
PHYSICAL REVIEW B 98, 115401 (2018)
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We develop a theory for spontaneous decay of a quantum emitter (QE) situated near metal-dielectric structure
supporting localized surface plasmons. If plasmon resonance is tuned close to the QE emission frequency, the
emission is enhanced due to energy transfer from the QE to a localized plasmon mode followed by photon
emission by plasmonic antenna. The emission rate is determined by intimate interplay between the plasmon
coupling to radiation field and the Ohmic losses in metal. Here we develop plasmon Green’s function approach
that includes plasmon’s interaction with radiation to obtain explicit expressions for radiative decay rate and optical
polarizability of a localized plasmon mode in arbitrary plasmonic nanostructure. Within this approach, we provide
consistent definition of plasmon mode volume by relating it to plasmon mode density, which characterizes the
plasmon field confinement, and recover the standard cavity form of the Purcell factor, but now for plasmonic
systems. We show that, for a QE placed at a “hot spot” near a sharp tip of a small metal nanostructure, the plasmon
mode volume scales with the metal volume while being very sensitive to the proximity to the tip. Finally, we
derive the enhancement factor for radiated power spectrum for any nanoplasmonic system and relate it to the
Purcell factor for spontaneous decay rate. We illustrate our results by numerical example of a QE situated near a
gold nanorod tip.
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I. INTRODUCTION

Rapid advances in nanoplasmonics during past decade
opened up avenues for extremely high energy concentra-
tion and transfer on length scale well below the diffraction
limit [1–3]. Optical interactions between dye molecules or
semiconductor quantum dots, hereafter referred to as quantum
emitters (QEs), and localized plasmons in metal-dielectric
structures underpin major phenomena in plasmon-enhanced
spectroscopy, such as surface-enhanced Raman scattering
(SERS) [4], plasmon-enhanced fluorescence and lumines-
cence [5–11], strong QE-plasmon coupling [12–23], and plas-
monic laser [24–26]. On the theory side, however, despite sig-
nificant progress in various aspects of plasmonics, a consistent
description of spontaneous decay of a QE near a plasmonic
nanostructure characterized by dispersive and lossy dielectric
function is still a subject of active debate [27–36].

Spontaneous decay of a QE near a photonic or plasmonic
resonator can be strongly modified due to additional energy
transfer (ET) channel provided by the QE coupling to cavity
or plasmonic modes [37]. If the mode frequency ωm is tuned
close to the QE emission frequency, the QE decay rate can be
greatly enhanced relative to the free-space decay rate γ r

0 . The
modified rate is usually presented as γ = γ r

0 + γet = γ r
0 (1 +

Fp ), where γet is the ET rate between QE and resonant mode
whereas Fp is the Purcell factor characterizing the decay rate
enhancement [38]. For QE coupled to cavity mode, the Purcell
factor has the form

Fp = γet

γ r
0

= 6πQm

k3Vm

, (1)

where Qm is the mode quality factor, Vm is the mode
volume and k = ω/c is the light wave vector (ω and c

are frequency and speed of light). For photonic cavities,
the mode volume at some point r is defined as Vcav =∫

dV ε(r )|Em(r )|2/[ε(r )|Em(r )|2], where Em(r ) is the mode
electric field and ε(r ) is (lossless) dielectric function, and is
usually interpreted as the volume that would confine the mode
at given field intensity.

Spontaneous decay of a QE coupled to plasmonic resonator
has been addressed within several approaches [29–36] aiming
to obtain the corresponding Purcell factor in the form (1). While
the plasmon quality factor is well defined as Qm = ωm/γm,
where γm is the plasmon decay rate, there has been active
debate as to how unambiguously define the plasmon mode vol-
ume for QE located outside a metal nanostructure characterized
by complex dispersive dielectric function [36,39–49]. For open
systems, straightforward analogies with photonic cavities do
not apply and more rigorous, albeit less intuitive, numerical
methods based on modal expansion of Maxwell equations’
solutions are often employed [45,49].

Here we develop another approach more suitable for
nanoplasmonic systems which extends the quasistatic approx-
imation, valid for system scale below the diffraction limit, to
incorporate the plasmon coupling to the radiation field in a con-
sistent way. Specifically, if the system size L is much smaller
than the photon wavelength λ then, on the far-field scale r � λ,
interaction of localized plasmon mode with radiation field is
analogous to that of a point-like emitter with dipole moment
Pm = ∫

dV Pm, where Pm(r ) is the electric polarization vec-
tor of the plasmon mode. On the other hand, on the near-field
scale L � λ, QE decay involves ET to plasmon at a rate γet

determined by the plasmon local density of states (LDOS) [50].
Subsequently, some part of transferred energy is radiated away
by the plasmonic antenna while the rest is dissipated in metal
due to the Ohmic losses. An accurate treatment of spontaneous
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decay requires matching the balance between transferred and
dissipated energy in the near field to the radiated energy in
the far field. As we show in this paper, this is accomplished
by including the plasmon coupling to radiation field into the
plasmon Green’s function, which defines the LDOS, in a way
that ensures energy flux conservation across the scales.

In the preceding paper [50], we derived the plasmon Green’s
function for arbitrary metal-dielectric system with Ohmic
losses included, but without coupling to the radiation field,
in order to describe plasmonic enhancement of Forster ET
between donors and acceptors. In this paper, we extend our
approach to include the plasmon coupling to radiation field, and
derive explicit expression for the plasmon radiative decay rate
γ r

m. By incorporating γ r
m into the plasmon Green’s function, we

obtain optical polarizability of plasmonic system describing its
response to an external field in the way that satisfies energy
flux conservation. We then turn to spontaneous decay of a
QE coupled to plasmonic resonator and derive the Purcell
factor for decay rate in the form (1), where the mode volume
is identified as the inverse of plasmon mode density that
characterizes plasmon field confinement at the QE position. We
show that near sharp tip of small metal nanostructure, where
the plasmon field is strongly confined (hot spot), the mode
volume scales with the metal volume but, at the same time, is
very sensitive to the QE distance to metallic tip. Finally, we
derive enhancement factor for radiated power spectrum, which
describes, e.g., plasmonic enhancement of fluorescence near
metal nanostructures [5–11], and establish general relation
between the enhancement and Purcell factors.

The paper is organized as follows: In Sec. II we revisit
our derivation of the plasmon Green’s function [50] by using
different method that makes its generalization more conve-
nient. In Sec. III, we extend this approach by including the
plasmon coupling to radiation field into Green’s function and
derive explicit expressions for radiative decay rate and optical
polarization of any nanoplasmonic system. In Sec. IV, we
derive the plasmon LDOS, plasmon mode density, and plasmon
mode volume, as well as evaluate the plasmon mode volume
near sharp tip of metal nanostructure. In Sec. V, we derive
the Purcell factor for spontaneous decay of a QE coupled
to plasmonic resonator and obtain explicit expression for the
power spectrum enhancement factor. In Sec. VI, we illustrate
our results numerically for a QE situated neat the tip of Au
nanorod. A summary of our results is provided in Sec. VII, and
some details of our calculations are outlined in the appendix.

II. SPONTANEOUS DECAY AND PLASMON
GREEN’S FUNCTION

Consider an excited QE with dipole matrix element and ori-
entation μ and n, respectively, located at some position r near
a metal-dielectric structure described by the complex dielectric
function ε(ω, r ) = ε′(ω, r ) + iε′′(ω, r ) and surrounded by
a homogeneous medium with dielectric constant εs . We set
εs = 1 for now, but will restore it when discussing numerical
examples. The full decay rate of a QE in electromagnetic
environment has the form [37]

γ = 8πω2μ2

c2h̄
Im[n · Ḡ(ω; r, r ) · n], (2)

where Ḡ(ω; r, r ′) is the dyadic Green’s function for Maxwell’s
equation satisfying ∇ × ∇ × Ḡ − (ω2/c2)ε Ḡ = I . For a QE
in free space, the decay rate is determined by the imaginary
part of the free-space Green’s function Ḡ0(ω; r, r ′) at the QE
position, Im[Ḡ0(ω; r, r )] = (ω/6πc)I , yielding

γ r
0 = 4μ2ω3

3h̄c3
. (3)

For systems with characteristic size below the diffraction limit,
it is convenient to use the rescaled Green’s function

D̄(ω; r, r ′) = 4πω2

c2
Ḡ(ω; r, r ′), (4)

which, in the near-field limit, represents the sum of direct and
plasmon terms, D̄ = D̄0 + D̄pl [50]. The full decay rate (2)
takes the form γ = γ r

0 + γet , where

γet = 2μ2

h̄
Im[n · D̄pl(ω; r, r ) · n] (5)

is QE-plasmon ET rate.

A. Plasmon Green’s function: Lossless case

For a metal-dielectric system with characteristic size
smaller than the radiation wavelength, the fields and frequen-
cies of plasmon modes are determined by the quasistatic Gauss
law [3]

∇ · [ε′(ωm, r )∇�m(r )] = 0, (6)

where the potentials �m(r ), which define the mode electric
fields as Em(r ) = −∇�m(r ), satisfy the standard boundary
conditions across metal-dielectric interfaces. The mode fields,
which we chose to be real, are orthogonal,

∫
dV Em(r )·

En(r ) = δmn

∫
dV E2

m(r ), and regular inside the structure
while falling off rapidly outside it.

In our preceding paper [50], the plasmon Green’s function
in the presence of Ohmic losses was derived by expressing it
through complex eigenvalues of the operator ∇ ·[ε(ω, r )∇].
In this section, we give a more transparent derivation without
resorting to an eigenvalue problem, which permits its general-
ization to include, in the next section, the plasmon coupling to
a radiation field.

The Green’s function S(ω; r, r ′) for quasistatic potentials
satisfies the equation

∇ · [ε(ω, r )∇S(ω; r, r ′)] = 4πδ(r − r ′), (7)

for arbitrary frequency ω. In free space (ε = 1), the quasistatic
Green’s function is independent of frequency and has the form
S0(r − r ′) = −1/|r − r ′|; the corresponding dyadic Green’s
function for fields, given by ∇∇′S0(r − r ′), coincides with
(the real part of) the free-space electromagnetic Green’s
function (4) in the near-field limit. After splitting S into free-
space and plasmon parts, S = S0 + Spl, we obtain an equation
for Spl:

∇ · [ε(ω, r )∇Spl(ω; r, r ′)]

= −∇ · [[ε(ω, r ) − 1]∇S0(ω; r, r ′)]. (8)

Assume, for a moment, that the dielectric function ε(ω, r )
is lossless (ε′′ = 0). For real ε, the Green’s function can be
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expanded in terms of eigenmodes of Eq. (6) as

Spl(ω; r, r ′) =
∑
m

Sm(ω)�m(r )�m(r ′), (9)

where coefficients Sm(ω) are found as follows: Applying to
Eq. (8) the integral operator

∫
dV ′�m(r ′)�′ and using the

relation∫
dV ′�m(r ′)�′Spl(ω; r, r ′) = −Sm�m(r )

∫
dV E2

m(r )

(10)

for the left-hand side and the relation∫
dV ′�m(r ′)�′S0(ω; r, r ′) = 4π�m(r ) (11)

for the right-hand side, we obtain

Sm∇ · [ε(ω, r )∇�m(r )] = 4π
∇ · [[ε(ω, r ) − 1]∇�m(r )]∫

dV E2
m(r )

.

(12)

Finally, multiplying Eq. (12) by �m(r ) and integrating the
result over r , we obtain

Sm(ω) = 4π∫
dV E2

m(r )
− 4π∫

dV ε(ω, r )E2
m(r )

. (13)

For real ε(ω, r ), the Green’s function (9) with coefficients (13)
is exact for any metal-dielectric structure with eigenmodes
defined by Eq. (6). The first term in Eq. (13) ensures that
Sm = 0 in the limit ω → ∞ (or, in free space with ε = 1),
while the second term develops a pole, due to the Gauss law (6),
as |ω| approaches ωm.

B. Plasmon Green’s function: Including the losses

For a complex dielectric function, the plasmon poles in the
Green’s function move into the lower half of the complex-
frequency plane. We assume that the mode quality factors
Qm are sufficiently large and so, in the first order in 1/Qm,
the eigenmodes �m in the Green’s function expansion (9) are
unchanged while the coefficients Sm in Eq. (13) are now com-
plex. The higher-order corrections come from the “dissipation
coupling” between the modes

∫
dV ε′′(ω, r )Em(r ) · En(r ).

Upon expanding the dielectric function near ωm,

ε(ω, r ) ≈ ε′(ωm, r ) + ∂ε′(ωm, r )

∂ω2
m

(
ω2 − ω2

m

) + iε′′(ω, r ),

(14)
the coefficients (13) take the form

Sm(ω) = ω2
m

2Um

1

ω2
m − ω2 − iωγ nr

m (ω)
, (15)

where

Um = ωm

16π

∫
dV

∂ε′(ωm, r )

∂ωm

E2
m(r )

= 1

16π

∫
dV

∂[ωmε′(ωm, r )]

∂ωm

E2
m(r ) (16)

is the plasmon mode energy [51], and the rate

γ nr
m (ω) = 2ωm

∫
dV ε′′(ω, r )E2

m(r )

ω
∫

dV [∂ε′(ωm, r )/∂ωm]E2
m(r )

(17)

describes nonradiative plasmon decay at frequency ω. Intro-
ducing the power dissipated by the plasmon mode due to
nonradiative (Ohmic) losses as [51]

Wnr
m (ω) = ω

8π

∫
dV ε′′(ω, r )E2

m(r ), (18)

the frequency-dependent nonradiative plasmon decay rate (17)
can be written in the form

γ nr
m (ω) = ω2

m

ω2

Wnr
m (ω)

Um

, (19)

which is convenient for extension in the next section.
The quasistatic dyadic Green’s function for the electric

fields is given by D̄pl(ω; r, r ′) = ∇∇′Spl(ω; r, r ′), where
Spl(ω; r, r ′) is given by Eq. (9) with coefficients Sm(ω) given
by Eq. (15), and has the form

D̄pl(ω; r, r ′) =
∑
m

ω2
m

2Um

Em(r )Em(r ′)
ω2

m − ω2 − iωγ nr
m (ω)

. (20)

Note that the coefficients (15) are obtained by calculating
the residues at the plasmon poles of function Sm(ω), given
by Eq. (13), and the Green’s function (20) is obtained by
summing up the contributions from all poles. Since the plas-
mon Green’s function is analytic in the complex-frequency
plane except isolated poles in the lower half plane [for local
dielectric function ε(ω, r )], the expression (20) is valid for all
frequencies. The functional form of the decay rate (17) along
with the modes’ orthogonality ensures that D̄pl(ω; r, r ′) obeys
the optical theorem [52]∫

dV ε′′(ω, r ) D̄∗
pl(ω; r, r ′) D̄pl(ω; r, r ′′)

= 4π Im D̄pl(ω; r ′, r ′′), (21)

which, in the absence of radiation, implies that the system’s
energy intake (right-hand side) is dissipated via Ohmic losses
(left-hand side) [53].

In the following, we assume that the QE’s interaction with
the plasmonic system is dominated by a single mode and,
accordingly, keep only the resonant term in Eq. (20),

D̄m(ω; r, r ′) = ω2
m

2Um

Em(r )Em(r ′)
ω2

m − ω2 − iωγm(ω)
, (22)

where γm(ω) = γ nr
m (ω) for the quasistatic case. For a well-

defined plasmon mode, i.e., if the quality factor is sufficiently
large (ωm/γm � 1), the contribution from negative frequencies
is small and the plasmon Green’s function near the resonance
takes the form [50]

D̄m(ω; r, r ′) = ωm

4Um

Em(r )Em(r ′)
ωm − ω − iγm/2

, (23)

where γm = Wm/Um is the plasmon decay rate at the plasmon
frequency [with Wm ≡ Wnr

m (ωm) in the quasistatic case]. Note
that single-mode Green’s functions (22) and (23) also satisfy
the optical theorem (21) (the latter with ω = ωm). Finally, since
only metallic regions with the dispersive dielectric function
ε(ω) = ε′(ω) + iε′′(ω) contribute to Um and Wnr

m , the standard
plasmon decay rate due to nonradiative losses in metal is
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recovered,

γ nr
m = 2ε′′(ωm)

∂ε′(ωm)/∂ωm

. (24)

In the next section, we generalize our approach to include the
plasmon interaction with the radiation field.

III. INTERACTION OF PLASMON MODE WITH
RADIATION FIELD

In this section, we demonstrate that the quasistatic Green’s
function (22) can be extended to incorporate the plasmon
coupling to the radiation field by including the plasmon’s
radiative decay rate into a full decay rate as follows: [compare
with Eq. (19)]:

γm(ω) = ω2
m

ω2

Wm(ω)

Um

, (25)

where Wm(ω) = Wnr
m (ω) + Wr

m(ω) is the full dissipated
power, which now includes the radiated power Wr

m(ω) that
determines the plasmon’s radiative decay rate as

γ r
m(ω) = ω2

m

ω2

Wr
m(ω)

Um

. (26)

Below, we derive explicit expressions for the radiated power
Wr

m(ω) as well as for the optical polarizability of a plasmon
mode characterizing a plasmonic system’s response to an
external field.

A. Radiative decay of plasmon mode

We start by noting that emission of light from a plasmonic
system with characteristic size much smaller than the radiation
wavelength can be treated similarly to a point dipole. The
frequency-dependent polarization vector of plasmon mode (6)
is Pm(ω, r ) = χ ′(ω, r )Em(r ), where χ (ω, r ) = [ε(ω, r ) −
1]/4π is the plasmonic system’s susceptibility that vanishes
outside the system (we assume, for simplicity, that the di-
electric constant of the surrounding medium is unity). Note
that, in the plasmon spectral domain ε′′(ω)/ε′(ω) � 1, the
radiation and scattering by a plasmonic dipole are determined,
within our approximation, by the real part of the susceptibility,
χ ′ = (ε′ − 1)/4π , whereas its imaginary part χ ′′ = ε′′/4π

determines the Ohmic losses (18). The electric field generated
by the plasmonic system’s oscillating polarization vector is
given by

Em(ω, r ) =
∫

dV ′ D̄0(ω; r, r ′) · Pm(ω, r ′), (27)

where D̄0(ω; r, r ′) = (4πω2/c2)Ḡ0(ω; r, r ′) is the free-space
dyadic Green’s function. The power dissipated by the plasmon
mode via radiation is given by [37]

Wr
m(ω) = ω

2
Im

∫
dVEm(ω, r ) · Pm(ω, r )

= ω

2
Im

∫
dV

∫
dV ′ Pm(ω, r ) · D̄0(ω; r, r ′) ·

× Pm(ω, r ′), (28)

where integration takes place over the plasmonic system
volume. Replacing the free-space Green’s function by its

near-field limit, Im D̄0(ω; r, r ′) = (2ω3/3c3)I , we obtain

Wr
m(ω) = ω4

3c3
P2

m(ω), (29)

where

Pm(ω) =
∫

dV Pm(ω, r )

= 1

4π

∫
dV [ε′(ω, r ) − 1]Em(r ) (30)

is the plasmon’s dipole moment. The same result is obtained
by integrating Poynting’s vector S = (c/8π )|Em(ω, r )|2 over
the remote surface enclosing the system. Note that plasmon’s
radiated power (29) coincides with that of a point dipole
Pm(ω) and that, for small systems, radiation of higher-order
multipoles is suppressed [37]. By including the radiated
power (29) into the full dissipated power, the radiative decay
channel is incorporated, through the decay rate (25), within the
plasmon Green’s function (22), in a way that ensures energy
flux conservation (see below).

Near the plasmon resonance, the plasmon decay rate in the
Green’s function (23) takes the form γm = γ nr

m + γ r
m, where the

plasmon radiation rate is obtained by normalizing the radiated
power with the mode energy,

γ r
m = Wr

m

Um

= ω4
m

3c3

P2
m

Um

, (31)

which, upon using Eqs. (16) and (30), takes the form

γ r
m = ω4

m

3πc3

[ ∫
dV (ε′ − 1)Em(r )

]2∫
dV (∂ωmε′/∂ωm)E2

m(r )
, (32)

where we denoted Wr
m ≡ Wr

m(ωm), Pm ≡ Pm(ωm) and, un-
der the integral, ε ≡ ε(ωm, r ). Correspondingly, the plasmon
radiation efficiency ηm has the form

ηm = γ r
m

γm

= ζm

1 + ζm

, (33)

where the parameter

ζm = γ r
m

γ nr
m

= ω3
m

6πc3

[ ∫
dV (ε′ − 1)Em(r )

]2∫
dV ε′′ E2

m(r )
, (34)

characterizes the plasmon’s radiative decay rate vs its nonra-
diative decay rate. Note that, for small nanoplasmonic systems,
γ nr

m should also include the Landau damping rate [54].
As an example, for a dipole surface plasmon in a spherical

nanoparticle of radius a, a straightforward calculation recovers
the radiative decay rate as (see appendix)

γ r
sp = 4ω3

spa
3

c3∂ε′(ωsp)/∂ωsp
, (35)

and, correspondingly, ζsp = 2ω3
spa

3/c3ε′′(ωsp), where the plas-
mon frequency ωsp is given by ε′(ωsp) = −2.

Finally note that, in contrast to a field-independent non-
radiative decay rate (24), the radiative decay rate (32) does
depend on the plasmon field distribution in the system, albeit
not on its overall magnitude. Such “nonanalytic” field depen-
dence of γ r

m, which is present in the Landau damping rate as
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well [54], reflects the fact that, in contrast to a point dipole, the
local fields vary appreciably on the plasmonic system’s scale.

B. Optical polarizability of plasmonic system in external field
and energy flux conservation

Here we show that the plasmon Green’s function that
incorporates the Ohmic and radiation losses ensures the stan-
dard relation between a plasmon’s absorption, scattering, and
extinction cross sections, σabs + σsc = σext, and derive the
optical polarizability of the plasmon mode which describes
the plasmonic system’s resonant response to an external field.
For a frequency close to the plasmon resonance, we use the
single-mode plasmon Green’s function (22) and, accordingly,
omit nonresonant contributions.

1. Extinction cross section and energy flux conservation

Consider the response of a plasmonic system to an incident
monochromatic field E ie

−iωt that is uniform on the system
scale. The electric field scattered by the plasmonic system has
the form

E sc(ω, r ) =
∫

dV ′χ ′(ω, r ′) D̄(ω; r, r ′) · E i , (36)

where D̄(ω; r, r ′) is the dyadic Green’s function (4). The
power absorbed by the plasmonic structure is

Pabs(ω) = ω

8π

∫
dV ε′′(ω, r )|E sc(ω, r )|2, (37)

where we disregarded nonresonant direct field absorption.
Inside the plasmonic system, for each mode, we replace
D̄(ω; r, r ′) in Eq. (36) with the plasmon Green’s function
D̄m(ω; r, r ′), given by Eq. (22), and obtain

Pabs(ω) = Wnr
m (ω)|Sm(ω)|2[Pm(ω) · E i]

2, (38)

where the functions Sm(ω), Wnr
m (ω), and Pm(ω) are given by

Eqs. (15), (18), and (30), respectively. Normalizing Pabs(ω) by
the incident energy flux Si = (c/8π )E2

i , we obtain the mode
absorption cross section

σ
(m)
abs (ω) = 4πω

c

ω2
m

2Um

ωγ nr
m (ω) [e · Pm(ω)]2(

ω2
m − ω2

)2 + ω2γ 2
m(ω)

, (39)

where the plasmon decay rates γ nr
m (ω) and γm(ω) are given by

Eqs. (19) and (25), respectively, and the unit vector e is the
incident field polarization.

To obtain the scattering cross section, we extract the far-field
contribution from Eq. (36) with the help of the Dyson equation
for the dyadic Green’s function,

D̄(ω; r, r ′) = D̄0(ω; r, r ′) +
∫

dV1χ
′(ω, r1)

× D̄0(ω; r, r1) · D̄(ω; r1, r ′). (40)

Keeping only the resonance (second) term and replacing
D̄(ω; r1, r ′) with the plasmon Green’s function (22), we
integrate the energy flux S = (c/8π )|E sc(ω, r )|2 over a remote
surface enclosing the system. Using far-field asymptotics
D̄0(ω; r ) ∼ (ω/c)2(eikr/r )(I − r̂ r̂ ), we obtain

Psc(ω) = Wr
m(ω)|Sm(ω)|2[Pm(ω) · E i]

2, (41)

where Wr
m(ω) is given by Eq. (29). Normalizing Psc(ω) by Si ,

we obtain the mode scattering cross section

σ (m)
sc (ω) = 4πω

c

ω2
m

2Um

ωγ r
m(ω) [e · Pm(ω)]2(

ω2
m − ω2

)2 + ω2γ 2
m(ω)

, (42)

where the plasmon radiative decay rate γ r
m(ω) is given by

Eq. (26). Adding σ (m)
sc (ω) and σ

(m)
abs (ω) together, we obtain the

mode extinction cross section as

σ
(m)
ext (ω) = 4πω

c

ω2
m

2Um

ωγm(ω) [e · Pm(ω)]2(
ω2

m − ω2
)2 + ω2γ 2

m(ω)
, (43)

where we used the relation γm(ω) = γ nr
m (ω) + γ r

m(ω), which,
in this case, implies energy flux conservation:

σ
(m)
abs (ω) = γ nr

m (ω)

γm(ω)
σ

(m)
ext (ω), σ (m)

sc (ω) = γ r
m(ω)

γm(ω)
σ

(m)
ext (ω).

(44)

The full cross sections σabs, σsc, and σext are obtained by
summing up Eqs. (39), (42), and (43) over all modes.

2. Optical polarizability of plasmonic system

We can now obtain optical response functions of the
plasmonic system by using the standard relation

σext (ω) = 4πω

c
Im[e · ᾱ(ω) · e], (45)

where ᾱ(ω) = ∑
m ᾱm(ω) is optical polarizability dyadic,

which characterizes the plasmonic system’s response to an
external field. From Eq. (43), the plasmon mode polarizability
is obtained explicitly as

ᾱm(ω) = ω2
m

2Um

Pm(ω)Pm(ω)

ω2
m − ω2 − iωγm(ω)

. (46)

The mode polarizability (46) can be split into scattering and
absorbing parts as (suppressing the ω dependence)

ᾱ′′
m = γ r

m

γm

ᾱ′′
m + γ nr

m

γm

ᾱ′′
m, (47)

where the first term represents the scattering contribution and
satisfies the relation

γ r
m

γm

ᾱ′′
m = 2

3

(ω

c

)3
ᾱm · ᾱ∗

m. (48)

Since ᾱm is proportional to the plasmonic system’s volume,
the scattering is suppressed for small systems. In this case,
the extinction is dominated by the absorption, which is given
by the second term in Eq. (47). Near the resonance, the mode
polarizability takes the form

ᾱm(ω) = ωm

4Um

PmPm

ωm − ω − iγm/2
, (49)

and, after summing over all modes, can be used to characterize
the linear response of any plasmonic system supporting well-
defined plasmon modes.

The radiative decay contribution into full polarizability,
α(ω) = Tr[ᾱ(ω)], can be expressed in general form in terms of
quasistatic polarizabilities α̃m(ω). Taking the trace of Eq. (46),
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α(ω) can be written as

αm(ω) = α̃m(ω)

1 − i 2ω3

3c3 α̃m(ω)
, (50)

where

α̃m(ω) = ω2
m

2Um

P2
m(ω)

ω2
m − ω2 − iωγ nr

m (ω)
(51)

is plasmon polarizability without radiative decay. The rela-
tion (50) is similar to that for the dipole polarizability of spher-
ical particles [27] but, in fact, holds for any nanoplasmonic
system. In a similar manner, αm(ω) can be shown to satisfy the
optical theorem

α′′
m(ω) = 2

3

(ω

c

)3
|αm(ω)|2 + α̃′′

m(ω)∣∣1 − i 2ω3

3c3 α̃m(ω)
∣∣2 , (52)

where the first and second terms on the right-hand side
describe, respectively, scattering and absorption.

For a nanosphere with α̃m(ω) = a3[ε(ω) − 1]/[ε(ω) + 2],
by expanding ε(ω) near ωsp, we obtain from Eq. (50)

αsp(ω) = 3a3

∂ε′(ωsp)/∂ωsp

1

ωsp − ω − iγsp/2
, (53)

where γsp = γ nr
sp + γ r

sp is the plasmon full decay rate with
nonradiative and radiative contributions given by Eqs. (24)
and (35), respectively. The same result is obtained directly
from Eq. (49) (see appendix).

The approach developed in this section will be used in
the rest of this paper to describe spontaneous decay of a QE
coupled to plasmonic resonator.

IV. PLASMON LOCAL DENSITY OF STATES,
MODE DENSITY, AND MODE VOLUME

We are now in position to derive the plasmon LDOS that
accounts for both Ohmic and radiative losses. On a length
scale below the diffraction limit, surface plasmons are mostly
electronic excitations interacting weakly with the radiation
field. In this section we show that, within our approach, the
plasmon mode volume can be defined in a natural way as the
inverse of the plasmon mode density, which describes plasmon
mode confinement in a local region. We derive an explicit
expression for the plasmon mode volume at a hot spot near
a sharp metal tip and show that it scales with the metal volume
while being highly sensitive to the distance from the tip.

A. Mode volume for plasmonic systems

The standard expression for the electromagnetic LDOS,
ρ(ω, r ) = (2ω/πc2) ImTr[Ḡ(ω; r, r )], can be written in terms
of the rescaled Green dyadic (4) as

ρ(ω, r ) = 1

2π2ω
Im Tr D̄(ω; r, r ). (54)

Near the plasmon resonance, by using the plasmon Green
dyadic (23), we obtain the plasmon LDOS as

ρm(ω, r ) = 1

4π2Wm

E2
m(r )

1 + 4Q2
m(ω/ωm − 1)2

, (55)

where the plasmon quality factor is given by

Qm = ωm

γm

= ωmUm

Wm

, (56)

and dissipated power Wm = Wnr
m + Wr

m incorporates all plas-
mon damping channels. As a function of frequency, the LDOS
has a Lorentzian shape and, at resonance, is proportional
to the plasmon field intensity normalized by the dissipated
power [50]: ρ(ωm, r ) = E2

m(r )/4π2Wm.
The plasmon LDOS (55) describes the plasmon states’

distribution in a unit volume and frequency interval. Frequency
integration of the LDOS yields the plasmon mode density

ρm(r ) =
∫

dωρm(ω, r ) = ωm E2
m(r )

8πQmWm

= E2
m(r )

8πUm

, (57)

which describes spatial distribution of the plasmon field inten-
sity. Note that, in contrast to the LDOS, ρ(r ) is normalized
by mode energy, rather than dissipated power, and, thus, is
independent of losses. With help of Eq. (16), the mode density
is explicitly obtained as

ρm(r ) = 1

Vm(r )
= 2E2

m(r )∫
dV E2

m(r )∂ (ωmε′)/∂ωm

(58)

and can be viewed as the inverse local mode volume Vm(r ),
which characterizes the field confinement at point r . The ex-
pression (58) is valid for any nanoplasmonic system, including
plasmonic cavities and open systems.

Note that the form (58) for plasmon mode volume was pro-
posed previously in the case of spherical metal nanoshell [42].
For more general systems described by a dispersive dielectric
function, a similar expression was obtained by using the expan-
sion of the full Maxwell equations’ solution over quasinormal
modes (QNM) [29]. Since QNMs are leaky modes described by
complex-valued fields, the QNM volume is complex as well,
and so the QNM Purcell factor is given by the real part of
Eq. (1) [29,49].

Within our approach, the local mode volume at point r arises
as the inverse of the plasmon mode density at that point and,
thus, represents a real function of plasmon field intensity that is
independent of radiative and nonradiative losses. These losses
still affect the Purcell factor (1) by determining the quality
factor Qm via the full plasmon decay rate γm = γ r

m + γ nr
m ,

thereby ensuring energy flux conservation.

B. Plasmon mode volume near metallic tip

The largest plasmonic enhancements occur if QE is located
at a hot spot—a small region characterized by very high mode
density (or very small mode volume), e.g., near a sharp tip
of a metal nanostructure. With help of Eq. (58), the maximal
mode density can be estimated by assuming the classical field
profile near the metal surface. Due to Gauss’s law, the local
fields do not significantly change inside the small metallic
structure, while falling off rapidly outside of it, so the highest
field intensity is achieved near the metal surface,

ρm(r ) ≈ 2

ωm∂ε′(ωm)/∂ωm

E2
L(r ) + E2

T (r )

Vmet
([

Ein
L

]2 + E2
T

) , (59)
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where Vmet is the metal volume. Here, subscripts L and T stand
for longitudinal (normal to the tip) and transverse (tangential to
the tip) field components, and superscripts in and out indicate
local fields at the interface on the metal and dielectric sides,
respectively. The highest field localization is achieved when
ET , which is continuous across the metal-dielectric interface,
is much smaller than EL. Assuming that the local field is
polarized along the tip, i.e., EL � ET , and using the boundary
condition for the normal field component Eout

L = ε′(ωm)Ein
L ,

we obtain the mode density projected along the tip:

ρL(r ) = 1

VL(r )
= 1

Vmet

2|ε′(ωm)|2 Ẽ2
L(r )

ωm∂ε′(ωm)/∂ωm

, (60)

where ẼL(r ) = EL(r )/Eout
L is the normal field component at

point r near the tip normalized by its value at the tip. Although
the mode volume near a hot spot scales with the metal volume
Vmet, the ratio Vmet/VL = VmetρL depends on the proximity
of QE to the tip. While the mode density is highest at the tip
(ẼL = 1), it is expected to saturate below distances ∼vF /ω at
which the nonlocal effects become dominant [55,56]. Note
that, for noble metals, this length scale is ∼1 nm in the
plasmonic frequency range.

V. PURCELL FACTOR AND ENHANCEMENT FACTOR
FOR POWER SPECTRUM

Purcell factor characterizes the enhancement of QE decay
rate due to ET between QE and the plasmonic resonator. Part
of the transferred energy is radiated away by the plasmonic
antenna, while the rest is dissipated due to the Ohmic losses
in metal. In this section, we derive explicit expressions for the
Purcell factor for spontaneous decay rate and the enhancement
factor for the radiated power spectrum. In this paper, we only
consider the weak-coupling regime and disregard plasmon
back action on the QE spectrum.

A. Quantum-emitter–plasmon energy-transfer rate
and Purcell factor

The ET rate between a QE situated at r0 with dipole moment
p = μn and a resonant plasmon mode is straightforwardly ob-
tained from Eq. (5) by using the plasmon Green’s function (23)
as

γet (ω) = μ2Qm

h̄Um

[n · Em(r0)]2

1 + 4Q2
m(ω/ωm − 1)2 . (61)

As a function of the QE emission frequency ω, the rate (61)
has a Lorentzian shape with maximum at ω = ωm. In terms of
mode volume projected on the QE dipole direction n,

ρn
m(r ) = 1

Vn
m(r )

= 2[n · Em(r )]2∫
dV E2

m∂ (ωmε′)/∂ωm

, (62)

the QE-plasmon ET rate takes the form

γet (ω) = 8πμ2

h̄Vn
m(r0)

Qm

1 + 4Q2
m(ω/ωm − 1)2 . (63)

Normalizing the QE-plasmon ET rate at the resonance fre-
quency, γet (ωm) = 8πμ2Qm/h̄Vn

m, by the free-space QE spon-
taneous decay rate (3), we finally obtain the Purcell factor for

a QE coupled to resonant plasmon mode:

Fp = 6πQm

k3Vn
m

= 12πQm[n · Em(r0)]2

k3
∫

dV E2
m∂ (ωmε′)/∂ωm

, (64)

which extends the cavity Purcell factor (1) to plasmonic
resonators. For a QE at the hot spot near a metallic tip, with
help of Eq. (60), we obtain

F tip
p = 12πQm|ε′(ωm)|2

k3Vmetωm∂ε′(ωm)/∂ωm

[n · ẼL(r0)]2, (65)

where n· ẼL(r0) stands for the projection of the normalized
field component along the tip onto the QE’s dipole orientation
n. The Purcell factor is maximal when the QE dipole is oriented
along the tip whereas, for transverse dipole orientation, there
is no significant enhancement.

B. Radiated power spectrum

Part of the energy transferred from the QE to the resonant
plasmon mode is radiated away by the plasmonic antenna, lead-
ing to an overall enhancement of the radiated power observed,
e.g., in plasmon-enhanced fluorescence experiments [5–11].
While a plasmon’s radiative decay rate (31) is typically much
larger than that of individual QEs, i.e., γ r

m � γ r
0 , a significant

part of the transferred energy is dissipated in the metal at
rate (24), so that the enhancement factor depends on the
radiation efficiency of the plasmonic antenna ηm = γ r

m/γm.
The power radiated by a QE placed at position r0 near

a plasmonic antenna is obtained by integrating Poynting’s
vector S = (c/8π )|E (r )|2 over a remote surface enclosing the
system, where E (r ) is the QE electric field [37]:

E (r ) = D̄(ω; r, r0) · p, (66)

and D̄(ω; r, r0) is the Green dyadic (4). To extract the far-field
contribution, we use the Dyson equation (40). Replacing the
near-field Green dyadic D̄ in the integrand by the plasmon
Green dyadic (23), the QE-generated far field (66) takes the
form

E (r ) = D̄0(ω; r − r0) · p + ωm

4Um

Em(r0) · p
ωm − ω − iγm/2

×
∫

dV ′ D̄0(ω; r − r ′) · Pm(r ′). (67)

Straightforward integration of Poynting’s vector over a remote
spherical surface yields the radiated power

Wr (ω) = ω4

3c3

∣∣∣∣ p + ωm

4Um

Pm [Em(r0) · p]

ωm − ω − iγm/2

∣∣∣∣
2

, (68)

where the second term represents the contribution of the plas-
monic antenna with dipole moment Pm. Near the resonance,
the plasmon emission is dominant and, disregarding the first
nonresonant term, we obtain

Wr (ω) = μ2ω4

3c3

γ r
mγet (ω)

γmγ r
0

, (69)

where the QE-plasmon ET rate γet (ω) is given by Eq. (63),
and radiative decay rates γ r

0 and γ r
m are given by Eqs. (3)

and (31), respectively. Normalizing Wr (ω) by the spectral
power W 0

r = μ2ω4/3c3 radiated by an isolated QE [37], we
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FIG. 1. (a) Plasmon radiation efficiency ηL, and (b) quality factor
QL plotted against aspect ratio a/b for different nanorod sizes. Insets
show schematics of a prolate spheroidal particle.

obtain the enhancement factor for the power spectrum,

M (ω) = Fpηm

1 + 4Q2
m(ω/ωm − 1)2 , (70)

where the Purcell factorFp is given by Eq. (64) and the plasmon
radiation efficiency ηm is given by Eq. (33). At the resonance,
|ω − ωm| � γm, we obtain

M (ωm) = Fpηm = 6πQm

k3Vn
m

ηm, (71)

which represents the general relation between the Purcell factor
for spontaneous decay and the maximal enhancement factor.
For high radiation efficiency η ∼ 1, the enhancement factor is
comparable to the Purcell factor, i.e., energy is radiated by the
plasmonic antenna at approximately the same rate as it is being
received from the QE.

Note finally that the relation (71) overestimates the enhance-
ment factor because it does not account for ET from the QE
to off-resonant modes which leads to radiation quenching at
close QE-metal distances. The fraction of energy transferred

to a bright plasmon mode is q = Fp/
∑

l F
(l)
p , where F (l)

p are
Purcell factors for all modes and so, close to the metal surface,
the enhancement factor M is suppressed by the quenching
factor q.

VI. NUMERICAL RESULTS AND DISCUSSION

To illustrate our theory, we performed numerical calcula-
tions for a QE coupled to longitudinal plasmon mode oscillat-
ing, with frequency ωL, along a Au nanorod, which is modeled
here by prolate spheroid with semimajor and semiminor axes
a and b, respectively (see schematics in Fig. 1). This needle-
shaped structure is characterized by a relatively high radiation
efficiency while, at the same time, it possesses hot spots
near the tips, where the plasmon field is highly localized.
We assume that the Au nanorod is submerged in water (εs =
1.77) and use the experimental Au dielectric function ε(ω) =
ε′(ω) + iε′′(ω) in all calculations. The dielectric constant εs

of the surrounding medium is restored in all expressions
via the replacements c → c/εs , ε(ω, r ) → ε(ω, r )/εs , and
μ2 → μ2/εs . Analytical expressions for spheroidal particles
are provided in the appendix along with other technical details,
and here we only discuss the results of numerical calculations.

In Fig. 1, we show the calculated plasmon radiation effi-
ciency ηL = γ r

L/γL and quality factor QL = ωL/γL, which
include both radiative and Ohmic losses. As expected, the
increase of ηL [see Fig. 1(a)] due to the increase of γ r

L with
overall nanorod size is accompanied by the reduction of the
quality factor [see Fig. 1(b)] due to overall increase of the
plasmon decay rate γL = γ r

L + γ nr
L . The maximal values of ηL

and QL are reached for the aspect ratio a/b in the range 3–5,
corresponding to plasmon wavelength range 650–800 nm. In
this range, ε′′(ω) for Au reaches its minimum, which translates
to the lowest Ohmic losses and, thus, the highest ηL and QL,
except for the largest nanorod (a = 50 nm), where the plasmon
decay is dominated by the radiative channel [see Fig. 1(b)].

To study the field confinement at a hot spot, we plot in
Fig. 2 the projected plasmon mode density ρL normalized by

FIG. 2. Normalized mode density (inverse mode volume) pro-
jected along the Au nanorod is plotted against the distance to the
nanorod tip for different aspect ratios a/b at fixed a.
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FIG. 3. Frequency dependence of normalized QE-plasmon ET
rate and enhancement factor for power spectrum for normally oriented
QE at a distance of 1.0 nm from Au nanorod tip plotted for different
nanorod sizes and fixed aspect ratio a/b = 3.0.

the metal volume as a function of distance d to the nanorod
tip for several values of aspect ratio. Note that, for spheroidal
particles, Eq. (60) is exact. To account for field-enhancement
saturation due to nonlocal effects [55,56], we restrict the
minimal distance to the tip by dmin = 0.05a and change the
nanorod volume by reducing b at fixed a. For aspect ratios
a/b in the range 2–4, i.e., when hot spots at the tips are
well developed, the mode volume VL = 1/ρL exhibits nearly
universal behavior reaching Vmet in the hot spot region while
rapidly decreasing when moving away from the tip.

Consider now spontaneous decay of a QE at distance d

from the nanorod tip with its dipole oriented normally to the
metal surface (see schematics in Fig. 3). We assume that the
QE is situated at a fixed distance d = 1 nm from the tip,
where the plasmon field is highly localized. In Fig. 3, we show
the QE-plasmon ET rate (63), normalized by the free-space
decay rate (3), and the enhancement factor for the power
spectrum (70) plotted against QE emission frequency ω for
different overall sizes but at fixed aspect ratio a/b = 3.0. The
amplitude of frequency Lorentzian γet (ω)/γ r

0 in Fig. 3(a) is

FIG. 4. Distance dependence of Purcell factor and enhancement
factor for power spectrum at resonance frequency is plotted for
normally oriented QE for different Au nanorod sizes and fixed aspect
ratio a/b.

given by the Purcell factor (64), which, near the hot spot, scales
as QL/k3Vmet [see Eq. (65)]. With increasing nanorod size,
the Purcell factor sharply decreases due to combined effect
of decreasing QL and, more importantly, increasing k3Vmet.
However, the enhancement factor M (ω) in Fig. 3(b) exhibits
more complicated behavior: its amplitude FpηL first sharply
increases due to rapid change of ηL as a changes from 10 nm
to 20 nm but, then, for larger a, falls down as the metal volume
effect in Fp takes over.

In Fig. 4, we show the Purcell factor Fp and enhancement
factor at resonance frequency M (ωL) = FpηL plotted against
the distance d to the nanorod tip for several overall sizes.
With the QE moving away from the tip, both Fp and M (ωL)
decrease by up to two orders of magnitude as d increases
to a/2, indicating that the plasmon field is highly localized
near the tips (see Fig. 2). Note that, since the distance in
Fig. 4 is measured in units of nanorod size, the same starting
point d = 0.05a for each curve translates into different initial
distances to the metal surface. After appropriate rescaling to
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bring initial distances to the same numerical value (e.g., 1.0
nm), the order of curves in Fig. 4 follows that in Fig. 3. Overall,
Figs. 3 and 4 indicate that the Purcell factor and enhancement
factor are highly sensitive to system size due to scaling of the
plasmon mode volume with the metal volume (see Fig. 2) and,
to lesser degree, size-dependence of plasmon quality factor and
radiation efficiency (see Fig. 1).

VII. CONCLUSIONS

In summary, we present herein a theory for spontaneous
decay of a quantum emitter coupled to a localized plasmon
mode in a metal-dielectric structure characterized by a dis-
persive dielectric function which incorporates, in a consistent
way, plasmon coupling to the radiation field. For plasmonic
systems with characteristic size below the diffraction limit, we
derived explicit expressions for plasmon radiative decay rate,
which determines radiation efficiency of a plasmonic antenna,
and optical polarizability, which defines system response to an
external field. Using these results, we extend our approach [50]
to derive plasmon Green’s function that now includes plasmon
interaction with radiation field and obtain explicit expression
for the plasmon local density of states that accounts for all
relevant plasmon damping channels. We have shown that
plasmon mode volume is defined naturally as the inverse of
plasmon mode density, which characterized plasmon field
confinement, and that, for well-defined plasmon modes, is
independent of losses. We estimate the plasmon mode volume
at a hot spot near a sharp tip of a small metal nanostructure
and demonstrate that it scales with the metal volume, although
its actual value is highly sensitive to the QE distance to the
tip. Using our approach, we recover the usual form of the
Purcell factor, but now for plasmonic resonators, and establish
its relation with the enhancement factor for radiated power.
Finally, we illustrate our approach by presenting numerical
results for QE situated near the tip of a Au nanorod.
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APPENDIX A: POTENTIALS AND FIELDS IN
NANOSPHEROIDS

Consider a prolate spheroid with semi-axis a along the
symmetry axis and semi-axis b in the symmetry plane (a > b).
We use standard notations for spheroidal coordinates (ξ, η, φ)
where ξ is the “radial” coordinate while η = cos θ and φ

parametrize the surface. The scaling factors are given by

hξ = f

√
ξ 2 − η2

ξ 2 − 1
, hη = f

√
ξ 2 − η2

1 − η2
,

hφ = f
√

(ξ 2 − 1)(1 − η2), (A1)

where f = (a2 − b2)1/2 is the half distance between the
foci, and the spheroid surface corresponds to ξ1 = a/f .
The volume and surface elements are, respectively, dV =
hξhηhφdξdηdφ and dS = hηhφdηdφ, and the gradient op-
erator is ∇ = ξ̂h−1

ξ ∂/∂ξ + η̂h−1
η ∂/∂η + φ̂h−1

φ ∂/∂φ.

The potentials for longitudinal and transverse dipole modes
are

�L = f RL(ξ )P1(η), �T = f RT (ξ )P 1
1 (η) cos φ. (A2)

For a metallic spheroid with permittivity ε(ω) in a medium
with dielectric constant εs , the radial components for the
longitudinal mode are

RL(ξ ) = P1(ξ ) for ξ < ξ1,

RL(ξ ) = Q1(ξ )P1(ξ1)/Q1(ξ1) for ξ > ξ1. (A3)

The plasmon frequencies ωL follow from the continuity of
εR′(ξ ) across the metal-dielectric interface.

APPENDIX B: PLASMON ENERGY IN SPHEROIDAL
PARTICLES

In the quasistatic approximation, the plasmon mode energy
comes solely from the metal and has the form

Um = ωm

16π

∂ε(ωm)

∂ωm

∫
dVmet E2

m

= ωm

16π

∂ε(ωm)

∂ωm

∫
dS�∇n�, (B1)

where Vmet and S are the volume and surface of metal
nanoparticle, respectively, and ∇n is the normal derivative.
Using Eqs. (A3), we obtain

Um = Vmet
ωm

16π

∂ε(ωm)

∂ωm

= ab2 ωm

12

∂ε(ωm)

∂ωm

. (B2)

APPENDIX C: PLASMON RADIATIVE DECAY IN
SPHEROIDAL PARTICLES

The decay rate of a plasmon mode in metal-dielectric system
has the form

γ r
m = ω4

m

3c3

P2
m

Um

, (C1)

where Pm = (4π )−1
∫
dV Em(r )[ε′(ωm, r ) − 1] is the plas-

mon dipole moment. Due to Gauss’s law, Pm can be written
as the surface integral

Pm = ε′(ωm) − 1

4π

∫
dS�m(s)n, (C2)

where n is normal to the surface. For prolate spheroids, the
potentials are given by Eq. (A2) and the normal vectors are sim-
ply n = ξ̂ . Using the addition formula ξ̂ ·ξ̂ ′ = cos θ cos θ ′ +
sin θ sin θ ′ cos(φ − φ′) for solid angles in spheroidal coordi-
nates (η = cos θ ), we obtain

P2
L =

[
a2b

3
[ε′(ωm) − 1]gL(ξ1)

]2

, (C3)

where ξ1 = a(a2 − b2)−1/2 and

gL(ξ ) = 3ξ 3

8
arctan

1√
ξ 2 − 1

− 3(ξ 2 − 2)

8ξ

√
ξ 2 − 1 (C4)

is a function that changes in the range 0.5–1.0, reaching the
upper limit for a sphere (ξ → ∞). Using Eqs. (C3) and (B2),
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the plasmon radiative decay rate is evaluated as

γ r
L = 4

√
εsω

3
ma3

9c3

[ε′(ωm) − εs]2

∂ε′(ωm)/∂ωm

g2
L(ξ1), (C5)

where we restored the dielectric constant of surrounding
medium εs . Note that the radiative decay rate for a spheroidal
particle scales as a3 rather than as particle volume, implying
high radiation efficiency for elongated particles.

For a spherical particle (a = b), we have gL = 1 and
ε′(ωsp) = −2, and so the plasmon radiative decay rate (35) is
recovered. The nanosphere polarizability (53) is recovered as
well by using Usp = a3ωsp[∂ε′(ωsp)/∂ωsp]/12 and P2

sp = a6,
so that

ωspP2
sp

4Usp
= 3a3

∂ε′(ωsp)/∂ωsp
. (C6)

For a nanosphere in a dielectric medium, the right-hand side
of Eq. (C6) should be multiplied by εs .

APPENDIX D: MODE VOLUME AND PURCELL FACTOR
FOR SPHEROIDAL PARTICLES

Using Gauss’s law and expressing local fields in terms of
potentials, the mode density projected along the nanorod major
axis takes the form

ρL(r ) = 2

ωm∂ε′(ωm)/∂ωm

[∇n�m(r )]2∫
dS�m∇n�m

, (D1)

where integration takes place over the metal surface. For r at
the distance d from the tip of a prolate spheroidal particle with
major and minor semiaxes a and b, respectively, so that ξ1 =
a(a2 − b2)−1/2 at the surface, and using that hξ = f along the
z axis, we obtain

ρL = 1

VL

= 2

Vmet ωL

[
∂ε′(ωL)

∂ωL

]−1[
Q′

1(ξ )ξ1

Q1(ξ1)

]2

, (D2)

where ξ = (a + d )(a2 − b2)−1/2 and Vmet = 4πab2/3 is the
Au nanorod volume. The plasmon frequency ωL follows from
the boundary condition ε′(ωL) = εsQ

′
1(ξ1)ξ1/Q1(ξ1). In the

limit of a spherical particle of radius a, i.e., f → 0 and ξ → ∞
as b → a, we have Q(ξ ) ≈ 1/3ξ 2, yielding

ρsph = 1

Vsph
= 6

πωL

[
∂ε′(ωL)

∂ωL

]−1
a3

(a + d )6 . (D3)

Note that, for random dipole orientations, the orientational
averaging results in the additional factor 1/3 in Eqs. (D2)
and (D3). Finally, the Purcell factor for a QE a distance d

from the nanorod tip is given by

Fp = 12πεsQL

k3VmetωL∂ε′(ωL)/∂ωL

[
Q′

1(ξ )ξ1

Q1(ξ1)

]2

(D4)

and scales as (k3Vmet )−1.
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