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First-principles quantitative prediction of the lattice thermal conductivity in random
semiconductor alloys: The role of force-constant disorder
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The standard theoretical understanding of the lattice thermal conductivity κ� of semiconductor alloys assumes
that mass disorder is the most important source of phonon scattering. In contrast, we find that for the random
alloy In1−xGaxAs the hitherto neglected contribution of interatomic force-constant (IFC) disorder is essential
for the prediction of κ�. We present an ab initio method based on special quasirandom structures and Green’s
functions which includes the role of IFC disorder and apply it in order to calculate κ� of In1−xGaxAs and
Si1−xGex alloys. We show that, while for Si1−xGex , phonon-alloy scattering is dominated by mass disorder,
for In1−xGaxAs, the inclusion of IFC disorder is fundamental to reproduce the experimentally observed κ�. We
relate this to the underlying atomic-scale structural disorder in In1−xGaxAs. This feature is common to most
III-V and II-VI random semiconductor alloys, and we expect the inclusion of IFC disorder in modeling lattice
thermal conductivity to be important for a wide class of materials.
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I. INTRODUCTION

Random semiconductor alloys are receiving a considerable
amount of attention due to their central role in a wide range
of technologies, such as photonics [1,2], electronics, and opto-
electronics [3–5]. It has been observed that important physical
quantities, such as the lattice parameters and electronic band
gap, can be made to vary continuously between the limiting
values of the parent compounds [6], making the possibility of
tuning the alloy properties through the component concentra-
tions of particular interest.

The determination of the thermal conductivity κ is an
essential part for the design of all power-dissipating devices,
such as lasers, diodes, and transistors, based on these alloys.
The ability to accurately calculate κ from first principles is,
therefore, particularly attractive, as it can significantly help the
discovery and design of materials with desirable thermal prop-
erties. In the last decade, the combination of density functional
theory (DFT) with the Boltzmann transport equation (BTE)
has proved to be a reliable method for accurately determining
κ of many semiconductor and insulator materials. In these
systems, phonons are the main heat carriers, and the principal
contribution to κ is the lattice thermal conductivity κ�, which
can be obtained from the ab initio computation of interatomic
force constants [7,8]. While methods based on this approach
are nowadays well established for calculating the κ� of single
crystals [9–13] and are showing promising results for crystals
with pointlike and extended defects [14–19], a method able to
correctly describe κ� of general random semiconductor alloys
is still missing. Currently, the most commonly employed
approach is based on the virtual-crystal approximation (VCA)
[20]. It consists of describing the random alloy by an effective
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medium whose properties [lattice constants, interatomic force
constants (IFCs), masses, etc.] are given by the concentration
average of the equivalent properties in the parent compounds.
The thermal conductivity is then calculated from the averaged
IFCs, and the effect of the alloy disorder on phonon transport
is taken into account by introducing a mass perturbation in
an approach analogous to the one employed by Tamura in
the study of phonon scattering due to isotopic disorder [21].
This method has been successfully employed in calculating
κ� of materials such as Si1−xGex [22] and Mg2Si1−xSnx

[23]. However, it is not adequate to describe III-V and II-
VI random semiconductor alloys, as one may see from the
comparison between the VCA calculation for In1−xGaxAs
[24] and the corresponding experimental values [25,26]. This
lack of success can be linked to the primary hypothesis of
the VCA, namely, the representation of an alloy through a
nonstructural effective medium. In this medium, alloy atoms
are placed in the exact same environment as they have in the
parent compounds, and bond distances are simply assumed
to depend linearly on the alloy concentration. In contrast,
experimental observations have found that the atomic-scale
structure of semiconductor alloys is actually characterized
by large fluctuations from the average-medium structure of
the VCA [6]. The presence of this structural disorder at the
atomic scale will greatly affect the material’s IFCs in a way
that cannot be modeled by simply averaging over the pure-
compound ones.

A rigorous treatment of the IFC disorder in random alloys
is a long-lasting issue in the theoretical study of phonons
in disordered systems [27]. The coherent potential approxi-
mation (CPA) is a single-site self-consistent approximation
which was initially concerned with only mass disorder but
was later generalized to include the IFC disorder in a sim-
plified way [28–31]. An alternative approach is based on
describing the alloy by a small cluster of atoms embedded
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in an effective medium [32]. Such an approach was applied
to study the phonon density of states of the mass-disordered
linear chain [33], where it was found to yield more accurate
results than the CPA. A detailed review of the application
of such approximations to the phonon problem is given by
Elliott et al. [34] and Dow et al. [35]. More recently, rigorous
techniques able to take into account the off-diagonal disorder
brought by the IFCs have been developed. These are based
on the augmented-space formalism [36] and employ either
a recursive method [37] or multiple-scattering theory [38].
Both have shown that the inclusion of the IFC disorder is
essential for an accurate reproduction of the phonon disper-
sion relations of binary metal alloys characterized by IFCs
which strongly differ between the parent compounds. Such
approaches have also been used recently in combination with
first-principles calculations and have shown a high predictive
power [39,40]. Molecular dynamics has also been proposed
as an alternative approach for semiconductor alloys coupled
with the Green-Kubo modal analysis approach [41]. While in
principle applicable with first-principles calculations [41], the
method until now was based on empirical potentials, thereby
limiting its predictive power.

Notwithstanding the progress in the theoretical description
of lattice vibrations in random alloys, the first-principles
determination of κl within the BTE is still mainly limited
to the VCA. The main aim of this study is to extend the
VCA in order to take into account the effect of the IFC
disorder on the phonon elastic scattering processes. Details
about the approximation employed in this study are given in
Sec. II B; in brief, we employ a simplified approach related
to the embedded-cluster approximation [32,33], in which the
alloy is described by a finite number of atoms and an effective
medium. In contrast to the embedded-cluster approximation,
where the effective medium is described by the self-consistent
CPA Green’s function, in our approach the medium resembles
the one given by the VCA. Furthermore, each atom in the
alloy is considered an independent scatterer to which we
relate an effective perturbation obtained from averaging the
local perturbations associated with atoms of a given chemical
species. We show that such an approach allows us to directly
take into account the effect of structural disorder, through
the inclusion of IFC perturbations, in a way which is both
computationally simple, compared to the augmented-space-
based approaches, and compatible with the existent DFT-BTE
formalism.

We take cubic In1−xGaxAs as a model material as it can
be considered a prototype system of a random alloy with
an atomic-scale structure that significantly deviates from the
VCA description. Homogeneous samples produced as ingots
and bulk crystals are found to be random at any composi-
tion [42]. At the same time, extended x-ray-absorption fine-
structure (EXAFS) measurements clearly show that the Ga-As
and In-As nearest-neighbor (NN) distances in In1−xGaxAs are
only weakly affected by the alloy concentration and assume
values similar to those in the parent compounds [43]. As a
result, the As-As NN distances show a bimodal distribution,
while cation-cation distances, which agree better with the
VCA, are still distributed over a somewhat broad range [43].
The presence of such structural disorder at the atomic scale is

not unique to In1−xGaxAs but is observed in most III-V and
II-VI random semiconductor alloys [6].

We show that by directly taking into account the local
atomic-scale structural disorder a big improvement over the
VCA can be achieved. The room-temperature experimentally
observed κ� of In1−xGaxAs random alloys is reproduced
within a relative error of around 10%, which is an accuracy
comparable to the best predictions achieved for single crys-
tals. On the other hand, we also show that in Si1−xGex random
alloys, the IFC disorder does not have a relevant effect on
the phonon-alloy elastic scattering rates, which explains why
nonstructural models such as the VCA are adequate for this
compound.

II. THEORETICAL FRAMEWORK

A. Lattice thermal conductivity

The components of the lattice thermal conductivity tensor
κ� can be obtained from the solution of the BTE in the
relaxation-time approximation as

κ
αβ

� = 1

kBT 2V

∑

q,p

n0(n0 + 1)(h̄ωq,p )2vα
q,pvβ

q,pτq,p, (1)

where α and β range over the Cartesian coordinates, q and p

represent the phonon wave vector and branch, respectively,
kB is the Boltzmann constant, T is the temperature, V is
the system unit cell volume, n0 is the Bose-Einstein distri-
bution, ω and v are the phonon angular frequency and group
velocity, respectively, and τ is the relaxation time [7,8]. For
a given system, the scattering rates τ−1

q,p can be expressed
as the sum of the scattering rates arising from the relevant
scattering mechanisms (Matthiessen’s rule). In the case of
bulk semiconductor alloys at around room temperature, the
most relevant scattering processes involve the three-phonon
inelastic scattering and the elastic scattering with the alloy
disorder. We can therefore express τ−1 as

τ−1 = τ−1
3p + τ−1

dis , (2)

where τ−1
3p and τ−1

dis represent the rates arising from the above-
mentioned inelastic and elastic scattering processes, respec-
tively.

We calculate the three-phonon scattering rates for the
alloys in the VCA from the third-order IFC of the parent
compounds, as described in Refs. [7,8]. This assumes that the
anharmonicity of the disordered alloy can be approximated
by that of the effective medium. Such approximation does not
seem so severe, as one would expect the configuration average
of the third-order IFC of the disorder system to resemble,
as a first approximation, that of the effective medium. In
the present study we show that this is indeed the case for
second-order IFCs. Furthermore, such an approximation is,
in any case, necessary, as the computational cost involved
in calculating the third-order IFCs in disordered systems is
prohibitive.

The next sections explain how the τ−1
dis term is calculated in

the present study.
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B. Scattering due to disorder

The main difficulty in calculating κ� of random alloys is the
evaluation of the elastic scattering rates τ−1

dis , which entails the
theoretical description of the vibrational properties of random
alloys.

We start by considering the harmonic description of an
ideal crystal. Suppose we are considering a finite portion of
the crystal made of Nc primitive cells, each one contain-
ing r atoms, whose masses are indicated by M0(η), with
η = 0, 1, . . . , r − 1. The crystal Hamiltonian in the harmonic
approximation is

H0 =
∑

lηα

pα (lη)

2M0(η)
+ 1

2

∑

lηα

∑

l′η′β

�0
αβ (lη; l′η′)uα (lη)uβ (l′η′),

(3)

where l is an index used to label the lth primitive cell in
the crystal, �0

αβ (lη; l′η′) is an element of the 3rNc × 3rNc

second-order IFC matrix, and uα (lη) is the operator describ-
ing the displacement from the equilibrium position of atom η

in the primitive cell l along the Cartesian direction α. In matrix
form, the equations of motion for this system can be written
as [44]

(Φ0 − ω2M0)u = 0, (4)

where M0 is the diagonal 3rNc × 3rNc mass matrix. Equa-
tion (4) can be reduced to [44]

D0(q)eq,p = ω2
q,peq,p, (5)

where D0(q) are the 3r × 3r Fourier-transformed dynamical
matrices.

Having solved the eigenvalue equation for the ideal crystal,
we can calculate its Green’s function g, defined by [45]

(ω2I − H0)g(ω2) = I. (6)

Using the fact that H0 is a Hermitian matrix, we can define
the system retarded Green’s function g+ in terms of its
eigenvalues and eigenvectors:

g+(ω2) = lim
ε→0+

∑

q,p

|q, p〉〈q, p|
ω2 − ω2

q,p + iε
, (7)

where |q, p〉 is the representation of the back-transformed eq,p

in Dirac’s notation.
Let us consider now the introduction of substitutional

defects on the ideal crystal. We can write equations analogous
to (3) and (4) for the defective crystal by simply substituting
the ideal crystal masses M0(η) by the masses M (lη) of
defects replacing atoms η in the primitive cell l. Similarly,
the presence of these defects will also change the system
harmonic force constants, which entails the substitution of the
elements of Φ0 with those of a new IFC matrix Φ. The analog
of Eq. (4) for the defective system is then

(Φ − ω2M)u = 0, (8)

which we rewrite as

{(Φ0 − ω2M0) + [�Φ + �M(ω2)]}u = 0. (9)

Equation (9) introduces the mass perturbation, �M(ω2), and
IFC perturbation, �Φ, matrices, whose elements are given by

�Mαβ (lη, l′η′)(ω2) = −ω2[M (η) − M0(η)]δll′δηη′δαβ,

��αβ (lη, l′η′) = �αβ (lη, l′η′) − �0
αβ (lη, l′η′), (10)

respectively. The influence on the ideal crystal equations of
motion introduced by the substitutional impurities is therefore
expressed through the introduction of the perturbation V ≡
�Φ + �M(ω2).

We can now write the retarded Green’s function of the
perturbed crystal G+ in terms of this perturbation and the
retarded Green’s function of the ideal crystal as [45]

G+ = g+ + g+VG+, (11)

which can be expanded in a Born series,

G+ = g+ + g+Vg+ + g+Vg+Vg+ + · · · , (12)

and has the formal solution

G+ = (I − g+V)−1g+, (13)

or in terms of the T matrix T+ = (I − Vg+)−1V,

G+ = g+ + g+T+g+. (14)

We consider now the case of a random alloy. To describe its
vibrational properties we introduce an effective medium with
the space-group symmetry of the parent compounds. Such a
medium could, for example, be constructed employing the
VCA or could be described by the CPA Green’s function,
as in the embedded-cluster approximation [33]. Within this
picture, the actual alloy in a particular configuration σ can
be seen as a perturbation on the effective medium. Therefore,
we can then obtain the Green’s function of the alloy in terms
of the one of the effective medium g+ and the perturbation
introduced by the alloy disorder. It is easy to see that all
the steps involved are the same as those leading to Eq. (11),
with the difference that now the perturbed Green’s function
is indexed by the particular alloy configuration: G+(σ ). The
macroscopic properties of the random alloy are given by an
average over all the possible configurations σ , and thus, one
has to consider the averaged Green’s function 〈G+〉 [34].

Obtaining the averaged Green’s function is one of the main
difficulties in the theoretical study of random alloys. We do
not aim to rigorously perform the averaging but instead to find
an approximate expression for the T matrix which is suitable
for calculating τ−1

dis . We start from Eq. (12) and perform the
average on both sides to obtain

〈G+〉 = g+ + g+〈V〉g+ + g+〈Vg+V〉g+ + · · · . (15)

The Green’s function of the effective medium g+ has been
taken out of the average since it clearly does not depend on
the particular alloy configuration. In a truly random alloy,
the occupancy probabilities of the various atomic sites are
statistically independent of one another. Based on this ob-
servation, in a single-site theory, 〈G+〉 of Eq. (15) could be
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approximated as

〈G+〉 ≈ g+ + g+〈V〉g+ + g+〈V〉g+〈V〉g+ + · · · . (16)

Therefore, assuming the Born series converges, we obtain

〈G+〉 = (I − g+〈V〉)−1g+. (17)

In such an approximation we identify an effective T

matrix by

T+ = (I − 〈V〉g+)−1〈V〉. (18)

This T matrix can thus be obtained from the averaged pertur-
bations and the Green’s function of the effective medium. At
this point, the elastic scattering rates can then be calculated
from the imaginary part of the diagonal elements of the
T matrix, employing the optical theorem, as explained in
Ref. [46]:

τ−1
dis,q,p = − 1

ω(q, p)
Im(〈q, p|T+|q, p〉). (19)

Equations (18) and (19) describe the scattering between
phonons and an effective averaged perturbation. Even though
the equation was derived considering a single-site perturba-
tion, as a first approximation, we assume that the same form
of the effective T matrix can also be used to describe the
scattering between phonons and a general perturbation with
off-diagonal terms.

We are left with the problem of obtaining the IFC pertur-
bation, for which a structural alloy model that allows the first-
principles calculation of the IFCs of the disordered system
is necessary. To this end, we employ special quasirandom
structures (SQSs) [47]. These are supercells built in such a
way that the correlation functions of a given set of atomic
clusters (pairs, triplets, etc.) match those of a true random al-
loy as closely as possible. This approach, unlike nonstructural
models, allows for a direct description of the local atomic
structure and therefore for a quantitative evaluation of the
effect of structural disorder on the system’s IFCs. The use of
SQSs in the first-principles DFT computation of second-order
IFCs has been demonstrated in metallic alloys, where SQSs
containing as few as 32 or 64 atoms allowed for accurate
reproduction of the phonon band structure [39,40,48].

C. Effective medium

We now describe how the effective medium is constructed
in the present study. Once the medium is defined, we can
obtain its phonon properties such as the dispersion relations,
group velocities, and the Green’s function, necessary for the
calculation of the lattice thermal conductivity given by Eq. (1).

As mentioned before, the effective medium could be con-
structed employing the VCA, i.e., by expressing the medium
atomic masses, cell parameters, and IFCs as the concentration
average of the respective quantities in the parent compounds.
In practice, we did not use the concentration-averaged second-
order IFCs, and thus, the effective medium used in this study is
slightly different from the one defined by the VCA. However,
taking In0.3Ga0.7As as an explicit example, we demonstrate
that the two media are essentially equivalent and the present
treatment is not affected by the particular choice of the
medium.

FIG. 1. Phonon band structure calculated for In0.3Ga0.7As from
the VCA force constants (dashed blue lines), compared with that
obtained from the symmetrized SQS force constants (thick black
lines). In both cases, the force constants were calculated using a
5 × 5 × 5 supercell expansion of the zinc-blende primitive cell.

The second-order IFCs of our effective medium were ob-
tained by symmetrizing the SQS IFCs according to the space-
group symmetry of the parent compounds. This approach
was chosen in order to use the same reference system (the
SQS supercell) to calculate both � and �0 of Eq. (10). The
symmetrization procedure considers that the invariance of
the IFCs with respect to the space-group operations entails
that the IFC matrix element �αβ (η, η′) has to fulfill the
condition

�αβ

(
η, η′) = 1

|G|
∑

W∈G

∑

μ,ν

WαμWβν�μν

(
W−1(η);W−1(η′)

)
,

(20)

where |G| is the order of the effective medium space group
(whose translational subgroup is, however, limited to the
translations enclosed in the supercell boundaries) and W is
the linear part of the space group symmetry operation W ≡
{W |w} (in Seitz notation) that moves the supercell atoms
W−1(η) and W−1(η′) into η and η′, respectively. To simplify
the notation, we condensed the two indexes (lη) into a single
index η running over all the rNc atoms in the supercell. The
acoustic sum rule and the symmetry of the IFC matrix are then
self-consistently imposed.

Figure 1 shows a comparison between the phonon
band structure of the effective medium, representing the
In0.3Ga0.7As random alloy, obtained through the VCA and
through the symmetrization of the SQS IFCs.

D. Perturbation matrix and independent-scatterer
approximation

The IFC perturbation is obtained as the difference between
the “raw” SQS IFCs and the symmetrized ones, as described
by Eq. (10). According to Eq. (15), 〈V〉 should be obtained by
averaging several different systems. In practice, the approxi-
mation leading to Eq. (16) implies that we can obtain 〈V〉 from
a single SQS.
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To consider scattering processes consistent with the ef-
fective medium model, the perturbation must also be sym-
metrized. For the force-constant-related part of the perturba-
tion �Φ, we applied the same method outlined above, with the
exception that in Eq. (20) the first sum runs over the symmetry
operations belonging to the stabilizer of the crystallographic
site where the scattering atom is located (in addition, the sta-
bilizer order also replaces |G|). For example, in In1−xGaxAs
the perturbation on the effective medium due to an In, Ga, or
As atom is symmetrized employing the symmetry operations
of the point group Td .

We now apply the independent-scattering approximation in
order to calculate the T matrix. Each scatterer in the system is
considered independent (for In1−xGaxAs these scatterers are
Ga, In, and As). Such an approach is computationally very
simple, as it allows us to introduce a cutoff radius, which de-
fines the cluster size, beyond which the perturbation induced
by a given scatterer is considered to be zero. In practice we
have found that the elastic scattering rates converge within
a cutoff including the first five scatterer’s neighbors, which
considerably reduces the size of the matrices in Eq. (18).

Within our approximation, the perturbation averaging
is essential in order to reproduce the experimental κ� of
In1−xGaxAs. For example, using a single V instead of 〈V〉 in
Eq. (18) tends to give a too low κ�: around 2 W m−1 K−1 com-
pared to the experimental value of around 6 W m−1 K−1 for
a GaAs concentration around 70%. This is not surprising, as
in our approach the scattering between phonons and the alloy
disorder is described through an effective average perturbation
which reflects the underlying complex microscopic structure
of the random alloy [34]. On the other hand, a compound
containing a single impurity possesses an atomic-scale struc-
ture which is a very unlikely representative of the complex
atomic configurations observed in random semiconductor
alloys.

III. COMPUTATIONAL DETAILS

For both In1−xGaxAs and SixGe1−x random alloys, the
SQSs were generated from a 4 × 4 × 4 supercell expansion of
the zinc-blende primitive unit cell using the MCSQS module of
the ALLOY THEORETICAL AUTOMATED TOOLKIT package [49].
For both materials, the parent compounds have closely related
cubic structures (zinc blende for GaAs and InAs and diamond
for Si and Ge) to a rhombohedral primitive cell containing
two atoms. Therefore, the 4 × 4 × 4 SQS contains a total of
128 atoms per supercell. In addition, SQSs with 250 atoms,
corresponding to a 5 × 5 × 5 expansion of the primitive cell,
were considered for In0.3Ga0.7As and In0.75Ga0.25As in order
to evaluate the convergence behavior with respect to the
supercell size. For a given alloy concentration, SQSs were
built considering the correlation function of clusters made
of two, three, and four atoms, with interatomic distances
up to the seventh-nearest-neighbor shells for couples and
fourth-nearest-neighbor shells for triplets and quadruplets.
The largest mismatch between the correlation functions of the
fully random alloy and the SQSs was approximately 20% for
the triplet correlation function in a single SQS.

All DFT calculations were carried out with the projec-
tor augmented-wave method [50] as implemented by the

computational package VASP [51]. The vast majority of the
calculations were done within the local-density approximation
(LDA) [52]. In addition some calculations for In0.3Ga0.7As
and its parent compounds were performed employing the
Perdew-Burke-Ernzerhof exchange-correlation functional re-
vised for solids (PBEsol) [53]. For both functionals, a cutoff of
the plane-wave energy of 500 eV was used, and the electronic
structure was considered to be converged if the electronic
energy changed from the previous loop in the self-consistent
cycle by less than 10−8 eV. The supercell cell parameters
were fixed according to Vegard’s law. The ion positions in the
supercell were relaxed until the net force experienced by each

atom was less that 10−5 eV Å
−1

. For LDA calculations, for the
parent compounds of In1−xGaxAs and SixGe1−x information
about unit cell structure, second- and third-order IFCs, and,
when necessary, Born effective charges and the dielectric
tensor were taken from the online ALMABTE database [54].

Second-order IFCs were calculated for the SQS supercells
by means of the finite-displacement method. The displace-
ment creation and IFC extraction were carried out using
the PHONOPY package [55]. A displacement of 0.01 Å was
used in all LDA calculations. In PBEsol computations, both
second- and third-order IFCs were calculated employing the
finite-displacement method using a displacement amplitude
of 0.03 Å for second-order IFCs and 0.05 Å for the third-
order IFCs of the alloy parent compounds. The ab initio
calculations for the SQS employed a reciprocal-space mesh
which included only the � point. The only exception occurred
for In0.75Ga0.25As, for which a finer mesh had to be used.
The elastic and anharmonic scattering rates were calculated
employing a fine incident phonon mesh of 32 × 32 × 32 q
points. The unperturbed Green’s functions were calculated
with the analytical tetrahedron method for reciprocal-space
integration [56] employing a 25 × 25 × 25 q-point grid. All
the modules needed for these operations were developed
within the ALMABTE project [57].

IV. RESULTS

Figure 2 displays the bond length distributions obtained
after relaxing the atomic positions in the SQSs representing

FIG. 2. Bond length distribution in In0.3Ga0.7As (left) and
Si0.3Ge0.7 (right) obtained from the atomic distances calculated with
SQSs after applying a Gaussian broadening.
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FIG. 3. Lattice thermal conductivity κ� of In1−xGaxAs calculated
at 300 K from first principles with the VCA and with the improved
approach based on SQSs. Solid red circles and blue circles represent
values obtained using 128-atom and 250-atom SQSs, respectively.
The solid black circle is obtained using the PBEsol functional.
The experimental values obtained from Ref. [26] (open triangles),
Ref. [25] (open squares), and Ref. [60] (open hexagon) are shown
for comparison. For the In0.3Ga0.7As composition, where the depen-
dency of the results was tested for different supercell sizes, different
SQS configurations, and two different functionals, the results are also
shown as an inset using a linear scale for κ�.

In0.3Ga0.7As and Si0.3Ge0.7 random alloys. As one can see,
all the main features in the atomic-scale structure observed in
the EXAFS experiments can be obtained from the SQS su-
percells. In1−xGaxAs NN distances show two distinct peaks,
and fluctuations from the structure of the VCA medium are
noticeable even beyond the first coordination shell. In particu-
lar, the presence of the experimentally observed [43] bimodal
distribution of the As-As bond lengths is evident, and even
if cation-cation and cation-anion bond distances beyond NNs
show a single peak as the VCA predicts, their distribution is
broader than in Si1−xGex . For Si1−xGex we notice that the
VCA structure is reproduced. Specifically, the NN distances
possess a small tendency to a bimodal distribution, in agree-
ment with experiments [58,59], but to a lesser degree than
in In1−xGaxAs. Bond distances beyond the NN ones are, on
the other hand, concentrated around a single peak, indepen-
dently of the chemical nature of the elements forming the
bond.

To emphasize the role of the IFC disorder, we first calcu-
lated κ� for In1−xGaxAs using the VCA. The elastic scatter-
ing rates due to the alloy disorder τ−1

dis were obtained from
Tamura’s formula, which considers only the mass perturbation
[21]. The calculated κ� in the VCA is shown in Fig. 3 by
a thick black line (LDA) and a dashed line (PBEsol). It
is evident that this approximation largely overestimates the
measured value of κ�.

We then went beyond the mass perturbation picture and
directly took into account the IFC disorder using the SQS
supercell calculations and the Green’s function perturbative
treatment previously described. If not specifically stated,
the calculations were done employing the LDA exchange-

correlation functional, as only one alloy composition was
considered with PBEsol for the sake of comparing the results
given by two different functionals. We built several SQSs cor-
responding to different concentrations of In1−xGaxAs random
alloys (x = 0.25, 0.5, 0.7, and 0.85) mostly in the Ga-rich
region, where κ� predicted by the VCA in the LDA differs the
most from the experiments. In particular, for In0.3Ga0.7As we
considered two different SQSs in order to evaluate to what
extent the results are affected by the choice of the model
system. As displayed in Fig. 3, the two different SQSs lead to
values of κ� which differ by less than 0.4 W m−1 K−1. In order
to assess the effect of the exchange correlation functional
on the value of κ�, we redid all the calculations for one of
the SQSs of the composition In0.3Ga0.7As using PBEsol. We
obtained a value for κ� of 5.95 W m−1 K−1 (shown in the
inset with a black dot), which is in good agreement with both
the LDA and experimental values. Figure 3 also shows that
employing 128-atom SQSs is already sufficient to obtain a
value of κ� in very good agreement with the experimental data.

In the case of LDA calculations, one can notice that not
only does the value of κ� calculated with the VCA quanti-
tatively disagree with the experimental values and with the
results of our calculations, but there is also a qualitative
difference in the behavior of κ� with the alloy composition.
From Fig. 3, one can see that, as InAs is characterized by a no-
ticeably lower κ� than GaAs, the VCA predicts the minimum
of κ� to be in the In-rich region, around xGa = 0.35. This is
not surprising as the predicted κ� of InAs is lower than that of
GaAs (≈29 and ≈45 W m−1 K−1, respectively). On the other
hand, the experimental measurements and our calculations
suggest that the minimum is located in the region where the
In and Ga concentration in the alloy is around 50%. We note
that in the case of PBEsol calculations, the minimum value is
located in the same region found in the experiments. However,
the predicted κ� still largely overestimates the experimental
values. The discrepancy between LDA and PBEsol can be
explained by considering that PBEsol gives a larger κ� than
LDA for InAs (≈34 W m−1 K−1) and a smaller one for GaAs
(≈41 W m−1 K−1), which shifts the VCA-predicted minimum
from the In-rich region toward concentrations richer in Ga.

Finally, to emphasize the similarities and differences be-
tween our approach and the VCA, we also considered
Si1−xGex by building a single 128-atom SQS of Si0.3Ge0.7.
For this compound differences in κ� between our method and
the VCA amount to around 0.7 W m−1 K−1, which is less than
10%. This difference stems from the different recipes used to
calculate τ−1

dis due to the mass perturbation in the VCA and
in our approach. For the former, we used Tamura’s formula,
which we noticed gives slightly larger values of τ−1

dis with
respect to the values one obtains employing Eq. (19).

The different predictive power of the VCA between
In1−xGaxAs and Si1−xGex can be understood considering
Fig. 4. The picture compares the values of τ−1

dis , calculated
with our method, in In0.3Ga0.7As and Si0.3Ge0.7. The scat-
tering rates are obtained considering the different terms in
the expression 〈V〉 = 〈�M + �Φ〉. We notice that for both
compounds, for frequencies above 16 rad ps−1 ≈ 2.5 THz, the
effect of the IFC disorder perturbation on the scattering rates
is small, and the mass perturbation is the dominant term. For
Si1−xGex , this is true also below 16 rad ps−1 except for a very
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FIG. 4. Phonon-alloy elastic scattering rates calculated for
In0.3Ga0.7As (left) and Si0.3Ge0.7 (right) considering different types of
perturbations: mass plus force-constant disorder (black solid circles),
force-constant disorder (open blue squares), and mass disorder (open
red triangles).

small region around 1 rad ps−1, where the rates are close to
zero in any case. On the other hand, In1−xGaxAs is character-
ized by the strong influence of the IFC disorder perturbation
on τ−1

dis below 16 rad ps−1, corresponding to the region of the
acoustic phonons frequencies. The effect of this phenomenon
on κ� is particularly relevant since acoustic phonons are the
main heat carriers in these systems. This fact emphasizes the
inability of a simple mass perturbation to correctly describe
alloy disorder in In1−xGaxAs and ultimately explains the
failure of the VCA approach for this material. On the other
hand, if the IFC disorder in the alloy is sufficiently small, the
mass disorder will dominate the scattering processes, and the
VCA gives reliable results, as is the case with Si1−xGex .

The source of the exceptionally strong phonon-alloy scat-
tering found for In1−xGaxAs below 16 rad ps−1 partially
originates from the polar nature of the system, as shown
in Fig. 5. Here the elastic scattering rates are represented
with different colors and symbols according to the phonon

FIG. 5. Phonon-alloy elastic scattering rates calculated for
In0.3Ga0.7As for phonons with the wave vector parallel (left)
or perpendicular (right) to the Ga/In-As NN dipole. TA, LA,
TO, and LO indicate branches to which, respectively, transverse-
acoustic, longitudinal-acoustic, transverse-optic, and longitudinal-
optic phonons belong.

branch involved in the scattering process. On the left-hand
side we depict incident phonons with the wave vector parallel
to the [111] direction, along which lies the NN cation-anion
dipole of the zinc-blende structure, and on the right-hand side
we shown phonons with wave vectors along the [−1,−1, 2]
direction, which lies perpendicular to the [111] direction.
When the phonon wave vector is parallel to the dipole,
transverse-acoustic phonons (TA) are scattered much more
strongly than longitudinal-acoustic (LA) ones, giving rise to
the intense scattering rates shown in Fig. 4 for frequencies
below 16 rad ps−1. The dipole is, however, less perturbed
by TA phonons traveling in a perpendicular direction, and
the difference between the rates of TA and LA phonons is
significantly smaller.

V. CONCLUSIONS

In conclusion, we have presented a general first-principles
method for calculating κ� of random semiconductor alloys
which includes the contribution of IFC disorder in the de-
scription of the alloy scattering events. We have shown that
this inclusion is necessary in compounds such as In1−xGaxAs,
characterized by polar bonds and strong fluctuations of the
atomic-scale structure from the one assumed in the VCA.
On the other hand, in compounds such as Si1−xGex , where
mass disorder is the leading factor, the VCA is a reasonable
approximation. Overall, our method can be implemented with
a reasonable amount of computational resources, is compat-
ible with the existing phonon BTE formalism, and allows
for the first-principles determination of κ� in general III-V
and II-VI semiconductor alloys characterized by a random
substitutional disorder.

The proposed method is introduced specifically for the
study of truly random systems: The calculation of IFCs is
carried out using SQSs which aim to represent a truly ran-
dom disorder, and the approximations employed for the T

matrix are based on a truly random occupation of lattice sites.
However, we can assume that it might be extended to other
systems in which the disorder in the IFCs plays an impor-
tant role in the scattering of lattice vibrations. For example,
epitaxial growth is known to lead to some degree of long-
range order in certain semiconductor alloys [61,62]. We can
generally expect that the presence of such order would affect
the lattice thermal conductivity of the material. At the same
time, the complex local atomic-scale structure characteristic
of such alloys would still induce a strong disorder in the
IFCs, creating an interplay between the short- and long-range
structural features. Similarly, IFC disorder would still have
important effects at interfaces, where the atomic structure is
considerably more disordered than in the bulk, and can indeed
affect the scattering of phonons in superlattices [63].
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