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Bosonic condensation of microcavity polaritons is accompanied by their relaxation from the ensemble of
excited states into a single quantum state. The excess of energy is transferred to the crystal lattice that eventually
involves heating of the structure. Creation of the condensate results in the local increase of the temperature,
which leads to the red shift of the exciton energy providing the mechanism for polariton self-trapping. By
employing the driven-dissipative Gross-Pitaevskii model, we predict a new type of a stable localized solution
supported by the thermally induced self-trapping in a one-dimensional microcavity structure. The predicted
solution is of a sink-type, i.e., it is characterized by the presence of converging density currents. We examine
the spontaneous formation of these states from the white noise under spatially localized pumping and analyze
the criteria for their stability.
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I. INTRODUCTION

Exciton-polaritons are hybrid quasiparticles arising under
the strong coupling of semiconductor excitons and an elec-
tromagnetic mode of a microcavity. The most fascinating
property of polaritons is their spontaneous condensation in
a single quantum state [1,2]. Since the first observation, the
condensates of exciton polaritons serve as a powerful tool
for exploring fundamental phenomena where quantum many-
body physics and nonequilibrium dynamics meet.

Because of the strong dissipation, polariton condensates
can only be formed in the presence of the external pump. We
shall specifically address here the experimental configuration
that implies a nonresonant optical pumping. The pumping
creates a reservoir of noncondensed excitons. Due to the
stimulated scattering process, these excitons reduce their
energy by joining the condensate of exciton polaritons.
The excess of energy is dissipated in the crystal lattice, as
Fig. 1(a) schematically shows. Heating of the crystal lattice is
an unavoidable feature of any experiment with the incoherent
excitation of a polariton condensate. Although the threshold
of polariton lasing is relatively low, the heating of the sample
due to the relaxation of excitons to the exciton-polariton
condensate may be rather significant, especially in the
continuous wave-pumping regime [3].

In this paper, we demonstrate that the heat released during
the condensation may help localization of polariton conden-
sates in the plane of the cavity. We consider the local variation
of the crystal lattice temperature due to the emission of
acoustic phonons, which assist relaxation of hot excitons from
the reservoir to the condensate ground state. The temperature
increase induces the renormalization of the semiconductor
band gap, resulting in the lowering of the exciton energy
and thus favors localization of polaritons. This constitutes

a self-trapping mechanism that may lead to a formation of
self-localized condensate states that are constantly fed from
the reservoir due to the stimulated scattering processes.

The manifestation of the thermally induced condensate
self-trapping was experimentally observed [4] under coherent
polariton excitation by short optical pulses. Instead of the an-
ticipated diffusion away from the excitation spot, the collapse
of the polariton fluid into a tight spot has been observed in
these experiments. The observed localization was interpreted
in terms of the collective polaron effect induced by the local
heating of the crystal lattice. The similar self-trapping due to
the collective magnetic polaron effect was also predicted for
condensates of polaritons in semimagnetic microcavities [5,6]
and earlier for excitons in quantum wells [7].

Formation of localized states of polariton superfluids was
demonstrated both theoretically and experimentally in dif-
ferent microcavity systems. The most striking examples are
bright [8,9] and dark [10] solitons, which are formed at
the negative and positive effective mass regions of the low
polariton dispersion branch, respectively, dissipative solitons
and vortices [11,12], occurring due to the balance of gain and
superfluid density flows, etc. In the present work, we study
theoretically a new type of the localized states: collective
bosonic polarons. Formation of a bosonic polaron manifests
itself in the sink-type solution of the Ginzburg-Landau equa-
tion. This new topological state is formed under inhomoge-
neous nonresonant pump and represents a terminating line
connecting counterpropagating polariton flows with a bright
solitonlike intensity peak at the point where they meet.

II. THE MODEL

The model system under study is schematically shown
in Fig. 1(b). We consider a one-dimensional condensate of
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FIG. 1. (a) The schematic showing the dispersion of the low po-
lariton branch and the phonon-assisted scattering processes leading
to heating of the crystal lattice. (b) Sketch of a microcavity stripe
excited by a nonresonant pump. The polaron solution is formed as
the result of interference of the incoming polariton fluxes.

exciton polaritons, which is realized, for instance, in the case
of trapping of polaritons in a microcavity stripe or a microwire
[13]. The condensate is excited by a nonresonant continuous
wave pump. We apply the mean field approach using the
complex Ginzburg-Landau equation for the polariton wave
function (the order parameter) � coupled to the rate equation
for the density n of incoherent excitons:

ih̄∂t� =
[
−

(
h̄2

2m
− i�e

)
∂xx + gc|�2| + grn

+α(δT ) + ih̄

2
(Rn − γc )

]
�, (1a)

∂tn = −(γr + R|�2|)n + P (x). (1b)

Here m is the polariton effective mass, gc denotes polariton-
polariton repulsion strength, while gr describes the repulsion
between condensate polaritons and hot reservoir excitons. The
values of γr and γc are the condensate and the reservoir
decay rates, which are balanced by the pump P at the steady
state. The transfer of reservoir excitons to the condensate state
occurs with the rate R. The term containing �e accounts for
the effect of energy relaxation [13–16].

The term α(δT ) in Eq. (1a) is responsible for the shift
of the low polariton branch induced by the local variation
of the lattice temperature δT . Since the heat originates from
the exciton scattering from the reservoir to the condensate,
the energy transferred to the crystal lattice is proportional
to the rate of scattering events, Rn|�2|. We neglect by the
diffusive transport of the heat since it is slow on the pi-
cosecond timescale typical for the condensate dynamics. The
relaxation of the temperature caused by the heat transfer out
of the quantum well region or due to any other mechanisms
should be balanced by the heating source in the steady-state
regime. Thus we assume an instantaneous feedback of the
lattice temperature, i.e., we take the temperature variation δT

in the form δT = βRn|�|2, where β is a phenomenological
coefficient. The value of β is a key parameter of the polaron
formation that is governed by the balance of the heating and
relaxation mechanisms. The retardation effect discussed in
Ref. [4] is neglected here for simplicity.

The value of the polariton energy shift α(δT ) induced by
the temperature variation is dependent on the properties of
a quantum well material. Here we focus on microcavities
based on GaAs for which the energy band gap renormalizes

as εg(T ) = εg(T = 0) − 0.541T 2

T +204 (the energy is measured in
meV) [17]. We assume that the exciton energy follows the
same dependence. The energy of the lower polariton branch
is dependent on the exciton and the microcavity photon
energies: εpol = C2

pεcav + C2
xεex − 2CxCp�, where Cx,p =

1√
2
(1 ± δ√

δ2+4�2 )
1/2

, δ = εcav − εex is the cavity-exciton de-
tuning, and � is the Rabi splitting. Neglecting the dependence
of the Hopfield coefficients Cx,p on the exciton-photon detun-
ing δ that is valid at the bottom of the lower polariton branch,
we denote α(δT ) = �εpol = εpol(T ) − εpol(T = T0), where
T0 is the lattice temperature in the empty cavity (without
condensate). Thus at zero detuning δ = 0, and in the limit of
low temperature where both T0 and δT do not exceed few tens
of Kelvin, one can express

α(δT ) ≈ −2α0T0δT − α0δT
2, (2)

where α0 = 1.325 × 10−3 meV K−2. The minus sign in
Eq. (2) corresponds to the effective attraction between polari-
tons, which should affect the spectral and the spatial structure
of the condensate.

III. HEAT-ASSISTED FORMATION OF THE COLLECTIVE
BOSONIC POLARON SOLUTION

The impact of the heating on the properties of the po-
lariton condensate is investigated below. We are particularly
interested in the steady-state solution for the polariton density
� = ψ (x)e−iμt formed in the presence of the spatially inho-
mogeneous pump having a Gaussian shape:

P (x) = P0e
−x2/w2

, (3)

where w is the pump width. We simulate the condensate
dynamics described by Eqs. (1)–(3) on the timescale of several
nanoseconds (depending on the system parameters) that is
enough for the formation of the steady state. We assume that
at t = 0 the continuous wave pump is switched on and the
condensate starts growing from the low amplitude white noise
which mimics the thermal fluctuations of the polariton field.

When heating of the crystal lattice is neglected (dashed
curves in Fig. 2), i.e., β = 0, the condensate density acquires a
“bell-shaped” profile [11], see Fig. 2(a). In this case, because
of the polariton-polariton repulsion, the condensate flows out-
ward from the pump spot. The polariton flux j = h̄

m
�(�∗∂x�)

gradually grows with the distance from the center [Fig. 2(d)]
and decreases at the periphery of the condensate spot.

In contrast, once the thermally induced nonlinear terms
Eq. (2) are taken into account, we observe the appearance
of a new nontrivial feature in the spatial distribution of the
polariton condensate (solid curves in Fig. 2). Namely, two
counterpropagating currents flow toward the center of the
pump spot, see Fig. 2(d). These currents interfere at the
meeting point, forming a stable bright solitonlike pattern with
oscillating tails, Fig. 2(a). This density maximum corresponds
to the pronounced collapse of the flux divergence, div(j ) =
∂xj (x), down to negative values, see Fig. 2(d). Thus the
central peak connects two domains of the incoming fluxes and
serves as a sink.

The class of sink solutions is described by the theory
of complex Ginzburg-Landau equation [19]. Besides, the
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FIG. 2. The self-localized steady-state solution formed by the
Gaussian pump, in the absence of thermally induced energy red shift,
β = 0 (dashed curves) and in the presence of it with β = 0.1 K ps
μm (solid curves). (a) The polariton density |�|2. The dash-dotted
curve sketches the pump intensity profile. (b) The distribution of
excitons in the reservoir, n. (c) The spatial spectra of the solutions
shown in panel (a). (d) The polariton flux j (red curves, right axes)
and the divergence of the flux div(j ) = ∂xj (x ) (blue curves, left
axes). The pump amplitude is P0 = 3P th, where P th = γcγr/R is
a condensation threshold in the system with a homogeneous pump.
Values of the other parameters are given in Ref. [18].

scheme for the observation of a sink-type state of polariton
condensate was proposed recently [15]. The approach of
Ref. [15], however, does not account for the effect of heating.
Instead, it implies the specifically designed inhomogeneous
pump constructed by the long homogeneous region and two
high peaks at the edges, which generate counterpropagating
polariton currents. Quite contrarily, in our case this state
forms spontaneously in the presence of a spatially extended
Gaussian pump.

The observed sink-type state supersedes the outflowing so-
lution if the efficiency of heating characterized by β parameter
exceeds some critical level, β > βc. The spatial spectrum of
the steady state clearly illustrates this transition. The spectrum
of the sink-type solution is characterized by the two pro-
nounced maxima at k = ±km, see Fig. 2(c), while km = 0 for
the outflowing steady state solution. Figure 3 shows the km(β )
dependence calculated by the multiple numerical solution of
the Eqs. (1)–(3) for various values of β. The value of km and
thus the magnitude of the polariton flux increases for β > βc.
Note that the value of βc decreases with the growth of the
pump amplitude P0.

The key characteristic of the observed sink-type state is
its localization length, which is associated with the density
peak width 2r0. We estimate this value as a distance between
two minima closest to the central peak, see Fig. 3(a). Since
the density peak appears as the result of interference of the
incoming polariton fluxes, its width for a fixed pump intensity
is inversely proportional to the dominant condensate wave
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FIG. 3. Properties of the collective polaron state. Panels (a),
(b), and (c) show the dependencies of the dominant condensate
wave vector km, chemical potential μ, and the localization length
on the heating efficiency characterized by β parameter for different
amplitude of the Gaussian pump Eq. (3) indicated in (a). (d) The
shape of the self-induced nonlinear potential V (x ) for three different
values of β indicated in (a).

vector km characterizing the flux. Being delocalized at β � βc,
the peak width steeply reduces down to several micrometers
as the impact of the heating grows, see Fig. 3(c).

To reveal the origin of the structure of the observed so-
lution, we perform the Madelung transformation of Eq. (1a),
substituting � = √

ρ(x)eiφ(x)e−iμt and neglecting energy re-
laxation term for simplicity:

∂xj = [Rn − γc]ρ, (4a)

h̄μ
√

ρ =
(

− h̄2

2m
∂xx + V (x) + m

2

j 2

ρ2

)√
ρ, (4b)

where V (x) = gcρ + grn + α(δT ) is an effective nonlinear
potential and the flux is j = h̄

m
ρ∂xφ.

Formation of the collective bosonic polaron solution
should be attributed to the self-focusing effect originating
from the heating of the lattice. If the condensate density
is high enough and the heating effect is pronounced, the
nonlinear potential V (x) becomes trapping at β > βc [see
Fig. 3(d)] and the potential gradient ballistically accelerates
the condensate toward the center. Actually, if the pump in-
tensity has a smooth profile, the first term in Eq. (4b) can be
omitted. Thus the spatial variation of the nonlinear potential
V (x) must be compensated by the flux j growing toward
the center. Note that the chemical potential μ of the polaron
state is almost independent on β for β > βc, Fig. 3(b). It
indicates that, regardless of the depth of the self-induced trap
V (x), the potential energy converts into the kinetic energy
of the flowing condensate providing the conservation of the
condensate chemical potential [20].
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FIG. 4. (a) The domain of existence of the sink-type polaron
state (green shaded region). The bright (pink) region shows the
domain where the stable polaron-free solution is established. The
hatched region indicates the dynamically unstable states. Red and
blue lines indicate the positions of the homogeneous state instability
domains P2 and P1, respectively, shown in panel (b). The solid curves
correspond to R = 0.0075 ps−1μm while dashed curves correspond
to R = 0.0025 ps−1μm. (b) The largest linear growth rate (measured
in ps−1) of the small perturbations of the homogeneous ground state
as a function of their momenta q for different pumping intensities P0.

Note that the existence of the converging polariton currents
is sustained by the presence of the reservoir, whose density
n(x) = P (x)/(γr + R|�(x)|2) peaks near the pump bound-
aries, see the solid curve in the Fig. 2(b). According to Eq. (4b)
these peaks indicate the local gain and serve as sources for the
polariton fluxes, see Fig. 2(d). In contrast, for the outflowing
state two sinks, i.e., the regions where ∂xj < 0, are located
near the pump boundaries.

IV. STABILITY OF THE COLLECTIVE BOSONIC
POLARON SOLUTION

Even though the self-trapping mechanism favoring forma-
tion of the sink-type solution works always provided that the
heating is strong enough, the formation of the stable polaron
state requires the specific combination of the parameters of
the experiment.

The domain in the parameter plane (P0, β ), where the sta-
ble sink-type polaron state is formed, is shaded with green in
Fig. 4(a). The left boundary of this domain corresponds to the
critical value βc at which the antitrapping nonlinear potential
V (x) changes into the trapping one, see Fig. 3(d). Note that
the value of βc slightly depends on the pump amplitude. The
pink region in the left part of Fig. 4(a) corresponds to the
polaron-free state.

Note that the sink-type state becomes unstable either under
the conditions of low pump intensity or at high values of
β. In the latter case, the solution is unstable against weak
perturbations and it is eventually destroyed, even if being
initially formed at the onset of condensation. The stability
properties of the polaron state are strongly affected by the
system parameters.

The position of the right and the bottom boundaries of the
stability domain can be estimated analytically in the limit of
a large pump spot. In this case, the condensate profile slowly

varies in space and its properties are similar to those of a ho-
mogeneous infinite condensate under the homogeneous pump
P (x) = P0, for which |ψ |2 = (P0 − P th )/γc and n = γc/R.
On the other hand, it is well known that the homogeneous con-
densate is prone to lose its dynamical stability in a particular
range of parameters [21–23]. So, the loss of stability of the
incoming polariton currents should be considered as the main
cause, preventing formation of the sink-type solution [15,19].

The stability properties of the condensate can be analyzed
using the Bogolubov-de Gennes [24] approach, which implies
perturbation of the steady state and subsequent solution of the
eigenvalue problem for the linearized system Eqs. (1). The
details of this calculation are accumulated in the Appendix.

The stability analysis shows that the ground-state conden-
sate (k = 0) is unstable against long wavelength perturbations
at the pump power, which is above the threshold P th but below
some critical value P1. The corresponding linear growth rates
of the perturbation with the wave vector q are shown in
Fig. 4(b) in the parameter plane (P0, q ). The heating of the
lattice also gives rise to the instability, which evokes excitation
of the high-momenta states and occurs for all pump powers
above some critical value P2.

The dependencies of the critical pump powers P2 and P1 on
β are shown in Fig. 4(a) by the red and the blue solid curves,
respectively. The ground state is dynamically stable provided
that P1 < P < P2, i.e., if β < βinst � 0.116 K ps μm for the
considered model structure. The domain of existence of the
stable polaron state is slightly wider, which is consistent with
the previously reported results about stability of the polariton
condensate in the presence of the Gaussian-shaped pump [14].

The conditions β > βc and P2 > P1 constitute the criteria
of the formation of a sink solution. Note that the value of
βinst is dependent on the system parameters and may be close
to or even smaller than βc. Thus with the reduction of the
transition rate R, the boundaries of the instability domain shift
toward lower value of β. At the same time, the position of
βc appears to be almost independent on R. For instance, at
R = 0.0025 ps−1μm [dashed curves in Fig. 4(a)] the stable
sink-type state does not exist.

For the considered parameters, the critical value of the
energy renormalization constant βc ≈ 0.07 K ps μm corre-
sponds to the local temperature increase about a few units
of Kelvins at the center of the pump spot. This value seems
to be experimentally accessible [25] in the continuous wave-
pumping regime. Actually, scattering of an exciton from the
reservoir to the condensate releases heat comparable to the
Rabi energy h̄�, which reaches 10 meV in GaAs samples.
Thus the total heat-flux density h̄�Rn|�|2, which is about
tens of W/cm2, allows heating of the quantum well structure
on δT at the subnanosecond timescale.

We note that the predicted collective bosonic polaron
regime has never been experimentally observed so far under
continuous pumping in 1D microcavities to the best of our
knowledge. This is most likely because of the peculiar stabil-
ity properties of the observed sink-type solution.

V. CONCLUSIONS

We have studied theoretically the self-localization of
exciton-polariton condensate due to the heating of the crystal
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lattice caused by the relaxation of reservoir excitons into
the single quantum state. If the heating efficiency exceeds
the critical level, the effective nolinear trapping potential is
formed. Because of its driving-dissipative nature, the polariton
condensates support the persistent currents flowing toward
the center of the trap where the condensate acquires the
solitonlike density peak. The formation dynamics of collective
bosonic polarons described here is specific for 1D systems
that sustain sinklike solutions of the generalized complex
Ginzburg-Landau equations. This finding sheds light on the
paradoxical self-trapping effect that seems to contradict the
superfluid nature of polariton condensates documented in a
number of previous works. We show that there is no con-
troversy here, as the self-localized state is formed due to the
interference of two superfluid currents.
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APPENDIX: STABILITY ANALYSIS OF THE
HOMOGENEOUS SOLUTION

In the case of homogeneous pump, P (x) = P0, the steady-
state solution of Eqs. (1) is �(x) = ψ0e

−iμt+ikx and n(x) =
n0, where

|ψ0|2 = (P0 − P th )/γc, n0 = P0/γr, (A1)

k is the momentum characterizing the homogeneous solution,
μ is its chemical potential, P th = γcγr/R is the condensa-
tion threshold. In the ground state, k = 0 and h̄μ = h̄2k2

2m
+

(gc − 2T0α0βRn0)|ψ0|2 + grn0 − α0β
2R2n2

0|ψ0|4.
A stability analysis of this solution can be performed

by the standard Bogolubov-de Gennes approach [24], which
implies introduction of the perturbation of the solution in the
form

� = (ψ0 + νeiλt/h̄+iqx + ζe−iλ∗t/h̄−iqx )e−iμt+ikx, (A2a)

n = n0 + ηeiλt/h̄+iqx + η∗e−iλ∗t/h̄−iqx, (A2b)

where q is the momentum characterizing weak perturbations
ν, ζ and η. Linearizing the system Eqs. (1) with respect to the
perturbations we reduce the stability analysis to the eigenvalue
problem ‖L̂q − λÊ‖ = 0 for the matrix

Lq =

⎛
⎜⎝

D(+)
q + N1 N1 N2/ψ0 + ih̄

2 Rψ0

−N1 −D(−)
q − N1 −N2/ψ0 + ih̄

2 Rψ0

−ih̄Rψ0n0 −ih̄Rψ0n0 −ih̄(γr + R|ψ0|2)

⎞
⎟⎠,

(A3)

where Ê is the identity matrix, N1 = gc|ψ0|2 − α1n0|ψ0|2 −
2α2n

2
0|ψ0|4, N2 = gr |ψ0|2 − α1|ψ0|4 − 2α2n0|ψ0|6

where α1 = 2α0T0βR and α2 = α0β
2R2. D±

q =

q (μm-1) q (μm-1) 
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FIG. 5. The Lyapunov spectra of the condensate ground state
formed by the homogeneous pump with amplitudes (a) P0 = 2P th

and (b) P0 = 4P th. Solid curves show the real part of the perturbation
frequency λ while dashed curves show the imaginary part. The insets
show magnified regions in the frames.

( h̄2

2m
∓ i�e )(q2 ± 2kq ) are the linear dispersions of the

perturbations with the momenta k + q and k − q, respectively.
The solution is stable if the imaginary part λi of the eigenvalue
λ = λr + iλi is positive for any q.

The dispersion of the real and imaginary parts of the Lya-
punov exponent λ(q ) in different regimes are shown in Fig. 5.
The instability associated with the Goldstone mode whose
dispersion tends to zero at k = 0 appears under the moderate
pump powers, which are close to the threshold, see Fig. 5. The
upper limit P1 of the pump powers supporting the instability
[see Fig. 5(a)] can be obtained from the characteristic cubic
equation corresponding to the eigenvalue problem for the
matrix Eq. (A3). Since the stability of the considered solution
is governed by the change of the sign of the imaginary part λi

of the perturbation frequency, the terms containing λi can be
omitted. In this case, the characteristic equation reduces to the
following conditions:

λ3
r + Bλr = 0, (A4a)

Aλ2
r + D = 0, (A4b)

where A = h̄P0/n0 − 2�eq
2, B = ( h̄2

m
N1 + 2h̄�eP0/n0)

q2 + ( h̄4

4m2 + �2
e )q4 + h̄2R2|ψ0|2n0, and D = ( h̄3

m
(N1P0/n0 −

Rn0N2) + h̄2�eR
2|ψ0|2n0)q2 + h̄P0/n0( h̄4

4m2 + �2
e )q4. The

Eqs. (A4) have a solution λr = 0 and D = 0. The latter
condition determines the boundary of the lower instability
domain in the (P, q ) plane in Fig. 5(a). The value of
P1 is determined from the single root of the P (q ) plane
dependence, corresponding to q = 0 [21]. In this case, from
the condition D = 0 one can obtain

P1 = γc

grγc + P th(α1 − 2α2P
th/R) − �emγc/h̄

Rgc − 2α2P thγc/R
. (A5)

Under α0 = 0 and �e = 0 this expression reduces to the
well-known criterion of the modulational instability of the
nonresonantly pumped polariton condensate ground state:
P0/P

th < γcgr/γrgc [21,22,26].
Note that the instability associated with the Goldstone

mode involves excitation of the long-wavelength pertur-
bations. Thus, in the system with the finite-size pump,
the instability appears only if the pump profile is smooth
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and the pump width is comparable with the perturbation
wavelength.

Accounting for the heat released during condensation gives
rise to the instability of a new type, which evokes excitation
of the high-momenta states [see Fig. 5(c)] and occurs for
all continuous pump powers above P2. The boundary of the
domain associated with this instability can be also determined
from the system Eqs. (A4). The second solution of Eqs. (A4)
corresponds to λ2

r = −B and requires negative values of B.
The latter becomes possible, provided that N1 < 0, i.e., if the
heat-assisted energy red shift α1n0|ψ0|2 + 2α2n

2
0|ψ0|4 dom-

inates the blue shift from the polariton-polariton repulsion
gc|ψ0|2. The boundary of the instability domain in the (P, q )
plane obeys the following parametric equation which follows

from Eq. (A4b):

2�e

h̄

(
h̄2

4m2
+ �2

e

h̄2

)
q6 +

(
2�eN1

h̄m
+ 4

�2
eRP0

h̄2γc

)
q4

+
(

2
R2P 2

0 �e

h̄γ 2
c

+ γcN2

m
+ �e

h̄
P0(P0 − P th )

)
q2

+ R2

γc

P0(P0 − P th ) = 0. (A6)

The value of P2 corresponds to the minimum of P (q ) de-
pendence obeying P2 > P th. It indicates the maximum pump
strength supporting a stable ground-state solution, provided
that P2 > P1.
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