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Ultrafast modification of band structure of wide-band-gap solids by ultrashort
pulses of laser-driven electron oscillations
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The electric field of high-intensity ultrashort laser pulses substantially perturbs an electron subsystem of a
crystal and affects its band structure. Laser-driven oscillations of electrons and holes are frequently referred
to as a major mechanism of the perturbation in dielectrics and semiconductors. New physical effects arise
when the band structure is modified by an ultrashort pulse of the oscillations driven by a few-cycle laser pulse.
Assuming the laser-pulse envelope varies slowly compared to the carrier frequency, we derive analytical relations
for the laser-modified band structure by utilizing the Keldysh cycle-averaged nonperturbative approach under
the approximation of constant effective mass. Formation of indirect-gap transient bands, suppression of the
nonlinear absorption on the leading edge of a laser pulse, and cycle-averaged photocurrent generation driven
by the pulse envelope are predicted. Analytical scaling with six laser and material parameters is obtained. The
reported results establish the limits of validity of the Keldysh photoionization model and advance understanding
of the fundamental effects involved in high-intensity ultrafast laser-solid interactions.
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I. INTRODUCTION

Ultrafast laser interaction with an electron subsystem of
nonmetal solids has been under intensive studies for several
decades [1–45]. The strong interest to that field results from
the fundamental fact: the laser-electron interaction and energy
deposition into the electron subsystem substantially contribute
to all high-intensity ultrafast laser interactions with wide-
band-gap crystals, e.g., laser ablation [1–8], laser-induced
damage [7–15], excitation of transient optical response [16–
18], direct writing of nanostructures [19,20], and ultrafast
nonlinear propagation [21–24]. A recent development of
petawatt (PW) laser systems launched another wave of re-
search activity in this field [25]. The general approach to reach
the PW domain of laser-pulse power is to reduce pulse width
towards the femtosecond range [25]. Therefore, the electron
subsystem of optical materials of the PW lasers interacts with
the optical radiation of PW peak power concentrated within a
femtosecond-long pulse.

Exceptionally high peak irradiance characteristic of those
interactions (that exceeds 10 TW/cm2) is frequently acknowl-
edged as one of the major contributors to the novel phys-
ical effects, e.g., generation of very high order harmonics
(HHG) and ultrafast strong-field laser effects [26–45]. The
corresponding peak value of a laser-pulse electric field E0 is
close to or even higher than the characteristic electric field
of a crystal lattice ECR = �/(dq ) estimated via band gap �,
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crystal-lattice constant d, and electron charge q [46]. There-
fore, the laser pulses significantly distort the electron subsys-
tem and its energy spectrum, i.e., band structure, and those
distortions cannot be treated by a regular time-dependent per-
turbation theory [47], but require nonperturbative approaches.

Currently there are two major groups of the nonpertur-
bative approaches employed to simulate the ultrafast laser
interaction with electrons of the solids. The first one brings
together various numerical methods to solve time-dependent
quantum-mechanical equations. The most sophisticated are
the ab initio simulations by direct numerical solving of
the time-dependent Schrödinger equation [36–42,48–53].
Those approaches deliver the most detailed information on
subcycle electron dynamics driven by an instant electric field
of a laser pulse, e.g., instant three-dimensional (3D) distribu-
tion of electron density. However, they are time consuming,
effectively treating the dynamics only over a limited time
range (typically about 10–20 fs). Due to that reason, they
meet substantial challenges in the proper implementation of
electron-phonon collisions for realistic 3D crystal structures
with multiple energy bands. To overcome those limitations,
reduced or simplified numerical approaches are utilized, e.g.,
solving a one-dimensional (1D) or two-dimensional (2D)
Schrödinger equation for a truncated set of electron functions
of few energy bands [36–42], reduction of the Schrödinger
equation to the semiconductor Bloch or matrix-element equa-
tions [29–35], semianalytical models [43,44], and empirical
pseudopotential methods [45]. Although the numerical mod-
eling currently dominates in theoretical studies of the non-
perturbative laser-electron interactions [29–44,49–53], it faces
substantial challenges in simulations of scaling with laser and
material parameters. Also, those approaches are not employed
to simulate the laser-induced band-structure modification in
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spite of that it is one of the most fundamental aspects of the
ultrafast laser-solid interactions that substantially assists in
understanding the physics of the interactions.

The other group of the nonperturbative approaches oper-
ates with cycle-averaged electron transition/excitation rates.
Correspondingly, those approaches consider slow time vari-
ations driven by pulse envelope rather than the subcycle dy-
namics driven by an instant electric field of a laser pulse. They
employ the approximation of decoupled inter- and intraband
laser-driven excitations [1,2,4,5,7–12,18–24]. In particular,
the approaches of this group use the Keldysh formula [54] to
evaluate the rate of the field-driven interband transitions that
is not coupled to the electron-particle collision and intraband
absorption rates of conduction-band electrons.

Although the models of this group are approximate, they
have several advantages. They provide transparent interpre-
tation of the experimental data and significantly assist in
identifying specific contributions to the overall interactions.
They deliver analytical scaling of the laser-induced effects
with laser and material parameters due to the use of analytical
formulas for the rates of the electron excitations [1,2,4,5,7–
12,18–24]. The analytical models are a highly supporting
complement to the numerical simulations and are indispens-
able for qualitative analysis of the physics of ultrafast high-
intensity laser interaction with quantum systems [55]. In
particular, they are pivotal tools in studies of the nontrivial
influence of band structure on the photoionization rate [56–
59]. Finally, the approximate analytical approaches take into
account the laser-induced modification of the energy bands
when evaluating the interband excitation rate. In the first ap-
proximation, the band modification is assumed to result from
the ponderomotive energy of intraband laser-driven electron
oscillations [54,59].

However, all the electron-transition rates employed by the
analytical approaches are evaluated under the monochromatic
approximation. It implies single-frequency cosine variations
of the electric field at a constant amplitude that is in obvious
contradiction with realistic time variations of the electric field
of a laser pulse. The usual way to overcome this issue is to
replace the constant electric-field amplitude with the slowly
varying amplitude of a pulse envelope [1,2,4,5,7–12,14–24].
Although this approach raises significant concerns, e.g., when
the monochromatic Keldysh formula is applied to laser pulses
containing 2–25 cycles [22,60–62], no analysis has been
done so far to determine a range of laser parameters where
such modification of the monochromatic approximation is
valid.

Therefore, there are several significant gaps in the studies
of the ultrafast high-intensity laser interactions with electrons
of the solids for pulse durations from few cycles to few tens of
cycles. In this pulse-width range, the validity of the simple an-
alytical models is highly questionable due to the failure of the
monochromatic approximation while the numerical ap-
proaches are not applied because of various reasons. Re-
cently reported attempts to build analytical nonmonochro-
matic models either assume low irradiance and the per-
turbative regime of the laser-electron interaction [60,61]
or are obtained by improper modifications of the Keldysh
formula [22,62]. However, exactly this range of pulse
widths is of special significance for various applica-

tions, e.g., to support the development of the PW laser
systems.

To fix this gap, we propose to use the Keldysh nonpertur-
bative approach that serves as a basis for the Keldysh theory
of the photoionization [54]. It assumes the major distortion to
the electron subsystem of a solid can be interpreted in terms
of laser-driven oscillations of electrons and holes [59,63]. The
concept of the laser-driven electron oscillations in a crystal
is so fundamental and powerful that the recent theoretical
studies of the HHG and strong-field ultrafast solid-state effects
frequently employ it [26–45]. According to it, energy gaps be-
tween electron states involved in the laser-induced interband
transitions are modified by the amount of cycle-averaged pon-
deromotive energy of the oscillations [54,59,63,64]. There-
fore, modification of the energy gaps by the laser-driven oscil-
lations can be interpreted in terms of formation of quasienergy
bands obtained by adding the ponderomotive energy to the
energy of the initial energy bands [59,63].

With those motivations, here we report an analytical study
of the high-intensity femtosecond laser-induced modifications
of energy bands of a wide-band-gap crystal driven by the
electron/hole oscillations. The bands of quasienergy obtained
under the approach described below are referred to as ef-
fective or transient bands. In Sec. II we describe the pro-
posed model including a brief overview of the concept of the
laser-driven electron/hole oscillations (Sec. II A), qualitative
analysis of the physics of the band-structure modifications
(Sec. II B), and the major approximations (Sec. II C). Sec-
tion III contains analytical relations for the direct-gap energy
bands (Sec. III A) and examples of modeling for the Gaussian
pulse envelope (Sec. III B). Section IV discusses the obtained
results including the contributions of different terms of the
employed asymptotic series (Sec. IV A), scaling with mate-
rial and laser parameters (Sec. IV B), other mechanisms of
the band-structure modifications (Sec. IV C), slowly varying
photocurrent (Sec. IV D), the case of indirect-gap crystals
(Sec. IV E), and the impact of the reported results on the non-
linear absorption in the wide-band-gap crystals (Sec. IV F).
We finish with the major conclusions in Sec. V.

II. DESCRIPTION OF THE MODEL

A. Laser-driven electron/hole oscillations

Considering femtosecond pulses with the duration below
30 cycles, we neglect the atomic motion that takes signifi-
cantly longer time in the crystals [65]. Accordingly, the only
ultrafast distortion of the energy bands during an immediate
laser-pulse action results from the laser-electron interaction in
the crystal. Neglecting Coulomb-type interactions and apply-
ing the single-electron and dipole approximations [46,64], one
arrives at the following time-dependent Schrödinger equation
in the length gauge to describe the laser-electron interac-
tion [64]:

ih̄
∂�(�r, t )

∂t
= Ĥ0(�r )�(�r, t ) − q �E(t )�(�r, t ), (1)

where Ĥ0(�r ) is the space-periodic nonperturbed Hamiltonian
of the crystal. Approximate solutions to Eq. (1) are given by
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nonsteady Bloch functions [54,64,66,67]:

ψ (�r, t ) = uCB( �p[t], �r ) exp

(
i

h̄
�p[t] · �r

)

× exp

(
− i

h̄

∫ t

−∞
εCB( �p[τ ])dτ

)
, (2)

where u( �p, �r ) is the amplitude of a steady Bloch function
of the nonperturbed crystal Hamiltonian [46], and time-
dependent electron momentum is expressed via the Bloch
acceleration theorem [46,64]:

�p(t ) = �p0 − q

∫ t

−∞
�E(τ )dτ, (3)

where p0 = (p0x, p0y, p0z) is an initial value of 3D mo-
mentum. With the proper choice of time dependence of the
electric field, the functions of Eqs. (2) and (3) have been
successfully utilized for the nonperturbative evaluation of
probabilities and rates of various effects, e.g., in the theory
of the Franz-Keldysh effect [67], the Keldysh photoionization
model [54], and studies of the strong-field ultrafast effects in
the semiconductor crystals [39–44]. Below we employ the
approach based on the nonsteady functions of Eq. (2) and
propose an interpretation of the band-structure modifications
using the oscillatory interpretation of the nonsteady Bloch
functions [26–30,32,38–44,59,63,68–70].

In this connection we note that the crystal-momentum
oscillations of Eq. (3) driven by periodic time variations
of the laser-pulse electric field are frequently referred to as
Bloch oscillations [26–30,32,38,39]. However, the true Bloch
oscillations are produced by a dc electric field E0 and are char-
acterized by two specific features. First, momentum varies at
constant rate [46,63,64,66–70]:

�p(t ) = �p0 − qE0t. (4)

Second, the only physical mechanism of the periodicity of the
electron motion is the multiple Bragg-type reflection of the
electron at the edges of a Brillouin zone [59,63,64,68–70].
Correspondingly, cycle duration of the Bloch oscillations TBO

is determined by the dc field and dimensions of the Brillouin
zone. For example, if the field is parallel to a principle crystal
axis, duration of the Bloch cycle reads as follows:

TBO = 2πh̄

qE0d
, (5)

where d is the crystal-lattice constant along that axis.
In case of the laser-driven electron oscillations, the peri-

odicity of the electron motion results from the periodic time-
domain variations of the driving ac electric field. Correspond-
ingly, an electron is accelerated and decelerated at a varying
rate within a single cycle of the oscillations. Those oscillations
are performed even if the amplitude of the laser-pulse electric
field is so small that an oscillating electron does not reach
the edges of the Brillouin zone and does not experience the
Bragg-type reflections. At high laser intensity, the oscillating
electrons can reach the edges of the zone and experience the
Bragg-type reflections. If the duration of an optical cycle T0 at
the carrier frequency is significantly larger than the duration of
the Bloch cycle TBO at peak electric field of the laser pulse, the
intraband electron dynamics can be represented as the Bloch
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FIG. 1. (a) Time variations of electron momentum due to the
laser-driven oscillations (lower part) and associated modification of
the conduction band (upper part) by the ponderomotive energy of
the monochromatic (blue dash-dotted lines) and nonmonochromatic
(red dashed lines) oscillations. (b) Expected dynamics of the band
p shifts along a momentum direction parallel to the electric field of
a laser pulse: from the original direct gap (left lower inset) via two
oppositely shifted indirect gap (upper insets), and back to the original
direct-gap bands (lower right inset).

oscillations slowly modulated at the carrier frequency. For
example, this is a good approximation for the THz frequency
domain [30]. However, this is not the case for visible, near-,
and mid-infrared light, when an oscillating electron experi-
ences just a few Bragg-type reflections per optical cycle even
at peak irradiance close to the damage threshold [26–28]. To
avoid confusion, here we consider the laser-driven oscillations
of the electrons and holes driven at the carrier frequency in
the visible, near-infrared, or mid-infrared range of the optical
spectrum and do not refer to them as Bloch oscillations.

B. Qualitative analysis

The concept of the laser-driven electron and hole os-
cillations provides a transparent interpretation of the band-
structure modifications. To be specific, we consider an elec-
tron occupying an initial state at the bottom of the conduction
band in the vicinity of the center of the Brillouin zone [state A
in Fig. 1(a)]. When affected by the electric field of linearly
polarized monochromatic radiation, the electron performs
intraband single-frequency oscillations according to Eq. (3).
An amplitude of electron departures from the initial state
qE0/ω0 is of the same value for each half of each oscillation
cycle [lower part of Fig. 1(a), blue dash-dotted cosine line],
and the two ultimate states B and C reached by the electron
at maximum departures are symmetrically located on the
opposite sides of the Brillouin zone and the conduction band
[Fig. 1(a)]. The energy of the oscillating electron increases by
the amount of average oscillation energy, i.e., ponderomotive
energy Up0:

Up0 = q2E2
0

4mCBω2
0

, (6)

115202-3



VITALY GRUZDEV AND OLGA SERGAEVA PHYSICAL REVIEW B 98, 115202 (2018)

where mCB is effective conduction-band mass, and E0 stays
for the amplitude of the time-dependent laser-pulse electric
field. Under the approximation of constant effective mass,
the energy of all oscillating conduction-band electrons in-
creases by the same amount given by Eq. (6). It results in a
homogeneous distribution of the ponderomotive energy over
the Brillouin zone. Correspondingly, the effective conduction
band is produced from the original conduction band by homo-
geneous up-shifting in the energy space by the amount of the
ponderomotive energy Up0.

When the oscillations are driven by a linearly polarized
ultrashort laser pulse, oscillation amplitude varies within each
cycle, e.g., the second half of each oscillation cycle has a
slightly larger amplitude (qE0/ω0 + qE′

0/ω0) than the first
half (at the leading edge of the pulse) [Fig. 1(a)]. Due to this
subcycle variation of the oscillation amplitude, the electron
is dominantly promoted towards the part the Brillouin zone
that hosts the lager departures of the oscillation cycles. For
the sample electron of Fig. 1(a), that violation of the subcy-
cle oscillation symmetry results in promoting the oscillating
electron to the energy level D [Fig. 1(a)] that is higher
than the level C reached by the monochromatic oscillation
at the amplitude of the first half of the cycle. Furthermore,
averaging of the oscillation energy over a single cycle delivers
a nonhomogeneous distribution of the ponderomotive energy
U ′′

p over the Brillouin zone, so that one part of the zone
receives a larger amount of ponderomotive energy than the
other [upper part of Fig. 1(a), red dashed curve]. A sim-
ple geometrical consideration [Fig. 1(a)] suggests that the
nonhomogeneous distribution of ponderomotive energy leads
to displacement of the bottom of the effective conduction
band towards the part of the Brillouin zone that receives a
smaller amount of ponderomotive energy. In case of a valence
band, the laser-driven hole oscillations must result in similar
effects except that all displacements are of opposite sign due
to the positive charge of the holes. Therefore, the effective
conduction and valence bands produced by the nonhomoge-
neous distribution of ponderomotive energy are shifted in the
opposite directions along the momentum axis parallel to the
laser-pulse electric field. The considered band transformations
are reversed at the tail edge of the pulse [Fig. 1(b)] and
result in returning the modified bands back to their origi-
nal positions in the energy-momentum space. However, the
reverse dynamics of the modified bands must exhibit some
delay since the electrons (and the holes) promoted to one
side of the Brillouin zone cannot instantly return to the initial
states.

This qualitative analysis suggests the formation of the
indirect transient bands from the original direct bands due to
the nonhomogeneous distribution of ponderomotive energy of
the laser-driven electron-hole oscillations. Correspondingly,
the transient bands should be characterized by direct and
indirect effective band gaps. The considered dynamics of the
shift of the energy bands suggests that the direct effective band
gap of the transient bands must be larger than the effective
band gap of the monochromatic approximation at the leading
edge of the pulse. The situation is reversed at the rear edge
of the pulse. Moreover, because of the delay effects, the

maximum direct effective band gap must be reached at a time
instant that is shifted away from the laser-pulse peak.

C. Approximations and calculation procedure

To correctly introduce the modifications of the energy
bands by an ultrashort pulse of the laser-driven electron os-
cillations, we assume that time variations of the electric field
of a linearly polarized laser pulse are represented by a product
of a slow envelope f (t ) and a fast oscillation at the carrier
frequency ω0:

�E(t ) = �E0f

(
t

τp

)
cos(ω0t + φ0), (7)

where τp is a characteristic duration of the laser pulse, and φ0

is a carrier-envelope phase (CEP) [27,28,39]. This assump-
tion means that the pulse spectrum has an evident central
frequency and is mathematically expressed via the following
pulse parameter:

α = ω0τp = 2π
τp

T0
� 1. (8)

The assumption of Eq. (8) is met for pulses longer than
two cycles and allows extracting the slow time variations
of the band structure driven by the pulse envelope. The
pulse parameter is utilized below to build asymptotic expan-
sions of the band-structure modifications that incorporate the
monochromatic approximation as zero-order terms obtained
at 1/α = 0. Below in this paper, the electric field of Eq. (7) is
assumed to be the electric field in the crystal evaluated with
the contributions from laser-induced polarization, screening
due to collective electron response, and other many-body
effects.

Following the general concept of the Keldysh ap-
proach [54], we suppose that the laser-driven intraband elec-
tron and hole oscillations are the dominating perturbation of
the electron subsystem. In particular, we neglect the influence
of electron-particle collisions. Measured electron dephasing
time (e.g., Ref. [71]) supports the validity of this approxi-
mation. Also, neglecting the electron-particle collisions is a
very usual approximation of a majority of recently published
theoretical models of the ultrafast electron dynamics in crys-
tals [26–42,45].

Another assumption employed below considers a negli-
gible influence of the interband electron transitions on the
intraband oscillations and band-structure modifications. The
interband excitations are orders-of-magnitude weaker in the
wide-band-gap crystals than in the typical semiconductors
[43] because the rate of the interband excitation exponentially
depends on band gap [54,55]. Also, the density of laser-
induced conduction-band electrons experimentally detected
at the intensity close to the damage threshold is rather low
(1017–1020 cm−3 in typical dielectrics [8,16,18,23], i.e., it is
below 1% of the total valence-electron density [46]). Finally,
the usual theoretical approaches to calculate the band struc-
ture of crystals neglect any interband electron dynamics and
consider it as a perturbation to the band structure [46,64]. We
follow this traditional approach below.
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By combining Eq. (3) with Eq. (7), one obtains the follow-
ing relation for the time-dependent electron momentum driven
by the laser-pulse electric field:

�p(t ) = �p0 − q �E0

ω0

∫ ω0t

−∞
f

(
h

α

)
cos(h + φ0)dh, (9)

where normalized time h = ω0t is introduced. Momentum of
a hole is represented by a similar expression with positive sign
in front of the field-induced part. Asymptotically evaluating
the integrals of Eq. (9), one arrives at the following expansion
of time-dependent momentum with respect to small parameter
1/α:

�p(t ) = �p0 − q �E0

ω0

[
f

(
h

α

)
sin(h + φ0)

+ 1

α
f ′
(

h

α

)
cos(h + φ0) − 1

α2
f ′′
(

h

α

)
sin(h + φ0)

− 1

α3
f ′′′
(

h

α

)
cos(h + φ0)

]
, (10)

where f ′(x) = df (x)/dx. Below we consider 3D momentum
space, assume that the electric field is parallel to the axis
Ox of the Brillouin zone, and consider two uncoupled energy
bands—the lowest conduction and the highest valence—under
the approximation of constant effective mass:

εCB �(p) = �

[
1 + p2

x + p2
y + p2

z

2mCB�

]
, (11a)

εVB �(p) = −�

[
p2

x + p2
y + p2

z

2mVB�

]
, (11b)

where � is the original (i.e., prelaser) band gap, and mCB and
mVB are effective masses of the conduction (CB) and valence
(VB) band correspondingly. The bands are direct gap, i.e.,
the minimum energy gap between them is in the center of
the first Brillouin zone. The energy-momentum relations of
Eqs. (11) are rough for a proper description of the Bragg-type
reflections of the oscillating electrons and holes at the edges
of the Brillouin zone at high intensity [59,63]. However, it
does not affect the major mechanism of the periodicity of the
laser-driven electron/hole oscillations outlined in Sec. II B.
Therefore, the approximation of Eqs. (11) is sufficient to
uncover the major features of the band-structure modification
under consideration, and the Bragg-type reflections of the
electrons/holes can be treated as a distortion to be considered
for later improvements of our approach.

Following the approximation of the Keldysh model [54]
rigorously justified in Ref. [64], we first evaluate the laser-
distorted energy bands by substituting the time-dependent
momentum of Eq. (9) into the energy-momentum relations of
Eqs. (11). For example, the effective conduction band reads as
follows:

ε̃CB( �p0, t )

= ε

(
�p0 − q

∫ t

−∞
�E(τ )dτ

)

= �

(
1 + p2

0

2mCB�
− xCB

γCB

∫ ω0t

−∞
f

(
h

α

)
cos(h + φ0)dh

+ 1

2γ 2
CB

[∫ ω0t

−∞
f

(
h

α

)
cos(h + φ0)dh

]2
)

, (12)

where xCB = p0x/
√

mCB� is a normalized momentum com-
ponent parallel to the laser-pulse electric field. Following the
definition of Keldysh [54], we introduce the following band-
specific and general Keldysh parameters:

γi = ω0
√

mi�

qE0
, i = CB, VB, 0,

1

m0
= 1

mCB
+ 1

mVB
.

(13)

The calculations are done as follows. Equation (12) and
a similar relation for the valence band are averaged over a
single cycle T0 of the carrier frequency to obtain equations
for the transient slowly varying energy bands that include
the ponderomotive energy of the laser-driven electron/hole
oscillations. Those cycle-averaged relations are asymptoti-
cally expanded into series with respect to the small parameter
1/α. The zero-order terms of the series correspond to the
monochromatic approximation, and our studies are focused
on the effects described by the higher-order terms.

III. MAJOR RESULTS

The advantage of the proposed approach is that it delivers
analytical relations for the arbitrary pulse envelope. Numeri-
cal evaluation of the transient bands is done for a particular
case of the Gaussian laser-pulse envelope.

A. Analytical relations for direct-gap bands: General case

The asymptotic expansions for the effective conduction
band:

εeff
CB( �p0, s) = �

[
1 + p2

0

2mCB�
+ f (s)2

4γ 2
CB

+ f ′(s)

α

{
f (s)

4γ 2
CB

[2π − sin(2φ0)] + xCB

γCB
cos(φ0)

}

+ 1

α2

{
f ′(s)2

4γ 2
CB

� + f (s)f ′′(s)

4γ 2
CB

(� − 3) − xCBf ′′(s)

γCB
�x1

}

+ 1

α3

{
f (s)f ′′′(s)

4γ 2
CB

�1 + f ′(s)f ′′(s)

4γ 2
CB

�2 − xCBf ′′′(s)

γCB
�x2

}]
(14)
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and effective valence band:

εeff
VB( �p0, s) = −�

[
p2

0

2mVB�
+ f (s)2

4γ 2
VB

+ f ′(s)

α

{
f (s)

4γ 2
VB

[2π − sin(2φ0)] − xVB

γVB
cos(φ0)

}

+ 1

α2

{
f ′(s)2

4γ 2
VB

� + f (s)f ′′(s)

4γ 2
VB

(� − 3) + xVBf ′′(s)

γVB
�x1

}

+ 1

α3

{
f (s)f ′′′(s)

4γ 2
VB

�1 + f ′(s)f ′′(s)

4γ 2
VB

�2 + xVBf ′′′(s)

γVB
�x2

}]
(15)

include the terms of the asymptotic series of all orders from zero to 1/α3. Here and below s = t/τp is the normalized time, and
the following functions are introduced for the sake of compactness:

� = 4π2

3
+ 5

2
− 3 cos(φ0)2 − π sin(2φ0), (16a)

�1 = 2π3

3
− π

2
− 3π cos(φ0)2 −

(
2π2

3
− 7

4

)
sin(2φ0), (16b)

�2 = 2π3 + 9π

2
− 9π cos(φ0)2 −

(
2π2 − 17

4

)
sin(2φ0), (16c)

�x1 = 2 sin(φ0) − π cos(φ0), (16d)

�x2 = 2π sin(φ0) −
(

2π2

3
− 3

)
cos(φ0). (16e)

The zero-order terms of the square bracket of Eqs. (14) and (15) correspond to the initial parabolic energy bands homogeneously
shifted by the amount of ponderomotive energy evaluated under the monochromatic approximation. The 1/α, 1/α2, and 1/α3

terms of the square bracket describe the effects produced beyond the monochromatic approximation.
Time-dependent position of the bottom state of the effective conduction band:

pxCB(s) =
√

mCB�

[
−f ′(s)

αγCB
cos(φ0) + f ′′(s)

α2γCB
�x1 + f ′′′(s)

α3γCB
�x2

]
,

pyCB(s) = pzCB(s) = 0, (17)

confirms that the effective band is shifted along the momentum direction parallel to the laser-pulse electric field. Combining
Eq. (17) with a similar equation for the position of the top state of the effective valence band:

pxVB(s) =
√

mVB�

[
f ′(s)

αγVB
cos(φ0) − f ′′(s)

α2γVB
�x1 − f ′′′(s)

α3γVB
�x2

]
,

pyVB(s) = pzVB(s) = 0, (18)

one arrives at a relation for the mutual p shift of the transient bands:

δpx (s) = pxCB(s) − pxVB(s) = 2
√

m0�

γ0

[
−f ′(s)

α
cos(φ0) + f ′′(s)

α2
�x1 + f ′′′(s)

α3
�x2

]
, (19)

where the band-specific adiabatic parameters are replaced with the usual Keldysh parameter of Eq. (13).
To fully characterize the indirect-gap structure of the transient bands, direct and indirect effective band gaps should be

evaluated. The effective indirect band gap is determined as the minimum energy gap between the bottom of the effective
conduction band of Eq. (14) and the top state of the effective valence band of Eq. (15):

�eff
ind(s) = �

[
1 + f (s)2

4γ 2
0

+ f ′(s)f (s)

4αγ 2
0

[2π − sin(2φ0)] + f ′(s)2

4α2γ 2
0

[� − 2 cos(φ0)2] + f (s)f ′′(s)

4α2γ 2
0

(� − 3)

+ f (s)f ′′′(s)

4α3γ 2
0

�1 + f ′(s)f ′′(s)

4α3γ 2
0

[�2 − 4π cos(φ0)2 + 4 sin(2φ0)]

]
. (20)

The effective direct band gap is evaluated as minimum of the function ε( �p0, s) = εeff
CB( �p0, s) − εeff

VB( �p0, s) and reads as
follows:

�eff
dir(s) = �

{
1 + f (s)2

4γ 2
0

+ f ′(s)f (s)

4αγ 2
0

[2π − sin(2φ0)] + f ′(s)2

4α2γ 2
0

[
� − 2 cos(φ0)2

[
m0

mCB
− m0

mVB

]2]

+ f (s)f ′′(s)

4α2γ 2
0

(� − 3) + f (s)f ′′′(s)

4α3γ 2
0

�1 + f ′(s)f ′′(s)

4α3γ 2
0

[
�2 + 4

[
m0

mCB
− m0

mVB

]2[
sin(2φ0) − π cos(φ0)2]]}. (21)
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Position of the direct bag gap in the momentum space reads as follows:

pxDG(s) =
√

m0�

[
m0

mCB
− m0

mVB

][
−f ′(s)

αγ0
cos(φ0) + f ′′(s)

α2γ0
�x1 + f ′′′(s)

α3γ0
�x2

]
,

pyDG(s) = pzDG(s) = 0. (22)

The zero-order terms of the asymptotic expansions of
Eqs. (20) and (21) exactly correspond to the effective band gap
of the original Keldysh model produced under the monochro-
matic approximation [54]:

�eff
mh(s) = �

[
1 + f (s)2

4γ 2
0

]
. (23)

It predicts conservation of the initial direct-gap structure of the
effective bands. The contributions of the higher-order terms
of Eqs. (20) and (21) result in formation of the indirect-gap
transient bands.

B. Numerical evaluations: Gaussian pulse, direct-gap bands

The general relations of the previous section deliver more
detailed information about the dynamics of the effective band
structure if a pulse envelope is specified. Here we provide
an illustrative analysis and simulation of the band-structure
modifications for the Gaussian envelope:

f (s) = exp(−s2) = exp

(
− t2

τ 2
p

)
. (24)

We note that the half-width τp of the electric-field pulse
envelope of Eq. (24) is almost 1.7 times larger than half-width
τHW = √

ln 2/2 τp of a laser pulse at the level of 1/2 of
peak intensity. For the numerical simulations, the laser-pulse
peak intensity is below the threshold of laser-induced dam-
age by few-cycle pulses [9–16,26,36,37]. Material parameters
are chosen to compare band-structure modifications in two
crystals of different groups: a typical dielectric (NaCl) and a
typical wide-band-gap semiconductor (AlN) (see Table I).

Figure 2 confirms the qualitative discussion of Sec. II B
regarding dynamics of the effective-band variations by an
ultrashort pulse of the laser-driven electron oscillations (see
also Ref. [74]). In particular, the bottom point of the effective
conduction band shifts along the momentum direction parallel
to the laser-pulse electric field and makes an elliptic trajectory
in energy-momentum space (Fig. 2) instead of a linear tra-
jectory with zero p shift characteristic of the monochromatic
approximation of the original Keldysh model.

The simulations show very pronounced mutual p shift of
the transient conduction and valence bands in the momentum

TABLE I. Material parameters utilized in simulations.

Parameter name NaCl [72] AlN [73]

Direct band gap, eV 8.9 6.2
Conduction-band effective mass, 0.6 0.25

units of free-electron mass
Valence-band effective mass, 4.56 0.285

units of free-electron mass

space even at moderate peak intensity and pulse width (Figs. 2
and 3). A significant influence of the envelope phase on the
shift is highly remarkable (Fig. 3). In the time domain, the
major features of that influence are: (a) the suppression of
the band p shifts with the formation of three maxima/minima
separated by two zero-shift points if CEP is φ0 = π/2 ± Nπ

(N = 0; 1; 2; . . .) (Fig. 3); and (b) formation of one maximum
and one minimum of the p shift separated by a single zero-
shift point if CEP φ0 �= π/2 ± Nπ (N = 0; 1; 2; . . .) (Fig. 3).
Also, Eq. (19) suggests that the absolute value of the mutual
p shift of the energy bands is of the order of 1/(α2γ0) at
the peak of a laser pulse (i.e., at t = 0) at any value of the
CEP.

Finally, we note that the pulse-driven model predicts max-
imum of both direct and indirect effective band gaps at the
leading edge of the pulse (Fig. 4). Correspondingly, the effec-
tive band gaps exceed the value delivered by the monochro-
matic approximation of Eq. (23) at the leading edge of the
laser pulse (Fig. 4). However, the pulse-induced effective band
gaps are smaller than that of the monochromatic model at the
tail part of the pulse (Fig. 4). The difference can be as large
as few electron volts depending on laser and material param-
eters. Also, a strong dependence of those nonmonochromatic
effects on laser wavelength is highly remarkable. In particular,
the deviation of the pulse-driven model from the monochro-
matic approximation rapidly grows with an increase of laser

(a) (b)

FIG. 2. Original conduction band (green solid) and transient
bands (black, blue, red) evaluated for a Gaussian pulse envelope
[Eq. (24); peak intensity 30 TW/cm2; carrier wavelength 2400 nm;
pulse half-width at the level 1/e of maximum intensity is 15 fs; zero
CEP] at several instants of time for (a) NaCl and (b) AlN crystals
under the monochromatic [Eq. (23); dashed lines] and pulse-driven
[Eq. (14); dotted lines] approximations. Orange dots on the closed
dotted curve and gray dots on the vertical gray dashed line depict
positions of the bottom of the transient conduction bands on their
laser-driven trajectories for the pulse-driven and monochromatic
models correspondingly.
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wavelength [Figs. 4(c) and 4(d)]; also see Ref. [75] with
animation of time variations of wavelength dependence of
maximum effective direct and indirect band gaps.

The advantage of the reported above analytical model is the
feasibility of a detailed characterization of the band-structure

modification and dynamics (e.g., see Figs. 3 and 4) by rig-
orous analytical relations. For example, the maximum and
minimum values of the mutual band p shift at the CEP values
φ0 �= π/2 ± Nπ , N = 0, 1, 2, . . . (Fig. 3), are analytically
evaluated from Eq. (19):

δpM (sM ) = 2
√

m0�

αγ0
exp

(−s2
M

){±
√

2 cos(φ0) + 2

α
�x1 ∓ 2

√
2

α2

[
[4π − 6 tan(φ0)] sin(φ0) −

(
3 + 11π2

6

)
cos(φ0)

]}
, (25)

and the time instants of the maximum and the minimum are also delivered by Eq. (19):

tM = τp

[
± 1√

2
+ 2 tan(φ0) − π

α
∓

√
2

α2

[
3 + 2 tan(φ0)2 − 7π2

6

]]
, (26)

where sM = tM/τp. The three maxima and minima of the mutual bands p shift at CEP φ0 = π/2 are analytically evaluated as
follows:

δpM (sM, φ0 = π/2) =
⎧⎨
⎩16

√
m0�

α2γ0

(
1 +

√
6π

α

)
exp

⎛
⎝−

[√
3

2
+ π

α

]2
⎞
⎠; −8

√
m0�

α2γ0
exp

(
−π2

α2

)
;

16
√

m0�

α2γ0

(
1 −

√
6π

α

)
exp

⎛
⎝−

[√
3

2
− π

α

]2
⎞
⎠
⎫⎬
⎭ (27)

as well as the time instants when they appear:

tM (φ0 = π/2) = τp

[
−
√

3

2
− π

α
; −π

α
;

√
3

2
− π

α

]
. (28)

Analytical relations for other specific features of the band-structure modifications, e.g., time instants of the zero p shift, have
been reported before [76,77].

The mutual band p shift is not the only parameter significantly affected by CEP. Carrier-envelope phase substantially
influences the time variations of effective indirect and direct band gaps as it is clear from the following relations:

(A) the time instants when the maximum effective indirect band gap is reached:

sMI = sin(2φ0) − 2π

2α
+ sin(2φ0)

α3
{11 sin(φ0)2 + 2 cos(φ0)4 + 2[2 − cos(φ0)2]}, (29)

(B) the maximum value of the effective indirect band gap:

�eff
indMAX = �

(
1 + exp

(−2s2
MI

)
4γ 2

0

[
1 + [2π − sin(2φ0)]2

α2
− 2� − 6

α2

])
, (30)

(C) the time instant of the maximum effective direct band gap:

sMD = sin(2φ0) − 2π

2α
+ sin(2φ0)

α3

(
11 sin(φ0)2 + 2 cos(φ0)4 + 2

[
m0

mCB
− m0

mVB

]2

[2 − cos(φ0)2]

)
, (31)

(D) and the maximum effective direct band gap:

�eff
dirMAX = �

(
1 + exp

(−2s2
MD

)
4γ 2

0

[
1 + [2π − sin(2φ0)]2

α2
− 2� − 6

α2

])
. (32)

IV. DISCUSSION

A. Analysis of asymptotic contributions

The specific scaling of the band modification with parameters α, γCB, γVB, and γ0 directly results from the inhomogeneous
subcycle distribution of the oscillation amplitude explained in Sec. II B. In this connection we notice that the electric-field
amplitude of the second half of any radiation cycle at arbitrary time instant t2 can be expressed via the amplitude of the first half
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of the cycle at time instant t1 = t2 − T0/2 by the following asymptotic series (for simplicity, zero CEP is assumed):

E0f

(
t2

τp

)
= E0f

(
t1

τp

)
+ E0f

′
(

t1

τp

)
T0

2τp

+ E0

2
f ′′
(

t1

τp

)(
T0

2τp

)2

+ E0

6
f ′′′
(

t1

τp

)(
T0

2τp

)3

= E0f

(
t1

τp

)
+ E0

π

α
f ′
(

t1

τp

)
+ E0

π2

2α2
f ′′
(

t1

τp

)
+ E0

π3

6α3
f ′′′
(

t1

τp

)
, (33)

obtained from Eqs. (7) and (8). The amplitude pA(t2) of the second half of the cycle of the conduction-electron oscillations
driven by the electric field of Eq. (33) reads as follows:

pCB
A (t2) = qE0

ω0
f

(
t2

τp

)
= pCB

A (t1) + π
√

mCB�

αγCB
f ′
(

t1

τp

)
+ π2

√
mCB�

2α2γCB
f ′′
(

t1

τp

)
+ π3

√
mCB�

6α3γCB
f ′′′
(

t1

τp

)
. (34)

In Eq. (34) the second right-hand term delivers the amount of the violation of the homogeneous amplitude distribution within the
cycle. The third term is associated with the rate of that effect and should be attributed to the delay effects discussed in Sec. II B.
For a valence-band hole, a relation similar to Eq. (34) can be obtained.

Equation (34) shows that the difference pA(t2) − pA(t1) contains the combinations of the parameters α and γCB with proper
time derivations of the pulse envelope that are absolutely similar to those of Eq. (17) under the zero-CEP assumption. The same
is true for the amplitude of the hole oscillations and Eq. (18).

Ponderomotive energy Up0(t2) of the second half of the oscillation cycle is expressed as follows by Eq. (33):

Up0(t2) = q2E2
0

4mCBω2
0

f

(
t2

τp

)2

= �

4γ 2
CB

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f

(
t1

τp

)2

+ 2π

α
f

(
t1

τp

)
f ′
(

t1

τp

)
+

π2

α2
f

(
t1

τp

)
f ′′
(

t1

τp

)
+ π2

α2
f ′
(

t1

τp

)2

+
π3

3α3
f

(
t1

τp

)
f ′′′
(

t1

τp

)
+ π3

α3
f ′
(

t1

τp

)
f ′′
(

t1

τp

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

A similar relation can be obtained for the ponderomotive
energy of the oscillating valence-band holes. The similarity
between Eq. (35) and the field-dependent terms of Eq. (14) at
zero CEP suggests that they originate from the same physical
effects. Summarizing this qualitative analysis, we conclude
that:

(1) The zero-order terms of the asymptotic series of
Eqs. (14) through (22) are characteristic to the monochro-
matic approximation of the original Keldysh model [54] that
assumes constant oscillation amplitude within each single
oscillation cycle.

(2) The terms of the order of 1/α of the asymptotic series
are attributed to the violation of the homogeneous subcycle
distribution of the electron (and hole) oscillation amplitude
within each oscillation cycle.

(3) The terms of the order of 1/α2 correspond to the
delay effects associated with the rate at which the subcycle
amplitude distribution is violated.

This interpretation is supported by simulations of separated
contributions of those terms into the overall modification of
the energy bands (Fig. 5). In particular, if the pulse envelope is
symmetric with respect to the pulse peak, the inhomogeneous
subcycle distribution of the oscillation amplitude must
produce zero mutual p shift of the energy bands at any
CEP at the pulse peak if the delay effects are neglected and
corresponding 1/α2 and 1/α3 terms are omitted [Fig. 5(b)]. It
results from the fact that the oscillation amplitude is the same
for both halves of the cycle centered at the pulse peak (Fig. 6).
This is perfectly confirmed by simulations of the mutual band
p shift with the series containing only the zero-order and
the 1/α terms [Fig. 5(b)]. The terms of the order of 1/α2

attributed to the delay effects produce a nonzero band p shift
at the pulse peak [Fig. 5(b)]. The delay terms also disturb
the symmetric positions of the maxima and minima of the p

shifts with respect to the pulse peak in the time domain [see
Eqs. (25) through (28)].

Certain physical meaning could also be assigned to the
terms of the order of 1/α3, but they are of minor value and are
retained mainly for improvement of the accuracy at reduced
pulse width (Fig. 5).

B. Parametric scaling of the band modifications

Scaling with six laser and material parameters is deliv-
ered by the analytical relations of Sec. III A (see Table II).
The band-structure modifications under consideration are en-
hanced by reduction of pulse width and reduction of the
Keldysh adiabatic parameter. The latter can be reduced, for
example, by increasing the peak intensity of a laser pulse.
Therefore, at a fixed pulse width, the higher peak laser in-
tensity, the stronger the pulse-driven features of the transient
bands discussed above. Also, the band shifts are more pro-
nounced in crystals with smaller band gaps due to the reduc-
tion of the Keldysh parameter (Figs. 2–4). Finally, the specific
pulse-driven contributions to the band modification become
more pronounced with the increase of laser wavelength.

Influence of another key material parameter—effective
electron/hole mass—is less trivial. First, we note that the
effective masses are not modified under the considered ap-
proximations, and the energy bands are shifted without defor-
mation during the laser-driven modifications. This conclusion
is evident from Eqs. (14) and (15). Second, reduction of the
effective masses favors reduction of the adiabatic parameter

115202-9



VITALY GRUZDEV AND OLGA SERGAEVA PHYSICAL REVIEW B 98, 115202 (2018)
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FIG. 3. (a) and (b) Normalized envelope of E-field pulse (black
dotted) and time variations of the total mutual p shift of the energy
bands δpx [Eq. (19)] normalized to the half-width of the first Bril-
louin zone pBZ for (a) NaCl and (b) AlN. Evaluation for the Gaussian
envelope of Eq. (24) is done for two values of CEP: 0◦ (red dashed)
and 90◦ (blue solid). The vertical solid lines mark the position of the
pulse peak on the time axis for eye convenience. (c) and (d) Band
shift δpx normalized to pBZ vs intensity I0 and CEP φ0 taken at
fixed time instant t = −τp/

√
2 for (c) NaCl and (d) AlN. Parameters

of the laser pulse are the same for all the panels: peak intensity is
30 TW/cm2, carrier wavelength is 2400 nm, pulse half-width at the
level 1/e of maximum intensity is 15 fs.

and, therefore, low-effective-mass crystals are more favorable
for observation of the reported effects. Third, if the valence-
band effective mass significantly exceeds the conduction-
band mass (that is the case for typical dielectric crystals),
the difference between the effective direct and indirect band
gaps reduces according to Eqs. (20) and (21). The physical
reason for this conclusion is quite transparent: mVB � mCB

means the valence band is almost flat, and the p shift of the
effective conduction band away from its initial position does
not remarkably contribute to the difference between the direct
and indirect effective band gaps. If the effective masses do not
differ very much, the effective direct band gap becomes larger
than the indirect band gap, and the difference between them is
of the order of 1/(α2γ 2

0 ). Therefore, the indirect-gap structure
of the transient energy bands is expected to produce a stronger
effect on the laser-driven processes in typical semiconductors.

Finally, we note a strong influence of CEP on the transient
bands. It can be interpreted in terms of a specific dephasing
between the driving electric field and the laser-driven elec-
tron/hole oscillations. For example, if the delay effects are ne-
glected, the oscillation amplitude is symmetrically distributed
between the two halves of the oscillation cycle centered at
the pulse peak at any CEP (Fig. 6). This fact suggests zero
p shift of the energy bands with respect to each other at the

(a) (b)

(c) (d)

FIG. 4. (a) and (b) Normalized difference between the effec-
tive direct band gap and the original band gap for the monochro-
matic model of Eq. (23) (black curves) and the pulse-driven model
of Eq. (21) (red curves) plotted vs time at peak laser intensity
10 TW/cm2 (dashed curves) and 30 TW/cm2 (solid curves) for (a)
NaCl and (b) AlN. Laser carrier wavelength is 2400 nm. The vertical
solid lines mark the position of the pulse peak on the time axis
for eye convenience. (c) and (d) Normalized difference between the
laser-induced effective and original band gaps vs carrier wavelength
for pulse-driven direct [Eq. (21); red solid], pulse-driven indirect
[Eq. (20); blue dotted], and monochromatic [Eq. (23); black dashed]
effective band gaps plotted at peak laser intensity 30 TW/cm2 in (c)
NaCl and (d) AlN. The effective band-gap values are taken at time
instant t = −15 fs. Other laser-pulse parameters are the same for all
the panels, zero CEP, pulse half-width at the level 1/e of maximum
intensity is 15 fs.

pulse peak. Therefore, the delay effects are the only to make
a nonzero contribution to the band p shift at the pulse peak.
That contribution is of the order of 1/(α2γ0) at any CEP since
the rate of the time variations of the pulse envelope f ′(t )
is zero. However, with the accuracy of the 1/α terms, the
zero CEP produces zero instant electron departure from an
initial state at the pulse peak [Fig. 6(a)], and contribution of
the delay effects is minor. In opposite, the π/2 CEP delivers
the maximum instant electron/hole departure from the initial
state at the pulse peak [Fig. 6(b)], and the delay effects make
the only contribution to the maximum p shift of the energy
bands. That is, the delay effects determine minimum p shift of
the bands at CEP = 0 and maximum p shift at CEP = π/2 at
the laser-pulse peak. This dephasing explains the suppression
of the band p shift at CEP close to (π/2 ± Nπ ).
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(a) (b)

FIG. 5. (a) Normalized difference between the effective direct
band gap and the original band gap of AlN evaluated with the
different terms of Eq. (21): black dotted—only zero-order terms
[i.e., the monochromatic model of Eq. (23)]; green dash-dotted
curve 1—zero- and first-order terms; blue dashed curve 2—zero-,
first-, and second-order terms; red solid curve 3—the terms of
all orders from zero to the third inclusive. Laser-pulse parame-
ters are the same as in Fig. 4(b), peak intensity is 30 TW/cm2.
(b) Normalized mutual band p shifts along the momentum direction
collinear with the laser-pulse electric field evaluated with different
terms of Eq. (19): green dash-dotted curve 1—first-order terms; blue
dashed curve 2—first- and second-order terms; red solid curve 3—all
the terms from zero to the third order inclusive. Laser parameters are
the same as in Fig. 3(b). The vertical lines depict instant of the pulse
peak.

C. Competing mechanisms of band-structure modification

The reported band-structure modifications consider the
only mechanism associated with the laser-driven electron/hole
oscillations. In semiconductor crystals there may be other
mechanisms contributing to laser-induced modifications of
band gap and energy bands. For example, the high-frequency
Franz-Keldysh effect [78,79], laser-enhanced coupling of va-
lence and conduction bands [80–82], band-gap shrinkage
due to increase of conduction-band electron density [82,83],
and band filling [82–85] (also referred to as Burstein-Moss
effect [83]) are among the mechanisms competing with
the laser-driven oscillations. Except for the Burstein-Moss
effect, those mechanisms reduce the initial band gap, i.e.,

(a) (b)

FIG. 6. (a) A sketch of the instant variations of the electric field
(blue solid line) and electron momentum (red dotted line) in the time
domain for the (a) zero and (b) π/2 CEP. Black dashed line depicts
the pulse envelope. The time variations of the electron momentum
and electric field are normalized so as to follow the same slow
envelope.

(a) (b)

FIG. 7. Illustration of expected influence of the laser-induced p

shift of the energy bands on the rate of the photoionization. The data
are the same as in Fig. 4(a).

compete with the band-gap increase by the ponderomotive
energy of the electron and hole oscillations. However, the
Franz-Keldysh effect and the band coupling are significant
for narrow-gap semiconductors with an initial band gap
about 1 eV or smaller [78–82]. A large band gap between
the lowest conduction band and the highest valence band
of the wide-band-gap crystals significantly suppresses those
mechanisms. Moreover, the band-gap variations by the Franz-
Keldysh effect scale as E

3/2
0 with an electric-field amplitude

E0 of the high-intensity laser pulse [78,79] while the contri-
bution of the laser-driven electron/hole oscillations results in
E2

0 scaling. Therefore, it is reasonable to expect that the laser-
driven oscillations dominate over the Franz-Keldysh effect in
the wide-band-gap crystals at high intensity.

The band-gap variation due to the shrinkage effect can
be evaluated using the equations of Refs. [82,83,85]. Those
estimations deliver the band gap reduction by a few tenths
of eV at the highest conduction-band electron density 1019–
1020 cm−3 recently reported at subdamage-threshold irra-
diance [8,16,18,23]. Those values are substantially smaller
than the increase of the effective band gap by several eV
produced by the laser-driven oscillations. Therefore, the band-
gap shrinkage can be neglected in the first approximation.
Generation of the conduction-band electrons by the interband
excitation can also contribute to the band-gap modification
due to the band filling effect [82,83,85]. In general, that
modification can be as large as the energy of a few laser
photons since the absence of vacant states at the bottom of
the conduction band favors absorption of one extra photon to
promote the newly arriving electrons to vacant states of the
band. However, the influence of the band filling effect is very
unlikely in the case under consideration since an ultrashort
laser pulse generates electron population in a broad range of
states first on one side of the conduction band (at the leading
edge of the pulse) and then on the opposite side of the band
(at the tail edge of the pulse) due to the mutual band p shift.

Therefore, the laser-driven electron/hole oscillations are
expected to dominantly contribute to the band-structure mod-
ifications of the wide-band-gap crystals during the immediate
action of an ultrashort high-intensity laser pulse.
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TABLE II. Scaling of the key parameters of the nonmonochromatic modifications of the band structure with carrier wavelength λ, peak
pulse intensity I0, initial band gap �, reduced effective electron-hole mass m0, and pulse width τp .

Scaling with pulse and Scaling with laser and
Band-structure parameter Equation(s) adiabatic parameters material parameters

Maximum nonmonochromatic correction to the direct and indirect (20), (21), (23) 1/(αγ 2
0 ) λ3I0/(m0�τp )

effective band gap [e.g., Eq. (20) minus Eq. (23)]
Absolute value of the mutual p shift of the energy bands at the CEP (19) 1/(αγ0) λ2I

1/2
0 /(m1/2

0 �1/2τp )
φ0 �= π/2 ± Nπ , N = 0, 1, 2, . . .

Absolute value of the mutual p shift of the energy bands at the CEP (19) 1/(α2γ0 ) λ3I
1/2
0 /(m1/2

0 �1/2τ 2
p )

φ0 = π/2 ± Nπ , N = 0, 1, 2, . . .

D. Slowly varying electron current

Another remarkable effect produced by the nonmonochro-
matic laser-driven electron/hole oscillations is the electric
current driven by the pulse envelope. Its generation becomes
evident from a relation for the electron momentum of Eq. (10)
when it is averaged over a single oscillation cycle:

〈pxe〉(s) = px0 −
√

mCB�

[
f ′(s)

αγCB
cos(φ0)

− f ′′(s)

α2γCB
�x1 − f ′′′(s)

α3γCB
�x2

]
. (36)

A similar relation is true for the oscillating holes. Equa-
tion (36) contains the nonzero field-dependent component that
corresponds to photocurrent in the direction parallel to the
laser-pulse electric field. Comparing Eq. (36) with Eq. (19),
one notices that the time variations and the parametric scaling
of the current are similar to the variations of the mutual band
p shift. This photocurrent results from a dominant promotion
of the oscillating electrons (holes) in a direction parallel to the
electric field of the linearly polarized laser pulse. In turn, that
promotion of the free carriers in the real physical space arises
from the violation of the subcycle symmetry of the oscillation
amplitude discussed in Sec. II B. To estimate the charge it
produces, we evaluate the peak value of electron current
density jeMAX via the peak value peM of the field-induced
part of Eq. (36), maximum free-carrier density neMAX, and
effective conduction-band mass as follows [46]:

jeMAX = qneMAXpeM

mCB
. (37)

We further assume the current is generated in a focal volume
characterized by an effective radius R of the order of 10−6–
10−5 m. Simulations of the laser-induced free-carrier dynam-
ics [8,12] show that free-electron density reaches significant
values only after the peak of an ultrashort laser pulse, i.e.,
over the tail part of the pulse. Therefore, the total charge
produced by the current is the most effectively accumulated
over the time interval of the order of τp. For the laser-
pulse parameters from the caption of Fig. 3 and the material
parameters of Table I, the photocurrent density is estimated
as 1011–1013 A/cm2 if maximum laser-induced free-carrier
density is 1020–1022 cm−3, respectively. Correspondingly,
the photocharge delivered by the photocurrent varies from
1 to 100 nC for that range of free-electron density.

It is remarkable that the mechanism of this ultrafast pho-
tocurrent generation differs from that of recently reported

photocurrent effects driven by an instant electric field of two-
cycle laser pulses in dielectrics [36,37]. Also, the photocurrent
predicted by Eq. (36) is a few orders of magnitude larger than
that reported in Refs. [36,37] and it can produce a significant
contribution to the transient optical response. Detailed analy-
sis of those effects substantially goes beyond the scope of this
paper.

E. Indirect-gap crystals

The modification of the energy bands considered above as-
sumes direct-gap structure prior to the laser action. It is shown
that the direct-gap band structure is not conserved during the
laser action on the crystal, and the crystal responses as an
indirect-gap one. For typical indirect-gap crystals, the bottom
of the conduction band is displaced by pS away from the
center of the Brillouin zone along one of the crystal axes prior
to the laser action [46,64]. That feature of the indirect-gap
bands substantially influences the laser-driven band-structure
modification only if the electric field of a laser pulse is
directed along that crystal axis (it is considered as axis x to be
specific). A majority of the relations presented above for the
direct-gap crystals is still valid in that case if the momentum
component px and its normalized values (i.e., xCB for the
conduction band and xVB for the valence band) are replaced
with px − pS , xCB − xS , and xVB − xS correspondingly. The
only relation that receives a significant modification beyond
that substitution is Eq. (21) for the effective direct band gap.
However, the approximation of the parabolic bands is not
sufficient to properly evaluate the effective direct band gap
of the indirect-gap crystals since the initial band displacement
pS is usually so large [46] that nonparabolic features of the
energy bands cannot be neglected. Ultrafast modification of
nonparabolic bands requires a separate consideration to be
reported in the nearest future.

F. Potential influence of the nonmonochromatic
effects on the photoionization

The specific variations of the band structure by the laser-
driven electron oscillations are favorable for some qualitative
analysis of the photoionization and nonlinear absorption. The
analysis is based on the fundamental exponential dependence
of the interband transition rate on effective band gap [46,54].
First, the time-domain dynamics of the effective band gaps
suggest suppression of the photoionization at the leading edge
of an ultrashort laser pulse compared to the predictions of the
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monochromatic Keldysh model [54]. This suppression results
from a significant enhancement of the effective direct band
gap of the pulse-driven model compared to the monochro-
matic approach (Fig. 7). The difference between those models
can be as large as a few eV and is more pronounced in
wide-band-gap semiconductors (Fig. 7). Therefore, the pulse-
driven model predicts absorption of a few more photons at
the leading edge of the pulse compared to the estimations
by the monochromatic Keldysh model. The photoionization
suppression due to the increase of the effective band gap is
enhanced by the reduced laser intensity at the leading tail of
the pulse (Fig. 7). The action of those two processes favors
formation of an abrupt increase of the photoionization around
the pulse peak. The situation is reversed at the tail part of
the laser pulse where the pulse-driven model predicts a lower
effective band gap than that of the monochromatic approxi-
mation. This specific feature of the pulse-driven modification
of the band structure should lead to substantial enhancement
of the photoionization and the nonlinear absorption at the tail
part of the pulse. This violation of the temporal symmetry
of the nonlinear absorption with respect to the pulse peak
may result in specific time dynamics of the nonlinear optical
response as well as energy absorption and transfer.

V. CONCLUSIONS

In conclusion, we have reported the transient bands formed
by the ponderomotive energy of the ultrashort pulses of
laser-driven electron/hole oscillations in a wide-band-gap
crystal. The monochromatic and quasimonochromatic ap-
proximations assume the homogeneous distribution of the
oscillation amplitude within every single cycle. Departure
from the monochromatic approximation is done by taking
into account the fundamental fact that the amplitude of the
second half of any oscillation cycle is never the same as the
amplitude of the first half of the cycle. This basic property of
the ultrashort oscillation pulses results in the formation of the
transient indirect-gap band structure due to the p shifting of
the original bands in the direction parallel to the electric field
of the laser pulse. The transient bands are characterized by
the effective direct and indirect band gaps. Another specific

feature of the ultrashort-pulse-driven modification of the en-
ergy bands is the shift of the maximum of the time-dependent
direct effective band gap away from the peak of a laser pulse in
the time domain. Due to that shift, the effective pulse-driven
band gap exceeds that of the monochromatic approximation
at the leading part of a laser pulse. At the tail part of the
pulse, the situation is reversed, i.e., the ultrashort-pulse model
predicts a smaller effective band gap compared to that of the
monochromatic approach. This feature suggests a significant
suppression of the laser-induced photoionization and associ-
ated nonlinear absorption at the leading edge of the ultrashort
laser pulse and possible formation of an abrupt ionization
front. Finally, the reported above model predicts generation
of a slowly varying photocurrent of free carriers driven by
the pulse envelope. It can make a specific contribution to the
ultrafast optical response of the crystals. All those results are
obtained under the assumption that the laser-driven oscilla-
tions dominantly contribute to the band-structure distortions
in the crystals.

The reported model suggests that the Keldysh formula for
the photoionization rate of crystals [54] can be a reasonable
approximation for a domain of laser and material parameters
that provide large value of the products (αγ 2

0 ) and (αγ0). For
few-cycle and high-intensity laser pulses, the Keldysh formula
cannot deliver any reasonable estimation of the photoioniza-
tion rate because it incorporates incorrect estimation of the
effective band gap.

The reported model can serve as an improved basis for the-
oretical evaluation of the time-dependent nonlinear absorption
and transient optical response of the wide-band-gap crystals
during an immediate action of the high-intensity ultrashort
laser pulses on the crystals.
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