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Hall effect in two-dimensional systems with hopping transport and strong disorder
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We reconsider the theory of Hall effect in the systems with hopping conduction. The purpose of this study
is to compare the percolation approach based on the optimal triad model with numerical simulations and recent
experimental results. We show that, in the nearest-neighbor hopping regime, the results of the percolation theory
agree to the simulation. However, in the variable range hopping (VRH) regime, the optimal triad model fails to
describe the numerical results. It is related to the extremely small probability to find the optimal triad of sites
in the percolation cluster in the VRH regime. The contribution of these triads to the Hall effect appears to be
small. We describe the Hall mobility in the VRH regime with the empirical law obtained from the numerical
results. The law is in agreement with our recent experimental data in two-dimensional quantum dot arrays with
the hopping transport.
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I. INTRODUCTION

The hopping transport is one of the fundamental kinds of
electron transport. It appears in a number of different systems
from doped semiconductors to granular metals and organic
semiconductors. The Hall effect in metals and semiconduc-
tors with free carriers yields important information on their
properties allowing to determine carriers concentration and
mobility. However, the understanding of the Hall effect in the
hopping regime is far from being complete. Moreover, there
is still no general agreement on whether the Hall effect can
be observed in the hopping regime at all. The problems exist
both in the theoretical and experimental approaches to this
phenomenon.

The theoretical study started from the work of Holstein
[1]. It was shown that although the Hall effect is absent in
the model of two-site one-phonon hops that are invoked in
most of the hopping transport theories, the Hall effect exists
due to many-phonon processes. The magnetic field-dependent
contribution to the hopping probability arises from the inter-
ference between the amplitude of direct transition between
the initial and the final sites of the hop and the amplitude
of indirect, second-order transition, involving an intermediate
(the third) site. The interference exists and can be important
for hops involving any number of phonons. However, for
one-phonon hops it leads only to the interference mechanism
of magnetoresistance [2–4]. When all the relevant hops are
included in the theory, each triad of localization sites starts to
act as a source of the Hall current.

The study [1] was focused on the ac current in a system
where the number of electrons is small, compared to the
number of localized states. The ac current can be described in
terms of averaging the Hall current over all the Hall sources.
The problem of dc current is more complex and involves the
generated Hall current distribution over the network of Miller-
Abrahams resistors [5,6]. The most conventional approach to
this problem is the percolation theory that treats the system in
the limit of strong disorder.

There are two possible reasons for having strong disorder
in a system with hopping transport. The first reason, the posi-
tion disorder, is related to the random positions of localization
sites and is controlled by the dimensionless parameter n1/da,
where n is the concentration of sites, a is the localization
radius, and d is the system dimension. When this disorder is
dominant, the system is in nearest-neighbor hopping (NNH)
regime. The temperature dependence of conductivity in this
regime follows the Arrhenius law. Although the NNH regime
can be realized in the experiment, it is not always easy to
distinguish it from the transport due to the carrier activation
into the conduction band. The percolation theory was applied
to the Hall effect in the NNH regime in studies [7–9]. It was
shown that the Hall current is determined essentially by the
rare optimal triads of the sites which form a junction for the
percolation paths. The resulting Hall mobility exponentially
decreases in the limit of strong disorder n1/da → 0.

Another reason of disorder is the random distribution of
the localized state energies. The width of this distribution �ε

should be compared to temperature T . The control parameter
of the energy disorder is �ε/T . When this disorder is suf-
ficiently strong, the system is in the variable range hopping
(VRH) regime. It can be identified in the experiment due to
the unique temperature dependence of conductivity, the Mott
law [10,11], or the Efros-Shklovskii law [6] in the systems,
where the Coulomb gap is essential. The percolation theory
for the Hall effect in the VRH regime was discussed in
Refs. [7,9,12–15]. Also, the similar theories were developed
for the anomalous Hall effect [15,16]. Although the approach
used in these studies was more or less the same, the results are
surprisingly different. In Refs. [12,15] the Hall mobility μH is
predicted to have the exponential dependence on temperature
μH ∝ exp[−(T ′

0/T )1/4], with T ′
0 smaller than T0 in the Mott

law [12]. In Refs. [9,14] the dependence follows the power
law μH ∝ T γ . The power-law dependence appeared from the
contribution of rare optimal triads of localization sites. These
triads consist of three sites close to each other, but with the
energies that lead to Miller-Abrahams resistances between the
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sites of the triad similar to the critical resistance of the perco-
lation cluster. To be effective, such a triad should be positioned
in the intersection of the percolation paths [17], as in the case
of NNH conductivity. The characteristic correlation distance
Lh between such junctions has been evaluated in Ref. [18]
and turns out to be much larger than the hopping network
correlation length. As a result, strong mesoscopic effects are
expected even in relatively large samples [9].

The drawback of the percolation theory is that it is rigorous
only in the analytical limit of a small temperature and local-
ization radius. It becomes especially important when the result
of the percolation theory is governed by the extremely rare ob-
jects such as the discussed optimal triads. It is not always clear
at what temperature these rare objects start to dominate over
other triads that are not that effective as Hall current sources,
but are significantly more numerous. To understand this, the
percolation theory can be compared to the numerical simu-
lations based on the direct solution of Kirchhoff equations.
Such attempts were made in studies [19,20]. These simula-
tions support expression μH ∝ exp[−(T ′

0/T )1/4]. However,
the computations in Refs. [19,20] were made with only one
disorder realization in a three-dimensional (3D) cubic sample
with a size ∼13×13×13 sites. It is not clear if this sample can
represent a macroscopic disordered system. Also, these results
cannot be directly applied to two-dimensional (2D) systems
which are the main focus of our study.

The most important problems in the experimental study of
hopping Hall effect are the small Hall resistance value and
the fact that the Hall effect is masked by magnetoresistance.
Nevertheless, a few experiments on the Hall conductivity in
the hopping regime were made in Refs. [21–26]. Amitay and
Pollak [26] attempted to measure the impurity-hopping Hall
effect in germanium and silicon at a sufficiently low temper-
ature and impurity concentration so that any Hall effect from
carriers in delocalized states would be negligible. The authors
have not succeeded in the observation of Hall effect even
though the sensitivity of their measuring system seemed to
be sufficient to detect it. The negative result was also obtained
in Ref. [27], measured in the system in the deep localization
regime. The Hall effect due to hopping conductivity was not
detected, and it set an upper bound on the Hall conductivity
of 1.7×10−13 Ohm cm−1 for the given conditions. Most of
the experimental observations of Hall effect in the dielectric
regime were obtained near the metal-insulation transition
(MIT) in the 3D case [21], where a small range of σxx (T )
dependence was observed and the absolute value of σ was
rather large. It means that the system can not be in a strong
localization regime.

The recent advances in the technology allowed us to grow
the arrays of Si/Ge quantum dots (QDs) that display the VRH
conductivity in the Coulomb gap regime [28]. The interesting
property of these arrays is that the localization radius near the
Fermi level is much larger than that for impurities in semi-
conductors. It is comparable or larger than the QD size and
interdot distance, and can be controlled by changing the filling
factor. The possibility to change the structural parameters of
QDs allows the novel way to control the disorder not possible
in ordinary doped semiconductors. Recently, we obtained
experimental results of the Hall effect in this system [29].
To understand the obtained experimental data, we need to

compare our results to the theory. However, the theoretical
results themselves are not well established; therefore, we have
to reconsider the theory of the Hall effect in the systems with
hopping transport before the comparison can be made.

Modern computation potentials allow us to significantly
improve the numerical approach [19,20]. As a result, we
can verify the results of percolation theory and understand
the correct dependence of the Hall mobility on the system
parameters for the moderately low temperatures reachable in
the experiment. We focus our study on the comparison of the
percolation arguments with numeric simulations and with our
recent experimental results. Also, we restrict ourselves to the
2D case that was not treated numerically in Refs. [19,20] and
is relevant for our experiments.

The paper is organized as follows. In Sec. II we derive the
general equations in the form that allows both analytical and
numeric treatments. In Sec. III we consider our equations in
strongly disordered systems in NNH, Mott law, and Efros-
Shklovskii law VRH regimes and compare the percolation
arguments with the results of numeric simulation. In Sec. IV
we compare our theory with the experimental results. In
Sec. V we provide a general discussion of the obtained results.

II. GENERAL EQUATIONS

In this section we extend the approach [9] to the de-
scription of the hopping Hall effect to include the triads of
sites with arbitrary occupation numbers. First, we consider
the interaction of localized electrons with phonons in the
density matrix formalism. We derive the rate equations that
describe the ordinary two-site one-phonon hops controlling
the conductivity and three-site two-phonon hops responsible
for the Hall effect. These equations are then linearized to study
the linear response to electric and magnetic fields. It leads to
the system (9)–(12) of the modified Kirchhoff equations, that
is a useful starting point for both numerical simulations and
percolation treatment.

In our study we adopt the model when the electrons are
localized on pointlike sites. The sites have random energies
εi that are larger than the overlap integrals tij . This model
is conventional to the hopping transport. In real systems, for
example, in quantum dot arrays with hopping conduction, the
physics can be more complex. It can include the finite size of
a quantum dot and the importance of states of intermediate
dots for the long-range hopping. However, the pointlike site
model is known to be a good starting point to study the
hopping transport. It was assumed in most of the previous
studies in the field [7–9,12–15,19,20]. Therefore, we think
that it is instructive to achieve a reliable understanding of the
hopping Hall effect in the pointlike site model before starting
to consider peculiarities of complex systems. We also do not
consider the electron spin to make our model as simple as
possible.

The starting point of our consideration is the Hamiltonian
of a system with hopping transport after the polaron transfor-
mation [30]

H =
∑

i

εini + T̂ + Hph, T̂ =
∑
ij

tij�ij a
+
i aj . (1)
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Here, εi is the onsite energy, ni = a+
i ai is the operator of

electron density on site i. The overlap integral tij in the mag-
netic field can be expressed as tij = t0 exp(−rij /a) exp(i e

2c
B ·

[ri×rj ]), where B is the applied magnetic field. ri is the
position of site i, rij = |ri − rj | is the distance between
sites i and j, a is the localization length. In ordinary doped
semiconductors far from the metal-insulator transition a cor-
responds to the localization radius of a single impurity state.
In semiconductors close to the metal-insulator transition and
in more complex systems, a can be strongly renormalized by
cotunneling processes. It is especially important for granular
metals and quantum dot arrays [31]. This renormalization
can easily make a larger than the intersite distance [31].
Hph = ∑

q ωqb
+
q bq is the phonon Hamiltonian. There is no

onsite electron-phonon interaction due to the polaron transfor-
mation, however, the interaction is included in the transition
elements that are proportional to

�ij = exp

{∑
q

b+
q [u∗

j (q) − u∗
i (q)] − bq[uj (q) − ui (q)]

}
.

(2)

Here, ui (q) = (2N )1/2γ (q) exp(−iqri ), N is the number of
atoms in the lattice, and γ (q) describes the electron-phonon
interaction [30].

The electron-electron Coulomb interaction does not con-
tribute explicitly to the Hamiltonian (1). We assume that it can
be added to the energy εi → εi + ∑

j e2nj/rij to include the
effects of the Coulomb gap or the Coulomb glass, however, the
Coulomb energy does not interfere with the hopping process
itself. In the theory of hopping transport it is assumed that the
hopping rates are small compared to frequencies |εi − εj |/h̄.
Accordingly, we expand the electron density matrix ρ̂ over
small hopping rates. With the Hartree decoupling [30] we
assume that the zero-order density matrix can be expanded
as a product

ρ̂ (0) =
∏

i

ρ̂
(0)
i , ρ̂

(0)
i = fi |1〉〈1| + (1 − fi )|0〉〈0|. (3)

Here, ρ̂
(0)
i is the density matrix on site i. It corresponds

to some probability fi for site i to have an electron. In
equilibrium, fi is the Fermi function fi = 1/(e(εi−μ)/T + 1).
The zero-order density matrix corresponds to the situation
when the electrons rest on their localization sites.

The dynamics of density matrix ρ̂ can be described with
the series of perturbation equation

ρ̂ (n+1)(t ) = −i

∫ t

−∞
[T̂ , ρ̂ (n)(t ′)]dt ′. (4)

The structure of matrix ρ̂ (n) that appears due to the dynamics
(4) is more complex than the structure of ρ̂ (0). The operator T̂

mixes different localization states and, therefore, ρ̂ (n) includes
the elements that correspond to electron transition from one
localization site to another.

We apply the reduction procedure to separate the small
transition elements from the actual hopping process that
changes the filling numbers of the sites. To calculate the
addition to the density matrix ρ̂

(0)
i due to the hopping we

take the trace over phonon states and all the other sites,

i.e., δρ̂i = Trph,j 
=i (ρ̂ − ρ̂ (0) ). Finally, to describe the electron
dynamics as hopping we should assume that the dynamics
of the reduced density matrices ρ̂

(0)
i is much slower than

the oscillations of perturbations to this matrix that occur at
frequencies ∼(εi − εj )/h̄. It allows us to substitute ρ̂

(0)
i (t ′)

with ρ̂
(0)
i (t ) in the expression (4).

The effect of ordinary two-site one-phonon hops is then
expressed as a reduction of the second-order density matrix
ρ̂ (2) where the phonon exponents in (2) are expanded up to the
second order of phonon creation and annihilation operators.
It leads to the conventional equations for the hopping rates.
To consider the Hall effect, one should include three-site,
two-phonon hops that are described by the reduced third-
order density matrices ρ̂ (3), where the phonon exponents are
expanded up to the fourth order over the phonon creation and
annihilation operators.

With the assumptions mentioned above we obtain the hop-
ping transport equations that include three-site two-phonon
hops:

dfi

dt

=
∑
j 
=i

fj (1 − fi )

⎛⎝Wij +
∑
k 
=i,j

W
(0)
ikj (1 − fk ) + W

(1)
ikj fk

⎞⎠
−fi (1 − fj )

⎛⎝Wji +
∑
k 
=i,j

W
(0)
jki (1 − fk ) + W

(1)
jkifk

⎞⎠.

(5)

Here, Wij , W
(0)
ikj , and W

(1)
ikj describe the rates of j → i hops

and yield the contributions to dfi/dt proportional to fj (1 −
fi ). The rate Wij stands for the ordinary two-site hop. The
rate W

(0)
ikj stands for the two-phonon hop involving the in-

termediate site k that is assumed to be free. Therefore, its
contribution is proportional to (1 − fk ). In the similar way,
W

(1)
ikj describes the three-site hop involving the filled site k.

The corresponding contribution to dfi/dt includes the term
fk . For a given pair ij , the role of the intermediate site can be
played by any site of the system other than i and j .

The rates Wij , W
(0)
ikj , and W

(1)
ikj are expressed as follows:

Wij = 1

τ0
exp(−2rij /a)N (εj − εi ), (6)

W
(0)
ikj = 1

4
|tij tjktki |BSikj

2�0

×
(

WkjWik∣∣t2
kj t

2
ik

∣∣ + WijWkj∣∣t2
ij t

2
kj

∣∣ + WijWki∣∣t2
ij t

2
ik

∣∣
)

, (7)

W
(1)
ikj = −1

4
|tij tjktki |BSikj

2�0

×
(

WkjWik∣∣t2
kj t

2
ik

∣∣ + WijWjk∣∣t2
ij t

2
kj

∣∣ + WijWik∣∣t2
ij t

2
ik

∣∣
)

. (8)

Here, τ0 is the constant describing the characteristic (ordinary)
hopping time between close neighbors without a large energy
exponent. The similar time for three-site hops is t0τ

2
0 /h̄. It
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is assumed to be small, compared to τ0. N (εj − εi ) is the
effective probability to find a phonon for the hop. We consider
N (εj − εi ) = 1 when εj > εi and N (εj − εi ) = exp[(εj −
εi )/T ] otherwise. Sikj is the “vector area” of the triangle
ikj, �0 is the flux quanta. We focus on small magnetic fields
BSikj � �0. In the general case, the linear dependence on the
magnetic field should be substituted with oscillating depen-
dence sin(BSikj /2�0). The expressions (6)–(8) are derived
from (4) in Appendix. These expressions agree to [1,9] when
the triangle ikj is considered to have small occupation num-
bers fi, fj , and fk . However, the expressions (6)–(8) allow
the description of the general case of the arbitrary occupation
numbers.

We discuss the system in the Ohmic regime. It corresponds
to the small perturbations of occupation probabilities fi .
This case allows using the linearized version of the general
equations. We consider the dc current and stationary equations
dfi/dt = 0: ∑

j

Jij = 0, (9)

Jij = ϕi − ϕj

Rij

+
∑
k 
=i,j

e2ϕk

T

Sikj B
2�0

�ikj , (10)

Rij = T

e2�ij

, �ij = 1

τ0
exp

(
−2rij

a
− εij

T

)
. (11)

Here, Rij is the Miller-Abrahams resistor between sites i

and j , which has an exponentially broad distribution Rij ≈
R0 exp(ξij ), ξij = 2rij /a + εij /T in a material with a strong
disorder. εij = (|εi − εF | + |εj − εF | + |εi − εj |)/2 is the
energy term in the Miller-Abrahams resistance expression. εF

is the Fermi energy. ϕi is the addition to the electrochemical
potential of site i due to the applied current. �ikj is the rate of
the three-site hop. In a strongly disordered system, it can be
estimated as

�ikj = 1

4t0τ
2
0

exp

(
− rij + rik + rkj

a

)
× (e(|εi−εF |−εij −εik )/T + e(|εj −εF |−εij −εjk )/T

+ e(|εk−εF |−εik−εjk )/T ). (12)

In our expressions for the hopping rates �ij and �ijk , we
keep only the exponential terms in the dependencies on rij and
εij . This approximation can be applied in strongly disordered
systems when the power-law terms are small compared to the
exponential ones.

III. HALL CURRENT IN SYSTEMS
WITH STRONG DISORDER

In this section we study the hopping Hall effect in systems
with strong disorder. We apply two methods to this problem.
The first one is the direct numerical solution of the system
(9)–(12) of modified Kirchhoff equations. The second is the
analytical approach based on the percolation theory. In the
frame of the analytical method, we evaluate the contribution
of different triads of sites to the Hall effect. Assuming that the
effect is dominated by a small number of the so-called optimal
triads, we derive the analytical expression for Hall mobility.

The main purpose of this section is to compare the results
of numerical and percolation approaches. We provide this
comparison for the three important cases: nearest-neighbor
hopping (Sec. III A), variable range hopping with a constant
density of states (Sec. III B), and variable range hopping in the
Coulomb gap (Sec. III C).

In the numerical simulation we consider a square 2D nu-
merical sample with size L and N = L2 localization sites with
random positions. The positions are not correlated. Each site
i is ascribed with some energy εi . The localization distance
a, temperature T , and the distribution of the site energies
control the degree of disorder and the hopping regime (NNH
or VRH). The boundary conditions are periodical. It means
that our simulation represents the infinite system composed of
L×L supercells.

The localization sites distribution determines the system of
linear equations (9)–(12). The system is solved numerically
without the magnetic field and with small magnetic field B

when the corrections to the currents are linear with respect to
the field B. We find the normal current J at B = 0 directed
along the electric field that gives us conductivity σ and the
current JHall ∝ B that is perpendicular to the electric field. The
Hall mobility μH is proportional to the ratio of these currents
μH = JHall/JB. The results are then averaged over disordered
configurations. With numeric simulations we are able to find
the μH dependence on localization radius a and temperature.
The absolute value of μH is governed by the parameter t0τ0/h̄

that is not discussed in this study.
Our analytical treatment of Eq. (10) relies on the expo-

nentially broad distribution of coefficients �ikj in a strongly
disordered system. As soon as we discuss the linear effect
over magnetic field B, we can consider potentials ϕk in the
last term in (10) to be independent from the magnetic field.
Values ϕk are proportional to the applied electric field and are
determined by the disorder configuration. In this case, each
triad of sites ikj acts as an independent source of the Hall
current. The total Hall current JHall flowing through some
cross section of the sample (perpendicular to the electric field
direction) can be expressed as the sum of contributions J

(ikj )
Hall

related to triads ikj :

JHall =
∑
ikj

J
(ikj )
Hall . (13)

The formal definition of contribution J
(ikj )
Hall is as follows. We

consider the system where the magnetic flux exists only in the
triad ikj , but the other properties are the same as in initial
system. The Hall current in this modified system is equal to
J

(ikj )
Hall . Note that contributions J

(ikj )
Hall depend not only on the

properties of the triad itself, but also on its position, with
respect to the percolation cluster. Contributions J

(ikj )
Hall have

an exponentially broad distribution and their sum is assumed
to be controlled by a small number of the largest J

(ikj )
Hall . The

idea of the percolation analysis is to identify these largest
contributions and neglect all other ones that are exponentially
small compared to max(J (ikj )

Hall ).
Let us start from the properties of the triad itself. The

currents that flow through the triad can be described as three
currents Jij , Jik , and Jkj [Fig. 1(a)]. The effects of the
currents are additive. Let us consider one of them Jij and
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FIG. 1. (a) The currents in triangle ikj , (b) the optimal position
of the triangle ikj in the percolation cluster.

assume Jik = Jkj = 0. Current Jij enters site i, then it is
divided between Jij and Jik = Jkj . Then, it flows through the
site j out of the triad.

According to Eq. (10), the site k in the magnetic field
acquires a perturbation to its potential that is proportional to
Jij :

δϕk = LkijJij , Lkij = RijRikRkj

Rij + Rik + Rkj

Sikj B
T

�ikj . (14)

Here, Lkij = Lijk = Ljki . Value LkijJij can be considered as
a source of Hall voltage. Lkij values have an exponentially
broad distribution

Lkij ≈ L0
Sikj B

T
exp(ξikj ), (15)

ξikj = ξij + ξik + ξkj − max(ξij , ξik, ξkj ) − rij + rjk + rik

a
− min

(
εij + εik − |εi |

T
,
εij + εjk − |εj |

T
,
εik + εjk − |εk|

T

)
. (16)

Current Jij is of the order of the “percolation current” Jperc =
Lcorj when resistor Rij is included into the percolation cluster.
Here, Lcor is the correlation length of the percolation cluster,
j is the macroscopic current density. Therefore, reasonably
large currents are possible when resistor Rij is not larger than
the critical resistance of percolation network Rc. Otherwise,
current Jij becomes small Jij ∼ (Rc/Rij )Lcorj for Rij > Rc.
In this case, triangle ikj cannot be an effective Hall current
source.

The contribution J
(ikj )
Hall of triad ikj depends on its position

in the Miller-Abrahams resistor network. If it is shunted
by resistances Rnm � Rij , Rik, Rkj , its contribution to the
Hall current is small. The most effective sources are com-
posed of resistors Rij ∼ Rik ∼ Rkj ∼ Rc and are positioned
in the junction of three branches of the percolative cluster
[Fig. 1(b)]. Hall mobility μHall can be, thus, estimated as

μHall ≈ pL(max)
kij /Rperc, (17)

where L(max)
kij is the maximum possible value of Lkij for the

triangles that allow the percolation current Jij ∼ Jperc. p is
the probability of three branches of the percolative cluster to
be connected by the optimal triad. With the exponential preci-
sion, the mobility can be estimated as μhall ∝ exp[max(ξikj ) −
ξc], where ξc is the critical exponent of the percolation theory.

A. Nearest-neighbor hopping

In the systems with the nearest-neighbor hopping conduc-
tion, the distribution of site energies is not broad compared to
the temperature. All the disorder comes from the random po-
sitions of localization sites. It is controlled by parameter na2.
We focus on the strong disorder case na2 � 1. Therefore, we
neglect the energy terms in (16) and get

ξikj = rij + rik + rkj

a
− 2

max(rij , rjk, rik )

a
. (18)

The maximum possible value is ξikj = rperc/a where rperc =√
4/πn−1/2 is the percolation distance of the random site

percolation problem [6]. The critical resistance in this system

is equal to Rc = R0 exp(2rperc/a). The Hall mobility follows
the law

μHall ∝
(

a

rperc

)γnn

exp

(
− rperc

a

)
. (19)

Here, γnn describe the power-law dependence of p on the
localization radius. The conductivity depends on rperc as σ =
σ0 exp(−2rperc/a).

For the neighbor hopping regime in the numerical simu-
lation, we consider numerical samples without random en-
ergies of localization sites. The site concentration is equal
to unity and the positions of sites are random with Pois-
son distribution. Localization radius a controls the disorder.
Equations (10)–(12) are solved numerically for the system
to find the dependence of conductivity σ and Hall mobility
μH on the disorder parameter n1/2a. The results are shown
in Fig. 2. They are in a good agreement with the analytical
predictions for γnn = 3.3.

B. Variable range hopping

In the variable range hopping (Mott law) regime, the site
energies εi are large compared to temperature. The density of
states has no peculiarities at the Fermi level and can be de-
scribed by a constant g(ε) ≈ g(εF ). The exponents ξij in the
resistors contain both the coordinate contribution 2rij /a and
the energy contribution εij /T . Therefore, the large exponent
ξc of the critical resistor can reflect the long intersite distance
between sites i and j or the large energies of sites.

The long distances between sites in the Hall source triad
ikj yield exponentially small (as a function of disorder) Hall
mobility μH as it was shown in the previous section. The
situation with large energies is different. Let us imagine the
triangle ikj composed of the three close sites with energies
ε ≈ ξcT . Equation (16) yields the Hall source exponent of
this triangle ξikj = ξc. It can be shown that it is the maximum
possible value for ξikj . It is equal to the critical exponent
of the conductivity. It means that if the probability p of
finding three branches of the percolation cluster connected
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FIG. 2. The results of the numerical simulation of neighbor hop-
ping transport. (a) The simulated conductivity (blue dots) compared
to the law σ = σ0 exp(−2rperc/a) (red curve); (b) the simulated Hall
mobility (blue dots) compared to Eq. (19) with γnn = 3.3 (red curve).

with such an optimal triangle has a power-law dependence
on temperature, the dependence μHall(T ) should follow the
same power law. The power law for the p(T ) dependence is
a natural assumption because the distribution of site energies
and positions in the percolation cluster follow power laws.
However, it will be discussed in some details in Sec. V and
the counterarguments for the power law will be provided.
Now, we want to note that even if the dependence p(T )
follows the power law, the dominance of the optimal triangles
over the Hall effect is proved only in T → 0 limit. At finite
temperatures it should be verified with a numerical simulation.

For the Mott-law regime in the numerical simulation we
add random energies to the sites of our numerical samples.
The distribution of energies has the constant density g(ε) =
n/�ε in some energy range −�ε/2 < ε < �ε/2. The Fermi
level is assumed to be equal to zero. The parameter �ε/T

controls the energy disorder. The analytical expression for the
conductivity in this regime, the Mott law, is

σ = σ0 exp[−(T0/T )1/3]. (20)

Here, T0 = β2D/g(εF )a2, β2D = 13.8 [6], g(εF ) is the den-
sity of states at Fermi level εF . It follows from the percolation
theory and is valid in the limit of strong disorder T0/T � 1.
The prefactor σ0 can have a power-law dependence on the sys-
tem parameters that can be derived from the system dimension
and the power-law part of the Rij dependence on the system
parameters [6]. In our case of a 2D system with Rij ∝ T , σ0

is proportional to 1/T and is independent of the localization
radius.

FIG. 3. The simulated temperature dependence of conductivity
in the Mott-law VRH regime for values n1/2a = 0.2, 0.3, 0.5, 0.7,
and 1. The Mott law is shown with a red dashed line.

Therefore, in the VRH regime the product σT should de-
pend only on ξc = (T0/T )1/3. The point, when the dependen-
cies of σT on critical exponent ξc converge to the single curve,
can be considered as a condition for the VRH conductivity.
In Fig. 3(a) we show the simulated dependence of ln(T σ )
on (TMott/T )1/3 for different values of the position disorder
parameter n1/2a. It is compared to the Mott law (red dashed
line). It seems that the agreement starts from a relatively
small ξc = (TMott/T )1/3 ≈ 5 for the weak position disorder
n1/2a � 0.5. For a stronger position disorder the VRH regime
starts from larger ξc.

Now, let us discuss the dependencies of Hall mobility on
the localization distance and temperature. In the VRH regime
these dependencies are related. The transport properties that
are determined by dimensionless distances rij /a and ener-
gies εi/T can depend only on the combined parameter ξc =
[β2D/g(εF )a2T ]1/3 because only the states close to the Fermi
energy are important in VRH. It follows from the scaling
arguments. The change of the temperature and localization
distance T → β̃T , a → α̃a is equivalent to the change of
site density n → α̃2n and all site energies εi → β̃−1εi . When
α̃2β̃ = 1 (it is the condition for ξc = const) the density of
states at the Fermi level g(εF ) stays constant and the g de-
pendence on energy can be neglected in the Mott-law regime.

However, the Hall sources are proportional to BSikj /�0.
This value is not controlled by the rij /a ratio but with the
squared intersite distance compared to �0/B. The discussed
scaling procedure will modify these terms BSikj /�0 →
α̃2BSikj /�0. Therefore, in the VRH regime μHall should
depend on the system parameters as follows:

μHall = a2

�0
f (ξc ). (21)

Here, f (ξc ) is a function of critical exponent ξc. The assump-
tion that the Hall effect is controlled by the optimal triangles
yields f (ξc ) = const×ξ

γMott
c with some power γMott.

Our numerical results for Hall mobility are shown in Fig. 4.
The dependencies of μH /a2 on (T0/T )1/3 for different n1/2a

converge to a single curve at sufficiently small temperatures.
It indicates the applicability of the law (21). The curve is
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FIG. 4. The numerical results for the Hall mobility. The results
are compared to Eq. (22) (red straight line) and the power-law
dependence (purple dashed line).

compared to two laws that were discussed in the previous
studies. The red straight line corresponds to the exponential
dependence

μHall ∝ a2 exp[−αMott(T0/T )1/3]. (22)

The numerical estimate is αMott = 0.47. The purple dashed
line corresponds to the power-law dependence μHall/a

2 ∝
(T0/T )γMott/3. The agreement with the exponential dependence
is better. However, at small temperatures, when the curves for
small n1/2a converge to the universal dependence, the result
can, in principle, be described with the power law, at least for
the considered values of T0/T .

To independently test the optimal triangle assumption, we
discuss the average area of the triangles responsible for the
Hall effect. The percolation theory predicts that the effect is
controlled by the following triangles. At a high temperature
and strong position disorder n1/2a � 1 (NNH regime), the
optimal triangle is the equilateral triangle with side rperc. Its
area is equal to (

√
3/4)r2

perc ≈ 0.62n−1. At a small tempera-
ture in the VRH regime, the area of the optimal triangle can
be estimated as a2. Note that it is smaller than (

√
3/4)r2

perc.
The linear nature of Kirchhoff equations allows us to

access the area of the optimal triangle in the numerical
simulation. Equation (13) states that the Hall current can
be described as a sum of the contribution related to each
triangle. Although the contributions themselves cannot be
easily separated in the final results of simulation, we can make
the following numerical experiment. We artificially multiply
the value Likj for each Hall source to the absolute value of the
area of the corresponding triangle |Sikj |. Then, we recalculate
the Hall current and obtain its new value J

(mod)
Hall . Finally, we

divide the modified Hall current to the original Hall current
and obtain the area 〈S〉Hall:

〈S〉Hall = J
(mod)
Hall

JHall
=

∑
ikj |Sikj |J (ikj )

Hall∑
ikj J

(ikj )
Hall

. (23)

It is the area of the triangle averaged with weight J
(ikj )
Hall , the

contribution of the triangle to the total Hall current.
The numerical results for 〈S〉Hall are shown in Fig. 5. At

high temperatures 〈S〉Hall is slightly larger than (
√

3/4)r2
perc

FIG. 5. The averaged area of the triangle responsible for the Hall
effect. The red straight line corresponds to value (

√
3/4)r2

perc. Dashed
lines correspond to the percolation theory predictions in the VRH
regime.

and tends to this value for a strong position disorder
n1/2a � 1. But, upon decreasing temperature, it increases
instead of decreasing to its VRH percolation value. It means
that, at the considered parameters, the Hall current is domi-
nated by the triangles that are much larger than the optimal
triangle of the VRH percolation theory.

Another result of the percolation theory that we want to
test with the numerical simulation is the prediction of very
strong mesoscopic effects for the Hall current in VRH [9].
This prediction was based on the concept of optimal triangles.
If the Hall effect is controlled by the rare triads of sites, the
correlation length of the Hall effect should be proportional to
the distance between these triads and be much larger than the
correlation length of the percolation cluster. Therefore, it was
suggested that even relatively large samples can show strong
mesoscopic effects.

It is also important to study mesoscopic effects to verify
the applicability of our numerical results. The real samples
are usually larger than our numerical samples. In Fig. 6(a)
we compare the results for the numerical samples with size
70×70 considered in the rest of this study with the results
for smaller 50×50 numerical samples containing 2500 sites.
If the correlation length for the Hall effect is larger than our
numerical samples, one should expect significant difference
in the Hall mobility calculated for different system size.
However, the results for 50×50 and 70×70 systems are in a
good agreement up to the smallest considered temperatures.

In Fig. 6(b) we show the standard deviation of the loga-
rithm of normal and Hall currents, σ (ln(J )) and σ (ln(JHall )),
correspondingly. When this deviation is small σ (ln(J )) � 1,
the fluctuations of the current are much smaller than the
average current and the system is macroscopic. The opposite
case σ (ln(J )) � 1 corresponds to the exponentially broad
distribution of currents. This result is expected for the systems
with the hopping transport that are smaller than the correla-
tion length. The calculated standard deviation of ln(JHall ) is
slightly larger than the one for the normal current, but the
difference is not dramatic. Both standard deviations are less
than unity for the considered system parameters. It means that
the mesoscopic effects for the Hall current should be only
slightly larger than the ones for the ordinary conductivity and
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FIG. 6. (a) The comparison of the Hall mobility in the numerical
simulation with different sample sizes. (b) The standard deviation of
the logarithm of normal and Hall currents.

our numerical samples are larger than the correlation length
for Hall effect at least for considered system parameters. Note
that the size of our numerical samples (4900 sites) is still
small, compared to the most real samples that are studied
experimentally.

C. Variable range hopping with the Coulomb gap

Our experimental results are obtained in the samples
that demonstrate the variable range hopping conductivity in
the Efros-Shklovskii regime σ ∝ exp[−(TES/T )1/2]. In this
regime the Coulomb interaction between hopping electrons
becomes essential. Strictly speaking, the Miller-Abrahams
network cannot be rigorously derived for this case. Never-
theless, many important results for this regime are obtained
by considering the resistor network where the Coulomb cor-
relations were included as the Coulomb gap. In the present
section we include the Coulomb gap to our system of Kirch-
hoff equations. We suggest, however, that our results can
be dependent on the probability to find a triangle of critical
resistors with special relations between distances and energies
(as it is predicted by the percolation theory). The positions of
sites in the Coulomb gap are correlated. Therefore, to keep
these correlations in our system, we do not simply ascribe
each site a random energy with a distribution that includes
the Coulomb gap. We follow a more complex procedure. We
start with a numerical sample with random positions of the
sites and consider a random half of them to be filled with
electrons. Then, we run the zero-temperature Monte Carlo
algorithm, i.e., we resolve all one-electron hops that decrease
the total energy of the system including the electron-electron

FIG. 7. The density of site energies in one numerical sample
obtained with the zero-temperature Monte Carlo simulation.

Coulomb repulsion. The details of this algorithm are given
in Ref. [32]. It yields a metastable state of the system that
naturally includes the Coulomb gap and the correlations in
positions of sites with the energies close to the Fermi level.
In the obtained state, we find all one-electron energies and
substitute them to the expressions for the Miller-Abrahams
resistors and Hall sources. The rest of the calculation is the
same as in the regime of the Mott law. Our approach allows
us to consider the “static” Coulomb correlations, however, it
disregards the dynamic correlations, i.e., the modification of
energies εi due to the electron hops. Nevertheless, it allows
the consideration of relatively large numerical samples deep
in the VRH regime, which are not easy to access with the
finite-temperature Monte Carlo algorithm (that includes all
the dynamic Coulomb correlations).

The distribution of the site energies obtained with our
method in a single numerical sample is shown on Fig. 7. It
shows that, even in a single numerical sample, the Coulomb
gap is well defined. The results of simulation in the Efros-
Shklovskii regime are shown in Fig. 8. They are qualitatively
similar to the results in the Mott-law regime, however, the
dependencies of T σ and μHall on ξc converge to a universal
curve more slowly than in the regime of the Mott law. We
suggest that the reason for it is the double transition: from
nearest-neighbor hopping to VRH and from Mott VRH to
Efros-Shklovskii VRH. The dependence of Hall mobility on
the localization radius and temperature follows the law

μHall ∝ a2 exp

[
−αES

(
TES

T

)1/2
]
, (24)

where TES is the temperature from the Efros-Shklovskii law.
It is proportional to a−1. The numeric value for αES is
αES = 0.3.

IV. COMPARISON WITH EXPERIMENT

Our theoretical investigation indicates that Hall effect can
be detected more easily in systems with large localization
radius. The range of critical exponent values ξc accessible in
the experiment is limited by the exponential growth of system
resistance at large ξc. For reasonable values of the critical
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FIG. 8. The results of numerical simulation of variable range
hopping transport in the Efros-Shklovskii regime. (a) The conduc-
tivity compared to the Efros-Shklovskii law. (b) The Hall mobility
compared to the expression (24).

exponent, the temperature dependence of the Hall mobility
converges to the universal VRH curve only for relatively large
n1/2a. For small n1/2a, it converges at very large ξc. Finally, at
the same values of the critical exponent, the system with large
a should display a larger Hall effect ∝a2 due to the scaling
arguments.

As we discussed it in Introduction, several experimental
measurements of the Hall effect were obtained in 3D systems
in the vicinity of the metal-insulation transition where the
localization radius diverges. Deep in the strong localization
regime, where the localization radius is small, the Hall effect
was usually not visible. In this section we compare the theory
with our recent experimental measurements of the Hall effect
in the p-doped two-dimensional arrays of tunnel-coupled
Ge/Si quantum dots (QDs). These arrays display the VRH
conductivity with the localization radius much larger than its
typical value in doped semiconductors. The main parts of the
presented experimental results were preliminarily published
in Ref. [29].

The QD arrays were grown with the low-temperature
(about of 300 ◦C) molecular beam epitaxy. The small size of a
quantum dot (lateral size 15–20 nm and 1.5–2 nm high) leads
to a large energy separation of quantum levels �10 meV and
to the nonmonotonic density of states (Fig. 9). The dominant
mechanism of the transport in the discussed arrays is the vari-
able range hopping between quantum dots. It was shown with
the temperature dependencies of conductance to follow the
Efros-Shklovskii law σ (T ) = γ T m exp[−(TES/T )1/2]. Value
m was close to zero [33].

FIG. 9. The energy levels of a single quantum dot (a) and the
density of states g(ε) (b). The maxima of g(ε) correspond to the
quantum dot levels. The levels are broadened due to the random
potential.

The mechanism of the variable range hopping transport
in quantum dot arrays is slightly different from the VRH
mechanism in doped semiconductors. The tunneling path to
a distant quantum dot inevitably crosses other (intermediate)
dots. The hop to a distant dot includes the cotunneling process
involving the states in the intermediate dots. This process
is schematically shown in Fig. 10. The hole from site i

cannot hop to site j because of the large energy difference
|εi − εj | � T . Instead, it hops on the distant site k with εk ∼
εi . The process involves the state on quantum dot j as the in-
termediate virtual state. The tunneling amplitude for hop i →
k can be estimated as Ĩik = Iij Ijk/(εi − εj ). Here, Iij is the
overlap integral between the states on quantum dots i and j .
The cotunneling can involve any number of intermediate dots.

The transport in QD arrays due to the cotunneling pro-
cesses can be described with the conventional variable range
hopping theory [31]. However, the localization radius a in
the theory is not the localization radius of a single QD, but

FIG. 10. Cotunneling between distant dots i and k. (a) The real-
space positions of dots i, j , and k; (b) the energy diagram where x is
the generalized coordinate.
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FIG. 11. Rxy (H ) dependence for two high-resistance samples.
Left inset: the dependence of mobility (black symbols) and local-
ization radius (gray symbols) on filling factor. Right inset: ξc(a)
dependence.

it is strongly modified by the virtual states on the intermediate
dots. This modified localization radius can easily be compara-
ble to or larger than the size of a quantum dot. It depends on
the density of states at the Fermi level [29,34,35]. It allows us
to control a by changing the QD filling factor ν and the Fermi
level position with respect to the density of states.

We measured the Hall effect in the structures with different
dot filling factors, which were varied by changing the boron
concentration in the δ-boron-doped silicon layer which is 5
nm below the quantum dot layer. The conductance values
for the samples under study were shown to be in the range
∼10−5–10−11 Ohm/� at 4.2 K. From the comparison of the
measured σ (T ) dependence with the Efros-Shklovskii law we
determined the critical exponent ξc = (TES/T )1/2 and local-
ization radius a = Ce2/εkBTES. Here, ε is the permittivity, kB

is the Boltzmann constant, and C is a numerical coefficient
that, according to Ref. [36], is equal to 6.2. It was shown that
the localization radius changes from ∼25 to ∼80 nm depend-
ing on the filling factor and, correspondingly, the Fermi level
position.

In Fig. 11 we show Rxy for two high-resistance samples.
The Hall coefficients RH were determined from the slopes of
Rxy (H ) lines as RH = [Rxy (H ) − Rxy (−H )]/2H . It allows
avoiding the symmetrical contribution of magnetoresistance
due to the asymmetry of the contacts and a possible shift of
the amplifier’s zero. We observed a strong correlation between
μ(ν) and a(ν) nonmonotonic dependencies that are obviously
observed in the left inset to Fig. 11.

In Fig. 12 we compare the experimental results to Eq. (24).
The blue curve corresponds to the parameter αES = 0.3 ob-
tained from the numerical simulation. The red curve corre-
sponds to αES treated as the fitting parameter. Expression (24)
agrees to the experimental data. The best agreement is
achieved for αES = 0.56. However, the precision of exper-
imental measurements is insufficient to reliably prove this
value. Let us note that there are physical reasons for the mea-
sured Hall conductivity to be different from the predictions

FIG. 12. The comparison of experimental results with Eq. (24).
The red curve corresponds to αES treated as the fitting parameter,
while for the blue curve we adopt the value αES = 0.3 obtained from
the numerical simulation.

of the theory. The complex nature of long-range hopping
in QD arrays can modify the dependence μHall(a) obtained
from the pointlike site model. However, further experimental
investigations are needed to understand if it is the case.

V. DISCUSSION

The conventional approach to the hopping transport in
strongly disordered systems is the percolation theory that
is based on the assumption that all the exponentially small
terms can be neglected at a sufficiently strong disorder. This
assumption leads to the result that the Hall effect is controlled
by the rare optimal triads of sites. In the NNH regime, they
are the triads that form equilateral triangles with side rperc

corresponding to the percolation resistance. The triangles
should be positioned in the intersections of three branches of
the percolation cluster. In the VRH regime, the restrictions to
the optimal triangles are even more solid. They, still, are the
triangles consisting of critical resistors. However, now they
should include only the critical resistors of the specific kind:
the ones with a small length and large energies.

Our numerical results show that the model of optimal
triads works well in the NNH regime. The dependence (19)
obtained from the optimal triangle model agrees to the nu-
merical results. Moreover, the dominant area of the triangle
〈Sikj 〉Hall calculated at a high temperature is in a quantitative
agreement with the prediction of the NNH percolation theory
(
√

3/4)r2
perc. However, the optimal triangle model fails to de-

scribe the VRH case. The calculated temperature dependence
of μHall follows the exponential laws (22) and (24) instead
of the power law predicted by the percolation theory. The
clearest evidence of the failure of optimal triangle model
is the temperature dependence of 〈Sikj 〉Hall. The area of the
optimal triangle is smaller in the VRH regime than in NNH.
However, 〈Sikj 〉Hall grows with the decreasing temperature,
indicating that the Hall effect is controlled by the triangles
that are larger even than the optimal triangle of the NNH
regime. To our opinion, it indicates that the Hall effect in the
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VRH regime is not dominated by rare optimal triangles, but
by more numerous “typical” triangles. The area of the typical
triangle increases with the decreasing temperature because
more distant hops become important in the VRH regime.

Why does the optimal triangle model work well in one
regime and fail in the other? Here, we argue that the reason is
the extremely low probability p to find the optimal triangle
of the VRH regime. First, the probability for three branches
of the percolation cluster to be connected with a triangle of
critical resistors is already small. Each branch of the percola-
tion cluster contains at least one critical resistor. However, it
can be positioned in any place of the branch, not necessarily
at its edge. The branch of the percolation cluster contains
∝ξc resistors. Therefore, we estimate the probability to find a
critical resistor at the edge of the branch as 1/ξc. The triangle
of critical resistors at the intersection of three branches can
appear when all the three branches contain critical resistors on
their edges, therefore, its probability can be estimated as 1/ξ 3

c .
This estimate can be compared to the numerical result for
the preexponential part of the dependence (19), (a/rperc)γnn ∝
ξ

−γnn
c . Note that the critical exponent in the NNH regime is

equal to 2rperc/a. The numerical value γnn = 3.3 is close to
our simplified estimate 3.

In the VRH regime, the optimization of the exponent (16)
leads to the following restriction to the energies of the sites
composing the “optimal triad.” Two energies should lie in
the interval (εF + (ξc − 1)T , εF + ξcT ), while the third one
can have any energy larger than εF [there is the second
possible option, when the three sites have the energies lower
than εF and the energies of two sites are in the interval
(εF − ξcT , εF − (ξc − 1)T ); this option leads to the similar
results]. If we presume that the distribution of site energies in
the critical resistor is flat, it will add an additional factor ξ−2

c to
p leading to the estimate p ∝ ξ−5

c . We argue, however, that
this expression overestimates p. There are two reasons for it.
The first reason is discussed in Ref. [13] and is related to the
small probability of finding a site with a maximum possible
energy in the percolation cluster.

Here, we want to discuss the second reason that has, to
the best of our knowledge, been never discussed. It is related
to the fact that the “optimal triangle” should be connected
to the rest of the percolation cluster, and it is not easy for
the considered energies of its sites. In Fig. 13 we show the
optimal triangle with the nearest sites of three branches of
the percolation cluster. For the sake of the qualitative estimate
we consider the branches to be straight lines with angle 2π/3
between them. We assume that the two sites of the triangle
with energies ∼ξcT are i and j . The resistors i − i1 and
j − j1 are part of the percolation cluster. Therefore, εi,i1/T +
2ri,i1/a � ξc and εj,j1/T + 2rj,j1/a � ξc. The energies in
these relations are large εi,i1 � εi − εF ∼ ξcT , εj,j1 � εj −
εF ∼ ξcT . It means that distances ri,i1 and rj,j1 should be
small, of the order of a/2. However, resistors i1 − j1, i1 − k,
and j1 − k should not shunt resistors i − j, i − k, and j − k.
It imposes serious restrictions on energies εi1 and εj1:

(
√

3 + 1) + max(εi1 − εF , εj1 − εF )/T � ξc,√
3 + max(εi1 − εF , εk − εF )/T � ξc, (25)

√
3 + max(εj1 − εF , εk − εF )/T � ξc.

FIG. 13. The “optimal triad” with its connection to the nearest
sites of the percolation cluster. The critical resistors composing the
triad are shown with red. Other resistors of the percolation cluster are
shown with blue.

Here, we assumed that the sides of triangle ijk are equal
to a/2. These restrictions mean that, in addition to energies
εi, εj , two other energies from εi1, εj1, εk should also be
close to εF + T ξc. However the range of possible energies
∼(εF + ξcT − (

√
3 + 1)T , εF + ξcT ) is larger than the one

for εi, εj . If the critical exponent ξc is large compared to√
3 + 1, another similar argument leads to the restrictions for

the energies of other sites εk1, εi2, εj2, etc. It means that the
“optimal triangle” of the VRH percolation theory is actually
quite a sophisticated and improbable complex of sites that al-
low the connection of the triangle to the rest of the percolation
cluster. The number of the sites in this complex grows with ξc

leading to the dependence p(ξc ) that is stronger than any
power law.

However, even if we consider only the restrictions (25),
the apparent dependence p(ξc ) is p ∝ ξ−7

c . These small
probabilities should be compared to the contribution of the
nonoptimal triangles that can be evaluated as exp(−αMottξc )
from Eq. (22) with αMott = 0.47. Condition exp(−0.47ξc ) <

ξ−7
c yields ξc > 60. These values can hardly be accessible in

experiment. Note that the dependence of sample resistance on
ξc is R = R0 exp(ξc ). If R0 ∼ 1 Ohm, ξc = 60 leads to R >

1026 Ohm. It means that at measurable system resistances, the
optimal triads should not be important for the Hall effect in
the VRH regime.

In a wide range of temperatures and localization distances
the Hall mobility can be described with the law μHall ∝
a2 exp(−αξc ). Let us note that the range of possible ξc values
is limited by the conditions of the VRH regime and the restric-
tion for reasonably large conductivity. It makes the structures
with the hopping transport and large localization radius a a
good choice to study the Hall effect in the VRH regime. The
localization radius in the structures discussed in Sec. IV is
∼10 times larger than in typical doped semiconductors. It
means that the Hall effect in these structures should be ∼100
times larger than in ordinary semiconductors at the same ξc.
However, the complex nature of long-range hops in these
structures (that inevitably includes cotunneling) can modify
the physics of Hall effect. The comparison of the present
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theory with experiments in QD ensembles with the VRH
transport shows that Eq. (24) describes the experimental data.
Nevertheless, the αES values obtained from the experiment
and from numerical simulations of the pointlike site model
with the Coulomb gap seem to be different.

Finally, we want to note that the Hall effect is not the
only phenomenon in the hopping transport that is related
to the two-phonon hopping with interference. Recently, it
was shown that the current-induced spin polarization, spin
galvanic effect, and spin Hall effect also appear due to the
similar processes [37]. The effects were controlled by the
complex interplay of the disorder strength and spin relaxation
time relation to the hopping time. However, the theory was
made only for the case of position disorder, i.e., the NNH
regime. We argue that the theory [37] can be reduced to
the theory of ordinary Hall effect in the limit of large spin
relaxation time. Therefore, our results on the optimal triangles
should be important for the theory of spin generation, at least,
in some limiting cases.

In conclusion, we revised the theory of the hopping Hall
effect in 2D systems. We compared the predictions of the
percolation theory to the numerical simulations based on the
solution of modified Kirchhoff equations in different regimes.
The percolation theory is in agreement with the numerical re-
sults in the neighbor hopping regime. However, in the variable
hopping regime, it fails to describe the results of simulation.
We argue that it is related to the extremely small probability
of finding the optimal triad of the sites in the VRH regime due
to the complex nature of the triad and its connection to the
percolation cluster. The numerical results in the VRH regime
can be described by an empirical law that agrees with our
recent experimental data.

ACKNOWLEDGMENTS

The authors are grateful to D. S. Smirnov, Y. M. Galperin,
V. I. Kozub, and A. V. Nenashev for many fruitful discussions.
N.P.S. acknowledges the financial support from Russian Foun-
dation for Basic Research (Grant No. 16-02-00553).

APPENDIX: DERIVATION OF THE HOPPING RATES

First, we derive the rates of the ordinary two-site hops with
one phonon. It is instructive to explain our method for this
simple case. The ordinary hops are described by the reduction
of second-order density matrix 〈ρ̂ (2)〉i . We describe here the
hopping between sites i and j . It appears in the second-order
perturbation over Tij . It means that the states of all the sites
other than i and j are not modified during the hop. Therefore,
we can start from the density matrix ρ̂ (0) already reduced over
all the sites k 
= i, j . We express this density matrix as

ρ̂ (0) = fifja
+
i a+

j |∅〉〈∅|ajai + fi (1 − fj )a+
i |∅〉〈∅|ai

+ fj (1 − fi )a
+
j |∅〉〈∅|aj + (1 − fi )(1 − fj )|∅〉〈∅|.

(A1)

Here, |∅〉〈∅| describes the “vacuum” state when sites i and j

are free and phonons are in the equilibrium.
The hopping is possible only for the second and the third

terms in (A1), i.e., when the two sites have one electron. In

this case, one can use one-electron notation |i〉 = a+
i |∅〉. Let

us consider the hopping from site j to site i. To find its rate
we should consider the term fj (1 − fi )|j 〉〈j | and find the
contribution of 〈ρ (2)〉i to the state with filled site i. It allows
one to give the rate of hopping j → i as

Wij = − 1

T Trph

∫ T

−T
dt1

∫ t1

−T
dt2〈i|

× [Tij (t1), [Tij (t2), |j 〉〈j |]]|i〉. (A2)

Here, Trph is the trace over the final states of the phonon
subsystem. T is some time interval that is large compared to
εi − εj . The expression under the integral depends only on
the difference t1 − t2. Therefore, the average time (t1 + t2)/2
can be integrated out and it is canceled with the time interval
T . The operator Tij = tij a

+
i aj + tj ia

+
j ai corresponds to the

transition of the electron between sites i and j with the simul-
taneous emission or absorbtion of some number of phonons.
Let us denote the full energy of the system when the electron
is on site j as Ej . Different Ej values are possible due to the
fluctuations of phonon numbers.

Wij = tij tj iTrph

(
�ij ρ

(0)
ph �ji

∫
ei(Ei−Ej )t ′dt ′

)
. (A3)

The integral over time t ′ = t1 − t2 yields the delta function
δ(Ei − Ej ) indicating the energy conservation during the hop.
The term Trph�ij (t1)ρ (0)

ph �ji (t2), where ρ
(0)
ph is the equilibrium

phonon density matrix contains the electron-phonon interac-
tion and the probability of finding the phonons required for
the hop. If we consider the electron-phonon interaction to be
small, the one-phonon processes will dominate the hop, and
we find

Trph
[
δ(Ei − Ej )�ij ρ

(0)
ph �ji

]
= 2|γ (q )|2g(ph)(q )

(
θ (εj − εi ) + 1

e|εj −εi |/T − 1

)
. (A4)

Here, g(ph)(q ) is the density of states for the phonons with q =
|εi − εj |/c, where c is the sound velocity. |γ (q )|2 describes
the strength of the electron-phonon coupling at the given
absolute value of wave vector q. In the case of large energies,
εi, εj � T , Eq. (A4) can be estimated as

Trph
[
δ(Ei − Ej )�ij ρ

(0)
ph �ji

] ≈ 1

2πt2
0 τ1

N (εj − εi ),

N (εj − εi ) =
{

1, εj > εi

e(εj −εi )/T , εj < εi.
(A5)

Here, τ1 is the time constant associated with normal hops. We
neglect the possible power-law dependence of τ1 on the site
energies in comparison with the strong dependence N (εj −
εi ). The normal hopping rate can be then expressed as

Wij = 1

τ1
exp(−2rij /a)N (εj − εi ). (A6)

The quantum mechanics of the hop is illustrated in the di-
agram shown in Fig. 14. The two solid lines correspond to
the two electron density matrix indexes. The interaction with
phonons is shown with the ring. Note that, after the polaron
transformation, any number of dashed phonon lines can enter
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FIG. 14. One-phonon processes that lead to ordinary hops.

the vertex. The energy should be conserved in the vertex. The
phonon line corresponds to the factor N (εj − εi ).

The Hall effect in the hopping transport cannot be de-
scribed with the ordinary hops (A6). Its description should
include the hops j → i that occur in the presence of the third
site k. Let us first consider the situation when site k is free.
The corresponding hopping rate W

(0)
ikj can be expressed as

W
(0)
ikj = i

1

T Trph

∫
t1>t2>t3

〈i|

× [Tikj (t1), [Tikj (t2), [Tikj (t3), |j 〉〈j |]]]|i〉. (A7)

Here, Tikj = Tik + Tij + Tjk . Although the commutators in
(A7) contain quite a number of terms, only some of them lead
to the final state of the electron on site i and yield the nonzero
contribution to W

(0)
ikj . We separate the relevant terms

W
(0)
ikj = i

1

T Trph

∫
t1,t2>t3

〈i|(Tij (t1)|j 〉〈j |Tjk (t3)Tki (t2)

−Tik (t2)Tkj (t3)|j 〉〈j |Tji (t1))|i〉. (A8)

Note the difference in the time integration between expres-
sions (A7) and (A8). In (A8) the relation between t1 and other
times is arbitrary. The time integration in the first term of
expression (A8) yields

2πδ(Ei − Ej )

( −i

Ej − Ek

+ πδ(Ej − Ek )

)
. (A9)

The result of the time integration in the second term is the
complex conjugate of (A9). Let us note that the contribution
of the terms including δ(Ei − Ej )/(Ej − Ek ) to the hopping
rate is proportional to tij tjktki + tiktkj tji = 2 Re(tij tjktki ).
This contribution has only the quadratic dependence on the
applied magnetic field. Although this contribution determines
the interference magnetoresistance, in the theory of the Hall
effect that is linear on the applied field, we neglect this term.

FIG. 15. Two-phonon processes that lead to the Hall effect.

The part of W
(0)
ikj that is responsible for the Hall effect can be

expressed as

W
(0)
ikj = −4π2Im(tij tjktki )Trph

× [
δ(Ei − Ej )δ(Ej − Ek )�ij ρ

(0)
ph �jk�ki

]
. (A10)

The two delta functions in (A10) mean that the process should
include at least two phonons. There are three two-phonon
processes that allow the “energy conservation laws” δ(Ei −
Ej )δ(Ej − Ek ). These processes are shown schematically
in Fig. 15. These three processes lead to different phonons
participating in the hop and, correspondingly, to different
terms N .

The sum over possible processes leads to the following
expression for W

(0)
ikj :

W
(0)
ikj = 1

4
|tij tjktki |BSikj

2�0

(
WkjWik∣∣t2

kj t
2
ik

∣∣ + WijWkj∣∣t2
ij t

2
kj

∣∣ + WijWki∣∣t2
ij t

2
ik

∣∣
)

.

(A11)

Now, let us discuss the situation when site k is filled before
the hop. In this case, we start from state |kj 〉 = a+

k a+
j |∅〉.

Let us note that operators a+
k and a+

j anticommute and, in
our notations, |kj 〉 = −|jk〉. The hopping that includes site
k corresponds to the electron transition from site k to site j

and the following electron transition of from site j to site k.
The hopping rate W

(1)
ikj can be expressed as

W
(1)
ikj = i

1

T Trph

∫
t1,t2>t3

〈ik|(Tij (t1)|kj 〉〈jk|Tki (t3)Tjk (t2)

−Tkj (t2)Tik (t3)|kj 〉〈jk|Tji (t1))|ki〉. (A12)

Note the difference in the order of the transitions between
expressions (A12) and (A8). In (A12) transition j → k occurs
after k → i. It leads to somewhat different averaged phonon
numbers and to the expression

W
(1)
ikj = −1

4
|tij tjktki |BSikj

2�0

(
WkjWik∣∣t2

kj t
2
ik

∣∣ + WijWjk∣∣t2
ij t

2
kj

∣∣ + WijWik∣∣t2
ij t

2
ik

∣∣
)

.

(A13)
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