene. (iii) The weakening of
the KA with electronic doping is found to be more pro-
nounced in strained graphene than in an unstrained lattice.
(iv) The KA behavior gives rise to a large critical tensile
deformation along the zigzag (ZZ) direction compared to the
armchair axis, in agreement with the numerical calculations
[50,52,54,55,60,61].

The paper is organized as follows: In Sec. II, we derive
the EPC expression for the graphene in-plane TO phonon
mode. The behavior of the KA of these phonons is dis-
cussed in Sec. III. Section IV is devoted to concluding
remarks.

II. ELECTRON-PHONON COUPLING:
EFFECTIVE-MASS APPROACH

A. Transverse optical phonon mode: KA slope

We focus on the highest optical phonon branch at the
K point corresponding to the A′

1 mode showing a KA at
a frequency ωK = 161 meV [42]. In graphene, the Fermi
surface reduces to the points K and K ′, and the density of
states NF at the Fermi energy is zero. As a consequence,
the usual EPC coupling constant λ�q , depending on 1/NF ,
is not well defined [42]. Therefore, the EPC in graphene is
characterized instead by the ratio 2〈g2

�q〉F /h̄ω�q , where 2〈g2
�q〉F

is the average over the Fermi surface of |g�k+�q,λ;�kλ′ |2, and
g�k+�q,λ;�kλ′ is the coupling matrix element of the phonon with

a wave vector �q and electrons in the state �k within the band λ,
which scatter to the λ′ band at the state �k′ = �k + �q [42].

In nondeformed graphene, the largest value of EPC is
found for the A′

1 mode for which 2〈g2
K〉F /h̄ω �K = 1.23 eV

[42]. This mode exhibits a KA described by a nonzero slope
α �K of the phonon dispersion, which can be written around the
K point as ω �K+�q = α �K |�q| + h̄ω �K + O(q2) [42]. α �K is related
to the EPC by [42]

α �K = h̄ lim
�q→�0

ω �K+�q − ω �K
q

= h̄ lim
�q→�0

D̃ �K+�q − D̃ �K
2ω �KMq

, (1)

where q = |�q|, M is the carbon atomic mass, and D̃�q is the
nonanalytic component of the dynamical matrix [42] given by

D̃�q = 8Mω �K
h̄

S

(2π2)

∫
d�k |g2 �K+�k+�q,π∗; �K+�k,π |2

ε �K+�k,π − ε2 �K+�k+�q,π∗
, (2)

where the transition of an electron from the occupied band
(π ) of the K valley to the empty band (π∗) of the valley K ′
( �K ′ = 2 �K) is considered. S is the crystal surface.

In nondeformed graphene, the matrix element is of the
form

|g2 �K+�k+�q,π∗; �K+�k,π |2 = 〈
g2

K

〉
F

(1 + cos θ ), (3)

with θ being the angle between �k and �k + �q [42].
Considering the linear electronic dispersion around the

Dirac points, α �K becomes [42]

α �K = 8
〈
g2

K

〉
F

h̄vF

S

(2π2)
lim
�q→�0

∫
k<km

d�k
[

1

k
− 1 + cos θ

k + |�k + �q|

]
, (4)

where vF is the Fermi velocity and km is a cutoff corre-
sponding to the limit of the linear dispersion of the electronic
band. The numerical integration of the above expression gives
α �K ∼ 253 cm−1 Å [42,44].

In the following, we derive the expression of the KA slope
α �K in strained graphene. We first start by determining the EPC
matrix element g2 �K+�k+�q,π∗; �K+�k,π .

B. EPC in strained graphene

1. Electronic Hamiltonian

We assume that the uniaxial strain is along the armchair
(AC) direction, denoted by the y axis, which results in a
quinoid lattice [68] as shown in Fig. 1.
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FIG. 1. Deformed honeycomb lattice along the armchair y axis.
(�a1, �a2) is the lattice basis. The hopping parameters to the first
(second) neighbors t and t ′ (tnnn and t ′

nnn) are different due to the
deformation. Vectors connecting first (second) neighboring atoms are
denoted �τl (�al).

The distance between nearest-neighbor atoms along the
strain axis changes from a to a′ = a + δa = a(1 + ε), where
ε = δa

a
is the lattice deformation or the strain amplitude. For

a compressive (tensile) deformation, ε is negative (positive).
The lattice basis is given by (�a1, �a2), where

�a1 =
√

3a�ex, �a2 =
√

3

2
a�ex + a

(
3

2
+ ε

)
�ey. (5)

The vectors joining the first-neighbor atoms are

�τ1 = a

2
(
√

3�ex + �ey ), �τ2 = a

2
(−

√
3�ex + �ey ),

�τ3 = −a(1 + ε)�ey. (6)

The hopping integral along the �τ3 direction is modified by
the strain from t to t ′ = t + ∂t

∂a
δa. The hopping terms to the

second neighboring atoms tnnn change also compared to their
values in undeformed graphene as

t ′nnn = tnnn + ∂tnnn

∂a
δa. (7)

Assuming the Harrison law [69], ∂t
∂a

= − 2t
a

, then t ′ reduces to

t ′ = t (1 − 2ε). (8)

It is worth noting that, beyond the linear elastic regime,
the Harrison law is not accurate enough to deal with the
strain-induced changes of the hopping integrals [70]. For a
more accurate approach, it has been proposed to consider the

hopping parameters deduced from density functional theory
(DFT) calculations [71].

The quinoid lattice could be described by the so-
called minimal form of the generalized 2D Weyl Hamilto-
nian [69,72] given by

Hξ (�k) = ξ ( �w0 · �kσ 0 + wxkxσ
x ) + wykyσ

y, (9)

where σ 0 = 11, σx and σy are the 2 × 2 Pauli matrices, ξ is
the valley index, wx and wy characterize the anisotropy of the
Dirac cones, whereas �w0 is the tilt term. These parameters
could be expressed, for a small deformation amplitude (|ε| 

1), as [69]

wx = 3

2
at

(
1 + 2

3
ε

)
, wy = 3

2
at

(
1 − 4

3
ε

)
,

�w0 = (w0x = 0.6 ε wx,w0y = 0). (10)

The Hamiltonian given by Eq. (9) is derived within a tight-
binding approach [68]. It can be obtained using a transforma-
tion combining the strain tensor and rotations, as was done in
Refs. [73,74], or a gauge field approach [75–77].

The eigenenergies of the Weyl Hamiltonian, given by
Eq. (9), are [69]

ελ(�k) = ξ �w0 · �k + λ

√
w2

xk
2
x + w2

yk
2
y, (11)

where λ is the band index.
The corresponding eigenfunctions are of the form

|λ, �k〉D = 1√
2S ′ e

i�k·�r
(

λ

ei�(�k)

)
,

|λ, �k〉D′ = 1√
2S ′ e

i�k·�r
(

ei�(�k)

λ

)
, (12)

where �(�k) is given by

tan �(�k) = wyky

wxkx

. (13)

Under the strain, the Dirac cones are no longer at the high-
symmetry points K and K ′ but move according to [69]

kD
y = 0, kD

x = ξ
2√
3a

arccos

(
− t ′

2t

)
. (14)

2. Electron-phonon coupling

We consider the effective-mass approach, the so-called �k ·
�p method, to derive the Hamiltonian describing the interaction
between the electrons and the zone boundary transverse opti-
cal phonons in uniaxial strained graphene. This Hamiltonian
could be obtained considering the effect of the lattice displace-
ments on the hopping integrals in the undeformed electronic
Hamiltonian. This approach was used by Ando [78] in the
case of undeformed graphene to obtain the EPC in the case
of the highest frequency zone boundary optical phonon mode.
The authors applied the �k · �p method for the electronic states
around the Dirac valleys. Within this method, the electronic
wave function could be written as [79,80]

ψ (�r ) =
∑
�RA

ψA( �RA)ϕ(�r − �RA) +
∑
�RB

ψB ( �RB )ϕ(�r − �RB ),

(15)
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where ϕ(�r − �RA) and ϕ(�r − �RB ) are the atomic orbitals
centered on atoms A and B, respectively. The coefficients
ψA( �RA) and ψB ( �RB ) are expressed in terms of slowly varying
envelope functions FD

A , FD′
A , FD

B , and FD′
B [78]:

ψA( �RA) = ei�kD · �RAFD
A ( �RA) + ei�kD′ · �RAFD′

A ( �RA),

ψB ( �RB ) = ei�kD · �RB FD
B ( �RB ) − ei�kD′ · �RB FD′

B ( �RB ). (16)

The Weyl Hamiltonian given by Eq. (9) could be derived
within the �k · �p method taking into account the hopping terms
to the second nearest neighbors [32]. The eigenproblem is
written as

εψA( �RA) = −
3∑

l=1

t (l)ψB ( �RA − �τl ) −
6∑

l=1

t (l)
nnnψA( �RA − �al ),

εψB ( �RB ) = −
3∑

l=1

t (l)ψA( �RB + �τl ) −
6∑

l=1

t (l)
nnnψB ( �RB − �al ),

(17)

where �a4 = −�a1, �a5 = −�a2, �a6 = −�a3, and t (l) (t (l)
nnn) are the

hopping integrals to the first (second) neighboring atoms
along �τl (�al) vectors.

Considering the effect of the lattice vibrations on the hop-
ping integrals generates an extra term in Eq. (17) expressing
the correction to these hopping integrals. This term gives rise
to the EPC Hamiltonian [32].

For simplicity we consider, as in Refs. [42,78], the effect
of lattice displacements on the hopping integral t (l) between
first neighboring atoms located at �RA and �RA − �τl . Due to the
lattice vibration, this integral changes to

t (l) + ∂t (l)

∂dl

[|�τl + �uA( �RA) − �uB ( �RA − �τl )| − dl], (18)

where dl = |�τl|, d1 = d2 = a, and d3 = a(1 + ε). �uA( �RA) and
�uB ( �RB = �RA − �τl ) are the lattice displacements.

For the zone boundary optical phonon modes of a wave
vector �q, taken around the Dirac points D and D′, these
displacements could be written as [78]

�uA( �RA) = ei�kD · �RA �uD
A ( �RA) + ei�kD′ · �RA �uD′

A ( �RA),

�uB ( �RB ) = ei�kD · �RB �uD
B ( �RB ) + ei�kD′ · �RB �uD′

B ( �RB ). (19)

The coefficients �uD
A (�r ), �uD′

A (�r ), �uD
B (�r ), and �uD′

B (�r ) are given
by

�uD/D′
A/B (�r ) =

∑
μ,�q

√
h̄

2NMωμ(�q )
�eD/D′
A/B,μ(�q )

×(
bD,μ,�q + b

†
D′,μ,−�q

)
ei �q·�r , (20)

where N is the number of unit cells and b
†
D/D′,μ,�q (bD/D′,μ,�q)

is the creation (annihilation) operator of a phonon with a wave
vector �q in the mode μ around the Dirac point D or D′. ωμ(�q )
is the corresponding frequency, which will be taken hereafter
equal to the highest value of the frequency zone boundary
optical modes h̄ωμ(�q ) = h̄ωK = 161 meV.

To highlight the role of the electronic band structure on
EPC, we will assume that the phonon dispersion is not af-
fected by the strain. We will not consider the effect of the
strain on the lattice vibrations, and we will take for the K

point phonon frequency the value of the unstrained graphene
h̄ωK = 161.2 meV. The strain-induced change of the KA
slope will then be due to the EPC via the strain-modified
electronic dispersion.

Following the method described in the Appendix, we ob-
tain the following EPC Hamiltonian:

Hint = −3t

a
βK

(
1 + 1

3
ε

)(
0 �D′σy

�Dσy 0

)
, (21)

where σy is the Pauli matrix, βK = − b
t

∂t
∂b

, and �D/D′ is
given by

�D/D′ =
√

h̄

2NMωK

∑
�q

(
bD/D′,�q + b

†
D′/D,−�q

)
ei �q·�q . (22)

For ε = 0, we recover the Hamiltonian derived by Suzuura
and Ando [78] for undeformed graphene.

To discuss the KA strain dependence, one needs to de-
termine the slope α �K , which depends on the EPC matrix
element gD′,�k′=�k+�q,π∗;D,�k,π corresponding to the transition of
an electron from the occupied band (π ) of the valley D to the
empty band π∗ at the D valley.

3. KA slope

Given the electronic states of Eq. (13), the EPC matrix
element takes the form

|gD′,�k′=�k+�q,π∗;D,�k,π |2 = 1

2

[
3t

a
βK

(
1 + 1

3
ε

)]2

× h̄

2NMωK

[1 − cos(�(�k) − �(�k′))],

(23)

where tan �(�k′) = wyk
′
y

wxk′
x

with �k′ = �k + �q.
Considering the electronic dispersion of Eq. (11), the KA

slope α �K , given by Eq. (1), becomes

α �K = 4

[
3t

a
βK

(
1 + 1

3
ε

)]2
h̄

2NMωK

S ′

(2π )2

× lim
�q→�0

1

q

∫
k<km

d2k

⎡
⎣ 1√

w2
xk

2
x + w2

yk
2
y

− 1 + cos(�(�k) + �(�k′))

�w0 · �q +
√

w2
xk

2
x + w2

yk
2
y +

√
w2

x (kx + qx )2 + w2
y (ky + qy )2

⎤
⎦, (24)

where S ′ is the total surface of the deformed lattice.
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Introducing the components k̃x = wxkx , k̃y = wyky , and

the dimensionless variable ỹ = k̃√
wxwyq

and setting � = �(�k)

and �′ = �(�k′), the integral in Eq. (24) takes the form

I (ϕ, ε)= 1

w

∫ ∞

0
dỹ

∫ 2π

0
d�

{
1√

w̃xw̃y

−ỹ[1 + cos(� − �′)]

× f −1(ỹ,�)

}
, (25)

where w = 3
2at and the function f (ỹ,�) is given by

f (ỹ,�) = w̃0x cos ϕ + ỹ
√

w̃xw̃y + [
w̃xw̃y ỹ

2 + w̃x
2 cos2 ϕ

+ w̃2
y sin2 ϕ + 2ỹ

√
w̃xw̃y

(
w̃x cos ϕ cos �

+ w̃y sin ϕ sin �
)] 1

2 , (26)

where ϕ = (�ex, �q ) is the phonon wave-vector angle, and w̃x ,
w̃y , and w̃0x are dimensionless parameters corresponding to
the normalization, by 3

2at , of respectively wx , wy , and w0x .
�′ is given by

�′ = arctan
ỹ
√

w̃xw̃y sin � + w̃y sin ϕ

ỹ
√

w̃xw̃y cos � + w̃x cos ϕ
. (27)

Given Harrison’s law [68], a
t

∂t
∂a

= − 2
a2 , and expressing the

surface S ′ of the deformed lattice as a function of the unde-
formed one, S ′ = N ‖ �a1 × �a2 ‖ S(1 + 2

3ε), the prefactor in
the expression of α �K [Eq. (24)] becomes

CK =
√

3a0t

2π
λK

(
1 + 4

3
ε

)
, (28)

where a0 = √
3a is the lattice parameter and λK is a dimen-

sionless coupling parameter given by [78]

λK = 36
√

3

π

h̄2

2Ma2
0

1

h̄ωK

. (29)

For h̄ωK = 161.2 meV, λK = 3.5 × 10−3.
In the undeformed lattice, the integral given by Eq. (25)

reduces to π2/2, and taking t = 2.68 eV and a0 = 2.46 Å
gives α �K = 253 cm−1 Å [Eq. (24)], in agreement with numer-
ical calculations [42,43].

In the following, we discuss the role of the electronic band
structure on the strain dependence of the KA slope α �K .

III. RESULTS AND DISCUSSION

Figure 2 shows the normalized KA slope α �K as a function
of the strain. The normalization is taken with respect to the
slope value for an unstrained lattice (ε = 0). The calculations
are done for compressive (ε < 0) and tensile (ε > 0) defor-
mations along the armchair y axis. The phonon wave vector is
taken along the x axis (ϕ = 0).

According to Fig. 2, the KA becomes more pronounced
for tensile deformation. α �K increases by about 20% (50%) for
a strain of 5% (10%). However, a compressive deformation
reduces the KA slope. This behavior can be understood from
the electronic band structure given by Eq. (11).

Let us first disregard the tilt parameter w0x . The shape of
the Dirac cones depends on the electron velocities vx = wx

h̄
∼

-0.2 -0.1 0 0.1 0.2

α
K

(
)/

α
K

(
=

0)

0

0.4

0.8

1.2

1.6

2

2.4

w
0x

=0

w
0x

0

FIG. 2. KA slope α �K as a function of strain. The data are normal-
ized with respect to the value of α �K for the unstrained graphene (ε =
0). The solid line corresponds to the deformed Dirac cones including
anisotropy and tilt effects while the dashed line is calculated for the
untilted cones [w0x = 0 in Eq. (11)]. The phonon wave vector is
along the x axis (ϕ = 0).

vF (1 + 2
3ε) and vy = wy

h̄
∼ vF (1 − 4

3ε) [Eq. (10)], where vF

is the Fermi velocity in the unstrained lattice [68]. Therefore,
the electron velocity vy (vx) along (perpendicular to) the strain
direction decreases (increases) with the tensile deformation.

We consider the phonon-mediated intervalley electron
scattering at a constant energy EL close to the Dirac points,
as in the case of the double-resonance Raman peak 2D, for
which EL is the light excitation energy [24,28,31]. For un-
strained graphene, the momentum cutoff km in Eq. (24) could
be related to EL as EL ∼ h̄vF km. Regarding the deformed
Brillouin zone and the distorted Dirac cones, the intervalley
processes become anisotropic.

Figure 3 shows that for a tensile strain the number of
electron-hole pairs involved in the intervalley scatterings is
enhanced (reduced) along the y (x) axis compared to the
undeformed lattice. Actually, this anisotropic scattering is
schematically equivalent to exciting an electron from the π

band of the unstrained lattice with a higher (lower) energy
along the ky (kx) axis.

The tensile renormalization of vy is more pronounced than
that of vx , which means that globally the area of the electron
wave vector �k delimited by the equiexcitation energy contour
EL is larger than that in unstrained graphene, which furthers
the electron-phonon scatterings and enhances the KA slope
α �K , as shown in Fig. 2.

For a compressive strain, the electron-phonon interaction
is reduced since the deformation affects much more the pro-
cesses along the y axis, for which the number of created
electron-hole pairs is reduced regarding the strain-induced
enhancement of the electron velocity vy .

Let us now discuss the role of the Dirac cone tilt. Accord-
ing to Fig. 2, the KA for a tensile strain is more marked in
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FIG. 3. Schematic representations of the intervalley phonon-
mediated electronic transitions along the ky (a) and kx (b) axes at
a given excitation energy EL. The dashed (solid) lines represent
the Dirac cones of the unstrained (strained) graphene. The Fermi
velocity vy (vx) along (perpendicular) to the strain direction (y ′y)
is reduced (enhanced) compared to the isotropic case. This leads
to more (fewer) electron-hole pairs contributing to the intervalley
processes. The colored and dashed areas give the extension of the
electronic states contributing to the intervalley transitions around
anisotropic and isotropic Dirac cones, respectively.

the presence of the tilt while it is reduced for a compressive
deformation. To explain this behavior, we plot in Fig. 4 the
electronic dispersion, given by Eq. (11), along the kx axis
around the Dirac points in the direction DMD′ for unstrained
graphene and deformed lattices under a tensile (ε = 0.2) and

FIG. 4. Dirac cones in strained graphene [(a) and (c)] and in an
undeformed lattice (b). The colored axis gives the tilt direction of
the Dirac cone compared to the untilted case (dashed axis). Under a
tensile (compressive) deformation, the Dirac cones, along the DMD′

direction, are tilted toward the � (M) point.

FIG. 5. Isoenergy contours along the kx axis for strained (a),(c)
and undeformed (b) graphene.

a compressive deformation (ε = −0.2). The positions and
the shape of the deformed Dirac cones are determined using
the whole band structure of the quinoid lattice [68]. The
Dirac cones move toward (away from) each other under a
compressive (tensile) deformation [69].

The corresponding isoenergy contours are depicted in
Fig. 5 showing that, along the DMD′ direction, the curva-
ture of these contours is more affected for the outer (inner)
electronic states under a tensile (compressive) deformation.
By outer and inner states we refer, respectively, to the states
connected by a phonon wave vector qout > kD and qin < kD .
For reasons of clarity, we schematically represented in Fig. 6
the band structure depicted in Fig. 4(a).

FIG. 6. Intervalley phonon-mediated electronic transitions along
the kx direction under a tensile deformation and at the excitation
energy EL indicated by the red dashed line. The dashed cones
represent the nontilted case with a Fermi velocity vx while the blue
cones have also the same velocity vx but are tilted due to the term
w0x in Eq. (11). k0

x , kt
x,1, and kt

x,2, indicated by the arrows, are the
electronic states of, respectively, the unstrained and deformed lattices
corresponding to the excitation energy EL.
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For a tensile deformation, the outer states are in the tilting
direction of the Dirac cones as shown in Fig. 6, where we set
k0
x as the electron wave vector corresponding to the excitation

energy EL in the nontilted case, namely EL = wxk
0
x . We

denote by kt
x,1 and kt

x,2 the wave vectors ascribed to the tilted
cone in the D valley [ξ = +1 in Eq. (11)] given by

EL = (w0x + wx )kt
x,1, EL = (wx − w0x )kt

x,2, (30)

with w0x ∼ 0.6 ε wx [Eq. (11)].
The area of the equienergy contour increases for the tilted

cone since kt
x,2 − k0

x > kt
x,1 − k0

x , which gives rise to an en-
hanced number of electron-hole pairs. As a consequence,
the electron-phonon interaction increases, which yields the
enhancement of the KA parameter α �K . It is worth noting that
the electronic states along the ky axis are not affected by the
tilt of Dirac cones.

According to Fig. 6, this enhancement is due to the so-
called outer intervalley processes involving phonons with
wave vectors qout > kD . The dominance of the inner or outer
processes in the double-resonance 2D Raman peak has been a
hot topic of debate. Early experimental and numerical studies
have argued that the outer phonons contribute mostly to the
uniaxial strain-induced splitting of the 2D mode [36,81,82].
This outcome was contradicted by later findings based on
numerical calculations and highlighting the dominance of the
inner processes [19,27,30]. Narula et al. [31] have revoked
the dominance of both types of phonons, and they showed,
through a numerical study, that the dominant phonon wave
vector is highly anisotropic and the distinction between inner
and outer processes is irrelevant. It is worthwhile to stress
that the above-mentioned numerical calculations take into
account the strain-induced change of the phonon dispersion,
which is not included in the present work. Our result shows
that the tensile modified electronic dispersion gives rise to
a dominance of the outer phonons in the electron-phonon
interaction process, and this dominance is due to the tilt of
Dirac cones.

On the other hand, Narula et al. [31] have found that the
splitting of the 2D peak under a uniaxial tensile strain cannot
originate only from the shift of the Dirac points. This result
is in agreement with our work showing that the number of
electron-hole pairs involved in the electron-phonon interac-
tion process is independent of the Dirac cone position. This
process depends basically on the shape of the equiexcitation
energy contours governed by the parameters wx and wy and
the tilt factor �w0 [Eq. (11)].

The strain dependence of the KA depicted in Fig. 2 could
shed light on the anisotropic mechanical properties of strained
graphene. Ni et al. [55] have reported, based on molecular
dynamics models, that the AC tensile deformation causes the
fracture of graphene sooner than a tensile applied along the
zigzag (ZZ) edge. This anisotropic behavior was ascribed, by
the authors, to different changes of the C-C bond angles. A
larger critical strain along the ZZ axis was also reported in
Refs. [54,60]. In the following, we show that the KA could
be responsible for the anisotropic failure mechanism of the
graphene sheet.

In Fig. 7, we depicted a schematic representations of the
lattice deformed under AC and ZZ tensile, where t denotes
the hopping integral between first neighbors in an unstrained

FIG. 7. Deformed honeycomb lattice under a tensile applied
along the armchair direction (a) and the zigzag one (b). The arrows
indicate the direction of the tensile deformation. t , t ′, and t ′

ZZ are the
hopping integrals between first neighboring atoms.

system, and t ′ (t ′ZZ) is the hopping integral under an AC (ZZ)
tensile.

The lattice deformed under a ZZ tensile could be regarded
as that obtained under a compressive AC strain with un-
strained hopping t̃ = t ′ZZ and a strain-modified hopping inte-
gral t̃ ′ = t with t̃ ′ = t̃ (1 + 2|ε|) [Eq. (8)]. The corresponding
KA slope is that given by Eq. (24) by changing t by t̃ and t ′
by t̃ ′.

As shown in Fig. 2, the KA is reduced, under a compressive
strain, compared to the undeformed case (ε = 0). Moreover,
changing t by t̃ = t ′ZZ < t in Eq. (24) reduces the prefactor
term and then weakens the KA. As a consequence, the KA is
reduced for a ZZ tensile strain compared to the AC one. This
result is consistent with the anisotropic frequency shifts of the
TO phonon mode under strain along ZZ and AC directions
obtained within first-principles calculations in Ref. [49]. We
then propose that the KA should be taken into consideration to
explain the relatively large critical strain along the ZZ edges,
which is due to the hardening of the TO phonon modes at the
K point induced by the weakening of the KA.

Regarding the unique mechanical properties of graphene,
extensive studies have been carried out to understand, in
particular, the anisotropic mechanical failure of the graphene
sheet along the ZZ and AC directions [20,50,54,59,60,65].
Several atomistic studies based on molecular dynamics calcu-
lations have revealed that graphene exhibits greater toughness
and strength along the ZZ direction compared to the AC one.
The origin of this direction-dependent behavior was ascribed
to anisotropic bond stretching and bond bending deforma-
tions [20,54,65]. Under strain, the CC bonds along the ZZ and
AC directions are different. This chirality dependence is more
marked at low temperature [58].

DFT calculations [59] showed that during the failure pro-
cess, the crack direction is anisotropic. The zigzag crack
occurs along a straight line while the AC crack is irregular
regarding the geometry of the CC bonds.

Recently, the evolution of the CC bond lengths and the
bond angles of graphene, under uniaxial strain, has been
studied by DFT calculations in view of understanding the
anisotropic value of the Poisson ratio [66]. The results showed
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that these geometric key parameters behave differently under
strain applied along the ZZ and the AC directions. This
chirality was ascribed to the strain dependence of the electron
localization functions.

The outcomes of these studies bring out the relevance of
the geometrical parameter in the anisotropic behavior of the
mechanical failure of graphene. According to Fig. 7, the CC
bond lengths and angles are different for strain aligned along
the AC and the ZZ edges, which is in agreement with numer-
ical studies. However, our model is not limited to the geo-
metrical framework. We argued that, for a deformation along
the ZZ direction, the KA is smeared out, which enhances
the TO phonon frequency at the K point and strengthens the
collective lattice vibrations, which results in a larger critical
loading along the ZZ edge compared to that along the AC
direction. A quantitative comparison of our results with those
obtained by DFT calculations is not relevant since we did
not include the Poisson ratio and the shear strain component.
Moreover, our calculations did not take into consideration the
strain-modified phonon dispersion.

It is worth noting that the lattice softening resulting from
the enhancement of the KA under tensile uniaxial strain
could be counterbalanced by charge doping as reported by
Si et al. [48]. They found a peculiar behavior of the doping-
induced frequency shifts of the TO modes at the K point. In
strained graphene, this shift is remarkably greater than that in
an unstrained lattice. The authors mentioned that the origin
of this large difference is not clear within the framework of
their first-principles calculations. In the next, we give, based
on schematic representations of the doped graphene band
structure, a possible interpretation of this feature.

Figure 8(a) shows the electron-hole pairs involved in the in-
tervalley phonon-mediated processes in unstrained graphene
for a given excitation energy EL and at charge neutrality.
By electron doping at EF < EL [Fig. 8(b)], the number of
electron-hole pairs contributing to the intervalley processes
is reduced due to the Pauli principle, which explains the
hardening of the phonon frequency by doping unstrained
graphene [48].

Under a uniaxial tensile, the Fermi energy is renormalized
as [68]

E∗
F = EF

(
1 − 1

3
ε

)
. (31)

In Fig. 8, we represented the electronic states involved
in the intervalley processes along the ky direction, which
give, as discussed above, a dominant contribution to the KA
under tensile deformation. The number of electronic states
blocked by the Pauli principle in the strained lattice is greater
than that for the undeformed case. Indeed, these states are
in the interval �ky = E∗

F /wy ∼ (1 + ε)EF /w, while in the
unstrained lattice the locked states are within the interval
�k0

y = EF /w, where w = 3
2at [Eq. (11)].

For ε > 0, �ky > �k0
y . This leads to a larger number

of blocked intervalley processes in graphene under uniaxial
tensile strain, which is consistent with the result of Ref. [48].
Moreover, the KA is expected to be weakened by doping
regarding the enhancement of �ky with EF , which is in
agreement with Refs. [34,48].

FIG. 8. Schematic representation of the electronic states along
the ky direction involved in the intervalley phonon-mediated pro-
cesses for a given excitation energy EL. The undoped system cor-
responds to the cases (a) and (c) where the Fermi level is at the Dirac
point while the doped system is shown in (b) and (d). The upper
figures [(a) and (b)] correspond to the unstrained lattice while the
lower ones [(c) and (d)] describe a lattice under a tensile deformation.
w denotes the slope of the isotropic Dirac cone, while wy < w is the
slope of the Dirac cone under tensile along the ky axis. E∗

F is the
strain-renormalized Fermi energy. The dashed areas correspond to
the electronic states blocked by the Pauli principle.

In Fig. 9, we represent the phonon angle dependence of
the normalized KA parameter for different strain values. For
the unstrained lattice, the KA is isotropic with respect to the
phonon wave-vector direction since the isoenergy contours
are almost circular at low energy. As the strain amplitude
increases, the KA becomes anisotropic with a dominant com-
ponent for phonons with wave vector �q along the x axis, which
is perpendicular to the strain direction.

This result is in agreement with the light polarization angle
dependence of the 2D Raman band reported in the literature.
Several experimental and numerical studies [19,24,28] have
found that the 2D peak splits under strain into two lines.
Under AC strain, the intensity of the line associated with a
parallel light polarization with respect to the strain direction
is greater than that of the peak ascribed to the perpendicular
polarization, i.e., I2D(θ = 90◦) < I2D(θ = 0◦), where θ is the
angle of the light polarization with the respect to the strain
direction [28]. Since the Raman intensity depends on |�q ×
�E|, where �q is the phonon wave vector and �E is the light
polarization [18], the 2D band is then expected to show a large
intensity for �q along the direction perpendicular to the strain
axis. This behavior is in agreement with our result depicted in
Fig. 9 showing that the KA is enhanced for ϕ = 0.

Moreover, Fig. 9 shows that the KA should exhibit a mini-
mum around the y direction (ϕ = π/2). This behavior is due
to the tilt of Dirac cones, which, as discussed above, enhances
the KA for electronic states along the kx axis. According to
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FIG. 9. Phonon angle dependence of the KA slope α �K for dif-
ferent strain amplitudes. ϕ is the angle between the phonon wave
vector �q and the x axis perpendicular to the strain direction. The
data are normalized with respect to the value of α �K for ϕ = 0 in the
unstrained lattice (ε = 0).

Fig. 9, the KA is expected to have a relative maximum for
phonons with ϕ = π , which correspond to the inner interval-
ley processes. As we have already shown, the latter have a
minor contribution to the KA compared to the outer processes.

Figure 10 shows the KA slope as a function of the phonon
angle for a tensile strain of ε = 0.2. The solid (dashed) curve

FIG. 10. Phonon angle dependence of the KA slope α �K in the
case of tilted (solid line) and nontilted (dashed line) cones. The
data are normalized with respect to the value of α �K for ϕ = 0 in
the unstrained lattice. The calculations are done for a tensile strain
ε = 0.2.

corresponds to the case of tilted (nontilted) Dirac cones.
According to this figure, the anisotropic behavior of α �K is
due to the anisotropic Fermi velocities of vx = wx/h̄ and
vy = wy/h̄. However, the tilt parameter is responsible for the
dominance of the outer intervalley phonon processes, corre-
sponding to ϕ = 0, for which α �K reaches its maximum value.
The inner processes have a lower contribution associated with
ϕ = π .

As mentioned by Narula et al., the notion of inner and
outer processes is rather confusing since they can be mapped
into each other by the addition of a reciprocal-lattice vector.
The authors showed, based on numerical calculations, that the
dominant phonon-mediated intervalley electronic transitions
are neither inner nor outer but with a significant contribution
of the inner processes. To avoid any confusing nomenclature,
we conclude that the intervalley processes, connecting the
most deformed parts of the electronic isoenergy contours,
have the dominant contribution to the KA around the Dirac
points.

IV. CONCLUSION

In summary, we have presented an analytical study of
the effect of the electronic dispersion relation on the KA
of strained graphene. We found that, besides the shifts of
the KA phonon wave vector, the strain dependence of the
slope parameter α �K describing this anomaly is substantially
dependent on the electronic band structure. In particular, the
KA is found to be enhanced under tensile strain by the tilt
of Dirac cones. The latter furthers the so-called outer inter-
valley phonon processes. We have also found that the strain
dependence of the electronic band structure is at the origin of
the strong doping-induced reduction of the KA in graphene
under a tensile deformation compared to the undeformed
lattice. Moreover, our results show that the KA is anisotropic
with respect to the phonon wave vector, which may provide
insights not only on the light polarization dependence of a
Raman 2D band but also on the anisotropic mechanical failure
of graphene under strain.
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APPENDIX A: EPC HAMILTONIAN BY �k · �p METHOD

The �k · �p method was used by Suzuura and Ando [78]
to obtain the effective Hamiltonian describing the interaction
between electrons and the zone boundary optical phonons
corresponding to the highest-frequency mode, the so-called
Kekulé mode. This method was also used to determine the
electron-phonon interaction Hamiltonian in the case of the
optical zone center phonon modes of graphene in the absence
of deformation [79] and under a uniaxial strain [32].
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Based on Ref. [78], we derive the EPC matrix element
gD′,�k′=�k+�q,π∗;D,�k,π corresponding to the transition of an elec-
tron from the occupied band (π ) of the valley D to the empty
band π∗ at the D′ valley in graphene, under uniaxial strain
applied along the armchair direction.

We start with the electronic eigenproblem given by
Eq. (17), where the functions ψA( �RA) and ψB ( �RB ) can be
written in terms of the envelope functions F

D/D′
A ( �RA) and

F
D/D′
B ( �RB ) as

ψA( �RA) = a†( �RA)�A( �RA),

ψB ( �RB ) = b†( �RB )�B ( �RB ), (A1)

with

a( �RA) =
(

e−i�kD · �RA

e−i�kD′ · �RA

)
, b( �RB ) =

(
e−i�kD · �RB

−e−i�kD′ · �RB

)
,

�A( �RA) =
(

FD
A ( �RA)

FD′
A ( �RA)

)
, �B ( �RB ) =

(
FD

B ( �RB )
FD′

B ( �RB )

)
. (A2)

As in Ref. [78], we introduce the smoothing function g(�r )
satisfying the following relations:∑

�RA

g(�r − �RA) =
∑
�RB

g(�r − �RB ) = 1,

f (�r )g(�r − �RA)  f ( �R)g(�r − �R), (A3)

where f (�r ) is an envelope function [79]. The left-hand side of
Eq. (17) can then be written, at the �RA site, as

ε a( �RA)a†( �RA)FA(�r )

= ε
∑
�RA

g(�r − �RA)a( �RA)a†( �RA)FA(�r )

= −
3∑

l=1

t (l)
∑
�RA

g(�r − �RA)a( �RA)b†( �RB )FB (�r − �τl )

−
6∑

l=1

t (l)
nnn

∑
�RA

g(�r − �RA)a( �RA)a†( �RA − �al )FA(�r − �al ).

(A4)

For small strain amplitude, the following relations are satis-
fied:∑
�RA

g(�r − �RA)ei(�kD′−�kD )· �RA =
∑
�RB

g(�r − �RB )ei(�kD′−�kD )· �RB  0,

∑
�RA

g(�r − �RA)ei�kD · �RA  0. (A5)

Taking into account the lattice vibrations on the hopping
integral to the first neighbor atoms, an extra term appears in
the eigenproblem given by Eq. (17). This term is of the form

HintFB (�r ) =
∑

l

∑
�RA

g(�r − �RA)a( �RA)b( �RA − �τl )

(
−∂t (l)

∂dl

)

×
( �τl

dl

)
· (�uA( �RA) − �uB ( �RA − �τl ))FB (�r ), (A6)

where FB (�r ) = (FD
B (�r )

FD′
B (�r )

)
.

We consider the phonon modes around the Dirac points D

and D′ with wave vector �kD/D′ + �q, where ‖�q‖ 
 2π
a

. We can

then use the continuum limit and put in Eq. (19): �uD/D′
A ( �RA) 

�uD/D′
A (�r ) and �uD/D′

B ( �RA − �τl )  �uD/D′
B (�r ). Equation (A6) can

then be written as

HintF
D
B (�r ) = h′AB

int FD′
B (�r ), (A7)

where h′AB
int is given by

h′AB
int =

∑
l

(
−∂t (l)

∂dl

)( �τl

dl

)
·

× [
e−i�kD′ ·�τl �uD′

A (�r ) − e−2i�kD′ ·�τl �uD′
B (�r )

]
, (A8)

with t (1) = t (2) = t , t (3) = t ′ = t (1 − 2ε), �kD′ · �τ3 = 0,
and �kD′ · �τ1 = −�kD′ · �τ2 = −θ , where θ = arccos (− t ′

2t
) =

a
√

3
2 kD

x .
h′AB

int then takes the following form:

h′AB
int = −i

3

2

∂t

∂a

[(
1 + 2

3
ε

)
uD′

Ax (�r ) + iuD′
Ay (�r )

+
(

1 − 4

3
ε

)
uD′

Bx (�r ) − i(1 + 2ε)uD′
By (�r )

]
, (A9)

where we considered the limit of small strain amplitude
(|ε| 
 1).

To bring out the signature of the electronic dispersion on
the EPC, we assume that the phonon dispersion at the K ′
point is not affected by the strain. This means that the phonon
polarization of the highest frequency optical mode is [78]

�eD′ = �eK ′ = 1
2 =

⎛
⎝ 1

−i
1
i

⎞
⎠.

The matrix element h′AB
int becomes

h′AB
int = −3i

∂t

∂a

(
1 + 1

3
ε

)
�e 0
D′ · �UD′ , (A10)

where

�UD′ =
(

�uD′
A

�uD′
B

)
=

√
h̄

2NMωK

�eK ′
∑

�q
(bD,�q + b

†
D,−�q )ei �q·�r

(A11)

and �e 0
D′ = 1

2(1+ 1
3 ε)

⎛
⎝ 1+ 2

3 ε

−i

1− 4
3 ε

i(1+2ε)

⎞
⎠.

The effective interaction Hamiltonian takes a form similar
to that found by Suzzura and Ando [78]:

Hint = −3
t

a
βK

(
1 + 1

3
ε

)(
0 �D′σy

�Dσy 0

)
, (A12)

with �D′ = �e 0
D′ · �UD′ , βK = − a

t
∂t
∂a

, and σy is the Pauli matrix.
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