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In this paper, we present a method to numerically study transverse Hall voltages using an alternative quantity in
two-terminal setups. Using nonlinear transport concepts, we find that the Hall voltage dependence on the model
parameters can be investigated from the difference between the injectivities of each terminal. The method is
suitable to work with nonequilibrium Green’s functions as well as for scattering matrix approaches. We illustrate
the proposed idea by studying the quantum spin Hall effect in graphene with disordered spin-orbit scattering centers
induced by adatoms. We use two distinct models: a finite-difference implementation of the Dirac Hamiltonian
and a tight-binding Hamiltonian combined with the scattering matrix approach and the nonequilibrium Green’s
functions approach, respectively.
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I. INTRODUCTION

The bloom of topological ideas in the condensed-matter
community is one of the driving forces propelling new dis-
coveries in the field. The most prominent topological effect
of quantum matter is the quantum Hall effect (QHE) [1,2],
in which a strong magnetic field, perpendicular to the sample,
leads to an electronic current that flows only through the sample
edges and it is robust against backscattering.

In the past two decades, another topological effect, called
the quantum spin Hall effect (QSHE) [1], was theoretically
predicted [3] and experimentally confirmed [4]. Here spin-orbit
coupling (SOC) gives rise to spin-polarized charge propagation
through opposite edges of the sample [1]. The QSHE has been
in the spotlight ever since its observation in HgTe/CdTe quan-
tum wells [4]. The latter triggered an intense investigation of
the robustness of spin-polarized current against nonmagnetic
disorder and how it is affected by time-reversal symmetry
breaking caused by an external magnetic field [5–8].

There are other topological states associated with edge/
surface current propagation in condensed-matter physics, such
as the states in the quantum anomalous Hall effect, in chiral
topological superconductors, and in Weyl semimetals [1]. The
protagonist in almost any case are the chiral states that arise
as a consequence of nontrivial topologies. To address these
states, experimentalists usually need samples with four- or
six-terminal geometries to measure the transverse charge or
spin conductances. However, the theoretical study of such
systems with realistic sizes and disorder demands the use of
numerical methods, such as the recursive Green’s-function
method [9,10]. Although methods to treat the electronic trans-
port in multiterminal setups have been developed over the
years [11–15], the use of multiple terminals undermines the
size and speed capabilities of the method as compared to a
simple two-terminal setup.

In this paper, we describe how to overcome this shortcom-
ing by alternatively using two-terminal calculations to study
the dependence of transverse voltage differences on model
parameters. To illustrate the method, we address the QSHE

in graphene doped with adatoms [16,17] using two different
methods: A finite-difference method, which computes the
scattering matrix for Dirac particles [18] in a strip geometry,
and the usual tight-binding description [19] combined with
nonequilibrium Green’s functions.

The paper is organized as follows: Section II introduces
the general ideas from nonlinear transport that are relevant
to this study. Next we describe how to study transverse
conductances using those concepts in Sec. III. We devote
Sec. IV to an illustration of the method by investigating the
spin accumulation at the edges of graphene nanoribbons due
to the presence of disordered spin-orbit scattering centers. We
conclude in Sec. V.

II. NONLINEAR TRANSPORT

The Landauer-Büttiker formula is a cornerstone in the study
of electronic transport in mesoscopic systems. It allows for the
computation of the electronic current, at a particular contact,
in terms of the electronic transmission probabilities. Following
the notation of Ref. [20], the Landauer-Büttiker formula for the
electronic current at terminal α reads

Iα = 2e

h

N∑
β=1

∫ ∞

−∞
dE fβ (E) Aαβ [E,U (r)], (1)

where fβ (E) = f0(E − eVβ ), Vβ represents the electronic
distribution function and the electrostatic potential at the con-
tact β, respectively, and f0(E) = [e(E−EF )/kBT + 1]−1 is the
equilibrium Fermi-Dirac distribution function at temperature
T and Fermi energy EF . The factor 2 accounts for the spin
degeneracy. The quantity Aαβ[E,U (r)], which encodes the
transmission properties of the system, is expressed in terms of
the scattering matrix Sαβ as

Aαβ[E,U (r)] = Tr[1αδαβ − S†
αβSαβ]. (2)

In Eqs. (1) and (2), we make explicit the dependence of
the transmission amplitudes on the electrostatic potential
U (r) = U (r, {Vα}) inside the system. In linear response, Aαβ
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is computed at the equilibrium potential Ueq(r) which is estab-
lished when all reservoirs have the same equilibrium chemical
potential μ0. Beyond this regime, it is necessary to compute
U (r) self-consistently, as pointed out by Landauer [21].

To make analytical progress, it is convenient to expand all
quantities in powers of Vα . The local electrostatic potential
U (r) reads

U (r) = Ueq(r) +
∑

α

uα (r)Vα + O(V 2
α ), (3)

where uα (r) is the characteristic potential defined by

uα (r) = ∂

∂Vα

U (r)

∣∣∣∣
{Vγ }=0

. (4)

Here {Vγ } = 0 is a shorthand for Vγ = 0 for all γ .
To determine uα (r), we need a self-consistent microscopic

electronic structure calculation, or we find an adequate ap-
proximation for it. The latter was developed in Ref. [22]
assuming that the potential U (r) is related to the electronic
density imbalance δn(r) generated by the bias. In turn, δn(r)
arises from the charge injected by the leads δninj(r) and the
correspondent-induced charge in the conductor δnind(r).

At linear order, the injected charge δninj(r) is proportional
to the injection properties of the sample which is given by the
injectivity, namely

dn(r, α)

dE
= − 1

2πi

∫ ∞

−∞
dE

(
−∂f0

∂E

)

×
∑

β

Tr

[
S†

βα

δSβα

eδU (r)
− δS†

βα

eδU (r)
Sβα

]
, (5)

evaluated at {Vγ } = 0. Here we included the factor 2 due to spin
degeneracy. The injectivity describes the linear contribution to
the local density of states related to incoming states from a
given contact.

The induced electronic density, up to linear order in V , is
given by δnind(r) = ∑

α

dnα
ind (r)
dE

eVα , where

dnα
ind(r)

dE
=

∫
dr′ �(r, r′) uα (r′) (6)

and �(r, r′) is the Lindhard polarization function [20,23].
These elements render the Poisson equation

−∇2uα (r) + 4πe2 dnα
ind(r)

dE
= 4πe2 dn(r, α)

dE
, (7)

where the injected charge e2dn(r, α)/dE depends only on the
scattering matrix and e2dnα

ind(r)/dE is the charge induced by
the injected one.

The scattering approach does not provide a recipe to
obtain �(r, r′). An usual procedure is to take advantage of
the Thomas-Fermi approximation [20,22] where the induced
charge density is proportional to the local density of states
dn(r)
dE

, namely

dnα
ind(r)

dE
= dn(r)

dE
uα (r). (8)

However, the Thomas-Fermi approximation may underesti-
mate the screening capabilities of the system when the local
chemical potential lies at a vanishing density of states point

FIG. 1. Schematic view of the system. The electronic current I

enters through terminal 1 (left) and leaves through terminal 2 (right).
The upper (lower) edge is positively (negatively) charged giving rise
to a Hall voltageVH . The magnetic field is perpendicular to the system.

such as the Dirac point in bulk graphene [24]. In what follows,
we describe a procedure that allows us to study the Hall voltage
dependence on model parameters without knowing the details
of the screening contribution.

III. CHARGE AND SPIN HALL VOLTAGES

In the presence of a perpendicular magnetic field, the current
I passing through the system illustrated in Fig. 1 generates a
Hall voltage VH established in the transverse direction due to
charge accumulation at the edges. The Hall conductance in
such a system is defined as

σH = I

VH

. (9)

For a two-terminal system such as the one in Fig. 1, the
electronic current I is given by the Landauer formula in Eq. (1).
For a small bias, we evaluate I at Ueq(r) and compute the Hall
voltage VH in terms of the characteristic potentials uα by means
of Eq. (3). In linear response, VH reads

VH (x) = U (r+) − U (r−),

= [u1(r+)V1 + u2(r+)V2] − [u1(r−)V1 + u2(r−)V2],

(10)

where r+ = (x, y+) and r− = (x, y−) correspond to the edges
of the system at the same longitudinal coordinate x. For a
symmetric applied voltage, i.e., V1 = −V2 = V/2, we find

VH (x) = [�u(r+) − �u(r−)]V/2, (11)

where �u(r) ≡ u1(r) − u2(r).
The Hall voltage VH in Eq. (11) depends on the two-

terminal characteristic potential difference �u(r) instead of
the individual values uα . From Eq. (7) we find that �u(r) is
given by

−∇2�u(r) + 4πe2�nind(r) = 4πe2�n(r), (12)

where �n(r) ≡ dn(r,1)
dE

− dn(r,2)
dE

is the two-terminal injectivity
difference at the position r, and �nind(r) is the screening
density induced by �n(r).

The characteristic potential �u(r) increases monotonically
with the charge accumulated at the region �r surrounding
r. The accumulated charge is the result of the difference
between the injected and the screening charges. Since the
screening contribution cannot exceed the injected contribution,
this ensures that an increase in the injected charge in a particular
region �r leads to an increase in the electrostatic potential
at r. In the case of a symmetric bias voltage, the injected
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charge is given by qinj(r) ∝ e2V �n(r) [20]. This ensures that
�u(r) monotonically increases with �n accumulated at �r.
Therefore, we can study the behavior of the Hall voltage,
which is proportional to �u(r+) − �u(r−), throughout the
injectivity imbalance �n.

Although the analytical dependence of the Hall voltage VH

in Eq. (11) on �n is unknown, it is possible to study the
injection density �n, or its imbalance �±(x) defined as the
difference between �n accumulated in �r+ and �r− , in order
to determine (i) whether the QHE is present (�± �= 0 ⇒ VH �=
0) or not (�± = 0 ⇒ VH = 0) and (ii) if the QHE becomes
stronger or weaker by varying any model parameter, since VH

varies monotonically with �±.
Spin-dependent effects, such as the QSHE, cannot be

directly quantified by the characteristic potentials in Eq. (7)
because they do not distinguish the spin degrees of freedom. On
the other hand, one can calculate the spin-resolved injectivities
dns (r,α)

dE
, where s =↑,↓ labels the spin, to obtain the two-

terminal spin-resolved injection densities

�ns (r) =
(

dns (r, 1)

dE
− dns (r, 2)

dE

)
. (13)

Thus, it is straightforward to extend the ideas discussed for the
Hall voltage VH to study the spin Hall voltage VSH by studying
the imbalance �s

±(x), defined as the difference between �ns

in Eq. (13) accumulated in �r+ and �r− . In this case, the spin-
resolved imbalance �s

±(x) generates the spin-Hall voltage
V s

SH(x) for the spin orientation s =↑,↓.
In the next sections, we use Eq. (13) to quantitatively

analyze the dependence of the QSHE in graphene nanoribbons
doped with spin-orbit scatterers on a few model parameters.

IV. QUANTUM SPIN HALL EFFECT: GRAPHENE
NANORIBBONS WITH DISORDERED SPIN-ORBIT

COUPLING

We study local disordered spin-orbit coupling on graphene
due to the presence of adatoms deposited on top of the graphene
sheet. This system has been shown to present the QSHE both
theoretically [16,19] and experimentally [17]. First we study
numerically the density of spin accumulation for a finite-size
graphene nanoribbon doped with adatoms using the scattering
matrix approach applied to the effective low-energy continuous
description given by the Dirac Hamiltonian. Then we analyze
the same system described by a full tight-binding Hamiltonian
for graphene with effective local hoppings that mimic the
presence of adatoms.

A. Scattering matrix approach

In this section, we use the finite-difference method pre-
sented in Ref. [18] to compute the scattering matrix of massless
Dirac particles with spin-orbit coupling disorder. The Hamil-
tonian is

H = −ih̄v(σx∂x + σy∂y ) + U ad
nm(r) + U ad

m (r), (14)

where v is the velocity of the massless Dirac fermions, σx

and σy are Pauli matrices associated with the pseudospin
(sublattices), U ad

nm(r) is an electrostatic potential due to non-
magnetic adatoms, and U ad

m (r) is the spin-orbit term that

FIG. 2. Injection density of spin-up electrons �n↑ in units of
1/(nm)2eV for a single realization. The system has width W = 20�

and lengthL = 20�, where� = 0.71 nm. The disorder concentration
is 5%, the SOC disorder strength isUSOC = 0.02 eV, and the electronic
energy is E = −0.001 eV. The transport occurs in the x direction.

appears due to the presence of magnetic adatoms. Magnetic
and nonmagnetic adatoms are randomly distributed in the
system with concentrations nSOC and ndis, respectively. The
nonmagnetic contribution to the potential is given by U ad

nm(r) =∑
j Udisδ(r − r̄j ), where Udis is the impurity disorder strength

and r̄j indicates the nonmagnetic adatoms positions. The
presence of magnetic adatoms generates a local spin-orbit
interaction and a local change in the electrostatic potential
as well. The potential due to magnetic adatoms is U ad

m (r) =∑
j [USOCσz⊗τzδ(r − r̃j ) + UCδ(r − r̃j )], where USOC is the

spin-orbit strength, UC is the magnetic adatom disorder
strength, r̃j indicates the position where magnetic adatoms
are located, and the Pauli matrices τz refer to the spin degree
of freedom.

To study the QSHE, we need to compute the injectivities for
this system. To do that, we numerically calculate the functional
derivative of the scattering matrix as

δSαβ

δU (r0)
= lim

ξ→0

Sαβ [U (r) + ξδ(r − r0)] − Sαβ [U (r)]

ξ
, (15)

we substitute the result in Eq. (5), and we evaluate the
injectivities at zero temperature. We discretize the system using
the lattice spacing � = 0.71 nm. The nanoribbon has width
W = 20� and length L = 20�; see Fig. 2. The system is
attached to vertical semi-infinite leads at the positions x = 0
and x = L.

Figure 2 shows a single realization of the spin-up injection
density �n↑ in units of 1/(nm)2eV for a symmetric bias.
The disorder concentration is nc = 5% and the SO disorder
strength is USOC = 0.02 eV. The injection properties are
calculated at electronic energy E = −0.001 eV. We find a clear
and strong spin-up imbalance �

↑
± = �n↑(y = 0) − �n↑(y =

W ) > 0 between the opposite edges of the system. Due to
the symmetries of the SO interaction, the spin-down injection
density �n↓ (not shown here) produces the same absolute
imbalance but with opposite sign �

↓
± = −�

↑
±. The results

indicate that the QSHE is indeed present with opposite spin
Hall voltages V

↓
SH = −V

↑
SH.
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FIG. 3. Spin-up injection density �n↑ in units of 1/(nm)2eV
calculated at x = L/2 as a function of the transverse coordinate
y across the ribbon width. The results correspond to an average
over 1000 realizations, where we set E = −0.001 eV, L = 20�,
W = 20�, and � = 0.71 nm. In panel (a) we use UC = 0, Udis = 0,
USOC = 0.01 eV, and vary the SOC disorder concentration nSOC. In
(b) we vary the SOC strength USOC by keeping the concentration
constant nSOC = 5%. We turn on the SOC Coulomb contribution UC

in panels (c) and (d). The SOC strength is USOC = 0.01 eV and the
concentration is nSOC = 5%. In (c) the Coulomb potential assumes
positive values while assuming negative values in (d).

To study the dependence of the QSHE on the model
parameters, we plot the average over disorder configurations
of the transverse section of the spin-up injection density �n↑
across the width in Fig. 3. First we turn off the local Coulomb
potential UC = 0 and the disorder potential Udis = 0. We vary
the concentration nC in Fig. 3(a) using a local spin-orbit
coupling USOC = 0.01 eV. In the absence of adatoms nc = 0
there is no injection imbalance (�↑

± = 0). As we increase
the concentration up to nc = 8%, the injection imbalance �

↑
±

increases as well showing a monotonic increase in the interval
nc ∈ [0, 8%]. Figure 3(b) shows the dependence of �n↑ on the
local spin-orbit coupling USOC for UC = 0 and nc = 5%. We
find that the injection imbalance also increases monotonically
with the local spin-orbit strength USOC.

In Figs. 3(c) and 3(d) we keep USOC and nC constant, turning
on the local Coulomb potential to analyze the dependence of
�n↑ on UC . Figure 3(c) shows that by increasing UC , the
injection imbalance �

↑
± decreases for positive values of UC .

The injection density �n↑(y = W ) remains roughly constant
while �n↑(y = 0) decreases in the interval [0.005, 0.020] eV,
decreasing �

↑
± as a consequence. On the other hand, Fig. 3(d)

shows the opposite behavior for negative values of UC . As UC

varies from UC = 0 to UC = −0.020 eV, the imbalance �
↑
±

increases. Thus, spin-up Hall voltage V
↑

SH decreases with |UC |

y/Δ
0 10 20

Δ
n
↑

0

1

2

3

4
Udis = 0 eV
Udis = 0.01 eV
Udis = 0.02 eV
Udis = 0.04 eV

FIG. 4. Spin-up injection density �n↑ in units of 1/(nm)2eV
calculated at x = L/2 as a function of the transverse coordinate
y across the ribbon width. The results correspond to an average
over 1000 realizations, where we set EF = −0.001 eV, L = 20�,
W = 20�, and � = 0.71 nm. We use USOC = 0.01 eV, UC = 0,
nSOC = 5%, ndis = 5%, and vary the nonmagnetic disorder strength
Udis from 0 to 0.04 eV. See the main text for more details.

for positively charged adatoms and increases with |UC | for
negatively charged adatoms.

Next we consider the diagonal disorder produced by a differ-
ent source Udis(r). These additional scatterers are nonmagnetic
and are placed in positions that are different from the adatoms
positions. In this case, the system has a coverage nSOC = 5%
of adatoms with SOC USOC = 0.01 eV and Coulomb strength
UC = 0. Figure 4 shows the spin-up injection density �n↑
as a function of the nonmagnetic disorder strength Udis for a
nonmagnetic disorder coverage ndis = 5%. The plot shows that
�n↑ does not vary monotonically with the disorder strength
Udis. The injection imbalance between the edges �

↑
± increases

when Udis varies from 0 to 0.01 eV and decreases when Udis

varies from 0.01 to 0.04 eV. As a matter of fact, there is
an optimal value of the disorder strength, which is roughly
Udis = 0.01 eV, that maximizes the injection imbalance �

↑
±

between opposite edges and the spin Hall voltages V s
SH as a

consequence.

B. Green’s-function approach applied to the quantum spin
Hall effect on graphene

In this section, we present our numerical results on the
spin-resolved injection density �ns for a finite-size graphene
nanoribbon doped with adatoms using the tight-binding model
proposed in Ref. [16]. Within this model, we also expect an
imbalance �s

± �= 0 in the spin-resolved injection density due
to the QSHE generated by the presence of adatoms that act
as spin-orbit scattering centers for electronic energies near the
charge-neutrality point.

The tight-binding description of graphene including the
contribution from the adatoms reads [16,25–27]

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ +

∑
j,σ

εj c
†
jσ cjσ

+ itSO

∑
〈〈i,j〉〉,σσ ′

νij c
†
iσ τ z

σσ ′cjσ ′ . (16)
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The operator c
†
iσ (cjσ ) creates (destroys) an electron with spin

σ =↑,↓ at the site i (j ). The hopping integral between first
neighbors in the kinetic term has a value t = 2.7 eV, and εj are
on-site energies randomly chosen from a uniform distribution
in the interval [−Vdis, Vdis], where Vdis is the disorder strength.
The spin-orbit interaction due to adatoms in the third term has
strength tSO and acts only between second neighbors around
the adatom, which is placed at the center of the corresponding
hexagon. Here the magnetic adatoms are randomly distributed
in the system with a concentration nAD, while the presence
of nonmagnetic adatoms is modeled by the random on-site
energies εj described above. The Pauli matrix τ z ensures that
the hopping has opposite signs for different spin orientations
while νij distinguishes between the clockwise (νij = 1) and the
counterclockwise (νij = −1) directions [16]. For simplicity,
we study the electronic transport properties neglecting the
Rashba coupling [28].

One of the most efficient ways to calculate transport
properties of two-terminal systems is the Green’s-functions
technique [29,30]. We calculate the nonequilibrium injectivity
in Eq. (5) in terms of equilibrium Green’s functions as [20]

dn(j, α)

dE

∣∣∣∣
E=EF

=
∫ ∞

−∞

dE

2π

(
−∂f0

∂E

)
〈j |Gr

0�αGa
0|j 〉, (17)

where Gr
0 (Ga

0) is the equilibrium retarded (advanced) Green’s
function and �α is the linewidth function of the lead α. We
calculate Gr

0 and �α at a given electronic energy E by means of
the recursive Green’s-function technique (RGF) [9,10,14] and
decimation [10,31], respectively. We compute the advanced
Green’s function via its standard relation with the retarded
one, namely Ga

0 = (Gr
0)†. At zero temperature, the injectivity

in Eq. (17) yields

dns (j, α)

dE

∣∣∣∣
E=EF

= 1

2π
〈j |Gr,ss

0 �ss
α G

a,ss
0 |j 〉, (18)

where EF is the Fermi energy at equilibrium, and G
r,ss
0 (Ga,ss

0 )
is the equilibrium retarded (advanced) Green’s-function block
connecting the same spin orientation s =↑,↓. We assume
that up and down spin components are equally injected in
the system, �↓↓

α = �↑↑
α . Our model system is a graphene

nanoribbon with armchair edges along the transport direction
with width and length equal to 100 and 170 Å, respectively.
We attach two semi-infinite armchair graphene nanoribbons as
leads at x = 0 (left) and x = 170 Å (right).

Figure 5 shows the numerical results obtained by means
of the spin-up component of Eq. (18). We show the spin-up
injection density �n↑ for a single realization as the color map
in Fig. 5(a). Analogously to the previous section, we find
that �n↑ is higher at one edge (y = 0) than at the opposite
one (y = 100 Å). The maximum and minimum values of
�n↑ at each cross section along the y direction, indicated
by the dashed line in Fig. 5(a), are different due to the
presence of the disordered distribution of adatoms in the
system.

The oscillations in Fig. 5 are reminiscent of the clean
armchair graphene nanoribbon structure. For each particular
ribbon width there is a correspondent wave-function nodal
structure in the lattice. This can be seen by solving the

FIG. 5. (a) Spin-up injection density �n↑ in units of 1/eV in a
100 Å × 170 Å graphene nanoribbon for a single realization, where
nAD = 0.05, tSO = 0.01t , and Vdis = 0. The dashed line indicates one
of the cross sections used to calculate the average over all the cross
sections that we show in panels (b)–(d) as a function of y. Panels
(b), (c), and (d) show the average value of �n↑ for different values
of adatom concentration nAD, spin-orbit strength tSO, and disorder
strength W , respectively. The electronic energy is EF = 0.01t in all
results.

analytical problem using boundary conditions where the wave
function vanishes at the ribbon edges. As a consequence,
bonds connecting carbon sites at wave-function nodes cannot
contribute to the transport by carrying electronic current
[32–34].
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Panels (b), (c), and (d) of Fig. 5 show the average injection
densities �n↑ taken over all the cross sections in the system
for different values of the adatom concentration nAD, the spin-
orbit strength tSO, and the disorder strength Vdis, respectively.
From Fig. 5(b) we find that �n↑ vanishes in the absence of
adatoms nAD = 0 (no spin orbit) and increases at the edges as
we increase the adatom concentration nAD. The effect is most
prominent at the edges, and �n↑ varies almost linearly from
one edge to the opposite one.

We find a similar behavior in Fig. 5(c) where �n↑ vanishes
in the absence of the spin-orbit strength (tSO = 0) and increases
with its value having an approximately linear dependence
with y. In Fig. 5(d) we show that these results are robust
against disorder. As we increase the disorder strength Vdis

we find only small fluctuations in �n↑ compared to the case
without diagonal nonmagnetic disorder (Vdis = 0). We find that
the injection density imbalance �

↑
± increases with both the

adatom concentration and the spin-orbit strength tSO, similarly
to the results of the previous section. On the other hand, the
nonmagnetic disorder within this model barely affects the
imbalance �

↑
±, which is at odds with the previous section

results. Therefore, the spin Hall voltage V
↑

SH increases with
both the adatom concentration and the spin-orbit strength tSO,
and it is robust against nonmagnetic disorder.

Our results are in line with the full conductance calcu-
lations performed in Ref. [16] in the absence of Rashba
spin-orbit coupling. By studying the injectivities, we find
that the topological phase is robust to strong fluctuations of
uncorrelated nonmagnetic on-site disorder, as shown by the
marginal degrading of the injectivity in Fig. 5(d). Moreover,
we find that the spin-Hall voltage increases with both the
magnetic adatom concentration nAD and the spin-orbit strength
tSOC. By increasing the number of scattering centers and/or the
spin-orbit intensity, we increase the asymmetric scattering for
different spin orientations and enhance the spin Hall effect in
the system. This effect is closely related to the increasing of
the spin-orbit gap with nAD and tSOC in the bulk band-structure
calculations in Ref. [16].

V. CONCLUSIONS

We presented a method to numerically study transverse
conductances using a two-terminal setup. We established a
connection between the transverse voltage in the system and
the differences between the injectivities from each terminal.
The connection is derived using nonlinear transport concepts
from the literature.

We applied our method to study the QSHE in graphene
doped with adatoms within two distinct models: a finite-
difference implementation of the Dirac Hamiltonian combined
with the scattering matrix approach, and a tight-binding Hamil-
tonian combined with the nonequilibrium Green’s-functions
approach. The results show that the presence of adatoms
produces a considerable difference between the spin injection
densities at the edges of the ribbon, resulting in a QSHE, i.e.,
leading to nonzero spin Hall voltages V

↑,↓
SH . The latter increases

with the adatom concentration and the SOC strength for both
models, which is in agreement with the expected behavior
of the QSHE in graphene doped with adatoms for electronic
energies near the charge-neutrality point [16,25].

In the model using the tight-binding description of
graphene, we found that nonmagnetic disorder does not affect
the spin Hall voltages. On the other hand, in the continuum
description using the Dirac Hamiltonian, the nonmagnetic dis-
order can increase or decrease the spin Hall voltages depending
on both the intensity and the sign of the disorder strength.
Furthermore, we find the optimal value of the nonmagnetic
disorder strength that maximizes the spin Hall voltages. These
results show that it is indeed possible to extract not only qualita-
tive but also quantitative information on the system by studying
the two-terminal injectivities using the proposed method.
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