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Effects of orientation and strain on the topological characteristics of CdTe/α-Sn quantum wells
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It is known that compressive or tensile planar strain determines the band structure topology of the diamond
cubic allotrope of tin (α-Sn) to be either a Dirac semimetal (DSM) or topological insulator (TI), respectively.
Using analytical techniques, we show that quantum confinement in negatively strained CdTe/α-Sn quantum wells
induces a phase transition from the DSM state to a quasi-three-dimensional TI as α-Sn thickness is decreased.
The critical thickness of the transition is found to depend strongly on the orientation of the CdTe, and magnitude
of the epitaxial strain, which can be experimentally tuned. This result provides a new rationale for why α-Sn
has been observed in a three-dimensional (3D) TI state when pseudomorphically grown on zincblende substrates
possessing smaller lattice constants. Additional impacts of strain and orientation on the electronic properties and
spin texture of α-Sn are explored. In particular, we examine the impact of orientation on the critical length of the
Bernevig-Hughes-Zhang transition from a 2D TI to trivial insulator, as well as on the Rashba spin orbit coupling
effects of an external electric field.
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I. INTRODUCTION

The diamond cubic lattice allotrope of tin, known as α-Sn,
has long been known to be a zero-gap semiconductor with
an inverted band ordering of the �+

8 and �−
7 electronic bands

due to strong spin-orbit coupling and a large mass-Darwin
effect [1,2]. This band inversion prompted several impressive
experimental studies in the 1960’s and 1970’s [3–5], and
motivated Abrikosov and Beneslavksii to theoretically study
zero-gap semiconductors and Dirac semimetals (DSMs) as
early as 1971 [6]. In 2007, Fu and Kane observed that positive
epitaxial (tensile in-plane) strain ε‖ > 0, gaps the conduction
and valence bands in α-Sn to make it a three-dimensional
(3D) topological insulator (TI) [7], Conversely, for ε‖ < 0
(compressive in-plane strain), the conduction and valence
bands overlap with two Dirac points emerging near the � point
of the Brillouin zone (BZ) along the kz axis [5,8], making
α-Sn a DSM.1 Additionally, as the topological band inversion
in α-Sn is between the conduction �+

8,c and subvalence �−
7

bands, α-Sn possess a topological surface state (TSS) for all
small values of epitaxial strain [9].

Molecular beam epitaxy (MBE) growth of α-Sn on dif-
ferent substrates has yielded seemingly conflicting behaviors.
Thin films of α-Sn grown on InSb(001) have been observed to
be 3D TIs [10–13]. When grown on InSb(111), α-Sn has been
shown to be a DSM [14,15]. On CdTe(111), α-Sn thin films
were shown to have a bulk band gap [16]. This variation in
observations has been suggested to be the result of different
strain or substrate orientation [14], however, in all three
cases the α-Sn was negatively strained by the smaller lattice
constant of the substrate. In this work we show that the source

1Note that for both negative and positive epitaxial strain, the Fd3̄m

symmetry of diamond α-Sn is reduced to a tetragonal I41/amd

symmetry, for more details see Ref. [8].

of the varied experimental results is a quantum confinement
induced bulk band gap in the DSM state of α-Sn. The presence
of the band-inversion-induced TSS in α-Sn causes the bulk
band gap state to experimentally mimic the properties of thin
films of 3D TIs subject to quantum confinement effects [17],
and the bulk band gap state will henceforth referred to as the
quasi-3D TI state [10].

As a case study, we explore the effects of quantum confine-
ment on CdTe(111)/α-Sn and CdTe(001)/α-Sn quantum wells
(QWs) using the envelope function approximation (EFA) [18].
We will show that for any ε‖ < 0 there is a critical thickness
of α-Sn LC , such that an α-Sn layer thicker than LC will be
a DSM. Once the α-Sn layer thickness is less than LC , it
enters a quasi-3D TI phase. Furthermore, due to the strong
effective mass anisotropy in α-Sn [3], the values for LC

strongly depend on the substrate orientation. Therefore, there
are α-Sn thicknesses for which a CdTe(001)/α-Sn QW would
be a DSM while a CdTe(111)/α-Sn QW would be a 3D TI.
Finally, LC is also strongly dependent on ε‖, and we will show
that LC drops quickly as |ε‖| is increased. This result was not
seen in previous ab initio studies [19–22].

The EFA analysis further allows us to identify the crit-
ical thicknesses associated with the topological phase tran-
sitions between the quasi-3D TI, 2D TI, and trivial insula-
tor phases as was first done for CdTe/HgTe QWs [23,24],
and compare these critical lengths for the CdTe(001)/α-Sn
and CdTe(111)/α-Sn QWs. As a final point of comparison
between the two orientations, we compute the Bernevig-
Hughes-Zhang (BHZ) Hamiltonian for the 2D TI phase
of CdTe(111)/α-Sn [23]. The (111)-axis threefold rotational
symmetry of the diamond lattice gives rise to terms in the
BHZ Hamiltonian that are not present in (001)-oriented sys-
tems [25], which we show enables the ability to shift the
energy of the Dirac point of the helical edge states (HESs)
linearly with an applied out-of-plane electric field.
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The paper is organized as follows. In Sec. II, we will
present the (111)-oriented k · p Hamiltonian for QWs that
takes into account epitaxial strain, and highlight its contrasts
to the (001) k · p Hamiltonian [26]. In Sec. III we demon-
strate the quantum confinement-induced transition between
the DSM and quasi-3D TI states of CdTe(111)/α-Sn and
CdTe(001)/α-Sn, and examine how it depends on strain and
orientation. Additionally, the topological phase transitions
from the quasi-3D TI to 2D TI, and 2D TI to trivial insulator
phases are determined. In Sec. IV we compute the BHZ
Hamiltonian for CdTe(111)/α-Sn QWs, and explore the im-
pact of the (111)-axis threefold rotational symmetry on the
spin textures and Dirac point of the HES.

II. (111) QUANTUM WELLS k · p MODEL

In order to perform the EFA analysis, we need the 6 × 6
Kane Hamiltonian acting on the symmetry adapted basis
functions for the �−

7 and �+
8 bands in the (111) and (001)

orientations [26]. We present the (111) case here, the (001)
case is well known and can be found in Appendix A. In both
cases, the ordered basis of states is given by [27]:

{|1〉 = |�−
7 ,+1/2〉 = |S〉 |↑〉 , |2〉 = |�−

7 ,−1/2〉 = |S〉 |↓〉
|3〉 = |�+

8 ,+3/2〉 =
√

1/2 |X + iY 〉 |↑〉
|4〉 = |�+

8 ,+1/2〉 =
√

1/6(|X + iY 〉 |↓〉 − 2 |Z〉 |↑〉)

|5〉 = |�+
8 ,−1/2〉 = −

√
1/6(|X − iY 〉 |↑〉 + 2 |Z〉 |↓〉)

|6〉 = |�+
8 ,−3/2〉 = −

√
1/2 |X − iY 〉 |↓〉}. (2.1)

The s-like |�−
7 ± 1/2〉 states are composed of spin |↑/↓〉 and

the spatial L = 0 basis function |S〉. The p-like heavy-hole
|�+

8 ± 3/2〉 and light-hole |�+
8 ± 1/2〉 states are composed

of spin with the spatial L = 1 basis functions |X〉 , |Y 〉 , |Z〉,
rotated to suit the orientation under consideration. Within
Burt-Foreman theory [18,28–30], using the Stravinou-van
Dalen Hamiltonian one can derive the (111) oriented QW
k · p Hamiltonian [31]:

H (k) =
(

hss hsp

h
†
sp hpp

)
, (2.2)

with

hss =
(

E�−
7

+ T 0

0 E�−
7

+ T

)
,

hsp =
⎛
⎝− 1√

2
Pk+

√
2
3Pkz

1√
6
Pk− 0

0 − 1√
6
Pk+

√
2
3Pkz

1√
2
Pk−

⎞
⎠ ,

hpp = (
E�+

8
+ U

)
14×4 +

⎛
⎜⎜⎜⎜⎝

V −S− R 0

−S
†
− −V C R

R† C† −V S
†
+

0 R† S+ V

⎞
⎟⎟⎟⎟⎠ ,

where P is the momentum matrix element, and

k2
‖ = k2

x + k2
y, k± = kx ± iky, kz = −i∂z,

ε = tr ε̃ = εxx + εyy + εzz,

T = h̄2

2me

(γ0k
2
‖ + kzγ0kz) + a′ε,

U = − h̄2

2me

(γ1k
2
‖ + kzγ1kz) − aε,

V = − h̄2

2me

(γ3k
2
‖ − 2kzγ3kz) −

√
3dεxy,

S± = − h̄2

2me

√
3k±({γ̄1, kz} + [κ, kz]) + h̄2

2me

√
2

3
μk2

∓,

R = − h̄2

2me

√
2

3
k+{kz, μ} + h̄2

2me

√
3γ̄2k

2
−,

C = h̄2

me

k−[κ, kz].

Here me is the bare electron mass, the coefficients γi=1,2,3 are
the modified Luttinger parameters, appropriate to the Kane
model, and a, a′, b, and d are the deformation potentials.
For notational brevity we have defined μ = (γ2 − γ3), γ̄1 =
(2γ2 + γ3)/3, and γ̄2 = (2γ3 + γ2)/3. The effects of (111)
epitaxial strain have been included via the deformation po-
tentials in Eq. (2.2) according to the generalized methods
of Pikus and Bir [36,37]. For (111)-oriented crystals under
epitaxial strain, the strain tensor ε̃, takes the form:

ε̃ = εxxδij + εxy (1 − δij ). (2.3)

For an epitaxial strain ε‖ the components of ε̃ are related to
the elastic stiffness constants cij :

εxx = ε‖
4c44

c11 + 2c12 + 4c44
= 0.53ε‖ (2.4a)

εxy = −ε‖
c11 + 2c12

c11 + 2c12 + 4c44
= εxx − ε‖ = −0.47ε‖. (2.4b)

Assuming pseudomorphic growth of α-Sn on CdTe, the epi-
taxial strain is given by ε‖ = act

l /as
l − 1 = −0.00126, with

a
s/ct

l the lattice constant of α-Sn/CdTe. All Kane parameters
and elastic coefficients can be found in Table I.

The parameters for CdTe taken from Novik et al. were
originally fit so that the momentum matrix element P was
equal for CdTe and HgTe [32]. This simplifies the boundary
conditions at the interface of the QW [29,38]. To maintain this
simplicity in the CdTe/α-Sn QW problem, we shift P ct →
P s , which necessitates modifying the Luttinger parameters
γi=0,...,3 and κ to leave the effective masses of CdTe energy
bands at the � point unchanged. Additionally, the Hamiltonian
in Eq. (2.2) does not act on the states of the split off �−

7
band. In Appendix B we detail how the parameters in Table I
are renormalized so that P is the same everywhere, and then
modified to account for the coupling between our basis set and
the |�−

7 〉 states [39].
Before proceeding with calculations, it is useful to observe

the key differences between the (111) and (001) Kane Hamil-
tonians. First, within the V term, the Luttinger parameter γ3

in the (111) case becomes γ2 in the (001) case. α-Sn has
the property γ2γ3 < 0, which results in a large effective mass
anisotropy between the (111) and (001) orientations [4]. Ad-
ditionally, the separate shear deformations d and b modify the
�+

8 energy levels in the (111) and (001) orientations, respec-
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TABLE I. Table of bare parameters for CdTe/α-Sn QWs. We assume a band offset of Eα−Sn
�+

8
− ECdTe

�+
8

= 1.1 eV [16]. Note Ep = 2meP
2/h̄2,

and h̄2/(2me ) = 3.809982 eV Å
2
. The quantity � is the spin orbit coupling splitting.

γ0 γ1 γ2 γ3 κ P (eV Å) EP (eV) � (eV) Eg (eV)

α-Sn 1 4.19 [4] −1.73 [4] 1.64 [4] −2.18 [4] 9.55 [4] 23.93 [4] 0.80 [4] −0.413 [4]

CdTe 0.82 [32] 1.47 [32] −0.28 [32] 0.03 [32] −1.31 [32] 8.46 [32] 18.8 [32] 0.91 [32] 1.606 [32]

a (eV) b (eV) d (eV) a′ (eV) c11 (10 GPa) c12 (10 GPa) c44 (10 GPa) al (Å)

α-Sn 7.77 [33] −2.4 [5] −4.1 [5] −14.81 [33,34] 6.90 [34,35] 2.93 [34,35] 3.62 [34,35] 6.4892 [35]
CdTe – – – – 5.35 [35] 3.69 [35] 2.02 [35] 6.481 [35]

tively. For these reasons one can expect significant differences
in the quasi-3D TI to DSM crossover lengths between orien-
tations. Next, it is important to note that the S± and R terms in
the (111) case possess terms both even and odd in z, whereas
in the (001) case, S is only odd and R is only even. These
modifications reflect the C3 rotational symmetry about the z

axis of a (111)-oriented diamond lattice. It is the technical
reason that certain matrix elements are nonzero in Sec. IV.

III. BAND CROSSINGS

We calculate the evolution of α-Sn’s electron band struc-
ture as a function of its thickness using the EFA, and deter-
mine the crossing points of different bands. We do this by
solving the Kane Hamiltonian at kx = ky = 0 analytically us-
ing the standard BHZ-type methods [23,40], and monitor the
evolution of the bands’ energies to very large QW thicknesses.
The plots in Figs. 1(a), 1(b) and 1(c) show the evolution of the
various energy levels in the (111)-oriented QWs. Similar plots
for the (001) orientation can be found in Appendix C.

Let us define the energies in Fig. 1(a): E(n � 2), Hh(n �
1), and Lh(n � 2) are, respectively, the energies of the bulk
conduction, heavy-hole valence, and subvalence bands at the
2D � point kx = ky = 0. The bulk inversion symmetry of
the diamond lattice of α-Sn makes all energy levels spin
degenerate. In the infinite α-Sn thickness limit, the bottom of
the conduction band lies below the top of the valence band at
the � point, i.e., E2 < Hh1, signaling the DSM phase of α-Sn
when ε‖ < 0.

The E1 and Lh1 bands, respectively, correspond to the
symmetric and antisymmetric hybridizations of the topolog-
ical surface states of 3D α-Sn. As the α-Sn layer decreases
in thickness, the bands hybridize more, gapping away from
each other. If the α-Sn layer is thin enough, it is effectively
a 2D system, and the Dirac surface states of the 3D system
become bulk bands of the 2D system. The thickness that
corresponds to “thin enough” can be defined as 2lp, where lp
is the penetration length of the topological surface states in the
infinite thickness limit. For (111)-oriented α-Sn, we determine
lp = 31.4 Å, and for the (001) orientation lp = 31.7 Å. These
lengths are comparable because they depend strongly on the
energy gap E�+

8
− E�−

7
, which has similar values for both

orientations. This is because strain in α-Sn shifts the energy
levels E�+

8
and E�−

7
according to the T , U , and V terms in

Eq. (2.2), but effects only a small relative change in the energy
level difference.

The BHZ transition between a 2D trivial and 2D TI state is
found at 27 Å in the (111) orientation and 39 Å in the (001)

orientation, reflecting the large effective mass anisotropy. This
is determined by the crossing of the E1 and Hh1 bands in
Fig. 1(b).

The novel feature we focus on is the crossing of the E2
and Hh1 bands at a critical length LC = 410 Å for the (111)
orientation, and LC = 377 Å for (001). The (111) crossing
can be seen in Fig. 1(c). For thicknesses smaller than LC

the α-Sn layer is a quasi-3D TI, as for all n � 2, En � Hh1.
The first few bulk electron and heavy-hole energy levels
and corresponding kz momenta for 340 Å thick α-Sn in
CdTe(001)/α-Sn QWs are plotted in the bottom right inset
of Fig. 2. The positive gap between E2 and Hh1 makes the
system bulk insulating, and a Dirac surface state hybridized
with the heavy-hole states between L2 and E2 forms between
the �−

7 band and the �+
8 conduction band [7,11,41].

For thicknesses greater than LC , the bottom of the conduc-
tion band is below the top of the valence band: E2 < Hh1.
However, for all thicknesses there will be an energy level EN

such that Em > Hh1 when m � N . For thicknesses slightly
above the critical length L � LC , one can see from Fig. 1(c)
that E(2, 3) > Hh1. In the infinite α-Sn thickness limit, for
ε‖ < 0, CdTe(001)/α-Sn and CdTe(111)/α-Sn QWs are DSMs
with Dirac points along the kz axis. Exceeding LC enters
the DSM phase, with strongly quantized momenta. The first
few energy levels and kz momenta for 430 Å thick α-Sn in
CdTe(001)/α-Sn QWs are plotted in the top left inset of Fig. 2.

Within the calculation we can artificially tune the value of
ε‖ due to CdTe, while in experiment this could be achieved
with pressure. One can now interpret LC as a function of
ε‖. LC (ε‖) is plotted for small strains in the (111) and (001)
orientations in Fig. 2. We see that the (111) orientation always
possesses a greater LC than the (001) orientation. Therefore
there are α-Sn thicknesses for which CdTe(111)/α-Sn behaves
as a TI while CdTe(001)/α-Sn behaves as a DSM. Observe the
limiting behavior of LC (ε‖):

lim
ε‖→0

LC (ε‖) → ∞, (3.1a)

lim
ε‖→−∞ LC (ε‖) → 0. (3.1b)

At 0 strain, infinitely thick α-Sn is a zero-gap semiconductor,
so quantum confinement makes it a quasi-3D TI with van-
ishing bulk gap [10]. At infinite strain, the conduction band
is always below the valence band, meaning the system is
semimetallic for all α-Sn thicknesses. One should note the
method of including strain in k · p-theory by Pikus and Bir
only applies for perturbative strains [36]. When |ε‖| � 1%
the method breaks down, as the crystal lattice will generally
assume a different structure.
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FIG. 1. (a) Plots of the evolution of energy band minima/maxima
due to quantum confinement in CdTe(111)/α-Sn QWs as a function
of α-Sn thickness. Energies are measured relative to the valence band
maximum in the infinite thickness limit E�+

8
− aε − √

3dεxy . The
epitaxial strain on α-Sn due to CdTe is ε‖ = −0.126%. The boxes
labeled (b) and (c) are blown up in the following figures. (b) The
crossover from the 2D trivial insulator state to the 2D TI state is at
approximately 27 Å . (c) The crossover from the quasi-3D TI state to
the 3D DSM state is at approximately 411 Å.

For an experimental reference, we compare the calculated
bulk band gap of Eg = E2 − Hh1 to data obtained by HREEL
measurements taken by Tatakani and Chung of α-Sn thin
films on CdTe(111) [16]. It is important to note that the
inversion symmetry of the QW problem vastly simplifies
the analysis compared to the thin film case, in which the

Schrödinger equation for the α-Sn electrons and holes has
different boundary conditions at the top and bottom of the
film. Thus in a QW, the eigenstates are purely odd/even about
the well center, whereas in a thin film they are not. This makes
the analytical solution in the thin film problem fundamentally
harder [42]. However, by accounting for the coupling between
the �−

7 and �+
8 bands using Löwdin perturbation theory,

one can arrive at a decoupled Schrödinger equation for the
electrons and holes. By modeling the thin film as a half-
infinite well, i.e., vacuum boundary conditions on the top and
CdTe(111) boundary conditions on the bottom, one can solve
the Schrödinger equation to obtain the energy levels E(n � 2)
and Hh(n � 1) (see Appendix D). The calculated Eg matches
the experimental data well, as seen in Fig. 3.

The failing of the half-infinite well model is that by elim-
inating the explicit coupling between inverted bands, it is
incapable of revealing information about the Dirac surface
states E1 and L1. We find that the thin film calculation for
Eg deviates from the QW derived Eg for small thicknesses,
but that they approach each other for large thicknesses. The
half-infinite well model yields LC = 417 Å for CdTe(111)/α-
Sn thin films, which is very close to the LC for QWs.

IV. MODIFIED BHZ HAMILTONIAN AND SPIN TEXTURES

A (111)-oriented diamond lattice possesses threefold rota-
tional symmetry C3, about the z axis, which is not present
in the (001) case. According to the method of invariants
[25,30], C3 symmetry should generate terms unique to the
(111) orientation BHZ Hamiltonian for the 2D TI phase of the
CdTe(111)/α-Sn QW. In this section we calculate the BHZ
Hamiltonian for 29 Å thick α-Sn, and explore the impact of
the C3 terms on the helical edge states of the 2D TI phase.

The BHZ Hamiltonian corresponds to an ef-
fective 2D Hamiltonian for the ordered basis of
{|E1+〉 , |Hh1+〉 , |E1−〉 , |Hh1−〉}, and is obtained by
projecting the Kane k · p Hamiltonian onto them in the
usual way [23,25]. Using Löwdin perturbation theory (PT),
we account for coupling to the {|L1±〉 , |Hh2±〉 , |Hh3±〉}
bands. Defining

ε0(k) = C − Dk2, M(k) = M − Bk2, (4.1)

we find the C3 symmetry modified BHZ Hamiltonian:

H0(k) = ε0(k) +

⎛
⎜⎜⎝
M(k) A1k− 0 A2k−
A1k+ −M(k) A2k− 0

0 A2k+ M(k) −A1k+
A2k+ 0 −A1k− −M(k)

⎞
⎟⎟⎠

= ε0(k) + M(k)σ0 ⊗ τz + kx (A1σz + A2σx ) ⊗ τx

+ ky (A1σ0 ⊗ τy + A2σy ⊗ τx ), (4.2)

and for comparison, we define the standard form of the (001)
BHZ Hamiltonian:

H1(k) = ε0(k) +

⎛
⎜⎜⎝
M(k) Āk+ 0 0
Āk− −M(k) 0 0

0 0 M(k) −Āk−
0 0 −Āk+ −M(k)

⎞
⎟⎟⎠

= ε0(k) + M(k)σ0 ⊗ τz + kxĀ(σz ⊗ τx )

− kyĀ(σ0 ⊗ τy ), (4.3)
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FIG. 2. The epitaxial strain dependence of the critical thickness LC , of α-Sn(111) (blue) and α-Sn(001) (red) QWs. The vertical gray
line denotes ε‖ = −0.126%, the epitaxial strain of α-Sn grown on CdTe. The insets show sample energy spectra in the (001) direction of the
conduction (red) and valence (green) bands for (001)-oriented wells in the TI phase (L = 340 Å) and the DSM phase (L = 430 Å) for (001)
α-Sn on CdTe QWs.

where Ā =
√

A2
1 + A2

2. σi=0...3 and τi=1...3 are the usual Pauli
matrices acting on spin and electron/heavy-hole degrees of
freedom, respectively.

Computing the characteristic polynomials of H0 and H1,
we find det(H0 − E1) = det(H1 − E1). Therefore there ex-
ists a unitary transformation W such that WH0W

† = H1. This
equivalence reflects the fact that H0 and H1 are derived from
different symmetry adapted k · p Hamiltonians of the same
system. Technically, the reason A2 appears in the off-block-
diagonal entries in H0 is because the S± and R terms in the
(111) Kane Hamiltonian in Eq. (2.2) lack z parity. That is,

40 45 50 55 60 65 70 75 80 85 90 95100
150
200
250
300
350
400
450
500

Film Thickness � �

E
g
�m
eV
�

Takatani Data
Half− Infinite
Well Gap

QW Gap

FIG. 3. Comparison of the thin film band gap Eg = E2-Hh1
data and model obtained by Tatakani and Chung for α-Sn grown on
CdTe(111) to QW based calculations [16]. The QW energy gap only
slightly deviates from the thin film case, as expected. In Appendix D
we discuss the half-infinite well gap model used for thin film energy
levels.

they are neither odd nor even functions in z, as mentioned in
Sec. II.

By applying an electric field Ez to the QW, one breaks the
inversion symmetry across the α-Sn layer, which results in
Rashba spin orbit coupling (RSOC) terms in the BHZ Hamil-
tonian. As a first approximation, the effects of an electric
field are included by adding a spatially dependent potential
V (z) = eEzz, to the Kane Hamiltonian. Repeating the Löwdin
PT procedure outlined above on V (z) produces the following
Rashba Hamiltonian:

HR (k) =

⎛
⎜⎜⎝

0 iS1k
2
+ −iR0k+ iS0k

2
+

−iS1k
2
− 0 −iS0k

2
+ 0

iR0k− iS0k
2
− 0 −iS1k

2
−

−iS0k
2
− 0 iS1k

2
+ 0

⎞
⎟⎟⎠ .

(4.4)

We have kept only terms up to O(k2) and O(Ez), and S0, S1,
and R0 are all real coefficients that are linearly proportional to
eEz. The S1 term is allowed by the C3 symmetry of the (111)
orientation, and does not exist in the (001) case. The lack of
parity in the R and S± terms in the Kane Hamiltonian make
S0 and S1 appear at the same order of Löwdin PT as R0. This
means S0 and S1 should be treated on the same footing as R0

in any perturbative calculations.
By calculating the characteristic polynomials of the BHZ

Hamiltonians including RSOC, one can show for any renor-
malization of RSOC parameters

det(H0 + HR − E1) 
= det(H1 + H ′
R − E1) , (4.5)

where H ′
R is the (001) Rashba Hamiltonian. This means

the (111) and (001) Hamiltonians including RSOC are not
equivalent to each other. This reflects the fact that an electric

115153-5



DE COSTER, FOLKES, TAYLOR, AND VAIL PHYSICAL REVIEW B 98, 115153 (2018)

TABLE II. Parameter values of H0(k) + HR (k) for a 29 Å thick
α-Sn layer.

M (eV) −1.42 × 10−3

B (eV nm2) −0.640
C (eV) 0.185
D (eV nm2) −0.420
A1 (eV nm) −0.545
A2 (eV nm) 5.98 × 10−2

R0/eEz (nm2) 2.11
S0/eEz (nm3) −0.892
S1/eEz (nm3) 1.02

field breaks the rotational equivalence of the (001) and (111)
orientations.

For this reason one has to study the (111) RSOC Hamil-
tonian on its own and determine how the effects of a per-
pendicular electric field on a (111)-oriented QW differ from
a (001)-oriented QW. Using the calculated parameters for a
29 Å thick α-Sn layer in Table II, we investigate the spin
textures of the HES of the 2D TI phase of CdTe(111)/α-Sn
QWs.

A. Spin polarization of edge states

In this section, we project H0 onto the traditional solutions
for the HES, in order to determine their bare spin orientation.
For a semi-infinite system in the x > 0 plane, the edge state
solutions ψ↑/↓(x) to H0(−i∂x, ky = 0) with A2 = 0 are given
in Appendix E 1 following Ortiz et al. [43]. Here spin-up/spin-
down is with respect to the z direction of the (111) α-Sn.
Defining

H′
ij =

∫
dx ψ

†
i (x)H0(−i∂x, ky )ψj (x), (4.6)

we obtain the bare edge state Hamiltonian H with right/left
mover state energies ER/L(ky ) [44]:

H′ = C − MD

B
+ ky

√
B+B−
|B|

( |A1| −|A2|
−|A2| −|A1|

)
,

(4.7)

ER/L(ky ) = C − MD

B
± kyĀ

√
B+B−
|B| , (4.8)

where B± = B ± D. We have thus obtained the bare Dirac
edge state dispersion, it is plotted in Fig. 4 along with several
bulk bands. The right/left moving edge states thus have spin
polarization:

〈SR/L〉 = ± 1√
A2

1 + A2
2

(|A2|, 0,−|A1|)T . (4.9)

This shows that for the (111) orientation, the threefold rota-
tional symmetry enforces an in-plane component to the edge
states’ spin polarization.

�0.03 �0.02 �0.01 0.00 0.01 0.02 0.03
�0.1

0.0

0.1

0.2

0.3

ky� �1�

E
�e
V
�

Hh1

E1

Hh2

Hh3

HES

FIG. 4. Plot of calculated Dirac HES dispersion (orange) and
bulk bands (black) of a 29 Å thick α-Sn layer in a CdTe/α-Sn QW.
The band L1 is far below Hh3 and not shown.

B. Spin texture of edge states

Now let us consider the following transformation that is
nontrivial in spin space:

W = mA2 ⊗
(−1 0

0 A1/Ā

)
+ nA2 ⊗

(
0 0
0 −A2/Ā

)

(mA2 , nA2 ) =
{

(σx, σz) for A2 > 0
(iσy, σ0) for A2 < 0 . (4.10)

The action of W is

WH0(k)W † = H1(k) (4.11)

WHR (k)W † =

⎛
⎜⎜⎝

0 iS̃1k
2
− −iR̃0k− iS̃0k

2
−

−iS̃1k
2
+ 0 −iS̃0k

2
− 0

iR̃0k+ iS̃0k
2
+ 0 −iS̃1k

2
+

−iS̃0k
2
+ 0 iS̃1k

2
− 0

⎞
⎟⎟⎠

≡ H̃R (k). (4.12)

We define the renormalized coefficients:

R̃0 = R0 sgn A2 (4.13a)

S̃0 = A1S0 − A2S1

Ā
sgn A2 (4.13b)

S̃1 = A2S0 + A1S1

Ā
. (4.13c)

Assuming a semi-infinite material for x > 0, we solve
H0(−i∂x, ky ) explicitly for the edge states φ±(ky ) in
Appendix E 2. We then project [H0 + H̃R](−i∂x, ky ) onto the
HES to obtain the effective RSOC edge Hamiltonian H, from
which the spin textures of the HES are computed. Defining
the RSOC edge Hamiltonian:

Hij =
∫

dx ψ
†
i (x)[H0 + H̃R](−i∂x, ky )ψj (x), (4.14)

we obtain:

H = ED + ky

(
v αky

αky
−v

)
. (4.15)
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ky� �1�

E
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�

Hh1

E1

HES

FIG. 5. Spin textures of the HES band (orange) imposed on the
edge state for an applied field of strength Ez = 0.01 V Å −1, with
blue (green) arrows corresponding to right (left) moving states. An
up or right arrow, respectively, corresponds to a fully +Sz or +Sx

polarized spin. Bulk bands with RSOC taken into account are also
plotted (black).

The Dirac point ED , and Fermi velocity v, now depend on the
inversion breaking electric field through S̃1:

ED = C − MD

B
− M

√
B2 − D2

B2
S̃1 (4.16)

v =
(√

B+B− + S̃1D

B

)
Ā

B
. (4.17)

The spin texture term αky
is given explicitly in Appendix E 2.

To O(k2) it is

αky
= R̃0

(B − D)2

2B2

(
1 − ak2

y

) + O
(
k4
y

)
(4.18)

a = D2 Ā2B + 2(B2 − D2)M

2BM2(B2 − D2)
. (4.19)

The edge state Hamiltonian is trivial to diagonalize, and one
can compute the momentum dependent spin polarization of
the HES:

〈S±〉 = ± 1√
v2 + α2

ky

(
αky

, 0, v
)T

. (4.20)

From the above result we see that when Ez = 0, we have
〈S±〉 = ±ẑ. Thus, the calculation of 〈S±〉 in the φ± basis is
equivalent to rotating 〈SR/L〉 in Eq. (4.9) to the ±ẑ directions.
For Ez = 0, it is easy to see there exists a unitary transfor-
mation V such that VHV † = H′. Then for Ez 
= 0, the spin
polarization of the eigenstates of VHV † yields the true spin
texture, in which the z axis is the (111) direction of α-Sn. The
HES with this spin texture, and bulk bands with RSOC are
plotted in Fig. 5.

V. CONCLUSION AND OUTLOOK

We have demonstrated that quantum confinement induces a
thickness-dependent transition between a band overlap DSM

phase and bulk band gap quasi-3D TI phase in CdTe/α-Sn
QWs and thin films. The critical thickness of this transition
LC , was found to depend strongly on the orientation and strain
of α-Sn in the QW system. We also found that the BHZ
transition of the 2D TI to trivial insulator is strongly affected
by orientation.

Our findings phenomenologically resolve the ambiguity in
the literature that thin films of α-Sn grown on zincblende
substrates are found in different 3D topological states despite
ε‖ < 0 in α-Sn for all cases [12,14,16]. While repeating
these calculations for InSb/α-Sn QWs would allow for com-
parison to modern experimental results, this would require
knowledge of the valence band offset between InSb and α-
Sn. Additionally, we have seen that a strong strain pushes
LC to small thicknesses of α-Sn, which could be accessi-
ble with density functional theory (DFT) based calculations.
This would provide an alternative theoretical method of in-
vestigating the quasi-3D TI to DSM transition. Recently, a
quantum-confinement-induced band gap in the DSM Cd3As2

was observed [45], indicating the DSM to quasi-3D TI tran-
sition may be common. The thickness at which the gap
opens in Cd3As2 may be identifiable in the manner we have
presented.

We have also found that orientation affects the 2D TI
phase of CdTe/α-Sn QWs in a striking manner. By calculating
the RSOC BHZ Hamiltonian for a 29 Å thick layer of α-Sn
in CdTe(111)/α-Sn, we showed that an out-of-plane electric
field shifts the energy of the HES Dirac point linearly as
a function of field strength, which is not the case for the
(001) orientation. Moreover, we found that the threefold ro-
tational symmetry terms in the modified BHZ Hamiltonian
enforce an in-plane component to the bare spin polarization of
the HES.

One open question following our study is the impact of
the CdTe(111) surface on our results. The CdTe(111) sur-
face is either Cd or Te terminated (A and B termination,
respectively), and thus polar. In turn, there is an electrostatic
potential V (z) about the CdTe/α-Sn interface that has not
been accounted for in the current k · p treatment of the QW
states. Assuming a linear potential for small distances from
the interface V (z) ∼ z, then to first order in perturbation
theory it would naturally play a role in the spin textures of the
edge states in Sec. IV. A complicated V (z) could also modify
the energy levels En and Hhn in Sec. III, altering the values
of the critical thicknesses for the (111) orientation. Ab initio
techniques developed to determine the surface potential of
CdTe(110)/Sn interfaces could potentially determine V (z) for
different CdTe(111) terminations [2]. We emphasize that Te-
terminated CdTe(111)B is the more experimentally relevant
surface to consider. MBE growth of α-Sn on CdTe(111)A is
generally observed to result in films that have rougher sur-
faces than those grown on CdTe(111)B [46]. On CdTe(111)B,
covalent bonding between Sn and surface Te atoms is ener-
getically preferred over the case of CdTe(111)A where the Sn
and surface Cd atoms support no covalent compound; only
metallic bonding between Sn and Cd is obtained. Covalent
bonding facilitates incorporation of the adsorbed Sn atoms on
the CdTe(111)B surface into the growing crystal structure,
leading to less roughness in α-Sn compared to growth on
CdTe(111)A.
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Our results indicate great promise for experimental in-
vestigations of topological phases in MBE-grown CdTe/α-Sn
QWs. In an effort to realize these theoretical calculations
experimentally, our group has developed a reliable MBE
growth recipe of α-Sn on CdTe based on the methods of
Farrow et al. [47] as evidenced by Raman spectroscopy and
x-ray diffraction characterization [46]. By growing and char-
acterizing films of thicknesses on either side of LC it should be
possible to demonstrate the quantum confinement transition
between the DSM and quasi-3D TI states.
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APPENDIX A: (001) KANE HAMILTONIAN

We present the 6 × 6 Kane model for (001)-oriented QWs:

H001(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E�−
7

+ T 0 − 1√
2
Pk+

√
2
3Pkz

1√
6
Pk− 0

0 E�−
7

+ T 0 − 1√
6
Pk+

√
2
3Pkz

1√
2
Pk−

− 1√
2
Pk− 0 E�+

8
+ U + V −S− R 0√

2
3Pkz − 1√

6
Pk− −S

†
− E�+

8
+ U − V C R

1√
6
Pk+

√
2
3Pkz R† C† E�+

8
+ U − V S

†
+

0 1√
2
Pk+ 0 R† S+ E�+

8
+ U + V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where

T = h̄2

2me

(γ0k
2
‖ + kzγ0kz) + a′ε, U = − h̄2

2me

(γ1k
2
‖ + kzγ1kz) − aε, V = − h̄2

2me

(γ2k
2
‖ − 2kzγ2kz) + b(εxx − εzz),

S± = − h̄2

2me

√
3k±({γ3, kz} + [κ, kz]), R = − h̄2

2me

√
3(μk2

+ − γ̄ k2
−), C = h̄2

me

k−[κ, kz].

Here we have used the notation of Novik et al. [32] where μ = (γ3 − γ2)/2, γ̄ = (γ3 + γ2)/2. For (001) epitaxial strain ε‖,
we have εxx = εyy = ε‖ and εzz = −2c12ε‖/c11 = −0.85ε‖.

APPENDIX B: FORMULA FOR HAMILTONIAN
MODIFICATION

P and γi=0,...,3 are fitting parameters that determine the
effective masses of energy bands at the � point. They can
be mutually renormalized in a manner that accounts for the
coupling between bands, so that effective masses are left
unchanged [29,30,38]. We choose to make P ct equal to P s ,
resulting in the renormalizations:

γ0 = γ old
0 + Ect

P − Es
P

Ect
g

Ect
g + 2

3�ct

Ect
g + �ct

, (B1a)

γ1 = γ old
1 + Ect

P − Es
P

3Ect
g

, (B1b)

(γ2, γ3, κ ) = (
γ old

2 , γ old
3 , κold

) + Ect
P − Es

P

6Ect
g

. (B1c)

Finally, the 6 × 6 Hamiltonian does not act on the split off
band �+

7 . To account for the momentum matrix coupling be-
tween the �+

7 and �−
7 band [39], we must further renormalize

γ ct
0 according to Löwdin perturbation theory.

γ0 → γ0 + EP

3(� + Eg )
. (B2)

The effects of �+
8 -�+

7 coupling is ignored as it only impacts
O(k4) terms [30].

APPENDIX C: (001) ENERGY LEVEL PLOTS

We present in Fig. 6 the EFA determined energy level plots
for CdTe(001)/α-Sn QWs.

APPENDIX D: THIN FILM BAND GAP

A very good fit to Tatakani and Chung’s band gap data is
obtained by treating the problem as a 1D half-infinite quantum
well for the light and heavy holes in α-Sn and CdTe [16].
The allowed light-hole εlh, and heavy-hole εhh, energies of
the Schrödinger equation in this case are given by:

− cot

(
2mlhL

2(εlh − εo)

h̄2

)1/2

=
[
V − (εlh − εo)

εlh − εo

]1/2

,

(D1)

cot

(
2mhhL

2(εhh + εo)

h̄2

)1/2

=
[
−V + (εhh + εo)

εhh + εo

]1/2

,

(D2)

where 2εo = 0.0084 eV is the strain-induced energy gap of
the heavy-/light-hole bands, and mlh = 0.028me and mhh =
0.195me are the (111) effective mass of the light and heavy
holes in α-Sn, respectively. The bulk band gap is then the
difference of the light-hole and heavy-hole energies Eg =
εlh − εhh. L is the well thickness, V is the height of the well,
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FIG. 6. (a) Plots of the evolution of energy band minima/maxima
due to quantum confinement in CdTe(001)/α-Sn QWs as a function
of α-Sn thickness. Energies are measured relative to the valence band
maximum in the infinite thickness limit E�+

8
− aε + b(εxx − εzz ).

The epitaxial strain on α-Sn due to CdTe is ε‖ = −0.126%. The
boxes labeled (b) and (c) are blown up in the following figures.
(b) The crossover from the 2D trivial insulator state to the 2D TI
state is at approximately 39 Å. (c) The crossover from the quasi-3D
TI state to the 3D DSM state is at approximately 377 Å.

which corresponds to the band offset:

V = Eα-Sn
�+

8
− ECdTe

�+
8

= 1.1 eV. (D3)

APPENDIX E: FORMULA FOR SPIN TEXTURES

1. Bare spin orientation material

According to Ortiz et al. the edge state solutions ψ↑/↓(x)
to H0(−i∂x, ky = 0) with A2 = 0 for the semi-infinite x > 0
plane are given by [43]:

ψ↑(x) = Ng(x)

(
−i sgn A1,

√
B+B−
B−

, 0, 0

)T

, (E1a)

ψ↓(x) = Ng(x)

(
0, 0, i sgn A1,

√
B+B−
B−

)T

, (E1b)

g(x) =
√

2λ1λ2(λ1 + λ2)

(λ1 − λ2)2
(e−λ1x − e−λ2x ), (E1c)

λ1,2 = 1√
B−B+

⎛
⎝ |A1|

2
±

√
A2

1

4
− M

B
B+B−

⎞
⎠, (E1d)

B± = B ± D, N =
√

B−/(2B ). (E1e)

2. Spin texture material

Following once more the work of Ortiz et al. the edge
eigenstates of the Hamiltonian H0(−i∂x, ky ) for the half-plane
x > 0 are given by:

φ±(x, ky ) = f (x,±ky )ϕ±, (E2)

with energies

E± = C − MD

B
±

√
B+B−

Ā

B
ky. (E3)

We have defined the following vectors and functions:

ϕ+ = N
(

−i,

√
B+B−
B−

, 0, 0

)T

, (E4a)

ϕ− = N
(

0, 0, i,

√
B+B−
B−

)T

, (E4b)

f (x, ky ) =
√

2λ1λ2(λ1 + λ2)

(λ1 − λ2)2
(e−λ1x − e−λ2x ), (E4c)

λ1,2 = 1√
B−B+

( |Ā|
2

±
√

Zky

)
, (E4d)

Zky
=

(
Ā2

4
− M

B
B+B−

)
+ DĀ

√
B+B−
B

ky +B+B−k2
y.

(E4e)

We have also defined:

αky
= R̃0

B − D

2Bky

∫ ∞

0
f ∗(x, ky )[∂x + ky]f (x,−ky )

= R̃0
B − D

2Bky

h(ky )[ν(ky ) + ξ (ky )], (E5a)
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with

h(ky ) = 2
∏
±

√
2λ±

1 λ±
2 (λ±

1 + λ±
2 )

(λ±
1 − λ±

2 )2
, (E6a)

ν(ky ) = λ−
1

(
1

λ−
1 + λ+

2

− 1

λ−
1 + λ+

1

)
+ λ−

2

(
1

λ+
1 + λ−

2

− 1

λ−
2 + λ+

2

)
, (E6b)

ξ (ky ) =
∑
1,2

1

λ−
i + λ+

i

−
∑
±

1

λ±
1 + λ∓

2

. (E6c)

We have used the shorthand λ±
i = λi (±ky ).
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