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Studying basic physical effects sustained in metamaterials characterized by specific constitutive relation is a
research topic with a long-standing tradition. Besides intellectual curiosity, it derives its importance from the
ability to predict observable phenomena that are, if found with an actual metamaterial, a clear indication on
its properties. Here, we consider a nonlocal (strong spatial dispersion), lossy, and isotropic metamaterial and
study the impact of the nonlocality on the dispersion relation of surface plasmon polaritons sustained at an
interface between vacuum and such metamaterial. For that, Fresnel coefficients are calculated and appropriate
surface plasmon polaritons existence conditions are being proposed. Predictions regarding the experimentally
observable reflection from a frustrated internal reflection geometry are being made. A different behavior for
TE and TM polarization is observed. Our work unlocks opportunities to seek for traces of the nonlocality in
experiments made with nowadays metamaterials.
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I. INTRODUCTION

Metamaterials are artificial optical materials that are made
from, mostly, periodically arranged inclusions. They are stud-
ied out of scientific interest but also because they unlock
in perspective interesting applications [1]. Among many ex-
amples, we mention perfect lenses [2], invisibility cloaks
[3,4], and electromagnetic black holes [5]. One of the main
problems in investigating metamaterials with complicated and
densely packed geometries concerns their effective descrip-
tion [6]. The goal of finding this description, known as homog-
enization, is to associate the actual metamaterial to a homo-
geneous material that has the same optical response. Optical
response here means that once the material is homogenized,
it can be considered in other geometries and optical settings
and the description of the interaction of electromagnetic fields
with this homogeneous material continues to be the same as
if the actual metamaterial would have been considered. The
process of homogenization can be considered as a two step
process. First, a suitable constitutive relation is chosen that is
expected to cover all emerging effects. Second, by choosing
one among many possible technical means, the actual material
parameters are retrieved. Occasionally, a particular temporal
dispersion, i.e., a frequency dependence, can additionally
be assumed for the effective material properties, e.g., the
Drude formula for the permittivity when free electrons are
considered and the Lorentz formula for bound states, e.g., if
the metals additionally form loops, and support resonances
such as in a ring resonator. The functional dependence is
motivated by basic phenomenological modeling [7]. The
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availability of such a functional dependence is useful in some
numerical schemes, e.g., in the finite-difference time domain
method, or when discussing the effects to be supported in
metamaterials without being forced to consider a specific
implementation.

In the cases where the inclusions are much smaller than
the excitation wavelength, local constitutive relations turned
out to be fully sufficient [8,9]. While considering for sim-
plicity isotropic materials with no electromagnetic coupling,
the well-known Drude and/or Lorentz models for permeabil-
ity and permittivity do frequently emerge for the frequency
dependence of the effective material properties [10]. These
material properties have singularities only in the lower half
of the complex frequency plane and are with that causal. The
emergence of such models can be explained by considering
on phenomenological grounds the inclusions to cause either
a response associated to free electrons, e.g., in straight wire
elements [11,12], or a response associated to a harmonic
oscillator, e.g., in a small metallic or dielectric particle that is
driven into a resonant optical response, in a split ring [13,14],
or any other complicated inclusion that has been suggested in
the past [15–17].

However, when the metamaterials are operated at wave-
lengths that are not much longer than the size of the inclusion
but only gently longer or the inclusions themselves show a
strong coupling to their neighbors, a local description at the
effective level fails to capture the properties of the metamate-
rial [18]. In some cases, this was even shown to be relevant in
the long wavelength limit [19]. An electric field at one point in
space can then induce a response at a distant point in space. To
improve the description, it is therefore necessary to go beyond
the local description and take into account the nonlocality; that
is also called a strong spatial dispersion.
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Recently, a model has been proposed [20] introducing
specific nonlocal constitutive relations that read as

D(r, ω) = εE(r, ω) + ∇ × γ∇ × E(r, ω)

+∇ × ∇ × η∇ × ∇ × E(r, ω) (1)

and

B(r, ω) = H(r, ω), (2)

with material parameters ε, γ , and η. In the case of an
isotropic medium, as it is assumed in the later calculations,
these parameters are scalar functions of the frequency. γ is
directly related to the local permeability and thus can be
replaced by a function of μ. For that reason it is called a weak
spatial dispersion. If a formulation of the constitutive relation
is mathematically equivalent and physically indistinguishable
from a formulation without any derivatives, we call it local.
In our case, that happens to be possible with what we call
the weak spatial dispersion, where the dispersion relation and
interface conditions are equivalent to the ones in the case of
local constitutive relations being considered. In contrast, η

is associated to a strong spatial dispersion; it is a nonlocal
material parameter. The constitutive relations above allow for
a rigorous mathematical derivation of interface conditions that
extend the known conditions from basic electrodynamics [20].
Therefore, not just light propagation in bulk material can be
described but also functional elements thereof.

In this contribution, we continue a long-standing tradi-
tion in metamaterials research where basic physical effects
are explored for a specific material with properties coming
from a model assumption. On the one hand, such research
is intellectually appealing, since effects that were predicted
with those materials constitute a major driving force to finally
identify materials that offer these properties. This may have
started with the seminal work by Veselago [21]. There, he
simply assumed a material with a dispersive permittivity and
a dispersive permeability and afterwards studies observable
optical effects. Contemporary examples would be the field
of transformation optics or the suggestion for a perfect lens
[22–24]. On the other hand, with this kind of consideration
we can predict experimentally observable features that would
be a conclusive evidence to decide whether a particular con-
stitutive relation is indeed a viable effective description of
a metamaterial. This shows the possibility of a way from a
purely theoretical approach to ultimately a potential experi-
mental verification thereof.

Here, we investigate propagating surface plasmon polari-
tons (SPP) at the interface between an ordinary material and a
nonlocal metamaterial that exhibits a negative refractive index
in some frequency range of interest. A list of metamaterials
that have been designed to undergo such properties can be
found in [25]. Our contribution is particularly inspired by
the work of Ruppin [26] that pioneered the study of surface
waves sustained at the interface between metamaterials de-
scribed by local constitutive relations and ordinary media.
Specifically, we investigate the dispersion relation of surface
waves and the reflection to be observed in a frustrated total
internal reflection geometry and how these are affected by a
strong nonlocality for both transverse electric and transverse
magnetic polarizations. While we focus on metallic structures

that undergo a negative index material, a similar study was
made in Refs. [27,28] for dielectric structures described with
a nonlocal, hydrodynamic model for the electric susceptibility.
There, the authors found that the difference between the
transversal and longitudinal (nonlocal) susceptibilities yields
a great impact on the reflection minima for the p polarization.
With our contribution here, we point to possible traces of
nonlocality observable in experiment.

Our manuscript is structured such that we introduce in the
next section the material models we consider. We study then
the interface Fresnel equations, which need to be known in
order to derive the dispersion relation of the propagating SPPs.
In Sec. IV, we study the dispersion relation in the presence of
nonlocality where we particularly emphasize the question how
the onset of a weak nonlocality changes the dispersion relation
of the propagating SPP sustained at the interface between
vacuum and the metamaterial. In a last step, experimental
features are predicted as observable in an attenuated total
reflection setup. Finally, we conclude on our research.

II. MATERIAL MODELS AND DISPERSION RELATIONS

In order to model a metamaterial with negative index
behavior, we consider a homogeneous and isotropic metama-
terial with a Drude permittivity

ε(ω) = 1 − ω2
p

ω(ω + i�ε )
(3)

and a permeability described by a Lorentz model

μ(ω) = 1 − Fω2

ω2 − ω2
0 + i�μω

, (4)

with parameters ωp, ω0, �ε , �μ, and F , which will be com-
mented on below. By rewriting the fields to

D′(r, ω) = D(r, ω) + ∇ × Q(r, ω) (5)

and

H′(r, ω) = H − ik0Q(r, ω), (6)

the parameter γ (ω) that is associated to a weak spatial disper-
sion can be expressed through μ(ω):

γ (ω) = μ(ω) − 1

μ(ω)k2
0

, (7)

with k0 = ω/c, by choosing Q(r, ω)
!= −γ∇ × E(r, ω).

Introducing strong spatial dispersion via the parameter η,
we make a model assumption and set its frequency depen-
dence to

η(ω) = GFω2

ω2
0 − ω2 − i�ηω

, (8)

where G is a parameter scaling the strength of the nonlocality.
With that we connect the nonlocality to the magnetic response.
This seems to be meaningful as in the resonance an enhanced
light-matter interaction can be observed that will cause the
nonlocal response. Moreover, the choice above assures all
results being physical. Other assumptions like a nondispersive
quantity would not fulfill this requirement and lead to unphys-
ical statements, e.g., an energy velocity exceeding the speed
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FIG. 1. Schema of surface polaritons sustained at an interface.
The interface at z = 0 divides two extended half-spaces. One is
vacuum while the other one is made initially from an isotropic
homogeneous medium with permittivity ε and permeability μ. Later,
also a more complicated constitutive relation is considered. The light
is not transmitted but excites surface plasmon polaritons (SPP) on
the interface. For this purpose, it is required to have a wave vector
component in the direction of the interface that is larger than the
length of the wave vector in vacuum.

of light in vacuum. The resonance frequency of the material
is chosen to be ω0 = 4 GHz and the plasma frequency to
be ωp = 10 GHz. Further, we set F = 0.56 and the damping
terms shall be �ε = 0.03 ωp and �μ = �η = 0.03 ω0. For the
local material parameters, the same values were used by
Ruppin in [26]. The exact values are of no importance and
only serve the purpose to make everything definite.

We restrict ourselves to a plane geometry where the half-
space below the x axis is filled with the metamaterial and
the half-space above it with vacuum, as illustrated in Fig. 1.
Because the material described with the constitutive relation
in Eqs. (1) and (2) is modeled as a homogeneous material and
the vacuum is trivial, the eigenmodes and hence the fields can
be described by plane waves

E(i)(r) ∝ exp
[
i
(
hx + k(i)

z z
)]

. (9)

E(0)(r) shall be the field in the vacuum with
(
k(0)
z

)2 = k2
0 − h2 (10)

being the corresponding dispersion relation. For the metama-
terial with a strong spatial dispersion, characterized by the
constitutive relation given in Eq. (1), the dispersion relation
reads as

(
k(i)
z

)2 = −h2 + p ±
√

p2 − q, (11)

with q = ε/η and p = (2k2
0ημ)−1 [20].

This relation has four mathematical solutions in total, two
of which are physical. We denote these two with the indexes
i = 1 and i = 2. Note that they only differ in the sign in front
of the square root. The others result in amplitudes diverging
towards infinity due to the positive imaginary part of the wave
numbers. In the lossless case, for the existence of SPPs, it is
usually required that the wave vector components away from
the interface are purely imaginary, so that the wave is evanes-
cent in that direction. However, in the more realistic case of
an absorptive medium as considered here, this condition is not
feasible [29]. Instead, we only require the radiation away from
the interface to be very strongly dampened, so∣∣Im(

k(i)
z

)∣∣ >
∣∣Re

(
k(i)
z

)∣∣. (12)

Using this condition, SPP with small radiative losses can also
be discussed.

III. FRESNEL COEFFICIENTS

As mentioned above, interface conditions have been de-
rived for the model of nonlocality discussed here. Using these,
the corresponding Fresnel equations have also been found
[20]. They read

FTM

⎛
⎜⎝

ER
z

E(1)
z

E(2)
z

⎞
⎟⎠ = −EI

z

⎛
⎝

kI
z

1
0

⎞
⎠ (13)

for TM polarization with the TM Fresnel matrix

FTM ≡

⎛
⎜⎝

kR
z −k(1)

z −k(2)
z

1 −ε −ε

0 ηk(1)
z |k(1)|2 ηk(2)

z |k(2)|2

⎞
⎟⎠, (14)

where |k(i)|2 = (k(i)
z )2 + h2, and

FTE

⎛
⎜⎝

ER
x

E(1)
x

E(2)
x

⎞
⎟⎠ = −EI

x

⎛
⎝

1
kI
z

0

⎞
⎠ (15)

for TE polarization, where we introduced the TE Fresnel
matrix

FTE ≡

⎛
⎜⎝

1 −1 −1

kR
z k(1)

z A1 k(2)
z A2

0 ηk(1)
z ηk(2)

z

⎞
⎟⎠, (16)

with Ai = [−μ−1 + ηk2
0 |k(i)|2]. With these equations, the re-

flection coefficients

rTM = εkI
z

[
h2 + (

k(1)
z

)2 + (
k(2)
z

)2 + k(1)
z k(2)

z

] − k(1)
z k(2)

z

(
k(1)
z + k(2)

z

)

εkR
z

[
h2 + (

k
(1)
z

)2 + (
k

(2)
z

)2 + k
(1)
z k

(2)
z

] − k
(1)
z k

(2)
z

(
k

(1)
z + k

(2)
z

) (17)

for TM polarization and

rTE = μkI
z

(
k(1)
z + k(2)

z

) + h2 − k(1)
z k(2)

z − ημk2
0 |k(1)|2|k(2)|2

μkR
z

(
k

(1)
z + k

(2)
z

) + h2 − k
(1)
z k

(2)
z − ημk2

0 |k(1)|2|k(2)|2
(18)

for TE polarization have been calculated. The reflection co-
efficients of a local medium can be obtained from this in
the limit η → 0. One of the k(i)

z is divergent in this limit;
without restriction let it be k(2)

z . Now, using limη→0 k(i)
z η = 0,

limη→0(k(2)
z )2η = (k2

0μ)−1, and limη→0(k(1)
z )2η = 0 leads to
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FIG. 2. SPP dispersion curve for TM polarized light.

the correct local limit for both reflection coefficients

lim
η→0

rTM = ε(ω)kI
z − limη→0 k(1)

z

ε(ω)kR
z − limη→0 k

(1)
z

(19)

and

lim
η→0

rTE = kI
z − μ(ω) limη→0 k(1)

z

kR
z − μ(ω) limη→0 k

(1)
z

. (20)

IV. SPP DISPERSION WITH NONLOCALITY

The SPP dispersion relation can be found from the poles
of the reflection coefficients in Eqs. (18) and (17) [30] with
kR
z = −kI

z = −k(0)
z . Making use of the simplifications

(
k(1)
z k(2)

z

)2 = h4 + ε

η
− h2

k2
0ημ

(21)

and
(
k(1)
z

)2 + (
k(2)
z

)2 = −2h2 + (
k2

0ημ
)−1

, (22)

these equations are solved. The solution formulas are very
long and not displayed here for readability. Instead, numerical
values as given above have been used to study the effect of the
nonlocality on the SPP dispersion in Figs. 2 and 3.

Inequality (12) gives an existence condition for SPP. This,
however, is not entirely sufficient. Calculating the ratio of the
energy transmitted by each of the waves from the Fresnel
equations (15) and (13),

τTM =
∣∣∣∣∣
t

(2)
TM

t
(1)
TM

∣∣∣∣∣
2

=
∣∣∣∣∣
k(1)
z

[
h2 + (

k(1)
z

)2]

k
(2)
z

[
h2 + (

k
(2)
z

)2]
∣∣∣∣∣
2

(23)

for TM polarization and

τTE =
∣∣∣∣∣
t

(2)
TE

t
(1)
TE

∣∣∣∣∣
2

=
∣∣∣∣∣
h2 + (

k(1)
z

)2

h2 + (
k

(2)
z

)2

∣∣∣∣∣
2

(24)

for TE polarization, we see that if one of the k(i)
z is very large

compared to the other one, the associated wave carries a lot
less energy. We require 0.01 < τTE/TM < 100 as an additional
condition, such that both waves carry at least 1% of the energy.
If this additional condition is not met, the original condition
in Eq. (12) is waived for the very large k(i)

z . This needs to be
done in order to ensure that even for divergent wave numbers,
as they occur in the local limit, the SPP conditions proposed
here remain meaningful. Finally, due to causality, only points
outside the light cone are relevant, i.e., requiring h > k0. The
resulting dispersion curves are displayed in Fig. 2 for TM
polarization and in Fig. 3 for TE polarization.

Turning to TM polarization first, the quasilocal case shown
in Fig. 2(a) exhibits a dispersion relation similar to the one
obtained by Ruppin in [26] but for a lossy medium. Quasilo-
cal means that this curve can either be obtained by a very
low nonlocality or the classical derivation coming from the
purely local wave equation and interface conditions from local
constitutive relations. Instead of two divergent branches in
the lossless case, it is now one connected curve that exhibits
back-bending in place of the divergences. Opposed to the
lossless case, not all solutions outside the light cone fulfill the
SPP conditions. For a weak nonlocality with G = 10−8 m4

[see Fig. 2(b)], the dispersion relation stays similar com-
pared to the quasilocal case, although a slight broadening
with a decrease in height can be observed for the peaks
in the dispersion relation. Again, SPPs exist on the upward
part of the peaks. This broadening of the peak close to the
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FIG. 3. SPP dispersion curve for TE polarized light.

resonance increases further and further with increasing the
nonlocality amplitude G as seen in Figs. 2(b)–2(d). Until the
highest G = 10−4 m4 the nonlocality causes the medium to
be nondispersive along the surface, as shown in Fig. 2(d).
While SPPs continue to be allowed on the upward slope of the
higher frequency peak, the lower frequency range where the
SPP condition is fulfilled significantly shrinks towards lower
frequencies when increasing the nonlocality. In conclusion,
the dispersion relations show that, opposed to the local de-
scription, an increase in nonlocality strongly decreases the
lower frequency range in which SPPs are allowed, while for
frequencies greater than ω0 the effects of nonlocality are very
limited. An even further increase of the nonlocality parameter,
however, does not alter the shape of the dispersion relation
any more, showing a limiting behavior for both very high
and very low nonlocalities with one and two SPP branches,
respectively.

For TE polarization, the dispersion curves are displayed in
Fig. 3. There are only valid solutions to the dispersion relation
in the frequency range where the permeability takes negative
values. Similar to the TM dispersion relation, a comparison to
the lossless case discussed by Ruppin [26] shows that instead
of the sharp divergence of the dispersion curve there is a
back bending into the peak as shown in Fig. 3(a). SPPs can
exist on the downward slope of that peak. Figure 3(b) shows
the change when taking into account a small nonlocality
with G = 108 m4. For all higher values of the nonlocality
amplitude G, there are slight changes in the shape of the
dispersion curve, but the physically relevant part that lies
outside the light cone stays almost exactly the same, just as
the frequency range in that the SPP conditions are fulfilled. In
summary, one can state that this type of nonlocality does not

affect the TE mode of SPPs a lot and opposed to the TM mode,
where the changes are quite significant, only causes very little
changes to the dispersion relation.

V. ATR SPECTRA

Surface plasmon polariton excitation can be observed using
the method of attenuated total reflection (ATR) spectroscopy.
A geometry for that was proposed by Otto [31].

It consists of a prism with permittivity εP, an air layer
of thickness d, and the medium to be analyzed, so in this
case the metamaterial. Light is sent in at an angle θ that
is totally reflected at the prism-air interface. The evanescent
waves penetrating the air layer can then excite SPPs at the
air-metamaterial interface. This geometry, commonly referred
to as the Otto configuration, is illustrated in Fig. 4. Using
a transfer matrix formalism [32] and the previously derived
reflection coefficients in Eq. (17) and Eq. (18), the reflectivity
of such a setup has been calculated for both polarizations.
For the metamaterial, the same parameters as above have
been used. The permittivity of the prism is chosen to be
nondispersive with εP = 3.

Turning to TM polarization first, with an angle of incidence
of θ = π/4 and thickness d = 3 cm, the spectra in Fig. 5 have
been obtained. The quasilocal curve has two SPP peaks, one
for each SPP branch, and is identical to the one predicted by
Ruppin [26]. For all different magnitudes of the nonlocality,
the higher frequency peak stays almost unchanged. Belonging
to the higher frequency peak in the SPP dispersion relation
(Fig. 2), this observation confirms the prediction that there
is no significant change to that peak. The lower frequency
peak in the spectrum, however, gets less pronounced and drifts
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FIG. 4. Schema of the Otto configuration for attenuated total
reflection (ATR) spectroscopy. The angle of incidence θ is chosen
to be the angle of total internal reflection resulting in an evanescent
wave in the air layer, that couples to the SPPs in the medium at the
air-metamaterial interface, where z = 0.

off to lower frequencies. This is associated with shrinking of
the frequency range that the SPP conditions are fulfilled for
with increasing nonlocality. Correspondingly, the frequencies
that SPP can be excited are lower and lower. Additionally, the
decreasing depth of the peak implies that the coupling strength
to the SPP mode gets less with an increase in nonlocality. The
very small peak seen in between the two SPP peaks is due
to the excitation of bulk polaritons [26]. With an increase in
nonlocality, this peak also becomes less pronounced.

The spectrum for TE polarization is shown in Fig. 6.
The parameters used here are θ = π/3 for the angle of in-
cidence and d = 1 cm for the distance between the prism and
the metamaterial. Again, the quasilocal curve is identical to
Ruppin’s work. The minimum at higher frequencies of that
curve is due to the excitation of SPP, while the one at lower
frequencies is due to the excitation of bulk polaritons. An
increase of the nonlocality leads to the bulk polariton peak
moving to lower frequencies and becoming less deep. The
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FIG. 5. Reflection coefficient of TM polarized light calculated
for Otto configuration with d = 3 cm and θ = π/4.
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FIG. 6. Reflection coefficient of TE polarized light calculated for
Otto configuration with d = 1 cm and θ = π/3.

SPP peak keeps its form and position independent of the
nonlocality. This is in compliance with the dispersion relation
(Fig. 3), which predicted no significant effect despite the
increasing nonlocality.

VI. CONCLUSIONS

Concluding, we have discussed the Fresnel equations for
an interface between a nonlocal, homogeneous, and isotropic
metamaterial and vacuum and derived expressions for the
reflection coefficients for both TE and TM polarizations.
Further, we proposed appropriate existence conditions for SPP
in lossy, nonlocal media. Using these results, we obtained
the dispersion relation for surface plasmon polaritons and
discussed the effect of a gradually increasing nonlocality
on it. We observed that the nonlocality has no significant
effect in the case of TE polarized light. For TM polarized
light, however, it leads to the collapse of the lower frequency
dispersion peak to a nondispersive form, while the higher
frequency peak shows very little change. The lower frequency
range where SPPs were allowed in the local case shrinks sig-
nificantly. These observations were backed up by calculating
and discussing the ATR spectrum in an Otto configuration.
With that, we outlined a possible way of investigating and
verifying nonlocal material models. On the basis of a model
assumption, we were able to extract distinct characteristic
effects of the nonlocality on the dispersion relation of surface
plasmon polaritons. Further, we showed how our approach can
be used to predict experimental consequences of nonlocality,
ultimately offering a potential future path from a solely math-
ematical approach to actual physical evidence.
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