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The QED3-Gross-Neveu model is a (2 + 1)-dimensional U(1) gauge theory involving Dirac fermions and a
critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined
quantum critical point between Néel and valence bond solid orders in frustrated quantum magnets. We study
the critical behavior of the QED3-Gross-Neveu model by means of an ε expansion around the upper critical
space-time dimension of D+

c = 4 up to the three-loop order. Estimates for critical exponents in 2 + 1 dimensions
are obtained by evaluating the different Padé approximants of their series expansion in ε. We find that these
estimates, within the spread of the Padé approximants, satisfy a nontrivial scaling relation, which follows from
the emergent SO(5) symmetry implied by the duality conjecture. We also construct explicit evidence for the
equivalence between the QED3-Gross-Neveu model and a corresponding critical four-fermion gauge theory that
was previously studied within the 1/N expansion in space-time dimensions 2 < D < 4.
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I. INTRODUCTION

Frustrated magnets host a variety of nontrivial quantum
and classical states in their low-energy spectrum. Upon
changing nonthermal external parameters such as magnetic
field, pressure, or chemical composition these systems, in the
low-temperature limit, can often be tuned through quantum
critical points (QCPs) at which the nature of the ground
state changes qualitatively [1]. Apart from the featureless
disordered states, we distinguish between long-range-ordered
ground states that are characterized by local order param-
eters and describe symmetry-broken phases, and unconven-
tional long-range-entangled states that exhibit fractionalized
excitations. In a Heisenberg magnet on the square lattice,
for example, the classical Néel state corresponding to the
standard antiferromagnetic phase spontaneously breaks the
spin-rotational symmetry. The valence bond solid (VBS), in
which pairs of spins on neighboring sites form singlets, is
another example for a conventionally ordered, yet quantum,
state. It breaks the lattice-rotational symmetry spontaneously.
Unconventional long-range-entangled states, i.e., spin-liquid
states, can be stabilized in situations in which the magnetic
frustration is large. Their nonlocal fractionalized excitations
lead to fascinating new physics [2].

Such unconventional behavior can, however, also occur
right at the transition point between two completely conven-
tionally ordered phases. The prototype example for such an
exotic transition is the putative quantum critical point between
Néel and VBS states in square-lattice Heisenberg magnets
[3–5], but evidence for various similar critical points between
two ordered phases in other systems has been found recently
[6–9]. It has been argued [3] that the low-temperature physics
in the quantum critical fan [10] is governed by fractionalized
particles (deconfined spinons), which represent the relevant
physical degrees of freedom at the QCP, but are confined in ei-
ther of the adjacent ordered phases. The spinons interact via an

emergent gauge field, and a possible low-energy field theory
describing the deconfined QCP between Néel and VBS states
is given by the (2 + 1)-dimensional (2+1D) noncompact CP1

σ model [3].
There exist, however, other equivalent continuum descrip-

tions of deconfined QCPs. The Néel-VBS deconfined critical
point, for instance, possesses an alternate formulation in terms
of its original order parameters provided that a certain topo-
logical term is included in the action [11]. The presence of
this additional term naturally explains why the conventional
Ginzburg-Landau-Wilson paradigm, which would forbid a
direct and continuous transition between two ordered phases,
breaks down at a deconfined QCP. Yet another equivalent
description was conjectured, which involves critical fermion
degrees of freedom [12]. Early indications for such a 2+1D
boson-fermion duality at the critical point have been found
some time ago, suggesting the equivalence between 2+1D
quantum electrodynamics (QED3) and an easy-plane version
of the CP1 σ model at criticality [11,13]. Initiated partly by
the Dirac theory of the half-filled Landau level [14] and the
fermionic counterpart [15–17] of the classic bosonic particle-
vortex duality [18,19], these early conjectures have recently
been significantly extended [20] and put into context [21].
There is now a comprehensive web of dualities between
2+1D field theories including both fermionic as well as purely
bosonic gauge theories. Some of these dualities can be explic-
itly derived within a lattice formulation [22], others follow
perturbing established supersymmetric dualities [23], or can
be verified in the large-N limit [24]. Numerical evidence for
the proposed duality between the easy-plane CP1 σ model and
QED3 has been purported very recently as well [7,9].

The SU(2) symmetric noncompact CP1 model, describing
the Néel-VBS deconfined QCP, has been conjectured to be
dual to the QED3-Gross-Neveu (QED3-GN) model [12]. This
latter theory consists of 2+1D gapless Dirac fermions that
are charged under a U(1) gauge field as in QED3, but are
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additionally coupled to a critical Gross-Neveu scalar field.
The duality implies an emergent SO(5) symmetry at the
deconfined QCP [12], which rotates components of the Néel
and VBS order parameters into each other. Such an emergent
symmetry had in fact been observed numerically earlier [25].
Although having passed a number of consistency checks [12],
it should be emphasized that this fermion-boson duality, just
as most of the other new duality relations in 2+1 dimensions,
lacks a formal proof. In particular, it is at present unclear,
whether the strong version of the duality holds, implying that
the two theories flow to the same renormalization group (RG)
fixed point and describe the same infrared physics, or only
a weaker version applies, stating that the two theories “live
in the same Hilbert space,” i.e., they have the same local
operators, the same symmetries, and the same anomalies (if
any) [12]. Assuming the strong version of the duality, how-
ever, implies a number of nontrivial scaling relations between
the CP1 and QED3-GN models, as well as new pertinent
scaling relations entirely within the QED3-GN model itself.
These scaling relations allow us to test the duality conjecture
on a quantitative level and, eventually, to answer the question
of which version of the duality applies.

Recently, it has been shown that the QED3-GN model
exhibits an infrared stable RG fixed point, the existence of
which is a prerequisite for the proposed (strong version of
the) duality to hold [26]. This can be established within a
suitable generalization of the model to noninteger space-time
dimension D with 2 < D < 4. This theory has an upper
critical space-time dimension of D+

c = 4, enabling one to
compute the critical behavior within a controlled ε expan-
sion in D = 4 − ε dimensions. Here, we extend the previous
one-loop analysis [26] to the three-loop order and compute
the scaling dimensions of various operators to compare with
the predictions from the duality. Moreover, we establish the
previously conjectured [26] equivalence of the QED3-GN
model with a gauged fermionic theory in which the boson-
mediated scalar interaction is replaced by a corresponding
critical four-fermion interaction. This fermionic theory is
amenable to a 1/N expansion in fixed dimension 2 < D < 4,
which allows us to demonstrate order by order in a double
expansion in both ε and 1/N the explicit equivalence of the
ultraviolet stable fixed point in this theory with the infrared
stable fixed point of the QED3-GN model. This puts the
asserted equivalence of these gauge theories on the same level
as the known ultraviolet-infrared correspondence between
the usual ungauged Gross-Neveu and Gross-Neveu-Yukawa
models [27,28].

The rest of the paper is organized as follows: In Sec. II, we
describe the QED3-GN model, its generalization to noninteger
space-time dimension 2 < D < 4, as well as the correspond-
ing gauged four-fermion theory. We also briefly comment on
the noncompact CP1 model. Then, in Sec. III, we review
the corresponding duality conjecture focusing on the conse-
quential relations between the scaling dimensions of different
operators. Section IV contains details of the RG scheme and
the resulting flow equations. Critical exponents and scaling
dimensions are computed in Sec. V and estimates for the
quantum critical behavior in 2+1 dimensions is presented in
Sec. VI. We discuss these results in light of the conjectured
2+1D boson-fermion duality and give some concluding re-
marks in the final Sec. VII.

II. MODELS

Here, we introduce the two relevant U(1)-gauged fermionic
models for the dual description of the deconfined quantum
critical point, i.e., the QED3-GN model and the corresponding
gauged four-fermion model.

A. QED3-GN model

The QED3-GN model is defined in D = 2 + 1 Euclidean
space-time dimensions by the Lagrangian [12]

L = ψ̄i ( /D + gφ)ψi + 1
4F 2

μν + 1
2φ

(
r − ∂2

μ

)
φ + λφ4, (1)

with ψi and ψ̄i being 2N flavors of two-component gapless
Dirac spinors, i = 1, . . . , 2N , which interact with each other
through the real scalar field φ. Here, we have abbreviated
the covariant derivative /D ≡ (∂μ − ieAμ)σμ, with the 2 × 2
matrices σμ serving as a two-dimensional representation of
the Clifford algebra, {σμ, σν} = 2δμν1. The summation con-
vention over repeated indices is implicitly assumed. Fμν =
∂μAν − ∂νAμ is the field strength tensor of the U(1) gauge
field Aμ, μ, ν ∈ {0, 1, 2}. In our calculations, we will also add
a gauge-fixing term

Lgf = − 1

2ξ
(∂μAμ)2, (2)

to the Lagrangian with gauge-fixing parameter ξ , allowing us
to check the gauge invariance of our results. In addition to the
U(1) gauge symmetry, the theory satisfies an SU(2N ) flavor
symmetry and a set of discrete symmetries such as parity,
charge conjugation, and time reversal. Under the latter, the
scalar field φ maps to −φ. The scalar mass parameter r can
be used as a tuning parameter for a symmetry-breaking phase
transition at some critical rc. For r < rc, φ acquires a vacuum
expectation value, 〈φ〉 ∝ 〈ψ̄iψi〉 �= 0, signaling the sponta-
neous breaking of time-reversal symmetry and the dynamical
generation of a fermion mass.

A lattice realization of this ordered state is given by the
quantum anomalous Hall state with spontaneously generated
microscopic currents, a gapped bulk spectrum, and topologi-
cally protected chiral edge states [29]. The gauge symmetry
as well as the flavor symmetry remain intact across this
transition. In Eq. (1), the charge e, the Yukawa coupling g, as
well as the bosonic self-interaction λ become simultaneously
marginal at the upper critical dimension D+

c = 4, suggesting
that the critical point may be approached within a standard ε

expansion in D = 4 − ε space-time dimensions.
In order to generalize the theory to arbitrary dimension 2 <

D < 4, we first combine the 2N flavors of two-component
spinors into N flavors of four-component spinors [30]

�a ≡
(

ψa

ψa+N

)
and �̄a ≡ (ψ̄a,−ψ̄a+N ), (3)

with a = 1, . . . , N . The Dirac kinetic term then becomes
�̄a∂μγμ�a with γμ = σz ⊗ σμ, where σz denotes the diagonal
2 × 2 Pauli matrix. γμ serves as four-dimensional reducible
representation of the Clifford algebra. The Yukawa interaction
reads φ�̄aγ35�a with γ35 = iγ3γ5 = σz ⊗ 1. Here, γ3 and γ5

are the two leftover γ matrices, which anticommute with each
other as well as with γ0, γ1, and γ2 [31,32]. It is important to
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note that γ35 squares to one and commutes with the fermion
propagator G� (p) = −iδab /p/p2 in D = 3. The above theory
with the full SU(2N ) flavor symmetry therefore has the same
loop expansion as a corresponding theory with a smaller
symmetry of only SU(N ) × SU(N ) × U(1), in which the
Yukawa interaction is replaced by the simple scalar interaction
involving only the identity operator

φ�̄aγ35�a 	→ φ�̄a1�a. (4)

This is because in any nonvanishing closed fermion loop, the
bilinear operator γ35 occurs always twice and may thence in
all diagrams be replaced by 1 from the outset. The critical
behavior determined by, e.g., the critical exponents ηφ and ν,
of these two theories should therefore coincide to all orders in
the perturbative expansion. We note, however, that subleading
exponents, such as the corrections-to-scaling exponent ω, cor-
responding to irrelevant operators, might deviate, cf. Ref. [30].

A generalization of γ35 to noninteger dimensions can be
obtained by noting that γ35 = − i

3!εμνργμγνγρ = −iγ[μγνγρ],
where the square brackets denote complete antisymmetriza-
tion. The last form is a well-defined expression also in nonin-
teger dimension [33], however, this expression does not pre-
serve the commutation relation between γ35 and G� in D �= 3.
In D = 4, e.g., one obtains γ35 → γμγ5, which neither com-
mutes nor anticommutes with G� . By contrast, the naive gen-
eralization of the SU(N ) × SU(N ) × U(1)-symmetric theory,
which keeps the simple scalar Yukawa term �̄a�a in all
dimensions 2 < D < 4, does retain this crucial property of
the loop expansion in a trivial way, [G�,1] = 0. In this work,
we therefore advocate the use of this latter theory to approach
the critical behavior of the QED3-GN model within an ε

expansion around the upper critical space-time dimension of
D+

c = 4.

B. Gauged four-fermion theory

In Ref. [26], it was suggested that the infrared stable fixed
point in the critical QED3-GN model can be equivalently
understood as an ultraviolet stable fixed point of a gauged
four-fermion model with Lagrangian

L4-fermi = �̄a /D�a + 1

4
F 2

μν + g2

2r
(�̄a�a )2. (5)

This is reminiscent of the correspondence between the in-
frared fixed point in the critical Gross-Neveu-Yukawa model
and the ultraviolet fixed point of the fermionic Gross-Neveu
model [27,28]. The correspondence can be made plausible by
means of a Hubbard-Stratonovich transformation, where the
quartic interaction is replaced by a Yukawa coupling to an
order-parameter field φ, yielding the effective fermion-boson
Lagrangian

L′
4-fermi = �̄a ( /D + gφ)�a + 1

4
F 2

μν + r

2
φ2, (6)

which is equivalent to Eq. (1) up to the presence of the gradi-
ent term ∝ ∂2φ2, the boson self-interaction ∝ λφ4, and the
previously discussed difference in flavor symmetry. Within
the 1/N expansion, the model (5) has been shown to possess
a critical fixed point in all dimensions 2 < D < 4 [34–36].
Below, we collect additional evidence that the theories defined

by Eqs. (1) and (5) lie in the same universality class upon
a double expansion in both 1/N and ε = 4 − D. In fact, we
carry out this expansion up to linear order in 1/N and cubic
order in ε and show that the exponents ηφ and ν precisely
coincide order by order in the calculation.

C. Noncompact CP1 model

The bosonic theory that has been proposed [12] to be dual
to the QED3-GN model is the CP1 σ model describing two
complex fields zα , α = 1, 2. They satisfy the length constraint∑

α |zα|2 = 1, and interact via a noncompact U(1) gauge field
bμ. The Lagrangian can be written as

LCP1 = 1

κ

∑
α

|(∂μ − ibμ)zα|2, (7)

with the coupling constant κ , which is marginal for D = 2
and perturbatively irrelevant for D > 2. In order to employ
a controlled expansion in fixed D = 2 + 1, the above La-
grangian can be generalized to the CPNb−1 model by allowing
an arbitrary number Nb of components of z, α = 1, . . . , Nb.
At large Nb, the model can be shown to possess a quantum
critical point at finite κ = κc, separating an ordered phase
for κ < κc from a disordered phase for κ > κc. The critical
exponents have been computed up to the linear order in
1/Nb [37–39], yielding the correlation-length exponent ν as

1/νCP1 = 1 + 48

π2Nb
+ O

(
1/N2

b

)
(8)

and the anomalous dimension ηz as

ηz = −4(3 + 2ξ )

π2Nb
+ O

(
1/N2

b

)
. (9)

Note that ηz depends on the gauge-fixing parameter ξ , while
ν is gauge independent. The case relevant for the deconfined
critical point between Néel and VBS orders on the square
lattice is given by Nb = 2. The spinon fields z = (z1, z2)T

then describe the fractionalized quasiparticles at the transition
point, and the Néel order parameter is �N = z† �σz. Here, �σ
stands for the three-dimensional vector of Pauli matrices. The
anomalous dimension of the Néel order parameter is given by
ηNéel = 1 + 2ηz + 2ηz†σz, where ηz†σz denotes the anomalous
dimension of the vertex z† �σz. To the linear order in 1/Nb, it
reads

ηNéel = 1 − 32

π2Nb
+ O

(
1/N2

b

)
, (10)

in which the gauge dependence has dropped out, as ex-
pected [39]. The coefficient of the leading-order correction
∝ 1/Nb is large, and higher-order calculations are necessary
to yield an estimate for the case of Nb = 2. The VBS order pa-
rameter is given by the instanton operator Mb, which creates
a monopole in the gauge field bμ with lowest finite topological
charge. The scaling dimension of Mb has been computed up
to next-to-leading order in the 1/Nb expansion [40], yielding
the VBS anomalous dimension

ηVBS = 0.249Nb − 0.237 + O(1/Nb), (11)

which is well consistent with numerical results for various
Nb [41].
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III. DUALITY CONJECTURE

Let us review the conjectured duality between the CP1

model and the N = 1 QED3-GN model in 2+1 dimen-
sions [12]. On the bosonic side, the two real components
of the complex VBS order parameter Mb and the three
components of the Néel order parameter �N can be combined
into a fivetuplet,

�nCP1 = (2ReMb, 2ImMb, z
†σxz, z

†σyz, z
†σzz). (12)

Here, the first two components of �nCP1 transform into each
other under the global U(1) symmetry, while the last three
components transform as a three-vector under the SU(2) spin
symmetry.

On the fermionic side, a monopole in the gauge field Aμ

created by the operator MA induces a zero mode for each of
the two Dirac fermions, with one of it filled as a consequence
of the Atiyah-Singer index theorem [42]. This allows us to
construct a fivetuplet in the QED3-GN model with N = 1 as

�nQED3-GN = [Re(ψ†
1MA),−Im(ψ†

1MA),

Re(ψ†
2MA), Im(ψ†

2MA), φ]. (13)

The N = 1 QED3-GN model has an explicit SU(4) symmetry
in 2+1 dimensions, under which the first four components of
�nQED3-GN are rotated into each other.

The proposed strong version of the duality now implies that
�nCP1 and �nQED3-GN are dual to each other when both CP1 and
QED3-GN models are tuned to their respective critical points,

�nCP1 (κ → κc) ∼ �nQED3-GN(r → rc). (14)

We emphasize that the duality is expected to hold only
precisely in D = 2 + 1 dimensions and for two flavors of
two-component Dirac spinors on the QED3-GN side (cor-
responding to N = 1 in our notation). The duality immedi-
ately implies an emergent SO(5) symmetry in both models
at criticality, since any component of �nCP1 and �nQED3-GN,
respectively, can be rotated into each other by applying the
symmetry transformation of the respective dual theory. If the
duality holds, it would therefore explain the emergent SO(5)
observed numerically at the deconfined critical point [25]. It
also implies that the scaling dimensions of all components
of �nCP1 and �nQED3-GN coincide. For instance, [Mb] = [z† �σz],
from which we obtain

ηVBS = ηNéel, (15)

which is consistent with the numerics [4]. Also, z†σzz ∼
φ implies that the anomalous dimensions of the CP1 and
QED3-GN models coincide at criticality,

ηNéel = ηφ. (16)

Moreover, from the SO(5) vectors �nCP1 and �nQED3-GN we can
construct traceless second-rank tensor operators

X(2) = �n �nT − 1
5 (�n)215, (17)

with the duality implying

X
(2)
CP1 (κ → κc) ∼ X

(2)
QED3-GN(r → rc). (18)

FIG. 1. Summary of conjectured duality relations among and
within the CP1 and QED3-GN models. The duality relation within
the N = 1 QED3-GN model is emphasized by the thicker red arrow
and will be subject to investigation here.

Note that X
(2)
CP1 involves the operators M†

bMb and �N2, which

tune through the Néel-VBS transition, while X
(2)
QED3-GN in-

volves φ2, which tunes through the time-reversal-symmetry-
breaking transition in the QED3-GN model. We therefore
have that [M†

bMb] = [ �N2] = [φ2], and the correlation-length
exponents must coincide as a consequence of the duality,

νCP1 = νQED3-GN. (19)

Even more interestingly, the fermion bilinear ψ̄σzψ =
ψ̄1ψ1 − ψ̄2ψ2 can be understood to also correspond to an
element of X

(2)
QED3-GN [12], yielding

[ψ̄σzψ] = 3 − 1/νQED3-GN (20)

at the critical point of the 2+1D QED3-GN model. Equa-
tion (20) represents an especially powerful implication of the
duality, as it relates the scaling dimensions of different opera-
tors of the same model to each other, and can thus be fully
checked within a stand-alone QED3-GN calculation [12].
The duality between the CP1 and QED3-GN models and
the implications for the critical behaviors are summarized in
Fig. 1. In the following, we will compute the critical behavior
of the QED3-GN model with a particular focus on this scaling
relation as a nontrivial check of the conjectured duality.

IV. RENORMALIZATION GROUP APPROACH

Here, we first explain the setup for the three-loop renormal-
ization group analysis in D = 4 − ε space-time dimensions
including a few technicalities. Further, we present the full set
of β and γ renormalization group functions up to three-loop
order and explain how to extract the critical fixed point order
by order in the ε expansion.

A. Scheme and tool chain

The bare Lagrangian is defined by Eq. (1) upon replac-
ing the fields and couplings by their bare counterparts, i.e.,
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� 	→ �0, φ 	→ φ0, Aμ 	→ A0,μ, e 	→ e0, g 	→ g0, λ 	→ λ0,
ξ 	→ ξ0. The renormalized Lagrangian is then introduced as

L′ = Z��̄a /∂�a − iZA�̄�eμε/2 /A�̄a�a

+ ZA

4
F 2

μν + Zφ

2
(∂μφ)2 + Zφ2

r

2
μ2φ2

+ Zφ�̄�gμε/2φ�̄a�a + Zφ4λμεφ4, (21)

where μ defines the effective energy scale parametrizing the
RG flow. We have defined the wave function renormalizations
Z� , Zφ , and ZA, which relate the bare and the renormalized
Lagrangian upon the field rescalings �0 = √

Z��, φ0 =√
Zφφ, and A0,μ = √

ZAAμ. The explicit μ dependencies in
the above Lagrangian arise from the introduction of dimen-
sionless couplings. Demanding that the coefficient in front of
the mass term remains invariant under the RG requires r =
r0μ

−2ZφZ−1
φ2 . The dimensionless couplings are then related

to the bare couplings as

α = e2
0μ

−εZ2
�ZAZ−2

A�̄�
, (22)

y = g2
0μ

−εZ2
�ZφZ−2

φ�̄�
, (23)

λ = λ0μ
−εZ2

φZ−1
φ4 . (24)

In the above equations, we have introduced the dimensionless
parameters α ≡ e2 and y ≡ g2, where we have implicitly used
the fact that the RG flow must be symmetric under sign
changes of e and/or g.

We calculate the renormalization factors Zx , x ∈
{�, φ,A, φ2, φ�̄�, A�̄�, φ4} up to the three-loop order
near the upper critical dimension by employing dimensional
regularization and the modified minimal subtraction
scheme (MS) using a chain of computer algebra tools:
All the Feynman diagrams are generated with the program
QGRAF [43]. At three-loop order, the complete number of
diagrams is sizable as shown in Table I for the different types
of diagrams corresponding to the respective renormalization
group factor Zx . Further processing of the diagrams is
done with the programs Q2E and EXP [44,45] and tracing
over matrix structures from the Clifford algebra and tensor
reduction of Feynman intergrals is accomplished with
FORM [46–48]. Before the calculation of Feynman integrals is
performed, a reduction to master integrals is carried out via
integration-by-parts identities [49]. For the evaluation of β

functions and anomalous dimensions we use a setup where the
vertex functions are computed by setting one or two external
momenta to zero. Consequently, the integrals are mapped to
massless two-point functions. These are implemented up to
three-loop order in MINCER [50].

B. Beta functions

The beta functions βx for couplings x ∈ {α, y, λ} and
the gauge fixing parameter ξ are defined as the logarithmic
derivatives with respect to μ as

βx = dx

d ln μ
. (25)

TABLE I. Number of diagrams to compute in dimensional regu-
larization to the third loop order.

Diagram type 1-loop 2-loop 3-loop

2 13 177

2 9 99

1 6 83

2 38 876

2 37 844

9 153 4248

Total 18 256 6327

We use rescaled couplings x/(8π )2 	→ x for x ∈ {α, y, λ}. To
three-loop order the β functions can then be written in the
form

βx = −ε x + β(1L)
x + β(2L)

x + β(3L)
x , (26)

where we have defined the functions β(iL)
x to collect the con-

tributions of the ith loop order to the coupling x ∈ {α, y, λ}.
Up to the three-loop order, the β function of the gauge

coupling α reads

β (1L)
α = 4

3Nα2, (27)

β (2L)
α = 2Nα3 − Nyα2, (28)

β (3L)
α = −α2N

36
[2α2(22N + 9) − 9(7N + 6)y2 + 27αy].

(29)

The β function for the Yukawa coupling y is given by

β (1L)
y = (3 + 2N )y2 − 6αy, (30)

β (2L)
y = −

(
9

8
+ 6N

)
y3 − 24λy2 + 24λ2y

+ (12 + 5N )y2α + 1

6
(20N − 9)yα2, (31)

β (3L)
y = 1

16y2[192αλ + α2(−64N2 + 98N + 327)

+ 48λ2(91 − 30N )] + 1
64 [2N (112N + 67)

− 697]y4 − 1
4y3[α(79N + 174) − 72λ(5N + 7)]

+ 3
4ζ3y[−32α3N + (18N + 19)y3

+ 4α(4N + 3)y2 − 12α2(6N + 7)y] − 216λ3y

+ 1
108α3[4N (70N + 621) − 3483]y. (32)
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ζz = ζ (z) denotes Riemann’s zeta function. The β function of
the scalar interaction with coupling λ reads

β
(1L)
λ = 36λ2 − Ny2 + 4Nyλ, (33)

β
(2L)
λ = (10αλ − 72λ2 + 4y2 − 2αy + 7λy)Ny − 816λ3,

(34)

β
(3L)
λ = 31320λ4 − 1

8
N2y(64α2λ +157y3−868λy2

− 116α2y + 864λ2y) − 3ζ3{Ny[−12αλ(α + 12λ)

+ 4y3 + y2(39λ − 8α) + 4y(α2 + 19αλ − 81λ2)]

− 6912λ4} + y

32
N [8λ(6192λ2 − 119α2 − 1836αλ)

+ 5y3 − 2y2(44α + 4395λ) + 4y(131α2 + 1302αλ

+ 4332λ2)]. (35)

Note that the β functions are gauge independent as expected
and we use this as a sanity check on our calculations. Further,
the above expressions fully agree with the QED β func-
tions [51–53] in the limit of y → 0 and λ → 0. Also, we
recover the β functions of the Ising Gross-Neveu-Yukawa
model for α → 0 [54,55] and the scalar φ4 theory with Ising
symmetry [56]. Moreover, Eqs. (27), (30), (33) are consistent
with the one-loop result from Ref. [26]. For completeness,
the β function of the gauge fixing parameter is listed in the
Appendix.

C. Anomalous dimensions

The field anomalous dimensions γx are defined by γx =
d ln Zx

d ln μ
for x ∈ {�, A, φ, φ2} and at three-loop order, they

can be expanded as γx = γ (1L)
x + γ (2L)

x + γ (3L)
x . Explicitly, the

boson anomalous dimension is given by

γ
(1L)
φ = 2Ny, (36)

γ
(2L)
φ = − 5

2Ny(y − 2α) + 24λ2, (37)

γ
(3L)
φ = 1

4N2y(25y2 − 16α2) − 216λ3

+ 1
32Ny[21y2 − 84yα − 476α2 + 960yλ

− 2880λ2] + 3
2Ny(y2 − 4yα + 12α2)ζ3. (38)

Note that γφ involves no explicit dependence on the gauge-
fixing parameter ξ , which is consistent with the fact that the
scalar-field anomalous dimension determines the exponent
in the anomalous power law of the two-point correlator at
criticality.

The exponent ν, governing the divergence of the correla-
tion length, can be computed from the renormalization of the
mass term, which reads

γ
(1L)
φ2 = −12λ (39)

γ
(2L)
φ2 = −2Ny2 + 24Nyλ + 144λ2 (40)

γ
(3L)
φ2 = 36Ny3 − 28Ny2α − 4N2y2(4y − 9λ)

− 33
2 Ny2λ + 153Nyαλ − 288Nyλ2 − 6264λ3

− 12Ny[y2 − 3y(α − 5λ) + 12αλ]ζ3. (41)

The anomalous dimensions for the fermion and the gauge
boson are given in the Appendix for completeness. Again, we
have checked that these expressions are fully compatible with
the known expressions from QED [51,52], the Ising Gross-
Neveu-Yukawa model [54,55], the scalar φ4 theory with Ising
symmetry [56], and the one-loop results from Ref. [26] in the
appropriate limits.

We are also interested in the scaling dimension of the
flavor-symmetry-breaking bilinear

ψ̄i (σz ⊗ 1N )ijψj 	→ �̄a (σz ⊗ 12)�a ≡ �̄σz�. (42)

Note that σz ⊗ 12 = γ35 in our representation of the 2+1D
Clifford algebra. A natural generalization to D = 4 − ε can be
obtained by assuming an even number N of four-component
spinors, allowing us to construct an 8 × 8 operator �35 =
�−1

35 that commutes with the fermion propagator, [G� ⊗
12,�35] = 0. The results for odd N are obtained by analytical
continuation. If the CP1–QED3-GN duality holds, the scaling
dimensions of [�̄σz�] and φ2 coincide for D = 2 + 1 and
N = 1 at the critical fixed point, leading to a nontrivial scaling
relation (cf. Sec. III).

To calculate the scaling dimension of the bilinear in
Eq. (42), we introduce an additional term h�̄σz�, where
h serves as an infinitesimal background field that couples
linearly to the flavor-symmetry-breaking bilinear. To leading
order in h, we obtain

γ
(1L)
�̄σ�

= 3α − 3
2y (43)

γ
(2L)
�̄σ�

= 1
12α2(9 − 20N ) + 7

4Ny2 + 9
16y2 − 6αy (44)

γ
(3L)
�̄σ�

= 1

216
α3(−280N2 − 2484N + 3483) + 87αy2

4

+ 1

128
(176N2 − 604N + 697)y3 + 137

16
αNy2

− 3

8
ζ3(12y2(α + 2αN ) − 32α3N + 19y3 − 84α2y)

+ 3

32
y(464λ2 + α2(80N − 109)) − 30λy2. (45)

We note that Eq. (43) agrees with the previous one-loop result
from Ref. [26]. We have also checked that it is consistent with
the QED limit [33,57] up to three loops.

D. Critical fixed point

The β functions allow the determination of the RG fixed
points order by order in the ε expansion. To the leading order,
we find a unique infrared stable fixed point at

(α∗, y∗, λ∗) =
(

3

4N
,

2N + 9

2N (3 + 2N )
,
−2N2 − 15N + s

72N (3 + 2N )

)
ε

+ O(ε2), (46)

where

s ≡
√

4N4 + 204N3 + 1521N2 + 2916N, (47)

in agreement with the previous result [26]. The higher-order
terms suppressed in the above equation are straightforwardly
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FIG. 2. Expansion coefficients x (kL)
∗ from k-loop order of the expansion of the fixed-point values x∗ = α∗ (left panel), y∗ (middle panel),

and λ∗ (right panel) as a function of N . The coefficients are large for small N , but satisfy a hierarchy |x (3L)
∗ | < |x (2L)

∗ | < |x (1L)
∗ | at large N .

Darker red (lighter blue) lines denote positive (negative) coefficients.

computed by making use of the β functions (27)–(35), but we do not display them for general N here for notational simplicity.
At N = 1 we obtain to the third loop order

α∗ = 3

4
ε − 9

40
ε2 + 430

√
4645 − 101630

48000
ε3 + O(ε4) ≈ 0.75ε − 0.225ε2 − 1.50674ε3 + O(ε4) (48)

y∗ = 11

10
ε + 86

√
4645 − 10741

5400
ε2 +

(
13263ζ3

2500
+ 271988639

19440000
− 389515313

388800
√

4645

)
ε3 + O(ε4)

≈ 1.1ε − 0.903655ε2 + 5.66874ε3 + O(ε4) (49)

λ∗ = (
√

4645 − 17)

360
ε +

(
14471

32400
− 308027

6480
√

4645

)
ε2

+
[

66888(78285599
√

4645 − 6406570729)

50332551120000
ζ3 + 1814042581409

√
4645 − 132453179835199

50332551120000

]
ε3 + O(ε4)

≈ 0.142095ε − 0.250827ε2 + 1.53577ε3 + O(ε4). (50)

We note that the three-loop coefficients are large, signaling the
divergent behavior of the series at finite ε ∼ O(1). For general
N , the series read

x∗(N, ε) =
3∑

k=1

x (kL)
∗ (N ) εk, (51)

with x∗ ∈ {α∗, y∗, λ∗} and expansion coefficients x
(1L)
∗ , x

(2L)
∗ ,

and x
(3L)
∗ at one-, two-, and three-loop order, respectively. The

dependence of the expansion coefficients as a function of N is
shown in Fig. 2. Note that the higher-loop corrections become
small for large N in all three cases.

V. QUANTUM CRITICAL BEHAVIOR

Here, we discuss the critical behavior of the QED3-GN
model, which can be extracted from the ε expansion, i.e., we
provide the series expansions for the inverse correlation length
exponent, the boson anomalous dimension, and the fermion
bilinear �̄σz� up to order O(ε3). For comparison, we also
give the corresponding expressions at one-loop order for the
four-fermion model and explicitly establish the correspon-
dence between both models in a combined epsilon and 1/N

expansion.

A. QED3-GN model

When the QED3-GN model is tuned to criticality, the
couplings α, y, and λ flow to the infrared stable fixed point and
the system becomes scale invariant. Right at the critical point,
the two-point correlation function Gφ (p) = 〈φ(−p)φ(p)〉
satisfies a power law Gφ (p) ∝ 1/p2−ηφ , where the critical
exponent ηφ is given by the anomalous dimension at the fixed
point,

ηφ = γφ (α∗, y∗, λ∗). (52)

The gauge-field anomalous dimension ηA is similarly given by
ηA = γA(α∗, y∗, λ∗) and governs the power law of the gauge-
field propagator GA(p) ∝ 1/p2−ηA at the critical point. Near
criticality, the correlation length ξc diverges with exponent ν

as ξc ∝ |δr0|−ν , where δr0 measures the distance to the critical
point. The correlation-length exponent is obtained from the
flow of the dimensionless mass parameter βr = (−2 + γφ −
γφ2 )r as

ν−1 = 2 − ηφ + γφ2 (α∗, y∗, λ∗). (53)

We also compute the scaling dimension of the flavor-
symmetry-breaking bilinear, which, according to the proposed
duality [12], is related to ν,

[�̄σz�] = D − 1 − η�̄σ�, (54)

where η�̄σ� = γ�̄σ� (α∗, y∗, λ∗).
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We have computed the scaling dimensions and the critical
exponents for all N to the third order in ε = 4 − D, see
Appendix. Here, we display the result for the situation of one
four-component spinor �, which is the case relevant for the
duality conjecture. For the scalar-field anomalous dimension
ηφ and the correlation-length exponent ν we find for N = 1:

ηφ = 11

5
ε + (23

√
4645 − 1768)

900
ε2

+
(

91497

5000
ζ3 + 818567

60000
− 383489

300
√

4645

)
ε3 (55)

≈ 2.2ε − 0.222725ε2 + 16.8838ε3 + O(ε4)

and

ν−1 = 2 − (
√

4645 + 49)

30
ε +

(
33311

54
√

4645
− 853

540

)
ε2

+
(

39308173

27000
√

4645
− 5931383

67500

)
ζ3ε

3

+
(

39127961

2430000
− 1646143919039

902988000
√

4645

)
ε3 (56)

≈ 2 − 3.90514ε + 7.47146ε2 − 90.5962ε3 + O(ε4).

We expect hyperscaling to hold at the critical point. The other
exponents α, β, γ , and δ can hence be obtained from the usual
scaling laws [1].

In order to compare with the 1/N expansion of the gauged
four-fermion model, it is useful to also compute the exponents
ηφ and 1/ν in the limit of large N . We find

ηφ =
(

1 + 3

N
− 9

2N2

)
ε −

(
1

N
− 39

8N2

)
ε2

−
(

3

4N
− 816ζ3 − 413

32N2

)
ε3 + O(1/N3, ε4) (57)

and

ν−1 = 2 −
(

1 + 6

N
− 63

2N2

)
ε +

(
7

2N
− 207

8N2

)
ε2

+
(

1

N
− 45ζ3

N2
+ 629

32N2

)
ε3 + O(1/N3, ε4). (58)

The scaling dimension of the flavor-symmetry-breaking bilin-
ear reads for N = 1

[�̄σz�] = 3 − 8

5
ε + (43

√
4645 + 646)

1800
ε2

+
(

51393

10000
ζ3 − 22196749

3240000
− 37077727

32400
√

4645

)
ε3

≈ 3 − 1.6ε + 1.987ε2 − 17.46ε3 + O(ε4) (59)

whereas in the large-N limit we obtain

[�̄σz�] = 3 +
(

−1 − 3

2N
+ 9

4N2

)
ε +

(
1

2N
− 15

16N2

)
ε2

+
(

3

8N
+ 1 − 216ζ (3)

64N2

)
ε3 + O(1/N3, ε4).

(60)

For the gauge-field anomalous dimension ηA we find

ηA = ε + O(ε4), (61)

for all N , which is consistent with the Ward identity associated
with the U(1) gauge symmetry, requiring Z� = ZA�̄� in
the renormalized Lagrangian, Eq. (21). This result provides
another nontrivial crosscheck of our calculations. The power
law of the gauge-field propagator at criticality thus reads
GA(p) ∝ 1/p exactly, in agreement with the situation in plain
QED3 [58–60].

We show the expansion coefficients as a function of N for
the inverse correlation-length exponent, the order-parameter
anomalous dimension, and the scaling dimension of the flavor-
symmetry-breaking bilinear in Fig. 3. The figure demonstrates
that only for large enough N the higher-loop corrections
become small. For small N , the series expansions of these
other exponents, in contrast to ηA, exhibit a sizable growth
in magnitude, with the three-loop terms for N = 1 being
significantly larger than the leading-order terms. This is in
analogy to the notorious situation in multiloop calculations of
the standard bosonic O(N ) models [56]. The determination
of estimates for scaling dimensions of operators in three
dimensions therefore requires a suitable resummation scheme.
Due to the lack of knowledge on the large-order behavior of
the series, here, we employ simple Padé approximants, see
Sec. VI.

B. Gauged four-fermion model

Here, we compare the exponents ηφ and ν of the QED3-GN
model with those of the gauged four-fermion model in Eq. (5).
The scaling dimensions of the latter model have been com-
puted before within the 1/N expansion for all space-time
dimensions 2 < D < 4 [34–36]. At the critical point, the
scalar-field propagator in real space satisfies the power law
Gφ (x) ∝ (1/x2

μ)a with exponent [35]

a = 1 + (D − 1)�(D − 1)

2[�(D/2)]3�( 4−D
2 )

1

N
+ O(1/N2), (62)

where �( · ) denotes the Gamma function. From the exponent
a, we obtain the anomalous dimension ηφ as

ηφ = 4 − D + (D − 1)�(D − 1)

[�(D/2)]3�
(

4−D
2

) 1

N
+ O(1/N2) (63)

= 1 + 16

π2N
+ O(1/N2), (64)

where the second line correspond to the physical case of
D = 3. We note that the O(1/N ) correction in ηφ is positive,
indicating an unusually large anomalous dimension ηφ > 1, at
least as long as N is large. This is in contrast to the situation
in the (ungauged) Gross-Neveu model [61,62], but consistent
with our result in the QED3-GN model, see Eq. (57).

Near, but not right at, the critical point, the scaling of the
propagator receives corrections according to

Gφ (x) ∝ 1(
x2

μ

)a

[
1 + c

(
x2

μ

)b + . . .
]
, (65)

where x ≡
√

x2
μ, c a constant (with respect to x), and the ellip-

sis denotes higher-order terms that vanish upon approaching
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FIG. 3. Expansion coefficients of the inverse correlation-length exponent 1/ν (left), the order-parameter anomalous dimension ηφ (middle),
and the scaling dimension of the flavor-symmetry-breaking bilinear [�̄σz�] (right) as a function of N . Darker red (lighter blue) lines denote
positive (negative) coefficients. The higher-loop corrections are again large for N = 1, but become small for large N .

the critical point. From the above equation, we can read off
the scaling form of the correlation length ξc ∝ |δr0|−ν with
ν = 1/(2b).

Using the result of Ref. [35] for the exponent b, we find

ν−1 = D − 2 − �(D + 1)

2 �
(

4−D
2

)
�

(
D
2

)3

1

N
+ O(1/N2), (66)

= 1 − 24

π2N
+ O(1/N2), (67)

where the second line corresponds again to D = 3. Expanding
the above 1/N series for ηφ and ν further in ε = 4 − D

allows us to make contact with the exponents of the QED3-GN
model. We find

ηφ =
(

1 + 3

N

)
ε − ε2

N
− 3ε3

4N
+ O(1/N2, ε4). (68)

and

1

ν
= 2 −

(
1 + 6

N

)
ε + 7ε2

2N
+ ε3

N
+ O

(
1

N2
, ε4

)
. (69)

Both Eqs. (68) and (69) precisely agree with the correspond-
ing Eqs. (57) and (58) in the QED3-GN model. This consti-
tutes yet another useful crosscheck of our calculations. Even
more importantly, this result demonstrates the equivalence
between the QED3-GN model and the gauged four-fermion
model at criticality, at least in the regime where both 1/N and
ε expansions are under perturbative control. Put differently,
here we have explicitly verified the naive expectation that
the presence or absence of the gradient term ∝ ∂2φ2 and/or
the scalar self-interaction ∝ φ4 in the QED3-GN Lagrangian
[Eq. (1)] does not change the universality class of the critical
system.

VI. ESTIMATES FOR 2+1D

As is usually the case in a perturbative calculation below
the upper critical dimension, the resulting series are (at best)
asymptotic and diverge upon naively extrapolating to ε = 1.
This problem can often be overcome with the help of a
suitable resummation scheme, which is a particularly promis-
ing approach if the high-order coefficients can be estimated
within, e.g., a strong-coupling expansion [56]. Due to the
limited knowledge of the strong-coupling behavior in the
present fermionic theories, here we constrain ourselves to a

simple Padé approximation. A comparison with Padé-Borel
resummed estimates is deferred to Appendix B.

A. Padé approximants

The Padé approximant for a series expansion f (ε) =∑L
k=0 fkε

k truncated at order L is a rational function

[m/n] = a0 + a1ε + · · · + amεm

1 + b1ε + · · · + bnεn
(70)

with L = m + n, and the coefficients a0, . . . , am, b1, . . . , bn

are uniquely given by matching the original series, i.e.,

[m/n] −
L∑

k=0

fkε
k = O(εL+1). (71)

The results for the correlation-length exponent ν, the order-
parameter anomalous dimension ηφ , and the scaling dimen-
sion of the flavor-symmetry-breaking bilinear [�̄σz�] for
different Padé approximants are given for the case of N = 1 in
Table II for ε = 1 (corresponding to D = 2 + 1) and in Fig. 4
as a function of ε ∈ [0, 1].

A few remarks are in order: (i) The deviation between
the different Padé estimates is not small, in particular for
the fermion bilinear. This may point to an inherent strong-
coupling nature of the problem, indicated by the large fixed-
point values at finite ε for N = 1, see Eqs. (48)–(50). The
issue dissolves for larger N , for which the loop corrections
become small. (ii) The order-parameter anomalous dimension

TABLE II. Padé-approximated estimates for the inverse
correlation-length exponent 1/ν, the boson anomalous dimension
ηφ , and the fermion bilinear scaling dimension [�̄σz�] in the N = 1
QED3-GN model in D = 2 + 1 space-time dimensions from two-
and three-loop ε expansion. Values, for which the approximant has
a pole in ε ∈ [0, 1] or is not defined, have been omitted (denoted
by “–”). Estimates from [0/3] strongly deviate from all other Padé
approximants and are hence not displayed.

Order [m/n] 1/ν ηφ [�̄σz�]

ε2 [0/2] 0.6602 – 2.5964
[1/1] 0.6595 1.9978 2.2863

ε3 [1/2] 0.6774 – 1.9894
[2/1] – 2.1971 1.6030
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FIG. 4. Padé approximants of the inverse correlation-length exponent 1/ν (left panel), the boson anomalous dimension ηφ (middle panel)
and the bilinear [�̄σz�] (right panel) at N = 1. Note that, e.g., the [1/2] approximant of the boson anomalous dimension ηφ has a pole in
ε ∈ [0, 1] and has therefore been omitted in Table II.

is significantly larger than in the ungauged Gross-Neveu and
Gross-Neveu-Yukawa models, for which ηGN

φ � 1 [55,63].

Our result that η
QED3-GN
φ > 1 in the QED3-GN models is con-

sistent with the findings at large N , cf. Eq. (64). (iii) The Padé
approximation predicts an anomalous dimension of the order
of two. Hyperscaling then requires the susceptibility exponent
γ to (nearly) vanish. An unusual situation would occur if ηφ

turned out to be larger than two, leading to a negative γ and a
vanishing susceptibility at the quantum critical point.

B. Comparison with duality predictions

We aim to compare our results for the critical behavior
of the QED3-GN model involving two two-component Dirac
fermions (corresponding to N = 1 in our notation) with the
predictions from the conjectured duality with the CP1 model.
We take the mean values for 1/ν, ηφ , and [�̄σz�], respec-
tively, from the different Padé approximants shown in Table II
as our best guesses for the critical exponents in D = 2 + 1,
and the largest deviation among the different Padé results
as an estimate for the order of the confidence interval. Let
us focus on the scaling relation (20) that follows from the
assumption of emergent SO(5) symmetry at the deconfined
critical point. This nontrivial relation allows us to compare
scaling dimensions fully within the QED3-GN model. For the
left-hand side of the relation, we find

[�̄σz�] ≈ 2.12(50), (72)

which, according to the duality conjecture, should coincide
with the right-hand side

3 − 1/ν ≈ 2.33(1). (73)

We note that in view of the quickly growing series coefficients
for 1/ν the spread is likely to be accidentally small. In any
case, these estimates are consistent with the duality prediction.

We should emphasize, however, that our estimates do not
agree with the exponents measured in the simulations of
the spin systems that are believed to possess a deconfined
critical point [4,5,10,64,65], see Table III. In particular, the
anomalous dimensions ηNéel ≈ ηVBS in these bosonic sys-
tems (although already being an order of magnitude larger
than in the usual Heisenberg or XY universality classes) are
significantly below one, while both the ε expansion of the
QED3-GN model in D = 4 − ε and the 1/N expansion of the
corresponding four-fermion model in fixed D = 2 + 1 find

a value for η
QED3-GN
φ that is significantly above one. Simi-

larly, the correlation-length exponent νCP1 in the spin systems
appears to be smaller than one, while we find νQED3-GN ≈
1.50(2) > 1, in qualitative agreement with the 1/N expansion
of the four-fermion model [Eq. (67)]. This discrepancy may
be interpreted within one of the following three possible
scenarios.

(i) The strong version of the CP1–QED3-GN duality may
not hold for the infrared physics and, in this case, the apparent
consistency between Eqs. (72) and (73) would be accidental.

(ii) While the perturbative approach to the QED3-GN
model approximately sustains the duality relation within the
model as reflected by Eqs. (72) and (73), it might not be well
suited to provide reliable absolute estimates for the critical
exponents. In that case, nonperturbative approaches, e.g., the
functional renormalization group or the conformal bootstrap,
could help to check the conjectured duality on the level of
critical exponents and scaling relations.

(iii) The deconfined critical point may really be only a
pseudocritical point corresponding to a critical fixed point that
has disappeared from the real coupling space as a consequence
of a collision and annihilation with another fixed point. If
indeed existent, any other fixed point would be located outside

TABLE III. Comparison of critical exponents in 2+1 dimensions
for the Néel-VBS deconfined critical point described by the non-
compact CP1 model and the conjectured dual QED3-GN model for
N = 1.

CP1 QED3-GN (N = 1)

ηNéel ≈ 0.26(3) [64] ηφ ≈ 2.1(1) [this work]
≈ 0.35(3) [10] ≈ 1.3(9) [26]
≈ 0.30(5) [65]
≈ 0.22 [66]
≈ 0.259(6) [4]

ηVBS ≈ 0.28(8) [65]
≈ 0.25(3) [4]

3 − 1/ν ≈ 1.72(5) [64] 3 − 1/ν ≈ 2.33(1) [this work]
≈ 1.53(9) [10] ≈ 2.7(4) [26]
≈ 1.15(19) [65]
≈ 1.21 [66] [�̄σz�] ≈ 2.12(50) [this work]
≈ 1 [4] ≈ 1.8(5) [26]
≈ 0.76(4) [5]

115163-10



DECONFINED CRITICALITY FROM THE QED3- … PHYSICAL REVIEW B 98, 115163 (2018)

the perturbative regime for ε � 1 and can only approach the
QED3-GN fixed point at some finite ε > 0. Such a fixed-point
annihilation scenario is known to occur in various gauge theo-
ries both in 2+1D and 3+1D [37,59,67–72], and has recently
been entertained also in the context of deconfined criticality
in the spin models [4,12]. In this scenario, SO(5) would only
emerge as an approximate symmetry near a weakly first-
order phase transition with an exponentially large, but finite
correlation length ξc [73]. The CP1–QED3-GN duality would
then only hold at length scales � � ξc in the simulations,
and the exponents computed here for the QED3-GN model
would not apply to this pseudocritical regime, but would in
fact characterize the nonunitary SO(5)-symmetric fixed point
located at complex coupling.

VII. CONCLUSIONS

We have determined the critical behavior of the QED3-GN
model within a three-loop ε expansion around the upper
critical space-time dimension of D+

c = 4. Within this expan-
sion, the model exhibits a unique infrared stable fixed point
corresponding to a continuous phase transition at which a
time-reversal-symmetry-broken fermion mass term is spon-
taneously generated. In analogy to the ungauged Gross-
Neveu and Gross-Neveu-Yukawa models [27], the infrared
fixed point of the QED3-GN model can be equivalently
understood as an ultraviolet fixed point of a corresponding
gauged four-fermion theory, the critical behavior of the latter
is amenable to a 1/N expansion [35]. We have explicitly
verified this infrared-ultraviolet correspondence by demon-
strating that the critical exponents coincide order by order
(up to the order we calculated) within a (1/N, ε) double
expansion.

Most interestingly, our estimates for the critical behavior
of the 2+1D QED3-GN universality class for the case of
two flavors of two-component Dirac fermions (corresponding
to N = 1 in our notation) are consistent with a nontrivial
scaling relation that follows from emergent SO(5) symme-
try implied by the proposed duality between the QED3-GN
and noncompact CP1 models [12]. If this agreement per-
sists in future calculations that will narrow down our un-
certainty interval, it would constitute a strong indication
for emergent SO(5) symmetry at the N = 1 QED3-GN
fixed point. Our results, on the other hand, are not com-
patible with the most recent simulation results for the de-
confined critical point in the spin models [5,25], and we
have given a possible interpretation of this discrepancy in
terms of the previously proposed [12,25,73] pseudocriticality
scenario.

For future work, it would be interesting to study the pos-
sible existence of other fixed points that might collide and
annihilate with the QED3-GN fixed point at some space-time
dimension between D = 3 and D = 4 − ε. As a comple-
mentary approach, it would be desirable to test whether the
time-reversal-symmetry-breaking transition in the QED3-GN
model is continuous or (weakly) first order, e.g., within a
numerical simulation of a suitable lattice model.

Note added. Recently, two related preprints appeared,
which confirm our results when considered in the appropriate
limits [74,75].
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APPENDIX A: FURTHER RG FUNCTIONS

Here, we display the RG functions that have been omitted
in the main text. For the fermion anomalous dimension the
corresponding loop contributions read

γ
(1L)
� = αξ + y

2
, (A1)

γ
(2L)
� = 1

4
α2(−4N − 3) − 3

4
Ny2 − y2

16
− αy, (A2)

γ
(3L)
� = 1

72
α3(40N2 + 54N + 27)

+ 1

128
(−48N2 + 188N − 15)y3 + 5

16
αNy2

+ 3

8
ζ3y[4α2 + 4y(α + 2αN ) + y2] + 6λy2

+ 3

32
y[α2(4N − 17) − 176λ2] + αy2

2
. (A3)

We note that only the one-loop term depends on the gauge-
fixing parameter ξ , cf. also Refs. [52,76]. The β function of
the gauge fixing parameter follows the form βξ = ∑3

k=1 β
(kL)
ξ

and reads

β
(1L)
ξ = − 2

3Nαξ (A4)

β
(2L)
ξ = − 1

2Nα(2α − y)ξ (A5)

β
(3L)
ξ = − 1

72Nαξ [−2α2(22N + 9) + 9(7N + 6)y2 − 27αy].
(A6)

These β functions agree in the limit y = λ → 0 with the
QED calculations [52]. To explicitly verify the Ward identity
associated with the local U(1) symmetry in our calculations,
we also compute the gauge anomalous dimension. We obtain

γ
(1L)
A = 4

3Nα, (A7)

γ
(2L)
A = (2α − y)Nα, (A8)

γ
(3L)
A = α

36
N [9(6 + 7N )y2 − 27yα − 2(9 + 22N )α2].

(A9)

Gauge invariance requires γA = 4 − D exactly at the critical
fixed point [26].
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APPENDIX B: CRITICAL EXPONENTS FOR ARBITRARY N

We display the critical exponents for general N [77]. It is convenient to abbreviate s ≡ s(N ) =√
4N4 + 204N3 + 1521N2 + 2916N . The inverse of the correlation-length exponent then reads

1/ν = 2 − 10N2 + 39N + s

6N (2N + 3)
ε − 1

108N (2N + 3)3s2
(192N8 + 10672N7 − 96N6s + 131232N6 − 8936N5s

+ 1196856N5 − 141660N4s + 7872660N4 − 835326N3s + 27080487N3

− 2230713N2s + 41504886N2 − 2985255Ns + 21257640N − 2125764s)ε2

+ 1

15552N3(2N + 3)5s3
(294912N14ζ3 − 453120N14 + 37380096N13ζ3 − 42546688N13 − 147456N12sζ3

+ 917760N12s + 1706655744N12ζ3 − 1248153088N12 − 14929920N11sζ3 + 35954979840N11ζ3

+ 66756224N11s − 11880201600N11 + 228480N10s2 − 582100992N10sζ3 + 1536213056N10s

+ 414397472256N10ζ3 + 7521785280N10 + 12064128N9s2 − 11530874880N9sζ3 + 17570258400N9s

+ 2913244123392N9ζ3 + 939273904800N9 − 234624N8s3 + 152479584N8s2 − 118782816768N8sζ3

+ 113751808560N8s + 13271427877248N8ζ3 + 7692596085888N8 − 4509312N7s3 + 748856448N7s2

− 689855242752N7sζ3 + 432301897800N7s + 40165847835840N7ζ3 + 30916853322552N7 − 21600N6s4

− 32667552N6s3 + 893187000N6s2 − 2383905022848N6sζ3 + 943060541292N6s + 80251526970144N6ζ3

+ 68128907003406N6 − 233280N5s4 − 103418208N5s3 − 5311161576N5s2 − 4991366935296N5sζ3

+ 1056628909674N5s + 101314839073104N5ζ3 + 72296243742564N5 − 2160N4s5 − 882576N4s4

− 102824640N4s3 − 22336611030N4s2 − 6205207152672N4sζ3 + 397375835472N4s + 72105783082632N4ζ3

+ 991212929622N4 − 14904N3s5 − 1364688N3s4 + 149467356N3s3 − 32684093892N3s2

− 4220721428112N3sζ3 − 73196963253N3s + 20189256522768N3ζ3 − 73287042502500N3 − 72N2s6

− 30132N2s5 − 739206N2s4 + 362560860N2s3 − 17065633392N2s2 − 1214950653504N2sζ3 − 18954Ns5

+ 74901294540N2s − 2008387814976N2ζ3 − 53054911445616N2 − 216Ns6 + 183347145Ns3 − 162s6)ε3. (B1)

The order-parameter anomalous dimension is

ηφ = 2N + 9

2N + 3
ε − 332N3 + 1200N2 − 22Ns + 2205N − 93s + 5103

36N (2N + 3)3
ε2

− 1

2592N2(2N + 3)5s
(12224N8 + 1145920N7 + 56096N6s + 24748032N6 − 2115072N5sζ3 + 1119952N5s

+ 223255440N5 − 16625088N4sζ3 + 5031576N4s + 1031152788N4 − 46422720N3sζ3 + 2559276N3s

+ 2651693112N3 − 55427328N2sζ3 − 27824040N2s + 3828763404N2 − 25509168Nsζ3 − 56551446Ns

+ 2593432080N − 2125764sζ3 − 34897959s)ε3. (B2)

The scaling dimension of the flavor-symmetry-breaking bilinear at the critical point reads

[�̄σz�] = 3 − 2(N + 3)

2N + 3
ε + 284N4 + 552N3 + 2N2s − 279N2 + 51Ns + 2673N + 162s

72N2(2N + 3)3
ε2

− 1

5184N2(2N + 3)5s
(2112N8 + 234944N7 − 63264N6s + 8115072N6 + 559872N5sζ3 − 559696N5s

+ 111458160N5 + 1041984N4sζ3 + 545256N4s + 750279564N4 − 8724672N3sζ3 + 14256756N3s

+ 2710445976N3 − 31492800N2sζ3 + 42085224N2s + 5432779188N2 − 34012224Nsζ3 + 41551542Ns

+ 6081810804N − 10628820sζ3 + 13167927s + 3443737680)ε3. (B3)

In the above equations, ζz ≡ ζ (z) denotes Riemann’s zeta function.
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APPENDIX C: PADÉ-BOREL RESUMMATION

Here, we add a discussion on the Padé-Borel resummed
estimates for the critical exponents in 2+1D. For this method,
we implicitly assume that the series are Borel summable. The
Borel transform of a series f (ε) is defined as

Bb
f (ε) :=

∞∑
k=0

fk

�(k + b + 1)
εk, (C1)

where the parameter b determines the polynomial growth
of the overall factorially increasing coefficients fk ∼ �(k +
b + 1) ≈ k!kb. If the series is Borel summable we can ana-
lytically continue the Borel transform to the positive real axis
such that the Borel sum

f̃ (ε) =
∫ ∞

0
dt tbe−tBb

f (εt ) (C2)

is convergent. For a finite-order polynomial the integral in
Eq. (C2) yields the original series. In order to obtain a re-
summed series we approximate the Borel transform by a ratio-
nal Padé approximant, which is a simple and well-established
strategy. Other nonpolynomial approximants, using, e.g., hy-
pergeometric functions [78], would be equally possible. A
more systematic study of different resummation techniques is
left for future work.

TABLE IV. Padé-Borel resummed estimates for D = 3 and N =
1 of the inverse correlation length 1/ν, the boson anomalous dimen-
sion ηφ and the fermion bilinear’s scaling dimension [�̄σz�]. Values,
for which the approximant has a pole in ε ∈ [0, 1] or is not defined,
are omitted (denoted by “–”). We also do not display the resulting
negative value for 1/ν found for PB[2/1].

N = 1 1/ν ηφ [�̄σz�]

PB[0/2] 0.9321 – 2.2003
PB[1/1] 0.3870 2.0056 2.1887
PB[0/3] 0.5965 – 1.6922
PB[1/2] – – 2.1377
PB[2/1] – 2.1958 1.6685

The 2+1D estimates for the critical exponents 1/ν and
ηφ as well as the scaling dimension of the fermion bilin-
ear [�̄σz�] from the Padé-Borel resummation are listed in
Table IV. For the latter two, the values and the spread are
comparable to the earlier estimates from the simple Padé
approximants. We observe, however, that the Padé-Borel re-
summation scheme yields a larger spread in the prediction
of the inverse correlation-length exponent 1/ν. Whereas the
mean value for 1/ν from Table IV is well in agreement with
the estimates from Table II, the root-mean-square deviation is
now much larger, 1/ν ≈ 0.64(22).
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