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Breakdown of topological Thouless pumping in the strongly interacting regime
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We elucidate the mechanism for instability of topological Thouless pumping in strongly interacting systems
from a viewpoint of symmetry-protected topological phases. If the protecting symmetries of the underlying
topological phases change between noninteracting fermions and a bosonic system in the strong coupling limit,
the symmetry-protection argument enforces a gap closing and thereby predicts a breakdown of the topological
pumping. We also demonstrate that, even in the weakly interacting regime where the bulk topological pumping is
still robust, the interaction effects manifest themselves in the edge density profiles, leading to a unique feature of
the pumping in open boundary conditions. Furthermore, an extension of the above results indicates that an analog
of an interaction-induced phase of Weyl semimetals can be realized in the setup of the topological pumping. Our
results provide a systematic understanding for the stability of topological pumping against strong interactions,
to which the conventional perturbative argument cannot be applied.
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I. INTRODUCTION

Topological phases in strongly correlated systems have
been of great interest in condensed matter physics over recent
years. Although the understanding of topological phases was
based on free-fermion systems at the primary stage [1–3], the
notions of topological orders [4,5] and symmetry-protected
topological (SPT) phases [6–8] have generalized the con-
cepts to interacting many-body systems and have provided
the theoretical framework. In parallel with the conceptual
developments, numerous efforts have been devoted to uncover
correlation effects on topological insulators in various systems
[9–18], and active debates are still continuing.

The topological nature of quantum states is not limited
to the topological phases but also appears in time-dependent
dynamics. The topological Thouless pumping [19], which
is the main focus of this paper, is such a prototypical ex-
ample. Here an adiabatic cycle of a one-dimensional (1D)
band insulator is considered. Then the pumped charge per
cycle is given by the Chern number, leading to quantized
transport which arises from the topology of the ground state
over the entire time evolution. Despite its significance, the
topological pumping had not been observed in experiments
until recently. However, it was finally realized using ultracold
atoms in optical lattices [20–23]. This remarkable progress
has stimulated new theoretical proposals such as fractional
pumping [24–27] and has further raised the importance of
taking strong correlations into account, since the interactions
of cold atoms are highly controllable.

The fundamental issue in the correlation effect on the free-
fermion topological pumping is the stability of the pumping
against interactions. In general, the stability is guaranteed
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for weak interactions since the (many-body) Chern number
cannot be changed as long as the energy gap does not close
during the cycle [28], but systematic predictions for strong
interactions are not available up to now. In this paper we show
that the underlying SPT phases in the pumping protocol shed
light on this problem and provide a simple criterion for the
stability of the topological pumping in the strongly interacting
regime. The key observation for this is that an SPT phase
changes from fermionic to bosonic character when increasing
the interaction strength [29–35]. Strong interactions freeze
the motion of fermions at low energies, and the system is
effectively described by a bosonic system as in the standard
treatment of spin systems in Mott insulators. Reflecting this
absence of the fermionic degrees of freedom, the protecting
symmetries of the SPT phases may be different between the
fermionic phase and the bosonic limit [35–37]. We show
that the emergent constriction of low-energy Hilbert space
due to strong interactions and the change of the protecting
symmetries enforce a gap closing during the cycle, thereby
predicting the instability of the topological pumping. We also
demonstrate that, even if weak interactions do not affect the
bulk quantized pumping, the correlation effect is yet evident
when imposing open boundary conditions. It causes the emer-
gence of Mott insulating states at edges [30,32] and offers
a unique bulk-edge correspondence in topological pumping
[38]. Finally, we point out that extending the pumping pro-
tocol by an additional adiabatic parameter gives an analog
of an interaction-induced phase in Weyl semimetals [39], by
highlighting the fate of the Weyl point, the pumped charge,
and the surface Fermi arcs in the interacting system. Our
results are readily testable by the current experimental setup
in ultracold atoms [20,40].

The paper is organized as follows. In Sec. II we introduce
our model and explain the connection between the topological
pumping and SPT phases focusing on the description of
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FIG. 1. (a) The pumping protocol of the Rice-Mele model.
(b) Spin gap of the correlated Rice-Mele model at δ = 0, � = 0.9.
The length of the chain is L = 64, 128, 256, 300, and 400. Each line
is a linear fit using three leftmost points.

the pumping in terms of many-body polarization. Next, in
Sec. III we show that the topological pumping breaks down in
the strongly interacting regime using an analytical argument
based on symmetry protection of topological phases. We con-
firm the analytical prediction of the breakdown by numerical
calculations in Sec. IV, and also point out a unique correlation
effect on edge states in the topological pumping. In Sec. V we
make one remark that the model has an intermediate regime
with a long-range order, and we describe the pumping in
that regime. In Sec. VI the case of attractive interactions is
considered and we show the instability of the spin pumping.
In Sec. VII we point out that the interacting Thouless pumping
provides a realization of an interaction-induced phase of Weyl
semimetals. Finally, we summarize our paper in Sec. VIII.
Two Appendixes are devoted to supplementary calcula-
tions on the stability of the topological pumping (Appendix
A) and on the symmetry protection of topological phases
(Appendix B).

II. MODEL

To elucidate the interaction effects on the Thouless pump-
ing, we consider a spinful Rice-Mele model [41] with the
Hubbard interaction:

H (t ) = −
L−1∑
j=0

∑
σ=↑,↓

[thop + (−1)j δ(t )](c†jσ cj+1σ + H.c.)

+ �(t )
L−1∑
j=0

∑
σ=↑,↓

(−1)j c†jσ cjσ + U

L−1∑
j=0

nj↑nj↓, (1)

where U � 0. cjσ (c†jσ ) annihilates (creates) a fermion and

njσ = c
†
jσ cjσ counts the particle number at site j . The “time”

t is the adiabatic parameter and we set the time dependence as
δ(t ) = A cos(2πt ) and �(t ) = A sin(2πt ) (0 � t � 1) with
A > 0 [see Fig. 1(a)]. The on-site interaction U is natural for
ultracold atoms and model (1) can be realized by the setup
in Refs. [20,40]. Throughout the paper we set thop = 1 as the
unit of energy, and consider model (1) at half-filling under
the periodic boundary condition (PBC) cLσ = c0σ or the open
boundary condition (OBC) cLσ = 0.

If the ground state stays gapped during the cycle, the
pumped charge Q over one cycle is given by the many-body

Chern number [28]

Q = 1

2π

∫ 1

0
dt

∫ 2π

0
dθ [i 〈∂t�θ (t )|∂θ�θ (t )〉

− i 〈∂θ�θ (t )|∂t�θ (t )〉], (2)

where |�θ (t )〉 is the many-body ground state of H (t ) under
the twisted boundary condition with angle θ . When the system
is noninteracting, the integral over the angle θ can be replaced
by the integral over the single-particle momentum of the
Bloch states, and we obtain Q = 2 for model (1) with U = 0
by diagonalizing it after the Fourier transformation [42]. The
many-body Chern number, and thus the pumped charge, are
rewritten by the change of the polarization [26,43]. In the
case of the PBC, the polarization Pσ for spin σ is defined by
[44,45]

Pσ (t ) = 1

2π
Im ln 〈�(t )| Uσ |�(t )〉 (mod 1), (3)

with

Uσ = exp

⎡
⎣2πi

L

L−1∑
j=0

(j − j0)njσ

⎤
⎦, (4)

where j0 = L−1
2 is the center of the chain and |�(t )〉 ≡

|�θ=0(t )〉 is the many-body ground state of H (t ) under the
PBC. The exponentiation in Eq. (4) removes the ambiguity of
the polarization associated with the PBC j ∼ j + L and the
time derivative of the polarization leads to the current [43,44].
The pumped charge Q is then given by the change in the
polarization

Q =
∫ 1

0
dt[∂tP↑(t ) + ∂tP↓(t )]. (5)

Importantly, the polarization (3) is enforced to be quantized
when some symmetries are imposed. For example, under
the site-centered inversion symmetry by Iscjσ I

†
s = cL−jσ , the

polarization is quantized as Pσ = 1/4 or 3/4 since IsUσ I
†
s =

−U †
σ . Similarly, under the bond-centered inversion symmetry

by Ibcjσ I
†
b = cL−j−1σ , the polarization is Pσ = 0 or 1/2

since IbUσ I
†
b = U †

σ . In some cases, the quantized polariza-
tion can be used as a nonlocal “order parameter” of SPT
phases [46,47]. In fact, since model (1) is reduced to the
Su-Schrieffer-Heeger (SSH) model [48] (up to the trivial spin
degeneracy [49]) when � = 0 and U = 0, the quantized po-
larization Pσ = 0 corresponds to the trivial phase at δ > 0 and
Pσ = 1/2 corresponds to the SPT phase at δ < 0 protected
by the bond-centered inversion symmetry [50]. For obtaining
a nonzero pumped charge, the inversion symmetry, which
protects the quantized value of the polarization, must neces-
sarily be broken during the pumping cycle. Thus the pumping
protocol can be regarded as a process that smoothly connects
the two distinct (SPT and trivial) phases in the SSH model
without gap closing by symmetry-breaking perturbation �.
This picture of the topological pumping is widely applicable
to various pumping schemes [26,40,51,52].
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III. BREAKDOWN OF THE THOULESS PUMPING

The topological pumping of model (1) is robust against
small Hubbard U since the quantized pumped charge cannot
be changed as long as the energy gap does not close [28]. This
can be also shown more explicitly using bosonization methods
(see Appendix A). However, we show that this topological
pumping finally breaks down due to a gap closing by consid-
ering the strong coupling regime, where |δ|, |�|, thop � U . In
this regime, using a standard second-order perturbation theory
(the Schrieffer-Wolff transformation), we obtain an effective
spin chain from Eq. (1) as

Heff =
L−1∑
j=0

[J + (−1)j δ′]Sj · Sj+1, (6)

where J = 2t2
hop+2δ2

U−2�
+ 2t2

hop+2δ2

U+2�
and δ′ = 4thopδ

U−2�
+ 4thopδ

U+2�
. Here

Sj = 1
2

∑
αβ c

†
jασ αβcjβ is the spin operator. When δ′ 
= 0, the

ground state of model (6) is the spin-Peierls phase with a
finite spin gap [53]. In the SSH model (i.e., � = 0) with
the Hubbard interaction, it is known that the ground state
smoothly crossovers from the noninteracting fermionic phase
to the spin-Peierls phase without closing the energy gap
[29,30]. On the other hand, model (6) at δ′ = 0 is reduced
to the spin-1/2 Heisenberg chain with a gapless ground state.
The fermionic chain (1) with δ = 0 is called the ionic Hub-
bard model [54,55]. In this case, the spin gap of the band
insulator at U = 0 is decreased with increasing Hubbard U ,
and finally it shows a phase transition into the gapless phase
at a critical value U = Uc � 2|�| [54–61]. In Fig. 1(b) we
have calculated the spin gap of model (1) with δ = 0,� = 0.9
by the density-matrix renormalization group (DMRG) method
[62–64] in the PBC keeping up to 800 states. The spin gap
E(N, Sz = 1) − E(N, Sz = 0) is defined by the difference of
ground-state energies in different spin quantum numbers Sz

with the fixed particle number N = L/2. Figure 1(b) shows
that the spin gap closes above U � 4, being consistent with
literature [59]. This fact implies that the topological pumping
of the Rice-Mele model (1) breaks down at U > Uc due to the
vanishing many-body gap at t = 1/4 and t = 3/4 during one
pumping cycle.

We here show that this breakdown of topological pumping
is not accidental in this specific model, but is a generic
phenomenon caused by the underlying SPT phases in the
pumping protocol. To see this, it is worth noting that the two
distinct spin-Peierls phases at δ′ > 0 and δ′ < 0 are protected
by either of the time-reversal, the bond-centered inversion,
or the spin dihedral symmetries when we restrict the Hilbert
space to the spin system (6). This fact is proved by using the
matrix-product-state formalism [65,66] in Appendix B, but
can be naturally understood by noticing that the ground states
in extreme cases δ′ = ±J are a cousin of the valence-bond-
solid state [67,68], which is the celebrated wave function of
the Haldane phase [69–71]. The symmetry protection of the
spin-Peierls phases then follows from that of the Haldane
phase [72,73]. Since the staggered potential � does not break
the time-reversal and the spin-rotation symmetries, the sym-
metry protection of the spin-Peierls phases predicts that we
cannot connect these distinct phases by � without gap closing

or spontaneous breaking of all of the protecting symmetries.
From this fact, the origin of the gap closing at t = 1/4 and
t = 3/4 in the strongly correlated regime is understood as the
symmetry protection of the spin-Peierls phase. Thus, we arrive
at a conclusion that the breakdown of the Thouless pumping is
caused by the change of the protecting symmetries of the SPT
phase associated with the crossover from fermions to bosons.
Since the (possible) case of spontaneous symmetry breaking
also leads to a breakdown of pumping due to degenerate
ground states, the Thouless pumping in the Rice-Mele model
should break down at a certain critical U if the protecting
symmetries are not completely broken and the fermionic
degrees of freedom become irrelevant at low energies in the
strongly interacting regime.

IV. NUMERICAL DEMONSTRATION OF THE
BREAKDOWN AND CORRELATION EFFECTS ON EDGES

Next, we demonstrate how the topological pumping breaks
down by numerical calculations of the polarization using the
DMRG method. Here we adopt the OBC and the polarization
of the ground state |�(t )〉 is defined by

Popen(t ) = 1

L

∑
σ

L−1∑
j=0

〈�(t )| (j − j0)njσ |�(t )〉 , (7)

since there is no ambiguity of lattice coordinates like in
the case of the PBC. This polarization is naturally equiva-
lent to the center-of-mass position of particles and has been
measured for detecting topological pumping in cold-atom
experiments [20,21].

We note that in the OBC, where hard walls exist at the
boundary, the total change in the polarization is automatically
zero. This fact is reconciled with the occurrence of the topo-
logical pumping through the following reasoning [38]. Let us
first consider the noninteracting case. Then model (1) in the
OBC possesses in-gap states localized around the edges. The
emergence of the in-gap states is the consequence of the non-
trivial Chern number of the bulk pumping protocol, where the
noninteracting model (1) can be mapped to a Chern insulator
with chiral edge states when regarding the time as momentum
for the second dimension. The edge states have zero energy
at t = 1/2 and are fourfold degenerate at each edge in the
SSH model [74]. As a result, these edge states are occupied
(unoccupied) in the left (right) edge at t = 1/2, leading to
a discontinuous change in polarization that compensates the
bulk pumped charge as depicted in Fig. 2(a). This mechanism
is a manifestation of the bulk-edge correspondence in the
topological pumping [38].

In the weakly interacting case with finite U [Figs. 2(b)
and 2(c)], we find that the bulk pumping is still robust while
the discontinuous contribution from edge states splits into
two pieces. The latter behavior is caused by the correlation
effect in the edge state. In the vicinity of the SSH point,
the low-lying excitation of the chain consists of the in-gap
edge states, which are modeled by zero-dimensional Hubbard
model

Hedge = �̃
∑

σ

(nLσ − nRσ ) + Ũ (nL↑nL↓ + nR↑nR↓). (8)
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FIG. 2. Numerical results of the polarization Popen(t ) of the
correlated Rice-Mele model in the OBC. The parameter is A = 0.9
and the length of the chain is L = 64, 128. The interaction strength
is set as (a) U = 0, (b) U = 1, (c) U = 3, and (d) U = 5.

Here L (R) denotes the left (right) edge, sgn(�̃) = sgn(�)
and sgn(Ũ ) = sgn(U ). When the Hubbard repulsion is
switched on, the fourfold degenerate edge states of the SSH
model immediately acquire a charge gap and twofold de-
generate edge spin states are left at each edge [30]. The
emergent Mott insulating state at the edge persists at small
|�|, and correspondingly the changes of occupation at the
edge occur at 2|�| � U where the edge charge gap vanishes.
We verify this picture from the density profiles around the
polarization discontinuity [Figs. 3(a) and 3(b)]. The two-step
reconstruction of the edge-state occupation offers a unique
bulk-edge correspondence in the topological pumping which
manifests the correlation effect even in the weakly interacting
regime.

In the breakdown regime U > Uc where the spin gap is
closed, we confirm that the polarization does not exhibit a

FIG. 3. Density profiles 〈�(t )| njσ |�(t )〉 for each spin compo-
nent. The parameters are L = 64, A = 0.9, U = 1 and the times are
taken as (a) t = 0.40625 [Popen(t ) = 0.87909] and (b) t = 0.43750
[Popen(t ) = −0.068911]. The discontinuous change in the polariza-
tion is caused by the change of occupation of the edge states.

discontinuous change and the charge pumping does not occur
[Fig. 2(d)]. We note that this result is not trivial since the
analytical argument in the previous section only states that
the pumped charge becomes nonquantized due to the van-
ishing many-body gap above the critical interaction strength.
Nevertheless, the numerical result in Fig. 2(d) shows that
not only the gapped pumping process breaks down, but also
the pumped charge totally vanishes although it can slightly
deviate from zero due to the breakdown of adiabaticity. The
small amplitude of the change in the polarization is reasonable
since in the deep Mott insulating limit U → ∞ the charge
density is frozen so that

∑
σ njσ = 1.

V. PUMPING IN THE REGIME OF BOND ORDER

We make here one important comment that, in the ionic
Hubbard model, the direct transition from the gapped phase
to the gapless phase is intervened by a bond-ordered phase
which emerges at Ub < U < Uc by spontaneously breaking
the site-centered inversion symmetry [58–61]. The bond-order
parameter for the ground state |�〉 is given by

〈B〉 ≡ 1

L

∑
σ

L−1∑
j=0

(−1)j 〈�| c†jσ cj+1σ + c
†
j+1σ cjσ |�〉

= 1

L
〈�| ∂H

∂δ
|�〉 (9)

and

〈B〉|δ→+0 = −〈B〉|δ→−0 
= 0 (10)

in the bond-ordered phase. In Figs. 4(a) and 4(b) we plot
the evolution of the polarization in the correlated Rice-Mele
model in the regime where the bond order appears with δ =
0. The discontinuous jumps at t = 1/4 and t = 3/4 signal
the bond order due to Eq. (10). Since the ground states in
the bond-ordered phase are doubly degenerate and break the
closed pumping process, the pumped charge in these cases
is not quantized. Associated with the decrease of the bond
order parameter by approaching U = Uc, the nonquantized
pumping smoothly changes into the breakdown regime [see
Figs. 4(b) and 4(c)].

Although this breakdown mechanism is not related to the
symmetry protection and thus may not be generic, we expect
that this phenomenon is relevant for experiments combining a
scheme to probe the bond order using superlattice modulation
spectroscopy [75].

VI. ATTRACTIVE INTERACTIONS, SPIN PUMPING

Our stability argument can be applied to other types
of interactions and pumping protocols. For example, let us
consider the attractive interaction U < 0 in model (1). In
Fig. 5 we plot the DMRG results of the polarization in the
case of the attractive interactions. We numerically confirm
up to U = −50 that the bulk quantized pumping persists
under the attractive interaction. This result indicates that the
topological charge pumping is robust against any U < 0. This
is reasonable since the SSH model of fermions approaches
that of hard-core bosons in the U → −∞ limit and the
protecting symmetry does not change [76]. We note that the
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FIG. 4. Numerical results of the polarization Popen(t ) of the correlated Rice-Mele model in the OBC. The parameter is A = 0.9 and the
length of the chain is L = 64, 128. The interaction strength is set as (a) U = 3.5, (b) U = 3.7, and (c) U = 4.

discontinuous jump of polarization due to the edge contribu-
tion always takes place at t = 1/2 in these data. This behavior
is consistent with the effective description of the edge states
by the zero-dimensional Hubbard model (8), since the ground
state of Hedge in the half-filling sector is the |nL = 0, nR = 2〉
state for �̃ > 0 and the |nL = 2, nR = 0〉 state for �̃ < 0
(here nα ≡ nα↑ + nα↓).

On the other hand, performing the Shiba transformation
[77] c

†
j↑ → c

†
j↑, c

†
j↓ → eiπj cj↓, we find that model (1) at

half-filling is equivalent to

H (t ) = −
L−1∑
j=0

∑
σ=↑,↓

[thop + (−1)j δ(t )](c†jσ cj+1σ + H.c.)

+ �(t )
L−1∑
j=0

(−1)j (c†j↑cj↑−c
†
j↓cj↓)−U

L−1∑
j=0

nj↑nj↓,

(11)

and this model describes the spin pumping [52,78] with the
inverted sign of the interaction. Therefore, the spin pumping
is fragile to strong attractive interactions while it is robust
against repulsive interactions. Since the charge gap and the
spin gap are interchanged by the Shiba transformation, the
breakdown of the spin pumping is caused by the gap closing
in the charge sector. The gapless phase appearing in U > Uc

FIG. 5. Numerical results of the polarization Popen(t ) of the Rice-
Mele model in the OBC with attractive interactions. The parameter
is A = 0.9 and the length of the chain is L = 128. The interaction
strength is set as (a) U = −1, (b) U = −5, (c) U = −20, and
(d) U = −50.

with δ = 0 corresponds to a Luttinger liquid of molecular
bosons formed by the fermion pairs. The robustness of the
spin pumping against the repulsive interaction is consistent
with the symmetry protection of the spin-Peierls phase, since
the staggered magnetic field � in Eq. (11) breaks all of the
protecting symmetries.

VII. TOPOLOGICAL-PUMPING REALIZATION OF WEYL
MOTT INSULATORS

Finally, as a byproduct of our results on the correlated
topological pumping, we show that an extension of the present
setup provides an analog of an interaction-induced phase of
Weyl semimetals [39]. A Weyl semimetal is constructed by
stacking two-dimensional band insulators in the momentum
space. When the Chern number C(kz) parametrized in the
stacking direction kz changes at a specific point, a Weyl
fermion appears as a gap closing point in the band dispersion
[79]. Since the gap closing is protected by the change of
the Chern number, the Weyl fermion is topologically stable
as long as noninteracting systems are considered, while the
stability against interactions is not yet fully understood. In this
context, Ref. [39] proposed an intriguing possibility that an
interaction opens a Mott gap at the Weyl points without spoil-
ing the topological properties and drives the Weyl semimetal
into a new phase called “Weyl Mott insulator” (WMI). It is
a correlation-driven insulator with gapped charge excitations
but still hosts anomalous properties originating from the
topological nature of the Weyl points. A WMI is characterized
by (i) a charge gap in the single-particle excitation spectrum,
(ii) nonvanishing Hall conductivity linked to the Chern
number, and (iii) the surface Fermi arc which connects the
Weyl points in the momentum space. While it was shown
in Ref. [39] that a momentum-space-decoupled interaction
U

∑
k nk↑nk↓ opens the Mott gap at the Weyl point for

arbitrary U > 0 and realizes the WMI, its existence has not
been confirmed in real materials nor in model calculations
with realistic interactions.

A situation analogous to the Weyl semimetal is realized in
the Thouless pumping by introducing an additional adiabatic
parameter s in the Hamiltonian, so that the Chern number
changes at a specific value of s (see also Refs. [80,81]).
For example, by setting parameters in Eq. (1) as δ(t, s) =
A[cos(2πt ) + cos(2πs) + 1] and �(t, s) = A sin(2πt ), the
Chern number is C(s) = 2 for 1/4 < s < 3/4, and C(s) =
0 for 0 � s < 1/4 and 3/4 < s � 1 (here 0 � s � 1) when
U = 0. See Fig. 6. Hence in the three-dimensional (3D)
“Brillouin zone” spanned by (kx, t, s), where kx is the crystal
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FIG. 6. Pumping protocol for the topological-pumping realiza-
tion of a Weyl semimetal. The circles represent the trajectories of
the parameters when t is varied with s being fixed. Each figure
corresponds to the case of (a) 0 � s < 1/4, 3/4 < s � 1, (b) s =
1/4, 3/4, and (c) 1/4 < s < 3/4.

momentum for the 1D real space, two gapless points emerge
at (π, 1/2, 1/4) and (π, 1/2, 3/4) corresponding to the Weyl
fermions [see Fig. 7(a)].

Let us discuss the stability of the Weyl points against the
Hubbard interaction in model (1). Since δ(t, s) = �(t, s) = 0
at these gapless points, the Weyl points are gapped out by the
interaction for arbitrary U > 0 and a gapless spin collective
mode is left over, as is well known in the 1D Hubbard physics
[53]. On the other hand, since the topological pumping is sta-
ble against small U , the pumped charge integrated over t and
s (the anomalous Hall conductivity in the Weyl semimetal)
remains finite. This implies that the model for small U > 0
realizes the WMI in the setup of the topological pumping.

As shown in Secs. III and IV, the topological pumping for
given s breaks down above the critical interaction strength
Uc(s) due to closing of the spin gap at two specific times
during the cycle. Since Uc(s) vanishes when the cycle crosses
the Weyl point (i.e., s = 1/4, 3/4), the topological pumping
near the Weyl point breaks down for U > 0 and the associated
gapless points form a line starting from the Weyl point in the
(t, s) plane, as shown in Fig. 7(b). Note that the gapless points
represent collective spin excitations and the single-particle
charge gap is finite in the whole (t, s) plane in Fig. 7(b). In
Fig. 7 we also show the parameters at which the edge states

FIG. 7. Qualitative features of gapless lines in the (t, s ) space
under the OBC for the 1D real space. The filled circles denote the
Weyl points, and the solid lines indicate the parameters at which
the bulk spin excitations are gapless. The broken red (blue) lines
show the parameters at which the edge charge (spin) excitations
are gapless. In (a), the charge and spin excitations at the edge
are degenerate, drawn by the broken purple line. The green dotted
lines in (b) show the region where the bond order takes place. The
interaction strengths are (a) U = 0, (b) 0 < U < Uc(s = 1/2), and
(c) U > Uc(s = 1/2).

under the OBC for the 1D real space become gapless. The
broken line for the gapless edge states at U = 0 corresponds to
the surface Fermi arc, on which the charge and spin modes are
degenerate [see Fig. 7(a)]. When the interaction is turned on,
the surface Fermi arc connecting the Weyl points acquires a
charge gap and only gapless spin excitations remain, since the
edge states consist of those of the SSH model (see Sec. IV).
Furthermore, the two-step charge-gap closing which was
demonstrated in Sec. IV offers two new arcs of gapless charge
excitations shown by the broken red lines in Fig. 7(b). The
two new arcs merge into the bulk spectrum at the bond-order
transition point (see Sec. V), where the neutral charge gap
closes and the single-particle gap remains finite [60]. Such
spin-charge separation of the surface Fermi arcs is a new
interaction-enabled feature of the WMI in this model, which
is absent in the original proposal [39]. When the interaction
strength is increased, the breakdown region gradually expands
and the integrated pumped charge decreases. Finally, the
strong interaction destroys the charge pumping in the whole
region of 1/4 < s < 3/4, and the system turns into a trivial
Mott insulator with vanishing anomalous Hall conductivity
[see Fig. 7(c)].

For comparison with the original proposal in Ref. [39], we
note that the interaction in our model is independent of the
adiabatic parameters t, s but local in the 1D real space. We
also remark that, in contrast to Ref. [39], the Chern number in
our case is defined not in the whole parameter space, since
it is not well defined in the bond-ordered regime and the
breakdown regime. Although the possibility of the WMI with
local interactions in three dimensions still remains elusive,
the realization with topological pumping here gives a new
example of the WMI other than the original proposal [39].

VIII. DISCUSSION AND SUMMARY

In summary, we have shown that the topological pumping
generally breaks down in the strongly interacting regime if
the protecting symmetries change between the fermionic and
bosonic SPT phases which underlie the pumping protocol. In
general, the stability of topological pumping against interac-
tions depends on specific pumping schemes. For example, let
us consider a simple “sliding-lattice” scheme where particles
in a periodic potential in the continuous space are considered
and the protocol consists of shifting the potential with a
constant velocity [19,21]. In this case, since the time evolution
over one cycle is equivalent to a spatial-translation operation
of the entire system, the charge pumping should occur regard-
less of the interaction strength. Similarly, in charge pumping
induced by flux threading in two-dimensional topological
phases [26,82–85], the many-body gap can be expected to
not collapse during the pumping cycle since the flux cannot
change the bulk properties. As for the topological pumping
in the Rice-Mele model (1), we have shown that the charge
pumping breaks down for strong repulsive interaction due to
the gap closing in the cycle, whereas it is stable against attrac-
tive interaction. What distinguishes the repulsively interacting
Rice-Mele model from the other stable pumping schemes?
In this paper we have unveiled that the underlying 1D SPT
phases in the pumping protocol and the change of their nature
from fermions to bosons are the key to understanding the
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stability of the pumping against interactions. We note that
the existence of a Mott phase in the bulk is not sufficient
for the breakdown of the pumping, since the charge pumping
is robust even in the deep Mott regime in the above sliding-
lattice scheme and in a Bose-Mott insulator in the Rice-Mele
model [21] (the hard-core limit of which corresponds to the
U → −∞ limit of our model). Since our argument for the
mechanism of the breakdown is based on the symmetry, the
criterion for the stability is not limited to the specific model
considered in this paper but is also applicable to various
models.

Furthermore, we have elucidated that the correlation effect
on the topological pumping is not limited to the breakdown
of the pumping. For weak repulsive interactions, while the
bulk quantized pumping is still robust, the correlation effect
opens a charge gap in edge states of the SSH model [30]. The
emergence of the Mott insulating state at the edge induces a
two-step reconstruction of the occupation of the edge states
to be consistent with the bulk charge pumping. This behavior
manifests a bulk-edge correspondence in the correlated topo-
logical pumping, extending the result of the previous work
[38] to the interacting system.

Our results are directly relevant for analyzing the interac-
tion effect on the cold-atom realization of topological pump-
ing, and furthermore are expected to serve for a systematic
understanding of the stability of various pumping schemes.
Although we have focused on the adiabatic limit in this paper,
extension of our results by considering nonadiabatic effects
[86,87] in conjunction with Floquet theory [88–90] will be an
interesting subject for future investigation.
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APPENDIX A: BOSONIZATION ANALYSIS OF THE
STABILITY OF THE THOULESS PUMPING AGAINST

WEAK INTERACTIONS

The stability of the topological pumping of model (1)
against weak interactions is explicitly shown by bosonization
[53] valid in the weak-coupling regime |δ|, |�|, U � thop.
The low-energy effective theory is given by

H =
∑
ξ=c,s

1

2π

∫
dx

{
vξKξ [∇θξ (x)]2 + vξ

Kξ

[∇φξ (x)]2

}

+ g

πα

∫
dx{cos[

√
2φc(x) − γ ] cos

√
2φs (x)}

+ U

2π2α

∫
dx[cos 2

√
2φc(x) − cos 2

√
2φs (x)], (A1)

where cjσ = 1√
2πα

(eiπj/2ei[θσ (x)−φσ (x)] + e−iπj/2

ei[θσ (x)+φσ (x)] ), g = √
4δ2 + �2, and γ = arctan �

2δ
. The

charge (spin) mode is defined by φc ≡ 1√
2
(φ↑ + φ↓) [φs ≡

1√
2
(φ↑ − φ↓)]. Since the Umklapp U term in Eq. (A1) is less

relevant than the g term in the renormalization-group sense,
the low-energy behavior is mainly governed by the second line
in Eq. (A1), thereby pinning the boson fields at the potential
minimum. We note that the pinning position of the charge
boson field is interpreted as the charge polarization of the
ground state [47,52]. When the adiabatic cycle is performed,
the pinning position of the charge mode φc changes by
π

√
2 and this change induces the quantized charge pumping

Q =
√

2
π

∫ 1
0 dt∂tφc = 2 [51,52]. This analysis indicates

that the Thouless pumping is stable against the Hubbard
interaction at least in the weak U region. We emphasize that
this analysis is applicable only to the weak-coupling regime.
In the strong coupling regime |δ|, |�|, thop � U , the charge
mode is gapped out and the effective theory is composed of
only the spin mode. In this case, the charge pumping cannot
occur. In this bosonization picture, the breakdown of the
topological pumping can be understood as a consequence of
the competition between the second line and the third line
in Eq. (A1), which cannot be simultaneously minimized if
γ 
= 0, π [35].

APPENDIX B: SYMMETRY PROTECTION OF THE
SPIN-PEIERLS PHASE

The symmetry protection of the spin-Peierls phase is
proved by using the matrix-product-state (MPS) representa-
tion of the ground state [65,66]. The unit cell of the spin chain
(5) consists of two sites. The Hilbert space for the unit cell
is therefore spanned by a basis set {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}.
Since the local singlet pair is expressed as

|↑↓〉 − |↓↑〉 =
∑

i1,i2=↑,↓
Tr

[
A

[1]
i1

A
[2]
i2

] |i1i2〉 , (B1)

with

A
[1]
↑ =

(
0 1
0 0

)
, A

[1]
↓ =

(−1 0
0 0

)
, (B2)

A
[2]
↑ =

(
1 0
0 0

)
, A

[2]
↓ =

(
0 0
1 0

)
, (B3)

the spin-Peierls ground states in the extreme cases δ′ = ±J

are written as

|�〉 =
∑

j1,...,jL/2=↑↑,↑↓,↓↑,↓↓
Tr[Bj1 · · · BjL/2 ] |j1j2 · · · jL/2〉 , (B4)

where

B↑↑ = A
[1]
↑ A

[2]
↑ = 0, (B5)

B↑↓ = A
[1]
↑ A

[2]
↓ =

(
1 0
0 0

)
, (B6)

B↓↑ = A
[1]
↓ A

[2]
↑ =

(−1 0
0 0

)
, (B7)

B↓↓ = A
[1]
↓ A

[2]
↓ = 0, (B8)
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for δ′ = J , and

B↑↑ = A
[2]
↑ A

[1]
↑ =

(
0 1
0 0

)
, (B9)

B↑↓ = A
[2]
↑ A

[1]
↓ =

(−1 0
0 0

)
, (B10)

B↓↑ = A
[2]
↓ A

[1]
↑ =

(
0 0
0 1

)
, (B11)

B↓↓ = A
[2]
↓ A

[1]
↓ =

(
0 0

−1 0

)
, (B12)

for δ′ = −J . The MPS transforms as

Bj
T→ eiϑT U

†
T BjUT , (B13)

Bj
I→ eiϑI U

†
I BjUI , (B14)

Bj

Rx→ eiϑx U †
xBjUx, (B15)

Bj

Rz→ eiϑzU †
z BjUz, (B16)

under the time-reversal operation T , the bond-centered inver-
sion I , and the spin π rotation Rx (Rz) around x (z) axis,

respectively. For the spin-Peierls states, Eqs. (B5)–(B12) lead
to

UT = UI = Ux = Uz = 1, (B17)

for δ′ = J , and

UT =UI =
(

0 −i

i 0

)
, Ux =

(
0 1
1 0

)
, Uz =

(
1 0
0 −1

)
,

(B18)

for δ′ = −J . The SPT invariant for each symmetry is given
by [72,73]

OT = Tr[UT U ∗
T ]/χ, (B19)

OI = Tr[UIU
∗
I ]/χ, (B20)

Oxz = Tr[UxUzU
†
xU

†
z ]/χ, (B21)

(χ is the dimension of the matrices) and we obtain OT =
OI = Oxz = 1 for δ′ = J and OT = OI = Oxz = −1 for
δ′ = −J . This completes the proof of the symmetry protection
of the two distinct spin-Peierls phases.
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