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Composite fermions (CFs) of the fractional quantum Hall effect (FQHE) are described as spherical products
of electron and vortex spinors, built from underlying L = 1/2 ladder operators aligned so that the spinor angular
momenta, Le and Lv , are maximal. We identify the CF’s quantum numbers as the angular momentum L in
(LeLv )L, its magnetic projection mL, the electron number N [Lv = (N − 1)/2], and magnetic ν spin, mν =
Le − Lv . Translationally invariant FQHE states are formed by fully filling p subshells with their respective
CFs, in order of ascending L for fixed Le and Lv , beginning with the lowest allowed value, L = |mν |. CF
subshells are contained entirely within the first Landau level (FLL). Alternatively, we provide an equivalent
hierarchical wave function in which the underlying objects are vortices with Lv = p

2 , correlated pairwise via
�Lvi

· �Lvj
. We show that CFs can be written as a valence operator carrying the angular momentum quantum

numbers L, mν,mL acting on a scalar half-filled intrinsic state. This scalar state serves as the vacuum for the
valence electron (b†, b̃) and vortex (v†, ṽ) ladder operators that create FQHE states. With respect to this vacuum,
FQHE states can be grouped into ν-spin multiplets mirror symmetric around mν = 0, in which N is held constant.
mν �= 0 states have a net electron particle or hole number. Particle-hole conjugation with respect to this vacuum
is identified as the mirror symmetry relating FQHE states of the same N but distinct fillings ν = p/(2p + 1)
and ν̄ = p/(2p − 1), e.g., 2/5 ↔ 2/3. Alternatively, mirror symmetric ν-spin multiplets can be constructed in
which the magnetic field strength is held fixed: the valence states are electron particle-vortex hole excitations
relative to the half-filled vacuum (mν > 0) and their mirror conjugates (mν < 0). Multiplet members are linked
by the ν-spin raising/lowering operators, Ŝν

±. Particle-hole (PH) symmetry—relating the N -particle FQHE state
� of filling ν = p/(2p + 1) to the N̄ -particle state �̄ of filling ν̄ = (p + 1)/(2p + 1), e.g., 2/5 ↔ 3/5—is
shown to be equivalent to electron-vortex exchange, b† ↔ v† and b̃ ↔ ṽ. The N -particle states � and Ŝ−�̄ are
connected by this mirror symmetry. In this construction, N̄ − N CFs of the state �̄ occupy an extra zero-mode
subshell that is annihilated by Ŝν

−. We link this structure, familiar from supersymmetric quantum mechanics, to
the CF Pauli Hamiltonian, which we show is isospectral, quadratic in the ν-spin raising and lowering operators
Ŝν

±, and fourfold degenerate in �, Ŝν
−�, �̄, and Ŝν

−�̄. On linearization, it takes a Dirac form similar to that
found in the integer quantum Hall effect (IQHE).

DOI: 10.1103/PhysRevB.98.115140

I. INTRODUCTION

Laughlin’s wave function [1] for the fractional quantum
Hall effect [2], describing the ν = 1/3 state, was later ex-
tended by Jain [3] to the series of fillings ν = p/(2p+1),
p = 1, 2, . . . . The two constructions differ. Laughlin’s was
carried out in the FLL, and employed a variational argument
to constrain the two-electron correlation function. In contrast,
Jain’s construction made no reference to the electron-electron
interaction, but instead employed closed-shell states from the
IQHE. He postulated a noninteracting form for FQHE wave
functions similar to that of the IQHE, borrowing from that
problem the needed operator structure. As the resulting wave
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functions span several LLs, numerical projection was required
to produce FLL trial wave functions.

Certain conceptual issues presented by Jain’s construction
were addressed by Ginocchio and Haxton (GH) [4], who
argued that Laughlin’s variational argument could be extended
to successively larger groups of electrons, producing a gen-
eralized set of FLL closed shell operators with Laughlin’s
ν = 1/3 operator being the first member of the series. The
GH operators have an �s structure associated with placing
an electron in the plane (�) and destruction of magnetic flux
(s) [e.g., removing factors of u(i) · u(j ) that keep electrons
separated]. GH applied their operators to the ν = 1/2 bosonic
state to generate analytic FLL wave functions for both hier-
archy states (ν = 1/3, 2/5, . . . ) and their conjugates (ν̄ =
1, 2/3, 3/5, . . . ). When numerically evaluated, these wave
functions were found to be identical to those of Jain, to the
accuracy to which the latter had been evaluated: this is a
consequence of the SU(2) algebra that these two procedures
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imposed on the wave functions, as we later discuss. We refer
to the wave functions constructed with numerical projection as
Jain wave functions, and those constructed analytically with
FLL GH operators as the Jain/GH wave functions.

Jain’s interpretation of his wave function is the basis for
one of the field’s most important paradigms, the existence of
CFs [5]: the open-shell, strongly interacting electron states at
ν = 1/3, 2/5, . . . can be represented as closed-shell nonin-
teracting CF states. To our knowledge, however, no one has
yet to write the Jain wave function exactly in such a form,
generating some distress [6].

Recently, a single-determinant CF form of FQHE wave
functions was obtained by applying the GH scalar operators to
the half-filled shell in a slightly different way. The GH2 con-
struction [7] remains consistent with the essentials of Jain’s
picture—specifically, (1) CFs behaving as if they were IQHE
electrons within a reduced B field [8] and (2) the absorption
of two units of magnetic flux into CF internal wave functions
with the addition of each new electron. GH2 CFs are a
spherical product of an electron spinor of angular momentum
Le and a vortex spinor with Lv = (N − 1)/2, where N is the
electron number. These spinors are themselves generated from
the aligned coupling of ne ≡ 2Le and nv ≡ 2Lv elementary
L = 1/2 spherical creation operators, respectively. Thus the
CF for electron 1 is

[[b† ne

1 ]Le ⊗ [b†2 · · · b†N ]Lv ]LmL
.

For fixed Le and Lv , one can form families of CFs indexed
by the CF angular momentum L, (LeLv )L. This CF structure
allows one to form many-electron states of total angular mo-
mentum LT = 0 simply by filling all 2L + 1 distinct magnetic
substates mL in a given CF subshell. GH2 FQHE states cor-
respond to filling the lowest p such subshells, beginning with
the energetically favored antialigned coupling that produces
the lowest permissible L = |Le − Lv|, and incrementing. The
states have fillings of v = p/(2p + 1) or p/(2p − 1), p =
1, 2, 3, . . . , depending on the sign of Le − Lv . Such LT =
0 states are both translationally invariant and homogeneous
(uniform one-body density over the sphere), properties re-
quired of FQHE states.

This description of CFs differs from that most frequently
seen in the literature, where CFs are argued to be an electron
coupled to two units of magnetic flux. In our view this reflects
confusion between the recursion relation for FQHE wave
functions and the quasiparticles (the CFs) from which simple
noninteracting, closed-shell many-electron wave functions are
formed. For example, in the case ν = 1/3 state, two units
of flux are indeed absorbed into the intrinsic wave functions
of the CFs when one adds an electron to an N -electron
wave function, to form a new ν = 1

3 wave function of N + 1
electrons. However, only one unit is associated with the N + 1
CF being added: the second is absorbed, one quantum each,
into the vortices of the N pre-existing CFs, increasing Lv from
(N − 1)/2 to N/2. The GH2 construction is consistent with
the fermionic character of CFs.

In this paper, we present several new results connected with
the quantum numbers of CFs, their algebraic substructure,
the symmetries that emerge from understanding CF quantum
numbers and properties, and the CF effective Hamiltonian.
We show that CFs carry a second magnetic quantum number

associated with L, ν-spin or mν = Le − Lv = (ne − nv )/2,
which allows one to organize FQHE states into multiplets that
exhibit mirror symmetry with respect to the half-filled shell. ν
spin is so named because it governs symmetries that relate
states of different filling ν, and because of the analogy to
QCD’s isospin mτ , which measures the difference in the up
and down quark number. The mirror symmetries associated
with ν-spin are strikingly similar to the isospin mirror sym-
metries that connect the CFs of QCD, the mτ = ±1/2 proton
and neutron, as well as the richer isospin multiplets that arise
in many-nucleon systems.

Because some of the following sections are somewhat
algebraic, we summarize here the motivation and main results
of each section, to help guide the reader.

Section II describes the IQHE in spherical geometry, which
we include because the algebraic structure of this problem
resembles that of the FQHE, once the mapping to CFs is done.
The most commonly used set of elementary basis functions for
the IQHE are those introduced by Haldane [9], u, v, u∗, and
v∗. We point out that these are the four magnetic components
of a spinor carrying two indices,

DL=1/2
mS=±1/2 mL=±1/2(0, θ,−φ) ↔ c†mS mL

|0〉, (1)

associated with creating single quanta with L = 1/2. Here,
θ and φ are the usual angles for the unit sphere, and D is
the rotation matrix. These solutions correspond to an elemen-
tary monopole (positive or negative) at the sphere’s center.
The general solution for arbitrary monopole strength can be
built up from 2L elementary spinors as an aligned product,
DL

mS mL
(0, θ,−φ). This structure—a total angular momentum

L and two magnetic quantum numbers mS and mL associated
with two distinct, commuting SU(2) algebras—is identical to
that we later develop for the FQHE. The second magnetic
quantum number mS is the eigenvalue of an operator Ŝ0 ≡ Ŝz

introduced by Haldane [9]: 2mS is the number of monopoles
at the center of the sphere. The associated raising and lowering
operators Ŝ±, discussed by Greiter [10], can be used to move
wave functions in magnetic field space. They provide a simple
representation of the IQHE Hamiltonian

Ĥ = h̄ω

2 mS

1

2
[Ŝ+Ŝ− + Ŝ−Ŝ+]. (2)

In Sec. III, we describe the CF representation of FQHE
wave functions on the sphere derived in Ref. [7]. Electrons in
a neutralizing background minimize their energy by keeping
their distance from one another: a CF is an electron dressed by
a translationally invariant intrinsic wave function that builds in
this separation through factors of ui · uj , where i is the elec-
tron label and j �= i. The dressed electron thus carries a some-
what unusual void: the void guarantees a diminished electron
density in the immediate vicinity of the electron to which
it is attached, encasing that electron in a positively charged
cocoon, but also affects correlations with distant electrons. For
ν = 1/3, the void includes a ui · uj pair for every j , and all
N CFs are equivalent, filling a single subshell (p = 1) with
L = (N − 1)/2. For ν > 1/3, the ui · uj correlation cannot
be maintained for all j �= i: we show this leads to a subshell
structure within FLL, with each subshell associated with a
distinct CF. LT = 0 many-CF states can still be constructed by
fully filling multiple CF subshells (p > 1). The subshells are
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indexed by I, 1 � I � p, with the CFs in shell I maintaining
favorable scalar-pair correlations with N − I neighbors, only.
The I − 1 missing antisymmetric pairs become symmetric
pairs, with each pair generating an additional unit of angular
momentum. These symmetric pairs produce an ascending an-
gular momentum tower L(I ) = |mν | + I − 1. Thus the CFs
occupying different subshells are distinguished by the L labels
they carry.

Section III also presents a new, hierarchical form of the
GH2 wave function in which the underlying objects are
vortices of p electrons with spin p/2, [u1 ⊗ · · · ⊗ up]p/2,
attached to a scalar intrinsic wave function that corresponds to
a closed shell of p CFs. The N/p vortices are then kept apart
in the simplest possible way, pairwise spin-spin correlations.
The Laughlin ν = 1/3 wave function is the p = 1 limit where
the CF and hierarchical wave functions are in fact identical
in form. Thus the Laughlin wave function can be considered
the “seed” for either the CF or hierarchical series of wave
functions.

Section IV develops the algebraic structure of CFs. It
begins by identifying the full set of CF quantum numbers,
N, L, mL, and mν = � − s, introducing the ν-spin quan-
tum number that governs mirror symmetries around ν = 1/2
(mν = 0). The use of mν allows us to organize FQHE wave
functions of different fillings but the same electron number N

into angular momentum multiplets, symmetric around mν =
0. When the associated CFs are written with respect to a
vacuum state |0N 〉 defined by the half-filled shell, they take
on a simple form

[GH]Lmν mL
|ON (i)〉 = [b†(i)L+mν b̃(i)L−mν ]LmL

|ON (i)〉, (3)

where the GH operators [GH]Lmν mL
carry the CF’s angular

momentum quantum numbers, L, mL, and mν , and act only
in the electron space. The vortex is unchanged across the
multiplet. FQHE states of the same N and opposite mν ,
which correspond to the distinct fillings p/(2p + 1) and
p/(2p − 1), are related by a simple exchange of electron
creation and annihilation operators in their valence GH op-
erators, b† ↔ b̂. Thus we identify CF electron particle-hole
conjugation as the associated symmetry operation. States of
filling ν = p/(2p + 1) and p/(2p − 1) with the same N have
identical structures, and differ only by conjugation of their
respective CFs.

The algebraic correspondence apparent between the IQHE
solutions DL

mS mL
(0, θ,−φ) and (7) is then explored. The

quantum numbers (L,mL) in both cases are associated with
the angular momentum, and thus the location of either elec-
trons or CFs on the sphere. The second set (L,mν ) appearing
in (7) corresponds to a new SU(2) operator triad (Ŝν

0 , Ŝν
±),

distinct from (Ŝ0, Ŝ±) of the IQHE: the Ŝν
± generate changes

in the filling, altering the distribution of a fixed number of
quanta between the CF’s electron and vortex spinors, while
the Ŝ± generate changes in the magnetic field. L̂2 = Ŝν 2 =
L(L + 1), showing the dual role of the eigenvalue L. We also
introduce operators to raise or lower the number of vortex
quanta, v† and ṽ, and show that the angular momentum and
ν-spin operators can be written as bilinears in electron and
vortex ladder operators. Thus the FQHE is formulated as a
two-component (electron and vortex) system governed by two

independent and commuting SU(2) algebras, similar to the
proton/neutron spin/isospin CF description of QCD.

In Sec. V, we discuss particle-hole (PH) symmetry, which
relates FLL states of filling p/(2p + 1) and p̄/(2p + 1), p̄ ≡
p + 1, residing in the same magnetic field mS , but with N <

N̄ , constrained by N + N̄ = 2mS + 1. Thus, to link their CFs
algebraically, we must identify new multiplets that preserve
mS , not N . We show that the multiplet ladder operators are
Ŝν

±. This leads us to a new set of ν-spin multiplet operators
GHν relating PH conjugate wave functions of distinct N ,

�N L
mν mL

= [GHν]Lmν mL
|0N1/2 (i)〉

= [d†(i)L ⊗ d̃ (i)L]Lmν mL
|0N1/2 (i)〉 (4)

written with respect to a vacuum defined by the half-filled
shell. The operator d† is a two-component ladder operator
analogous to c† of (5), but operating in ν-spin space rather
than magnetic field space, that is, Ŝ → Ŝν .

The generated CFs, for ν < 1/2, are electron-particle,
vortex-hole excitations of the half filled shell, with the
particle-hole number difference 0 (1) for integer (half-integer)
angular momentum. Thus we find that PH symmetry is man-
ifested in CF representations as an electron-vortex exchange
symmetry: such an exchange converts N CFs of state � oc-
cupying subshells I = 1, . . . , p into the N CFs of conjugate
ν > 1/2 state, Ī = 2, . . . , p̄ = p + 1. However, there are two
interesting twists. This symmetry is a mirror symmetry, de-
spite the fact that mν = 1 + |m̄ν |, because the PH conjugate
state related to � is shifted,

� ↔ Ŝν
−�̄.

Second, the algebra places no constraint on the N̄ − N CFs
of the �̄ state occupying the lowest subshell, Ī = 1, because
that subshell is annihilated by Ŝν

−.
This pattern is familiar from supersymmetric quantum

mechanics and leads us to a discussion of the CF effective
Hamiltonian in Sec. VI. We argue that the Pauli Hamiltonian
is

H eff
0 = h̄ωCoul

[
ε1 + 3

2
(ε1/3 − ε1)

1

S
Ŝν

+Ŝν
−

]
,

where ε1 = −√
π
8 and ε1/3 are the average single-electron

energies at ν = 1 and 1/3, respectively, and h̄ωCoul is the
Coulomb energy scale αh̄c/a0, with a0 the cyclotron radius.
This Hamiltonian is isospectral, with a form familiar from
supersymmetric quantum mechanics, and also very similar to
the Pauli Hamiltonian (6) of the IQHE. We demonstrate its
consistency with the constraints PH symmetry places on the
energies of PH conjugate states. This Hamiltonian identifies
the Ī = 1 subshell of the ν > 1/2 state as the zero mode,
which Ŝν

− annihilates. The zero mode mass is h̄ωCoulε1.
The Pauli equation can be linearized, producing a Dirac

Hamiltonian for the CFs of the FQHE that links the four
components of the two mirror symmetric pairs

� ↔ Ŝν
−�̄ Ŝν

−� ↔ �̄P ,

where �̄P is the N -CF wave function obtain by restricting �̄

to its upper p subshells. In Sec. VII, we summarize our results
and describe additional directions that might be explored.
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II. SPHERICAL GEOMETRY

We first describe the noninteracting problem in spherical
geometry [9]—electrons confined to the surface of a sphere,
with the magnetic field generated by a Dirac monopole at the
center. The discussion establishes the algebraic framework
for subsequent discussions of CFs. Our treatment is most
similar to that of Greiter [10], extended to emphasize operator
SU(2) × SU(2) labels and connections to underlying creation
operators.

The important advantage of spherical geometry arises in
the interacting problem: translationally invariant states of uni-
form one-body density correspond uniquely to many-electron
states of total angular momentum L = 0. It is thus not sur-
prising that CFs turn out to be fermion spinors carrying mul-
tiple angular momentum quantum labels, from which scalar
many-body states can be constructed by filling shells. Note
that spherical solutions can be immediately written in planar
geometry, following Ref. [7], where simple rules for mapping
spherical solutions to planar ones are provided, based on
the correspondence (Lx,Ly ) ↔ (px, py ) (connected to the
Cayley-Klein parameters discussed below). This procedure
produces planar wave functions that are translationally invari-
ant, while still allowing use of the simple but overcomplete
coordinates zi = xi + iyi .

The monopole quantization condition requires the total
magnetic flux to be � = 2mS�0, where 2mS is the number
of monopole quanta and thus an integer, and �0 = hc/q the
elementary unit of flux. The noninteracting single-electron
Hamiltonian is

Ĥ0 = 1

2me mS a2
0

∣∣∣∣�r ×
(

h̄

i
�∇ − q

c
�A
)∣∣∣∣

2

= ω

2mSh̄
��2, (5)

where me is the electron mass, �� = �r × ( h̄
i
�∇ − q

c
�A) is the dy-

namical angular momentum, ω = qB/mec = h̄/mea
2
0 is the

cyclotron frequency, and �∇ × �A = B�̂, where �̂ ≡ �r/R. The
guiding-center angular momentum operators �L = �� + h̄S�̂

satisfy the commutation relations [Li, Lj ] = iεijkLk . As �� is
normal to the surface while �̂ is radial, �̂ · �̂ = �� · �̂ = 0
and �L · �̂ = �̂ · �L = h̄mS . These relations give ��2 = �L2 −
h̄2m2

S = h̄2(L(L + 1) − m2
S ). The Landau level eigenvalues

and normalized wave functions are

E = h̄ω

2mS

(
L(L + 1) − m2

S

)
,

�L
mS mL

=
√

2L + 1

4π
DL

mS mL
(0, θ,−φ)

−L � mS, mL � L, (6)

where D is the Wigner D-function (rotation matrix). The so-
lutions carry quantum numbers in two SU(2) spaces, (L,mL)
and (S,mS ), but with L = S.

We employ the rotation matrices of Ref. [11], which have
the property that they transform as good spherical tensors in
both magnetic indices, and thus satisfy simple recursion for-
mulas involving Clebsch-Gordan coefficients. The elementary
spinor basis for these solutions are the unitary 2 × 2 matrices
connected with the Cayley-Klein parameters [11]. They define

the basis for the spherical L = S = 1/2 creation operators

c†mSmL
≡

⎛
⎜⎜⎜⎜⎝

c†1/2 1/2

c†1/2−1/2

c†−1/2 1/2

c†−1/2−1/2

⎞
⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎝

b†1/2

b†−1/2

a†
1/2

a†
−1/2

⎞
⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

D 1/2
1/2 1/2(0, θ,−φ)

D
1
2
1/2−1/2(0, θ,−φ)

D 1/2
−1/2 1/2(0, θ,−φ)

D 1/2
−1/2−1/2(0, θ,−φ)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

cos θ
2 eiφ/2

− sin θ
2 e−iφ/2

sin θ
2 eiφ/2

cos θ
2 e−iφ/2

⎞
⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎝

u 1/2

u−1/2

−u∗
−1/2

u∗
1/2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u

−v

v∗

u∗

⎞
⎟⎟⎟⎠. (7)

The operators (left) and the corresponding elementary spinors
(right) are given, along with their relationship to Haldane’s u

and v. The annihilation operators are

c̃mS mL
≡

⎛
⎜⎜⎜⎝

c̃ 1/2 1/2

c̃ 1/2−1/2

c̃−1/2 1/2

c̃−1/2−1/2

⎞
⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎝

ã 1/2

ã−1/2

b̃ 1/2

b̃−1/2

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

d/du∗
1/2

d/du∗
−1/2

−d/du−1/2

d/du1/2

⎞
⎟⎟⎟⎠. (8)

The Cayley-Klein parameters define stereographic projection
onto the plane, and thus are connected with transformations
that relate spherical results to the planar spinor products
appearing in the wave functions of Ref. [7], as mentioned
previously. The nonzero commutation relationships among
the ladder operators are[

b̃mL
, b†

m′
L

] = δmL,−m′
L
(−1)1/2+mL,[

ãmL
, a†

m′
L

] = δmL,−m′
L
(−1)1/2−mL,[

c̃mS mL
, c†

m′
S m′

L

] = δmS −m′
S
δmL −m′

L
(−1)1/2−mS+1/2−mL. (9)

The four-component operators c†, c̃ reside in a direct product
angular-momentum/magnetic-field space associated with the
operators L̂ and Ŝ defined below, while b† and b̃ as well as a†

and ã operate in angular momentum space.
One can form various bilinear operators with simple trans-

formation properties by combining the ladder operators into
spherical tensors with definite S and L. An operator that
transforms as an angular momentum vector and a magnetic
field scalar is

L̂1mL
= h̄[c† ⊗ c̃]S=0mS=0;L=1mL

= h̄√
2

([b† ⊗ b̃]1mL
− [a† ⊗ ã]1mL

)

≡ L̂b 1mL
+ L̂a 1mL

, (10)

which we recognize as the angular momentum operator. Here,
⊗ denotes the standard tensor product, taken either in the
combined angular momentum/magnetic field space (first line),
or (second line) just in angular momentum, as indicated by the
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quantum labels on the product. Writing out the component
form for L̂1 0 = L̂z,

L̂z = h̄

2
(b†1/2 b̃−1/2 + b†−1/2 b̃1/2 − a†

1/2 ã−1/2 − a†
−1/2 ã1/2),

(11)

one can then convert to Haldane’s notation

L̂z = h̄

2

(
u

d

du
− v

d

dv
+ v∗ d

dv∗ − u∗ d

du∗

)
though the manifest (S,mS ; L,mL) = (0, 0; 1, 0) character
of the operator is then lost. Using the standard raising and
lowering operators

L̂+ ≡ −
√

2L̂11 = L̂x + iL̂y,

L̂− ≡
√

2L̂1−1 = L̂x − iL̂y, (12)

one can easily verify that b, a, and DL
mS mL

all transform under
L̂ as standard angular momentum spinors, e.g.,

L̂z DL
mS mL

(0, θ,−φ)

= h̄mLDL
mS mL

,

L̂+DL
mS mL

(0, θ,−φ)

= h̄
√

(L − mL)(L + mL + 1)DL
mS mL+1,

L̂−DL
mS mL

(0, θ,−φ)

= h̄
√

(L + mL)(L − mL + 1)DL
mS mL−1, (13)

while

[L̂i, L̂j ] = ih̄ εijkL̂k (14)

for the Cartesian components.
The analogous operator that transforms as a magnetic field

space vector and as an angular momentum scalar is

Ŝ1mS
= [c† ⊗ c̃]S=1mS ;L=0mL=0. (15)

One finds

Ŝ1 0 ≡ Ŝz = 1/2(b† 
 b̃ + a† 
 ã),

Ŝ+ ≡ −
√

2Ŝ11 = Ŝx + iŜy = −b† 
 ã, (16)

Ŝ− ≡
√

2Ŝ1−1 = Ŝx − iŜy = a† 
 b̃.

Here we have defined the scalar product of two spherical
tensors of rank J as

AJ 
 BJ =
∑
M

(−1)J−MAJMBJ−M

(which for J = 1 differs by a sign from the standard vector
dot product). One can then verify that b, a, and DL

mS mL
all

transform conventionally under Ŝ, e.g.,

Ŝ0 DL
mS mL

(0, θ,−φ)

= mSDL
mS mL

,

Ŝ+DL
mS mL

(0, θ,−φ)

=
√

(L − mS )(L + mS + 1)DL
mS+1 mL

,

Ŝ−DL
mS mL

(0, θ,−φ)

=
√

(L + mS )(L − mS + 1)DL
mS−1 mL

, (17)

and that

[Ŝi , Ŝj ] = iεijkŜk [L̂i, Ŝj ] = 0 (18)

for Cartesian components. Haldane [9] considered Ŝ0, re-
stricted to the FLL, and Greiter [10] appears to have first
utilized the set (Ŝ0, Ŝ+, Ŝ−) (though he may have misplaced
a relative sign that then prevents grouping these operators into
a tensor).

The Hamiltonian of Eq. (5) can be rewritten in terms of Ŝ±,

Ĥ = h̄ω

2S

1

2
[Ŝ+Ŝ− + Ŝ−Ŝ+], (19)

Greiter’s main result [10]. This form, a product of operators
that raise and then lower (or the reverse) the magnetic field
by a unit, has a Dirac equation analog that was studied by
Arciniaga and Peterson [12], and will be used later in this
paper. (See also Ref. [13].) We will later find the the effective
Hamiltonian for GH2 CFs has a form very similar to Eq. (19).

III. GH2 COMPOSITE FERMIONS

The GH operators were originally derived by extending
Laughlin’s variational arguments. Laughlin considered the
two-electron correlation function, identifying the translation-
ally invariant ground states of maximum density that exclude
p-wave (ν = 1/3) or p- and f -wave (ν = 1/5) interactions.
While superficially one might interpret this construction in
terms of short-range physics, its success derives from pro-
ducing the quantum mechanical analog of a scale-invariant
wave function, consistent with the underlying Coulomb in-
teraction. GH recognized that the analogous scaling for other
fillings cannot be described in terms of just the two-electron
correlation function: at densities beyond ν = 1/3, p-wave
correlations must appear, and thus to avoid exacerbating the
cost in energy of a local overdensity, higher order correlations
are necessary to keep other electrons from approaching that
p-wave pair. The GH construction addressed this problem
systematically, progressing through three-, four-, and higher-
body correlations relevant to ν = 2/5, 3/7, . . . . The corre-
lations among the relevant clusters were set up to allocate
the available quanta in the most symmetric way, minimiz-
ing the costs of the accompanying over- or underdensities.
Rotational invariance and homogeneity were then restored
by antisymmetrizing over all such partitions. The net result
was an analytic FLL extension of Laughlin’s wave function
in which a second quantum was added to Laughlin’s m.
(Laughlin’s wave function is built from pairwise antisymmet-
ric correlations of the form [u(i) · u(j )]m, m = 1, 3, 5, . . .,
yielding states of ν = 1/m.) For fixed m = 3, this second
quantum number enumerates the series of wave functions
ν = 1/3, 2/5, 4/9, . . . , 4/7, 3/5, 2/3, 1.

The GH operators were originally applied directly to the
N -electron bosonic ν = 1/2 state, following the procedure
used by Jain, who employed multiply-filled IQHE states
as an operator and numerical projection to generate FLL
results. Recently, it was noted that the GH operators could be
applied in a simpler way, while retaining consistency with the
Laughlin wave function [7]. This second procedure exploits
a factorization of the N -electron bosonic ν = 1/2 state into a
product of N translationally invariant scalars, formed from the
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tensor product of electron and vortex spinors. One can regard
these scalars as the ν = 1/2 seeds for the CF intrinsic states.
The GH2 CF electron-vortex structure is connected with
certain symmetries the relate FQHE states of different fillings,
explored for the first time here. While numerically the Jain and
GH2 constructions produce variational wave functions with
comparably excellent overlaps with numerically generated
wave functions, the second procedure explicitly constructs
the CFs and the noninteracting many-CF wave functions,
which take the form of p closed CF subshells. The technical
details of the construction have already been described [7].
The current paper focuses on the quantum numbers of the CFs
and the symmetries of the associated many-electron wave
functions. The construction places the hierarchy of FQHE
states into multiplets, with states of different filling related
through simple operator transformations.

A. Forms of the GH2 wave function

The GH operators have an �s form, where � and s are
associated with the number of ladder operators that are
employed to create or destroy electron quanta with respect
to the half-filled vacuum. As in other angular momentum
settings, � and s can be integer or half integer, constrained by
(2� + 1)(2s + 1) = N : the operators are closed �s shells, and
thus translationally invariant. When applied in the manner of
GH2, the resulting CF wave functions take the form of a single
determinant, filling p = 2s + 1 closed subshells, mapping
the wave function into a noninteracting form. No similar form
for the Jain or Jain/GH wave functions has yet been derived.

The GH2 �s form. The GH2 wave function can be written
in equivalent �s (native), (�s)j (composite fermion), and
hierarchical forms, useful in understand the electron-electron
correlation, single-particle-structure, and many-body correla-
tion structure of the wave functions, respectively. Laughlin’s
ν = 1/3 wave function,

�� 0 =
∑
M ′s

εM1···MN
[u1]�M1

· · · [uN ]�MN

× [u1](N−1)/2 
 [u1 · · · uN ; ū1](N−1)/2 × · · ·
× [uN ](N−1)/2 
 [u1 · · · uN ; ūN ](N−1)/2,

where 2� + 1 = N , becomes the first member of the GH2 �s

sequence, (2� + 1)(2s + 1)=N ,

�� s =
∑

m′s q ′s

εM1···MN
[u1]�m1

· · · [uN ]�mN

× [
[u1](N−1)/2−s ⊗ [u1 · · · uN ; ū1](N−1)/2

]s

q1
× · · ·

× [
[uN ](N−1)/2−s ⊗ [u1 · · · uN ; ūN ](N−1)/2]s

qN
. (20)

Here, [u1 · · · uN ; ūi](N−1)/2 is the vortex spinor for N − 1
electrons, the aligned coupling of N − 1 elementary spinors
with the ith electron omitted, thus forming a spinor of
angular momentum (N − 1)/2; Mi ≡ {mi, qi}; −� � mi �
�; −s � qi � s; ε is the antisymmetric tensor; 
 and ⊗
are the spherical scalar and tensor products; and 2s and
2� are integers. Hierarchy states (ν � 1/2) with ν =
p/(2p + 1) ≡ (2s + 1)/(4s + 3) = 1/3, 2/5, 3/7, . . . cor-
respond to fixed s = 0, 1/2, 1, . . . , respectively, with � � s

determining N . Conjugate states (ν � 1/2) with ν= p/(2p −
1) ≡ (2� + 1)/(4� + 1) = 1, 2/3, 3/5, . . . correspond to
fixed � = 0, 1/2, 1, . . . , respectively, with s � � determining
N . The closed-shell � and s structure guaratees that the many-
body states have the required LT = 0.

The GH2 (�s)j CF form. Equation (20) can be rewritten in
its CF form by combining the two ui factors. The Laughlin
wave function becomes a single closed shell of 2� +1 CFs

�N
� s=0 m(1) = [[u1](N−1)/2+� ⊗ [u2 · · · uN ](N−1)/2]�m (21)

formed by taking the antialigned product of the electron
and vortex spherical tensors. Equation (20) can be handled
similarly, yielding

�N I
� s m(1) = [[u1](N−1)/2+�−s ⊗ [u2 · · · uN ](N−1)/2]|�−s|+I−1

m .

(22)

For ν = p/(2p + 1) � 1/2 (so � � s), there are p = 2s + 1
filled subshells filled by their respective CFs, I = 1, . . . , p,
forming the angular momentum tower L = � − s, . . . , � +
s. The number of subshells increases with ν, reaching its
maximum at ν = 1/2 (� = s), where p = √

N . For ν̄ =
p/(2p − 1) � 1/2 (s � �) there are p=2� + 1 subshells, I =
1, . . . , p, forming the angular momentum tower L = s −
�, . . . , s + �. The height of the tower decreases as ν̄ → 1,
reducing to one shell at ν̄ = 1.

The wave function for a given ν is formed from the product
of the closed shells, antisymmetrized over exchange of CFs
among the shells (that is, a single determinant is formed). The
CF form of the GH2 wave function is discussed in detail in
Ref. [7].

The GH2 hierarchical form. The Laughlin wave function
can be written as a product of N translationally invariant
scalars, distributed over the sphere according to a pairwise
spin-spin correlation

�� 0 =
N∏

i=1

R(i)
N∏

i<j=2

�(i) 
 �(j ),

R(i) = [ui]
(N−1)/2 
 [u1 · · · uN ; ūi]

(N−1)/2,

�(i)m = [ui]
1/2
m . (23)

The hierarchical GH2 wave function emerges from �s cou-
pling before antisymmetrization, yielding the generalization
(for ν < 1/2)

�� s =
2�+1∏
I=1

Rs (I )
2�+1∏

I<J=2

�s (I ) 
 �s (J ), (24)

where the N electrons have been partitioned into
2� + 1 = N/(2s + 1) sets containing 2s + 1 equivalent
electrons each, enumerated by I, J, . . . . Denoting
I = {i1, . . . , i2s+1},
Rs (I ) =

∑
m′s

εm1···m2s+1

×[[
ui1

](N−1)/2−s⊗[
u1 · · · uN ; ūi1

](N−1)/2]s

m1
· · ·

×[[
ui2s+1

](N−1)/2−s⊗[
u1 · · · uN ; ūi2s+1

](N−1)/2]s

m2s+1
,

�s (I )m = [u(i1) · · · u(i2s+1)]
2s+1

2
m . (25)
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The scalar Rs (I ) is a closed shell of 2s + 1 CFs. The wave
function is obtained by antisymmetrizing over all partitions.

In the hierarchical picture, the underlying objects dis-
tributed on the sphere are vortices of length 2L = 2s + 1,
where L is the vortex angular momentum. Attached to each
vortex is a translational invariant (L = 0) intrinsic state in-
volving 2s + 1 electrons. The intrinsic state represents a slight
overdensity. These overdensities are then spaced over the
plane by the vortex spin-vortex spin pairwise interaction,
the same variational mechanism used by Laughlin to sepa-
rate and space single electrons. As the CF and hierarchical
wave functions take on Laughlin’s form at ν = 1/3, each can
be viewed as a series in which Laughlin’s state is the first
member.

The hierarchical nature of this wave function can be visu-
alized by fixing � and incrementing s = 0, 1/2, · · · , proceed-
ing through the fillings ν = 1/3, 2/5, . . . . The form of the
wave function remains fixed: 2� + 1 translationally invariant
scalars distributed over the sphere by pairwise interactions.
It is readily seen that both the scalars Rs and vortices �s

satisfy simple recursion relations, with the vortex angular
momentum increasing by �L = 1/2 in each step. Thus, suc-
cessively, the 2N -electron ν = 2/5 wave can be built from
the N -electron ν = 1/3 wave, the 3N -electron ν = 3/7 from
the 2N -electron ν = 2/5, etc. This matches the descriptions
of the hierarchical constructions proposed by Haldane and
Halperin [9,14]. As there has been some debate over the
equivalence of hierarchical and CF constructions [15–19], it
is satisfying that the GH2 wave functions can be written in
equivalent CF and hierarchical forms. The shell structure of
the former and the clustering of the latter are manifestations of
a familiar choice—couple or uncoupled representation—one
makes in treating the GH operator � s algebra. The subshell
structure of the CF representation reflects the distinct energies
one encounters when successively removing electrons from a
correlated cluster.

B. Physical interpretation of CFs

In Fig. 1.12 of Girvin’s lecture notes [20] on the quantum
Hall effect, there is a visual representation of the correlated
m = 3 (so ν = 1

3 ) Laughlin state, where a snapshot of electron
positions taken during a Monte Carlo simulation of a 1000-
particle trial wave function is contrasted with the correspond-
ing Poisson distribution of 1000 uncorrelated electrons. This
graphic was itself inspired by an earlier and similar figure
of Laughlin [21]. It is immediately apparent that, in the
correlated case, the electrons are more uniformly distributed
in the plane, and in particular, that the two-particle correlation
function is highly constrained, keeping electrons separated.

The CFs of Eq. (22) are the algebraic manifestation of
this correlation. It the case of the m = 3 Laughlin state, it
states that arbitrary positioning of N electrons among 2S + 1
magnetic states on the sphere, S = [3(N − 1)]/2, has instead
been replaced by a closed-shell distribution of N CFs of re-
duced angular momentum � = (N − 1)/2. Thus the “centers”
are uniformly distributed over the sphere according to this
reduced angular momentum. The reduced angular momentum
indicates the CF is a extended object, so that fewer of them
cover the surface, measured relative to bare electrons.

The CF corresponding to electron 1 carries with it an
intrinsic wave function—an angular momentum scalar—that
in the case of the Laughlin m = 3 state, consists of the product
�i �=1u(1) · u(i). As a scalar, the intrinsic wave function is
translationally invariant and thus independent of the electron’s
location. It represents an unusual kind of correlation function,
not focused on short-range physics, but instead building into
each CF a correlation that increases the spacing between CF 1
and all other CFs, regardless of whether they are nearby or
on the opposite side of the sphere. At short length scales,
however, this correlation does encase the negative electron
in a region of surrounding positive charge: the absence of
neighboring electrons produces a region where the neutraliz-
ing positive background dominates.

For the more complicated states of the hierarchy, new CFs
arise, while the physics gently adjusts. In the case of the
ν = 2/5 state, in addition to the I = 1 Laughlin CF subshell,
there is a I = 2 subshell where L has been incremented
by one unit. Thus, with respect to the Laughlin subshell,
the second subshell can accommodate two additional CFs,
implying a slight increase in the CF density. This indicates
that this CF is slightly more compact than Laughlin’s. As
we will see in detail later, this angular momentum increase
comes from breaking one of the intrinsic-state antisymmetric
pairs, replacing it with a symmetric pair which then must align
with the electron spinor, generating the angular momentum
increment. Electron and vortex angular momentum are no
longer completely opposed. The absence of an antisymmet-
ric pair allows some neighboring electron to more closely
approach electron 1. That is, there is a nonzero probability
for two electrons to be in a relative p state. On average,
the positively charged envelope around the center has been
slightly reduced in size: the various effects [the addition of
a new CF subshell (incrementing p), a more compact CF, an
incremented CF L, and the resulting higher occupancy of that
closed shell] naturally correlate. This process repeats for each
increment in p. Each step in the CF angular momentum tower
represents the point where a higher density has been reached
in which a unique translationally invariant state can be created
as p closed shells, with successive shells characterized by
fewer preserved scalar pairs, a necessary consequence of the
increased density.

The standard picture of a CF as an electron coupled to two
units of magnetic flux confuses this simple picture: when two
Laughlin CFs 1 and 2 interact, of course, each carries a scalar
intrinsic state, and thus in combination the intrinsic states
contribute two powers of u(1) · u(2) to the corresponding
electron-electron correlation function. But each of the CFs
(for m = 3 hierarchy states) contributes only a single power.
The CFs remain fermions under this assignment, with the
same exchange properties as the electrons from which they
are derived. That antisymmetry generates an additional power
of u(1) · u(2) in the correlation. The GH2 CFs algebraically
encapsulate the physics Girvin captured visually in his figure.

One might be concerned that the allocation of quanta
separately to electron and vortex spinors is arbitrary. It is
helpful to keep in mind the familiar example of the nucleon as
the composite fermion of QCD: strongly interacting systems
of interacting colored quarks and gluons are fully equivalent
at low energy to an effective theory described in terms of
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colorless protons (uud) and neutrons (udd), CFs that capture
in their masses 99% of the interaction energy [22]. The par-
titioning of electron quanta into separate electron and vortex
spinors to form CFs is analogous to the apportioning of u and
d quarks among protons and neutrons, though in the FQHE
states, creating CFs of minimum angular momentum guide
the organization, rather than color. In QCD the nucleon CFs
carry a second magnetic quantum number, magnetic isospin
mτ , describing the allocation of u and d quarks in the nucleon:
four states of the L = 1/2 nucleon are distinguished by the
SU(2) magnetic labels mL and mτ . There is a correspond-
ing second magnetic quantum number, ν-spin mν , that we
introduce below for the FQHE, describing the allocation of
quanta between electron and vortex spinors. Its consequences
are quite similar to those of isospin, allowing us the organize
many-electron states into ν-spin multiplets, and making the
algebraic relationships among states of different filling very
apparent.

IV. MIRROR ν-SPIN SYMMETRY AND FQHE
MULTIPLET STRUCTURE

Here we introduce ν-spin and its associated magnetic quan-
tum number mν = � − s, useful in bringing out symmetries
around the half-filled shell (where mν = 0). The CFs become

�NL I
mν mL

(1)

= [
[u1]

N−1
2 +mν ⊗ [u2 · · · uN ]

N−1
2

]L=|mν |+I−1
mL

= [
[u1]

mS+mν
2 ⊗ [u2 · · · uN ]

mS−mν
2

]L=|mν |+I−1
mL

(26)

using N − 1 = mS − mν . (I is a redundant label, clearly, but
we occasionally will include it to make discussions clearer.)
One notices a similarity between the FLL CF and multi-LL
IQHE single-particle solutions

�NL I
mν mL

↔ DL
mS mL

.

As in the noninteracting case, it appears CFs carry two mag-
netic quantum numbers, associated with the z components of
angular momentum and ν spin: we found above that L � |� −
s| = |mν |. mν measures the difference between the number of
quanta carried by the CF’s electron and vortex, (ne − nv )/2.
Thus mν = 0 labels the ν = 1/2 case where the electron and
vortex spinors are of equal length, and CFs transform into
themselves under electron-vortex exchange.

Below we arrange the states of the FQHE according to
mν , to show the simple multiplet pattern that emerges, mir-
ror symmetric around the half-filled shell. We will do so
under the constraint that N is constant, yielding one sym-
metry relating states of different filling; in a later section,
we repeat this process keeping the magnetic field mS fixed,
yielding new multiplets and a second important symmetry
relation. In both cases the operator triad (Ŝν

0 , Ŝν
±), scalars

with respect to angular momentum, play a crucial role. The
similarities between the noninteracting multishell IQHE and
CF descriptions of the interacting FLL FQHE arise from the
algebraic similarities between (Ŝ0, Ŝ±) and (Ŝν

0 , Ŝν
±). In our

view, the confusion seen in the literature over issues like Jain’s
projection, Coulomb vs magnetic energy scales, etc., de-
rives from conflating these two operator sets, which describe

entirely different physics: Ŝ governs the angular momentum
around the cyclotron centers that accompanies excitation into
higher LLs, for noninteracting electrons, while Ŝν governs
the allocation of quanta between electrons and vortices in CF
representations of FLL FQHE states.

A. FQHE ν-spin multiplets

1. CF quantum numbers

The Hilbert space of m = 3 FQHE states—the many-
electron states formed from filling p subshells with their
respective CFs—is a two-dimensional discrete grid, corre-
sponding to the GH variables (�, s), which take on all integer
and half-integer values, with � � 0 and s � 0. To make use
of mν , and noting |� − s| � L � � + s, one should rotate
the (�, s) axes by 45◦ to � + s and � − s = mν . As in other
angular momentum problems, this space separates into two,
corresponding to � + s and � − s being either both integer,
or both half integer. This is depicted in Fig. 1. The electron
number N and p are then easily found to be

N = (� + s + 1)2 − m2
ν = p(p + 2|mν |),

(27)
p = (� + s + 1) − |mν | =

√
N + m2

ν − |mν |.
As N and |mν | determine p, and as the specific value of I ∈
{1, . . . , p} is determined by L, we find that N, L, mL, mν

are a complete set of CF eigenvalues.
The mirror operation corresponds to

(� + s,mν ) ↔ (� + s,−mν ).

As N and p do not depend on the sign of mν , we see that
mirror symmetry relates pairs of states of the same electron
number N and the same p. However, the filling ν is double
valued in p. For large N and fixed p [7],

ν = p

2p + sign[mν]
.

Thus mirror symmetry in mν connects the FQHE states

�(N,p, ν = p/(2p + 1)) ↔ �̄(N,p, ν̄ = p/(2p − 1)),

(28)

with the left-hand (right-hand) side corresponding to mν pos-
itive (negative).

Mirror symmetry in mν links the conjugate pairs 1/3 ↔ 1,
2/5 ↔ 2/3, 3/7 ↔ 3/5, . . . , of the same electron number. It
states that such states have identical many-body structures:
the same number of subshells p, I = 1, . . . , p, filled by their
respective CFs. The states differ only in their CFs, which
transform as CF(mν ) = CF(−mν ). That is their CFs are mem-
bers of the same magnetic multiplet, carrying opposite mν .

The “pivot” of the mirror symmetry is mν = 0, where N =
p2, p = 1, 2, . . . , and where many-electron states and their
CFs carry nominally different filling labels ν = p/(2p + 1)
and ν̄ = p/(2p − 1), but are in fact identical. That is, these
states and their individual CFs are self-conjugate.

We construct the many-body states connected with the
mirror symmetry by consider groups of states of fixed � + s,
which from Eq. (27), implies fixed N . Such states correspond
to horizontal lines across the Hilbert spaces depicted by the
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FIG. 1. The Hilbert space of GH2 FQHE CFs (m = 3 hierarchy). There are two cases corresponding to integer (left) and half-integer
(right) L, mL, mν . The rotation from the (�, s ) GH variables to � + s and mν = � − s makes the mirror symmetry in mν apparent: N and p

are unchanged when mν ↔ −mν . Trajectories of constant p are indicated, corresponding to incrementing N in states of a given filling. For a
specified (N,p) the two values ±|mν | correspond to mirror states of distinct filling, ν = p/(2p + 1) (mν > 0) and p/(2p − 1) (mν < 0). The
red dashed lines are the trajectories of constant � + s corresponding to panels (d) and (c) in Figs. 2 and 3, respectively.

panels of Fig. 1, indexed by mν , linking subshells character-
ized by a fixed angular momentum.

2. Electron and vortex angular momenta

In the lowest subshell, the CF’s electron and vortex angular
momenta are antialigned. We see from Eq. (22) that the
angle between these vectors gradually opens with succes-
sive subshells, increasing the CF’s angular momentum. The
angular momentum is generated by destroying energetically
favored scalar pairs ui · uj between the electron and vortex,
replacing them with less favored symmetric pairs [ui ⊗ uj ]1

mL
.

Alternatively, for ν < 1/2 (and thus mν > 0), this process can
be viewed as successive re-alignments of vortex quanta with
the electron spinor, as

�N L I=2
mν mL

(i) ∼
∑
j �=i

[[
u

N−1+2mν

i uj

]N/2+mν

⊗ [u1 · · · uN ; ūi ūj ]
N−2

2
]L=mν+1
mL

,

�N L I=3
mν mL

(i) ∼
∑

j �=i,k �=i,j �=k

[[
u

N−1+2mν

i ujuk

] N+1
2 +mν

⊗[u1 · · · uN ; ūi ūj ūk]
N−3

2
]L=mν+2
mL

, (29)

and so on for additional values of I. The gap between CF
shells I + 1 and I thus corresponds to the energy cost per
CF of one such replacement. The fact that the breaking of
antisymmetric pairs generates additional CF angular momen-
tum has an obvious connection to the form of the angular
momentum operator of Eq. (10).

3. CFs as operators with respect to the half-filled shell

The above description of CFs is relative to the electron
vacuum. Alternatively, CFs can be expressed in terms of
valence electron creation and annihilation operators, acting on

the scalar half-filled shell, which then can be regarded as a
new CF vacuum. These valence operators—a representation
of the GH operators—carry the CF angular momentum and
ν-spin quantum numbers L,mL,mν . One obtains

�N L
mν mL

(i) = [GH]Lmν mL
|0N (i)〉

= [b†(i)L+mν b̃(i)L−mν ]LmL
|0N (i)〉. (30)

The operators creating and annihilating quanta are aligned,
while

〈θ, φ|0N (i)〉 = [ui]
(N−1)/2 
 [ui · · · uN ; ūi]

(N−1)/2

is the CF vacuum state with L=0, mL = 0, mν = 0. The
electron-vortex symmetry at mν = 0 is thus broken by creat-
ing an excess or deficit of electron quanta, providing another
way to think about the ν-spin mirror. Because the creation
and annihilation operators are coupled to maximum L, no
contractions among them are allowed.

A state can be turned into its ν-spin mirror by a simple
conjugation of the valence operators. The mirror symmetric
partners are

[b†(i)L+mν b̃(i)L−mν ]LmL
|0N (i)〉

←→ [b†(i)L−mν b̃(i)L+mν ]LmL
|0N (i)〉. (31)

Thus the mirror symmetry mν ↔ −mν is manifested as a
symmetry under valence operator conjugation that relates
states of distinct filling,

ν = p/(2p + 1) ↔ ν̄ = p/(2p − 1) ⇔ b† ↔ b̃.

This symmetry connects states of the same N and shell
structures, that reside in distinct magnetic fields mS = N −
1 ± mν .

For a multiplet with p subshells, N = p(2LI=1 + p),
where LI=1 is the angular momentum of the I = 1 subshells
of the conjugate p

2p+1 and p

2p−1 states. There are 2LI=1 + 1
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FIG. 2. The mirror symmetric CF multiplets for � + s = 0, 1, 2, and 3 are shown in (a), (b), (c), and (d). In (d), for example, four ν-spin
multiplets can be formed, corresponding to p = 1 (blue), 2 (purple), 3 (green), and 4 (red). FQHE states (ground states) are the multiplet states
of maximum |mν |, with fillings ν = p/(2p + 1) and p/(2p − 1). These patterns can be extended to arbitrary N .

members in the the multiplet. This determines the ν = 1/2
vacua |0N 〉 in Figs. 2 and 3.

4. FQHE multiplet structure

By labeling Figs. 2 and 3 with the corresponding CF
valence ladder operators, one can bring out the underlying
simplicity of the multiplet structure. For each integer (half-
integer) value of � + s, there are � + s + 1 (� + s + 1/2)
magnetic multiplets, arranged symmetrically around mν = 0.

These multishelled multiplets are color-coded in the figures.
Multiplet members have the same N : thus all members act on
the same scalar intrinsic state |0N (i)〉 and involve the same
vortex [u1 · · · uN ; ūi](N−1)/2.

The states of maximum |mν | within each multiplet are
ground states and thus identified with FQHE states. The
lowest subshell for a FQHE state has L = |mν |, on which
we can then build an angular momentum tower by filling p

such shells in total. Figures 2 and 3 illustrate another way
to characterize these towers: aligned couplings of valence

FIG. 3. As in Fig. 2, but for the cases of half-integer � + s. If Figs. 2 and 3 are extended to arbitrary N , the multiplet states of maximum
|mν | will account for all first-hierarchy (or m = 3) FQHE states.
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FIG. 4. FQHE multiplets described relative to the true vacuum
|0〉, to show by contrast the economy of the valence ladder operator
representation. This example corresponds to the purple multiplet of
(c), Fig. 2. This CF depiction follows Eq. (29), with symmetrization
over the ladder operators comprising the vortex understood.

electron creation and annihilation in which factors [b† ⊗
b̃]1 are successively added. This is the valence represen-
tation of the operator that acts on u(i) · u(j ) to produce
[u(i) ⊗ u(j )]1.

States within a multiplet that are not of maximum |mν | are
have unoccupied lower subshells: these are legitimate states,
translationally invariant and uniform in density, but they are
clearly highly excited states, not FQHE states.

If we were to continue the construction begun in Fig. 2,
half of all the m = 3 FQHE states would be generated, e.g.,
the odd-N ν = 1/3 and ν = 1 states. One can readily see that
the other half would be generated by the half-integer � + s

cases, illustrated in Fig. 3.
Figure 4 is included to illustrate the less economical de-

scription of multiplet states that results when CFs are ex-
pressed relative to the vacuum, rather than the half-filled shell.
The case illustrated corresponds to a multiplet from panel (c),
Fig. 2.

B. Electron-vortex algebraic structure

The multiplets just illustrated reflect an underlying
electron-vortex algebraic structure. Our CFs are constructed
as good spherical tensors, and thus are eigenstates of the total
angular momentum and Lz. For the CF labeled 1, the operator
components are

L̂1mL
= h̄√

2

⎛
⎝[b†(1) ⊗ b̃(1)]1mL

+
N∑

j=2

[b†(j ) ⊗ b̃(j )]1mL

⎞
⎠.

(32)

PH operations of interest involve adding or removing
a quantum from a vortex. Addition could be done, for
example, by an aligned coupling of b†(N ) to the vortex
[b†(1) · · · b†(N − 1)](N−1)/2. However, it is more attractive at
this point to treat the vortex components more symmetrically.
We introducing the vortex creation and annihilation operators

for CF 1,

[v†]1/2
mL

(1) = PN

√
N (N−1)

2

[
[b†(2) · · · b†(N )](N−1)/2

⊗ [b̃(2) · · · b̃(N − 1)]
N−2

2
]

1/2mL
,

[ṽ]1/2
mL

(1) =
√

N (N − 1)

2

[
[b†(2) · · · b†(N − 1)]

N−2
2

⊗ [b̃(2) · · · b̃(N )](N−1)/2
]

1/2mL
PN. (33)

We have included explicit projection operators PN , indicating
vortices are produced or destroyed corresponding to a system
with N total electrons. In using these operators, it is under-
stood that N is chosen so the vortex in the ket is annihilated
by the term on right. With this rule one finds[

ṽmL
, v

†
mL

′
] = δmL,−m′

L
(−1)1/2+mL. (34)

Just as b† · b̃ is the number operator for the CF’s electron
spinor, counting the number of quanta, v† · ṽ plays the same
role for the vortex

v† · ṽ [b†(2) · · · b†(N )](N−1)/2
mL

= (N − 1)[b†(2) · · · b†(N )](N−1)/2
mL

. (35)

The CF angular momentum operators then take on a more
symmetric electron-vortex form

L̂1mL
(1) ≡ L̂e

1mL
(1) + L̂v

1mL
(1)

= h̄√
2

([b†(1) ⊗ b̃(1)]1mL
+ [v†(1) ⊗ ṽ(1)]1mL

).

(36)

Using the noninteracting, multi-LL case as a model, we
define the four-component creation operator for CF 1:

d†
mν mL

(1) ≡

⎛
⎜⎜⎜⎜⎝

d†
1/2 1/2(1)

d†
1/2 −1/2(1)

d†
−1/2 1/2(1)

d†
−1/2 −1/2(1)

⎞
⎟⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎜⎝

b†1/2(1)

b†−1/2(1)

v
†
1/2(1)

v
†
−1/2(1)

⎞
⎟⎟⎟⎟⎠ (37)

and similarly

d̃ mν mL
(1) ≡

⎛
⎜⎜⎜⎝

d̃ 1/2 1/2(1)

d̃ 1/2, −1/2(1)

d̃ −1/2, 1/2(1)

d̃ −1/2,−1/2(1)

⎞
⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎝

−ṽ 1/2(1)
−ṽ−1/2(1)

b̃ 1/2(1)

b̃−1/2(1)

⎞
⎟⎟⎟⎠. (38)

We find the commutator[
d̃ mν,mL

, d†
m′

ν ,m
′
L

] = δmν,−m′
ν
δmL,−m′

L
(−1)1/2−mν+1/2−mL. (39)

We can build associated operators. L̂1mL
is identified as the

bilinear operator carrying {Sν,mν ; L,mL} = {0, 0; 1,mL},
L̂1mL

= h̄[d†(1) ⊗ d̃ (1)]Sν=0 mν=0;L=1 mL

with the CFs satisfying

L̂0 �N L
mν mL

(1) = h̄mL �N L
mν mL

(1),

L̂+�N L
mν mL

(1) = h̄
√

(L−mL)(L + mL + 1) �N L
mν mL+1(1),

L̂−�N L
mν mL

(1) = h̄
√

(L+mL)(L − mL + 1) �N L
mν mL−1(1).

(40)
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Similarly, we can form the ν-spin operator triad, analogous
to Ŝ of the noninteracting problem,

Ŝν
1mν

= [d†(1) ⊗ d̃ (1)]Sν=1 mν ;L=0 mL=0. (41)

These are angular momentum scalars, but rank-one tensors in
ν space,

Ŝν
0 (1) = 1/2[b†(1) 
 b̃(1) − v†(1) 
 ṽ(1)],

Ŝν
+(1) ≡ −

√
2Ŝν

11 = Ŝν
x + iŜν

y = b†(1) 
 ṽ(1), (42)

Ŝν
−(1) ≡

√
2Ŝν

1−1 = Ŝν
x − iŜν

y = v†(1) 
 b̃(1).

The implicit dependence of v† and ṽ on N is again defined by
the rule that these operators first act to annihilate the vortex in
the ket.

Ŝν
0 is the operator associated with the CF’s second magnetic

index,

Ŝν
0 �N L

mν mL
(1) = mν �N L

mν mL
(1). (43)

Thus we have identified the complete set of commuting oper-
ators for the GH2 CFs. As Ŝν is an angular momentum scalar,
[Ŝν

0 , L̂z] = [Ŝν
0 , L̂2] = 0, allowing us to use L, mL, mν as

simultaneous CF quantum labels (along with N ). It is also
straightforward to show

Ŝv 2�N L
mν mL

= L̂2�N L
mν mL

= L(L + 1)�N L
mν mL

(44)

accounting for the association of both magnetic indices with
the CF’s total angular momentum.

The raising/lowering operators Sν
+ and Sν

− transfer a quan-
tum from/to the vortex to/from the electron spinor. They play
a crucial role in the second (conventional) PH symmetry,
described in the next section: they generate algebraic connec-
tions between states of different electron number residing in
the same magnetic field (in contrast to our ν-spin symmetry
that relates states residing in different magnetic fields but
having the same N ). Because they link states of different mν ,
the relative normalization of CFs must be specified. We adopt
the following normalization (consistent with that for electron
spinors)

�̃N L
mν mL

(1) = 1√
(N − 1 + 2mν )!

× [[b†(1)](N−1)/2+mν ⊗ [b†(2) · · · b†(N )](N−1)/2−mν ]LmL
|0〉
(45)

denoting normalized CFs by �̃. Recall the magnetic field
strength mS = N − 1 + mν . We find

Ŝν
+ �̃N L

mν mL
=

√
(L + mν + 1)(L − mν ) �̃N−1 L

mν+1 mL
,

(46)
Ŝν

− �̃N L
mν mL

=
√

(L − mν + 1)(L + mν ) �̃N+1 L
mν−1 mL

.

These operations preserve mS . From Ŝν
+ and Ŝν

−, one can
construct operators diagonal in mν :

Ŝν
+Ŝν

− �̃N L
mν mL

= (L + mν )(L − mν + 1) �̃N L
mν mL

,
(47)

Ŝν
−Ŝ+ �̃N L

mν mL
= (L − mν )(L + mν + 1) �̃N L

mν mL
,

which are related to Ŝν
0 by

Ŝν
+Ŝν

− − Ŝν
−Ŝν

+ = 2Ŝν
0 . (48)

These relations are important to CF Hamiltonians we discuss
later.

The analog of ν-spin familiar in QCD, isospin, is used
as a quantum label, despite electromagnetic interactions that
break isospin at a few tenths of a percent in the nucleon, and
at higher levels in nuclei. The numerical studies with GH2

CFs in Ref. [7] indicate that ν-spin symmetry for modest N

holds in the FQHE to about 0.1%, suggesting ν-spin may be
at least as good a quantum number as isospin. In the QCD
case, the algebraic relationship among states implies approx-
imate degeneracies, e.g., the masses of the 1S0 states of the
two-nucleon system nn, np, and pp with isospin T = 1 and
mτ = −1, 0, 1, are equal to within about 0.3%. Similarly,
we will argue later in this paper that ν-spin symmetry implies
degeneracies between mirror CFs.

V. PARTICLE-HOLE SYMMETRY

We now turn to a second symmetry, PH conjugation. FLL
wave functions computed numerically with the inclusion of
all electron degrees of freedom would, of course, exhibit
exact PH symmetry. Our goal here is not to construct a CF
representation exhibiting a similar exact symmetry (although
this appears to us possible, as we have explicit representations
for CFs at both ν < 1/2 and ν > 1/2 that can be combined
symmetrically). Rather, we are interested in the algebraic
manifestation of PH symmetry when wave functions are ex-
pressed in their CF forms. The manifestion will turn out to
involve the behavior of CFs under electron-vortex exchange.

A. PH quantum number relationships

PH symmetry connects states of different electron number
that reside in the same magnetic field: mS = m̄S, N �= N̄ , and
N + N̄ = 2mS + 1 (where the bars indicate conjugate state
labels). Although the multiplets we have previously defined
correspond to fixed N , not fixed mS , they contain all FQHE
states, and so can be used to identify the basic structure of PH
conjugate states. The CFs for a FQHE state and its conjugate
must have the same number of total quanta (ne + nv = n̄e +
n̄v) in order to belong to the same magnetic field. Using our
expressions for the CFs and the constraint N + N̄ = 2mS +
1, the following relations among state quantum numbers are
easily obtained:

N − 1 + mν = mS = N̄ − 1 + m̄ν,

1 = mν + m̄ν,

N̄ = N + 2mν − 1,

p̄ = p + 1,

(�̄, s̄ ) = (s + 1/2, � − 1/2)

�̄ + s̄ = � + s. (49)

From these relationships, one sees � + s is unchanged, while
the difference in N and N̄ depends only on mν : this suggests
an underlying ν-spin multiplet structure. The multiplet part-
ners linked by PH symmetry are not mirror, as mν + m̄ν = 1,
not 0. The constraint p̄ = p + 1 tells us that PH symmetry
connects states that differ by one in their subshell numbers.

In Fig. 5, panels from Figs. 2 and 3 have been redrawn
to illustrate the positioning of PH conjugate states in our
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FIG. 5. FQHE PH conjugate pairs, indicated by background shading, for two cases from Figs. 2 and 3, illustrated for the constant-N
multiplets of Sec. IV.

fixed N ν-spin multiplets. The cases for integer and half-
integer angular momentum are similar. In Fig. 5, every ν <

1/2 state labeled by N, p, and mν has a PH conjugate
state living in the same magnetic field (same S) labeled by
N̄, p̄ = p + 1, and m̄ν = 1 − mν . The figures illustrate the
offset [(mν + m̄ν )/2 = 1/2] and shell asymmetry (p̄ = p+1)
noted above. The I = 1 subshell of the ν̄ state is the subshell
without a partner: this subshell contains N̄ − N CFs.

It is important to note that in these figures, the conjugate
states belong to different multiplets: the GH operators that
generate these states act on different vacua |0N 〉 and |0N̄ 〉.
Thus the CFs occupying p subshells of the ν < 1/2 state
do not evolve into their PH conjugate partners as mν → m̄ν .
These multiplets have fixed N , preventing changes in the
vortex.

Despite these various asymmetries, the relationship be-
tween PH conjugate states is very simple, as illustrated in
Fig. 6. With the exception of the annihilated p̄ = 1 subshell
that accounts for the number difference N̄ − N , we see that
PH symmetry is manifested microscopically as a simple ex-
change in the quanta, N ↔ N̄ , carried by the electron and
vortex components of the conjugate CFs,

�̃N L ν<1/2
mν mL

(1)

= 1√
N̄ !

[[b†(1)]N̄/2 ⊗ [b†(2) · · · b†(N )](N−1)/2]LmL
|0〉,

�̃
N̄ L ν>1/2
m̄ν mL

(1)

= 1√
N !

[
[b†(1)]N/2 ⊗ [b†(2) · · · b†(N̄ )](N̄−1)/2

]L

mL
|0〉, (50)

where L takes on ascending values beginning with |mν |, and
N + N̄ = 2mS + 1.

B. PH conjugation and ν spin

In analogy with ν-spin symmetry, one can identify an
operator that converts the CFs for the ν̄ state into those of
the conjugate ν state. This operator is a angular momentum
scalar, carries mν = N̄ − N and is fully aligned in ν spin, and
preserves the magnetic field and thus the sum of CF electron
and votex quanta,

�̂+[i; N + 1, . . . , N̄ ]

≡ [Ŝν
+(i)]N̄−N = [b†(i) · ṽ(i)]N̄−N

= [b†(i)](N̄−N )/2 
 [b̃(N + 1) · · · b̃(N̄ )](N̄−N )/2. (51)

On acting on a CF it yields

�̂+[i; N + 1, . . . , N̄ ] �̃N̄ L
m̄ν mL

(i)

=
{[ (L+mν )!(L−1+mν )!

(L−mν )!(L+1−mν )!

]1/2
�̃N L

mν mL
(i) L > |m̄ν |

0 L = |m̄ν |
, (52)

where the allowed values of m̄ν are 0, −1/2, −1, . . . with
mν = 1 − m̄ν .

One can decompose �̂+ into a succession of N̄ − N opera-
tions Ŝν

+ that evolve the CF belonging to the ν > 1/2 state into
the CF for the PH conjugate ν < 1/2 state. Thus we learn the
PH symmetry connects states through multiplets created by
the ν-spin raising and lowering operator Ŝν

±. Under ν-spin mS

is held constant, but particle numbers evolve. We thus should

FIG. 6. The CF relationship for conjugate PH states. The conjugation operator is also shown. Note the N ↔ N̄ reverses in the number of
quanta carried by the CF’s electron and vortex components, on PH conjugation.
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FIG. 7. The GHν valence operators that connect states linked by Ŝν
±, illustrated for the integral angular momentum case of Fig. 6. PH

symmetry arises in CF representations as a PH electron-vortex exchange symmetry, linking mirror ν-spin states along a trajectory of constant
magnetic field strength mS .

be able to establish the algebraic relationships between the
CFs under PH conjugation by constructing this new set of
constant-mS multiplets. This will help us to (1) identify the
valence operator description of the CFs appearing in these
new multiplets, (2) understand the connection between PH
conjugation and electron-vortex symmetry, and (3) restore
the mirror symmetry that naively appears broken when we
compare PH conjugate pairs.

C. The GHν operators and electron-vortex symmetry

Here we seek a new set of operators GHν , analogous to
the GH operators of Eq. (30) but related to one another by
the raising the lowering operations Ŝν

±, that we can use to
evolve CFs under the constraint of a constant magnetic field
mS , but changing N . Unlike the GH case, these new operators
must involve both electron and vortex excitations relative to
the half-filled shell.

Operators that are constructed as good spherical tensors
in L and mν will automatically transform properly under Ŝν

±.
The condition of a fixed magnetic field requires that the
operators not alter the total number of CF quanta: thus the
operators must include an equal number of creation and
annihilation operators. We also require that the operators be
valence operators, acting on a vacuum state |0N1/2〉 associate
with the half-filled shell, where mν = 0.

We first consider the case of integer angular momentum.
Consider

�N L
mν mL

(i) = [GHν]LmνmL
|0N1/2 (i)〉

= [d†(i)L ⊗ d̃ (i)L]Lmν mL
|0N1/2 (i)〉, (53)

where all couplings are fully aligned in both angular momen-
tum and ν-spin. The operators satisfy the conditions we have
described. As we are now connecting CFs of different particle

number (different vortices), the fixed vacuum state is defined
relative to the half-filled shell: unlike in the case of the GH
operators, N varies across the multiplet. N and N̄ are related
to the vacuum state by

N1/2 = mS + 1 = N + N̄ + 1

2
= p2 + 2LI=1p + LI=1,

(54)

where N and N̄ are the particle numbers of the PH conjugate
CFs connected by the multiplet, related of course to mS by
2mS + 1 = N + N̄ . As in our discussion of the GH operators,
LI=1 is the angular momentum of the ν < 1/2 state I = 1
subshell, which determines the rank of the multiplet, and p is
in the number of filled subshells in that state.

As mS is constant and the operators properly transform
under ν spin, it is sufficient to demonstrate that Eq. (53)
contains a multiplet member. Evaluating this for p = 1 and
mν = L yields

�N=2L+1 L
mL

(i) = [b†(i)L ⊗ ṽ(i)L]LmL
|03L+1(i)〉

= [b†(i)2L]LmL
|02L+1(i)〉, (55)

which we recognize as the CF for the ν = 1/3 Laughlin state.
As with the GH construction, this state and the lowering
algebra determines the entire hierarchy of GHν operators.

The GHν operators are given in Fig. 7, which the reader
should envision extended to an arbitrary number of rows.
(Contrast with the left panel of Fig. 6, the similar GH case
where PH CFs belong to distinct multiplets.) We have high-
lighted four states in the figure, �, Ŝν

−�, �̄P , and Ŝν
−�̄. It is

apparent that one can “restore” the mirror symmetry between
PH conjugate states by forming the pairs

� ↔ Ŝν
−�̄ Ŝν

−� ↔ �̄P (56)
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FIG. 8. As in Fig. 7, but for half-integer angular momentum.

instead of focusing on � ↔ �̄. Here, �̄P is the ν > 1/2 state
projected on the upper p subshells, I = 2, . . . , p̄ = p + 1.
Note the � can be fully reconstructed from Ŝν

−�̄ by repeated
raising.

The GHν operators can be expressed in terms of electron
and vortex ladder operators by evaluating Eq. (53) for the
desired value of mν . The labels shown in the figure are
complete in the “bookend” cases L,mL = ±L, e.g., [b† 2ṽ2]2

and [b̃
2
v† 2]2. In other cases, the lowering produces in gen-

eral multiple terms, all of which have the same effect when
acting on |0N1/2〉. The labeling of the nonbookend cases is
a shorthand, retaining one of several contributing terms that
are generated under ν-spin raising or lowering, but chosen to
faithfully represent the underlying the mirror symmetry.

We conclude that PH conjugation manifests itself in CF
representations as an electron-vortex exchange symmetry,
connecting mirror states around mν = 0: the mirroring oper-
ations are b† ↔ v† and b̃ ↔ ṽ. Although we use the ladder
operators b̃ and ṽ to indicate the destruction of quanta in the
half-filled state, alternatively we can make a standard canon-
ical transformation, considering this instead to be creation of
a hole, with the half-filled shell the particle and hole vacuum.
This would be an elegant way to formulate the vacuum state
and its excitations.

The half-integer angular momentum case is given in Fig. 8.
(Contrast with the right panel of Fig. 6, a similar GH

case, where PH CFs belong to distinct multiplets.) Here we
must make a choice in describing the states nearest mν = 0,
whether to treat them as particles or holes above |0N1/2〉,
which determines N1/2. We choose to treat these states as
single-particle excitations. Then

N1/2 = mS + 1/2

= N + N̄/2

= p2 + 2LI=1p + LI=1 − 1/2. (57)

Otherwise the same electron-vortex mirror symmetry is found
to describe the relations among PH conjugate CFs.

The possibility of connections between PH symmetry and
CF electron-vortex symmetry has been mentioned in previous
work, including that of Son [23–25], Geraedts et al. [26],
and Metlitski and Vishwanath [27]. However, we know of
no explicit demonstration of the relationship between these
symmetries, other than that found here. That may be because
of the prevailing view that CF’s are electrons coupled to two
flux units, and thus not electron-vortex symmetric.

We have shown that ν-spin creates the multiplets by which
a CF evolves to its conjugate partner. There is also interest in
PH evolution of many-CF wave functions, e.g., whether the
ν < 1/2 state with p subshells and the ν > 1/2 PH conjugate
state with p + 1 subshells could be built symmetrically from a
vacuum state of filling p + 1/2, as discussed in Ref. [23]. The
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successive building of the PH conjugate ν > 1/2 state from
from the ν < 1/2 state can certainly be done, by following
each ν-spin lowering of all existing CFs, by the addition of a
CF to the initially empty Ī = 1 subshell, N̄ − N steps. It is
attractive to do this, because the addition of a new zero-mode
CF after every lowering Ŝν

− keeps the length of the vortex
consistent with the number of CFs. Thus every intermediate
step produces a physical many-CF state.

However, as the intermediate states correspond to a par-
tially filled shell, these states are not unique, requiring some
scheme to be defined. The simplest procedure is to fill the
single-CF states of the zero-mode subshell in the order de-
scending mL. Each many-CF state thus formed will have
definite total LT and mT

L = LT , reaching a maximum at
the half-filled shell, then declining after, with LT = mT

L = 0
when the zero-mode subshell is filled.

For the case of half-integer angular momentum, N̄ − N

even, and there is a well-defined half-filled shell that, in
our scheme, has maximum LT and mT

L = LT . Starting from
this state, one can reverse the order of operations described
above, removing a CF from the half-filled zero mode, then
applying Ŝν

+ to the remaining CFs; alternatively, from the
same starting point, one can apply Ŝν

− and add a new CF.
These processes can be viewed as creating a hole or adding a
particle to a vacuum state defined by the half-filled zero-mode
shell, antialigned in angular momentum. The N̄ − N odd case
differs only slightly.

VI. DIRAC AND PAULI HAMILTONIANS, PH,
AND ELECTRON-VORTEX SYMMETRY

In the previous section, we found that PH conjugation
could be viewed as a mirror symmetry if we redefined the PH
partners to be those of Eq. (56). We now turn to the question
of CF effective Hamiltonians, where these four degrees of
freedom also play an important role.

Below we propose forms for the Pauli and Dirac Hamil-
tonians that CFs satisfy. We argue that the asymmetric sub-
shell structure of PH conjugate pairs discussed above is the
consequence of an underlying isospectral Hamiltonian built
out of the ν-spin operators Ŝν

±. The construction identifies the
extra I = 1 subshell of the ν > 1/2 state as the zero mode.
We show that the Hamiltonian can be linearized, yielding a
Dirac form, and note the similarities to Hamiltonians of the
IQHE.

A. Pauli and Dirac Hamiltonians for the IQHE

Because of the IQHE-FQHE algebraic correspondence
generated by Ŝ ↔ Ŝν , it is helpful to begin by reviewing the
IQHE case. The IQHE Pauli Hamiltonian [10] and solutions
are

ĤP = h̄2

4mea
2
0

1

mS

(Ŝ−Ŝ+ + Ŝ+Ŝ−),

ĤPDL
mS mL

= h̄2

2mea
2
0

1

mS

(
L(L + 1) − m2

S

)
DL

mS mL

≡ p2
P

2me

DL
mS mL

. (58)

For large mS � I the associated momentum scale is

pP ∼ h̄

a0

√
2I − 1, I = 1, 2, 3, . . .

as L = mS + I − 1.
A related equation linear in momentum can be written

ĤD = h̄

R
cB

(
0 Ŝ−
Ŝ+ 0

)
= h̄

a0
√

mS

cB

(
0 Ŝ−
Ŝ+ 0

)
, (59)

where cB is a velocity. This has the form of a massless Dirac
equation. This equation has been studied previously [12,13].
Defining a momentum

pD = h̄

a0

√
2(I − 1) + I (I − 1)

mS

→ h̄

a0

√
2(I − 1)

for I > 1, we find the two-component positive and negative
energy solutions, E = pDcB and E = −pDcB , with eigen-
functions (

DL
mS mL

DL
mS+1 mL

) (
DL

mS mL

−DL
mS+1 mL

)
, (60)

respectively. This solution has an electron of angular momen-
tum L residing equally in two LLs, I and I − 1.

The form of the IQHE Hamiltonians and the Ŝ ↔ Ŝν

correspondence suggests that one might consider candidate
CF Hamiltonians involving angular momentum and ν-spin
scalars such as Ŝν

+Ŝν
−. A first question is whether such op-

erators would capture the physics of CFs we have previously
described. One can show

Ŝν
+Ŝν

− = −b† 
 b̃ + 1/2b† 
 b̃ v† 
 ṽ

−[b† ⊗ b̃]1 
 [v† ⊗ ṽ]1. (61)

The interaction terms involve scalar (antisymmetric) and rank-
one (symmetric) pairs. The former are number operators,
while the latter can be rewritten in terms of angular momen-
tum operators. One finds when acting on an arbitrary CF,

Ŝν
+Ŝν

− → (N − 1 + 2mν ) + 1/2(N − 1 + 2mν )(N − 1)

− 2

h̄2 L̂e 
 L̂v. (62)

At fixed mν , only the last term influences spectra. This simple
candidate Hamiltonian does incorporate the basic correlation
physics we have argued is important to CFs, “measuring” the
opening angle between the electron and vortex spinors, and
thus the number of favorable antisymmetric u(i) · u(j ) versus
unfavorable symmetric ([u(i) ⊗ u(j )]1) pairs in the electron-
vortex coupling. The last term can be evaluated using

−2L̂e 
 L̂v = L(L + 1) − Le(Le + 1) − Lv (Lv + 1)

so that when operating on a CF,

Ŝν
+Ŝν

− → (L + mν )(L − mν + 1), (63)

in agreement with results given previously. We will see that
this operator also has attractive properties in satisfying certain
energy constraints imposed by PH symmetry.
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B. Connection to isospectral Hamiltonians

Pauli Hamiltonians built on quadratic operator products of
the form (

A†A 0
0 AA†

)
≡

(
H̄ 0
0 H

)
(64)

are isospectral,

H̄ |�̄〉 = A†A|�̄〉 = Ē|�̄〉 ⇒
HA|�̄〉 ≡ H |�〉 = AA†A|�̄〉 = ĒA|�̄〉 ≡ E|�〉. (65)

That is, if |�̄〉 is an eigenvector of H̄ , A|�̄〉 ∼ |�〉 is an
eigenvector of H with the same eigenvalue, provided A|�̄〉
exists. In supersymmetric quantum mechanics, Hamiltonians
of this form can account for partner spectra that are identical
apart from the presence of a zero mode, annihilated by A. The
conventional normalization used in supersymmetric quantum
mechanics to preserve the norm under conjugation is

|�〉 = 1√
E

A|�̄〉. (66)

Note that this identical to that of Eq. (45), for Â = Ŝν
+. The use

of Hamiltonians of the form Ŝν
+Ŝν

− in the FQHE will produce
isospectral CF eigenvalues when applied across multiplets.

C. Correlations and the Pauli Hamiltonian

While we have seen that CFs have the algebraic operator
structure to support quadratic or linear Hamiltonians in ν

spin, the question remains whether this has any relationship to
Hamiltonian that would arise from an explicit treatment of the
Coulomb interaction. The approach we take below is based on
an evaluation of the two-particle correlation function, which
we then relate to the subshell and operator structures discussed
in previous sections of this paper.

Interactions of electrons in a uniform neutralizing back-
ground b consist of b-b, e-b, and e-e terms, with

Vee = αh̄c
1

2

N∑
i �=j=1

1

|r i − rj | ,

where the coordinate distance on the sphere is taken to be the
chord. It is convenient to expand this interaction in multipoles,
so that the monopole-monopole term can be employed to
cancel the net O(N2) contribution from the sum of b-b and
e-b terms, leaving the residual interaction

Vij = αh̄c

R

1

2

N∑
i �=j=1

[
2S∑
�=1

P�(cos βij ) − 1

N − 1

]
, (67)

where βij is the opening angle between the indicated elec-
trons.

The energy can be evaluated from the two-particle cor-
relation function [28]: utilizing the sphere’s translational
invariance and homogeneity, one electron can be placed
at (θ1, φ1) = (0, 0) and the second at (θ2, φ2) = (β12, 0) ≡

(β, 0), yielding

g(β ) = 8π2

〈�|�〉
∫

d�3 · · · d�N |�(0, β,�3, . . . ,�N )|2,

1 =
∫

g(β ) sin βdβ,

〈V 〉 = N (N − 1)

2

∫
g(β )V12(β ) sin βdβ, (68)

where in the last line we equate the total energy of N equiva-
lent electrons to the pair energy times the number of pairs.

The simplest example is the case of ν = 1, where a
straightforward calculation yields for arbitrary N

gν=1
N (β )

= N

2N − 2
sin2 β

2

[
1+ cos2 β

2
+ · · ·+

(
cos2 β

2

)N−2
]

= N

2N − 2

[
1 −

(
cos2 β

2

)N−1
]
. (69)

The pair correlation function depends on the coordinate of
the center β/2 and becomes uniform in the large N limit
apart from a vanishingly small region around β/2 = 0. This
can be seen to be correct physically by rewriting this answer
in terms of the distance, using sin2 β/2 = ( r

2R
)2 = r2

2(N−1)a2
0
,

then noting

gν=1(r ) ≡ lim
N→ ∞

{
1 −

[
1 − r2

2(N − 1)a2
0

]N−1
}

= 1 − e
− r2

2a2
0 , (70)

a familiar answer. The energy can then be evaluated. As the
wave function has a noninteracting form, one is interested in
the corresponding average energy per particle

1

N

〈�|V |�〉
〈�|�〉 −→

N large

−αh̄c

a0

√
π

8

(
1 + 5

8N
+ 57

128N2

)

≡ h̄ωCoul εN
ν=1, (71)

where h̄ωCoul is the Coulomb energy scale αh̄c
a0

and εN
ν=1 =√

π
8 [1 + · · · ] is the dimensionless energy per particle for ν =

1, which becomes a constant for large N . The single-particle
energy—the energy of electron 1 in the field generated by all
N − 1 neighboring electrons-would be twice this number.

Because PH conjugate states have the same CF subshell
structure apart from the extra “zero-mode” subshell of the ν >

1/2 state, one might envision “integrating out” the zero-mode
shell, rendering the conjugate states algebraic identical, and
perhaps relating their energies. Physically, this makes some
sense, as a filled subshell carries no angular momentum, so
such an integration might add a uniform negative charge to the
positive background charge, reducing the latter from a total of
N̄ charges to N charges, while not perturbing significantly the
angular momentum of the subshells containing the remaining
N CFs. Much more could be said about this idea, and its
associated assumptions. Unfortunately, if one sets to this task
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directly, several tricky issues arise. However, it turns out we
can gain insight through a simpler procedure, calculating the
two-body correlation functions for conjugate states. While we
have not succeeded in evaluating the correlation functions
analytically for arbitrary N and ν, analytic calculations are
possible for small N .

After this is done for various GH2 CF PH conjugate states,
we express the result as

gν̄
N̄

= aν gν
N + a1 gν=1

N+N̄
+ gε, (72)

where we set

aν ≡ N (N − 1)

N̄ (N̄ − 1)
a1 ≡ N̄ (N̄ − 1) − N (N − 1)

N̄ (N̄ − 1)
,

which defines gε , and by our normalization condition requires∫
gε (β ) sin βdβ = 0.

When such a calculation is done in cases where wave
functions are unique and thus GH2 PH symmetry is exact
(e.g., N = 3, N̄ = 4, S = 3), we find gε ≡ 0. In other small-N
cases we tested, the gε component of gν̄

N̄
generates typically

∼ 0.05% of the total many-electron energy.
gε is a measure of the PH symmetry breaking in the GH2

construction, which employs distinct composite fermion
forms for conjugate ν and ν̄ states, rather than computing the
later from the former using PH symmetry. As total energies
are obtained by summing the correlation energy over pairs,
one can readily rewrite Eq. (72) as (assuming exact PH
symmetry)

N̄εN̄
ν̄ = NεN

ν + (N̄ − N )εN̄+N
ν=1 , (73)

which one recognizes as equivalent to the PH relationship
between total (many-electron) energies obtained by Möller
and Simon [29]. This result has added significance for
the GH2 construction because of its subshell structure,
specifically the zero-mode Laughlin-like level that contains
N̄ − N CFs. The zero-mode CF energy thus must absorb the
interactions among the N̄ − N electrons associated with this
subshell as well as with the uniform distribution of N CFs that
reside in the p higher closed subshells. We assign the N̄ − N

CFs in the lowest subshell of ν̄ > 1/2 states the energy

Hzero mode = h̄ωCoul ε2S+1
ν=1 . (74)

The effective Hamiltonian describing the remaining p va-
lence subshells then must be symmetric around the PH pivot at
mν = 1/2: this is clearly the case for ν = 1/3 ↔ ν̄ = 2/3, as
there is one such subshell; but it is also required for the towers
of angular momentum subshells built successively on these,
as there is no other physically reasonable way to preserve
the PH energy relation. Our limited GH2 CF algebra allows
very few possibilities: the simplest operator with the necessary
attributes is

1

mS

Ŝν
+Ŝν

−.

The operator annihilates CFs in the zero-mode ν̄ > 1/2 sub-
shell, while producing identical eigenvalues, when acting on
PH conjugate CFs (FQHE CFs in the same field mS , with the
same L, and m̄ν = 1 − mν). Thus it preserves the PH energy

constraint described above, subshell by subshell. Would such
an operator produce a physically reasonable CF spectrum?
For fillings of fixed s but large N , and thus the sequence
ν = 1/3, 2/5, 3/7, . . . (so s = 0, 1/2, 1, . . . ), we find
that the spread in subshell operator eigenvalues is 4s

4s+3 . Thus
the spread increases gently with s to an asymptote of 1, a
necessary condition to keep subshell energies well defined
in the large-N limit. As there are 2s + 1 subshells and thus
2s splittings, we see that the splitting between neighboring
subshells (so �L = 1) is on average 2/(4s + 3), narrowing as
one approaches the half-filled shell. The splittings are uniform
at large N , consistent with the physics behind GH2 CFs, with
the number of broken antisymmetric pairs increases linearly
as one ascends the angular momentum tower. One can also
check the large-N half-filled case, where the evolution with
N = (2s + 1)2 is along the trajectory � = s, instead of fixed
s. The total spread among the eigenvalues at large N is 1:
the number of subshells grows as

√
N , while the splitting

between neighboring subshells goes as 1/
√

N . The evolution
from s = 0 (ν = 1/3) to the half-filled shell is smooth and
continuous, in all aspects.

Now, in principle, we can add to this simple Hamiltonian
other terms that are mirror symmetric around mν = 1/2,
thus preserving the PH energy relation, e.g., one could try
a suitable combination of Sν 2

0 and Sν
0 (though other aspects

of combining such operators are not attractive). However, the
simplest choice is 1

mS
Ŝν

+Ŝν
−, in combination with an additive

constant. As we are interested in the large-N limit, we fit the
two parameters in this Hamiltonian to the average energy per
particle we compute for ν = 1/3, 2/5, and 3/7 extrapolated
to large N . This extrapolation employs a spherical area density
correction introduced by Morf et al. [30], which reduces the
impact of finite-N corrections on the extrapolation. We find
dimensionless average energies of −0.4098, −0.4326, and
−0.4419, respectively, for these three fillings. The single-CF
Hamiltonian that emerges is

H eff
2 = h̄ωCoul

(
−0.635 + 0.339

1

mS

Ŝν
+Ŝν

−

)
,

(75)

Hzero mode = −h̄ωCoul

√
π

8
∼ h̄ωCoul(−0.627).

The subscript denotes that we employ two parameters. From
this Hamiltonian, one would calculate εν for a given fractional
filling by summing over the occupied subshells, weighted by
their occupancy, then dividing by the particle number. The two
parameters were fit to three εν values: the average deviation
is ∼ 0.03%, which likely is comparable to the extrapolation
errors we introduced in estimating the three ενs.

We have treated the zero-mode separately from the valence
subshells: thus the two equations above. But we observe that
the Hamiltonian’s constant term −0.635 is within about 1%
of the zero-mode energy. With this hint from the numerics,
we repeat the fit, constraining the constant term in this way,
yielding a one-parameter effective Hamiltonian that applies
equally to the zero-mode and to the p conjugate subshells,

H eff
1 = h̄ωCoul

(
−

√
π

8
+ 0.3385

1

mS

Ŝν
+Ŝν

−

)
. (76)
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FIG. 9. The CF subshell energies from Eq. (77) for the multiplets where � + s = 4 (left) and � + s = 40 (right), showing the symmetry
around mν = 1/2 that is broken by the appearance of the zero mode at mν = 0, continuing for negative mν (more easily seen in the left panel).
The level spacings evolve from linear to quadratic with decreasing |mν |, as does the level density. (Left) Energy degeneracies (apart from the
zero mode) are indicated by color.

The fit remains very good, with deviations in predicted εν

on average of less than 0.1%. Finally, as this Hamiltonian
has only one parameter, we need only fit one εν , which we
choose to be εν=1/3. That is, the coefficient 0.3385 must be
a simple function of εν=1/3. We finally obtain an extremely
simple effective Hamiltonian that respects PH symmetry:

H eff
0 = h̄ωCoul

[
−

√
π

8
+ 3

2

(
εν=1/3 +

√
π

8

)
1

mS

Ŝν
+Ŝν

−

]
. (77)

The average deviation in predicting εν for ν = 2/5, 3/7, 4/7,
and 3/5 is ∼ 0.2%. The GH2 construction thus generates
a high quality effective Hamiltonian that, given εν=1/3 and
εν=1 = −√

π/8, then provides a parameter-free description of
all other fractional fillings. The operator appearing in Eq. (77)
can alternatively be expressed as

Ŝν
+Ŝν

− = 2Ŝν
0 + Ŝν

−Ŝν
+ = Ŝν

0 + 1

2
(Ŝν

+Ŝν
− + Ŝν

−Ŝν
+).

This formula is valid for large N , as the fixed values for the
two constants were fitted to extrapolated energies. Following
our earlier discussion, we can now be more precise about CF
subshell structure. For fixed filling (fixed p) and ν < 1/2 the
energy of the first (I = 1) subshell—the Laughlin subshell
with anti-aligned electron and vortex spinors—is

εν=1 + 3/(2p + 1)(εν=1/3 − εν=1).

Thus, for some large fixed N , with increasing density (de-
creasing mν), p increases, so the energy of the lowest subshell
drops monotonically, reaching the asymptote εν=1 at ν ∼ 1/2.
At this point, the Laughlin subshell becomes the zero-mode
subshell, with fixed energy εν=1 for all mν < 0.

For large N , as one moves from large |mν | toward mν = 0
(that is, ν = 1/2), the number of subshells increases, while the
gap between neighboring subshells decreases. For example,
the total spread between the highest and lowest subshells for
ν < 1/2,

3(p − 1)

2p − 1
(εν=1/3 − εν=1) → 3

2
(εν=1/3 − εν=1),

increases monotonically, reaching the indicated asymptote
near ν ∼ 1/2. The level spacing of the p shells, for large but

fixed p but with N → ∞ (assumptions that keep us away
from mν = 0), is uniform.

In Fig. 9, all of the CF subshell energies are plotted as a
function of mν , for fixed � + s = 4 and 40. Recall, from the
column labels of Figs. 2 and 3, that each choice of (� + s,mν)
corresponds to a unique FQHE state. Thus the energies plotted
are those of the CFs in those filled-subshell FQHE states.
The mirror symmetry of energies around mν = 1/2 is the
correspondence between CFs energies of PH states, for the
p subshells in common.

The figure shows the linear level spacing away from mν =
0 smoothly evolving into a nonlinear L2 pattern at mν = 0.
The spectrum remains approximately quadratic in the region
around mν = 0, e.g., for large-N trajectories of the type
� − s = mν=constant that we discussed much earlier. The
patterns are mirror symmetric around mν = 1/2 except for
the zero mode that appears at mν = 0 and continues for mν

negative.
The average energy per particle can be calculated by

summing over the occupied CF subshells, weighted by their
occupancy, and dividing by N , yielding

εν = εν=1 + 3

2
(εν=1/3 − εν=1)

2l(s + 1)

(2l + 1)(2s + 1) + l − s − 1

= εν=1 + 3

2
(εν=1/3 − εν=1)

2mS − N + 1

2mS

→ εν=1 + 3

2
(εν=1/3 − εν=1)(1 − ν) (78)

for large mS . Thus average energies for FQHE states of filling
1/3 � ν � 1 are linear in ν, which is in quite good accord
with numerical calculations. This simple result is obtained
despite considerable structure in the subshell spectroscopy,
apparent in Fig. 9.

D. Mirror symmetry and the linearized Hamiltonian

Although PH symmetry links states equidistant from mν =
1/2, and thus appears not to be a mirror symmetry around
mν = 0, a version of mirror symmetry reappears when the
Pauli Hamiltonian is linearized, related also to electron-vortex
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symmetry. We describe the linearization process here, then
return to the question of a valence operator representation that
exhibits these symmetries explicitly.

We found above that PH-conjugate FQHE states satisfy the
Schrödinger equations(

h̄ω′

2
+ �h̄ωCoulŜ

ν
+Ŝν

−

)
�̃N L

mν m = E�̃N L
mν m,

(79)(
h̄ω′

2
+ �h̄ωCoulŜ

ν
+Ŝν

−

)
�̃P N̄ L

1−mν m = E�̃P N̄ L
1−mν m.

We have now included the magnetic energy, defining h̄ω′ ≡
h̄ω + 2εν=1h̄ωCoul and � ≡ 3

2 (εν=1/3 − εν=1) 1
mS

> 0. The
simplest interpretation of this equation is that all CFs have the
same mass h̄ω′/2, which can be trivially removed by defining
an interaction energy E′ = E − h̄ω′/2. CFs in the zero-mode
contribute only through their mass. We implicitly remove the
zero mode above by adding a superscript P on �̃P N̄ L

1−mν m, to
indicate we are not considering the zero-mode mν = L + 1
case. This ensures that the first equation above always exists.
No information is lost by doing this projection, as the zero
mode is trivial.

One can make use of the Pauli Hamiltonian’s isospectral
form, multiplying on the left by Ŝν

−, and noting

Ŝν
−�̃N L

mν m ∼ �̃N+1 L
mν−1 m Ŝν

−�̃P N̄ L
1−mν m ∼ �̃N̄+1 L

−mν m

to obtain two additional equations

[�h̄ωCoulŜ
ν
−Ŝν

+]�̃N+1 L
mν−1 m = E′�̃N+1 L

mν−1 m,
(80)

[�h̄ωCoulŜ
ν
−Ŝν

+]�̃N̄+1 L
−mν m = E′�̃N̄+1 L

−mν m .

These results tell us that, in fact, CF PH symmetry is
precisely a mirror-symmetric electron-vortex symmetry (see
next section), relating states of opposite mν ,

� ↔ Ŝν
−�̄P and Ŝν

−� ↔ �̄P . (81)

The relationships are illustrated for one case in Fig. 8.
These expressions involve single CFs: if one envisions

lowering all the CFs in a FQHE wave function in this way, the
electron or CF number will clearly not change, even though
the CF superscript N or N̄ is incremented. This incrementing
is thus a lengthening of the vortex only. The natural interpre-
tation of the wave functions Ŝν

−� and Ŝν
−�̄P is not unlike the

familiar construction of fractionally charged excitations of a
FQHE state [1], e.g.,

�(z1, . . . , zN ) →
N∏

i=1

(zi − z0) �(z1, . . . , zN ),

where a defect at z0 is added. In the present spherical case, the
application of Ŝν

− on each of N CFs in a subshell keeps fixed
the number of quanta in each electron wave function, but adds
a quantum labeled by N + 1 to each vortex. Consequently, the
transformed wave function has the form

Ŝν
−�(1, . . . , N ) → [� ′(1, . . . , N )]N/2 
 [uN+1]N/2

as the lowering operator is an angular momentum scalar.
Basically, this expression represents the introduction of a
defect not at one point, but symmetrically distributed over
the sphere due to the scalar product. This result helps one see

the qualitative physics behind the identification Ŝν
−� ↔ �̄P .

Taking the ν = 1/3, 2/3 case as an example, � would be
the Laughlin subshell, with electron and vortex antialigned,
the favored configuration; but �̄P is the I = 2 subshell
of the ν̄ = 2/3 state, where the CFs have one broken scalar
pair. Thus it makes some physical sense that �̄P is conjugate
not to � but to Ŝν

−�, as the introduction of a defect restricts
the portion of the sphere occupied by the N electrons, neces-
sarily breaking pairs.

The fourfold degeneracy (though two Hamiltonians are
involved) leads to a familiar Pauli equation⎛

⎜⎜⎜⎝
Ŝν

+Ŝν
− 0 0 0

0 Ŝν
−Ŝν

+ 0 0

0 0 Ŝν
+Ŝν

− 0

0 0 0 Ŝν
−Ŝν

+

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�̃N L
mν m

�̃N+1 L
mν−1 m

�̃N̄ L
1−mν m

�̃N̄+1 L
−mν m

⎞
⎟⎟⎟⎠

= E′

� h̄ωCoul

⎛
⎜⎜⎜⎝

�̃N L
mν m

�̃N+1 L
mν−1 m

�̃N̄ L
1−mν m

�̃N̄+1 L
−mν m

⎞
⎟⎟⎟⎠, (82)

where E′ = E − h̄ω′/2.
This form is identical to that we found in our earlier

discussion of the IQHE Pauli Hamiltonian (though in that case
we needed to ignore Ŝ0 to put the Hamiltonian in this form).
The only difference is replacement Ŝ → Ŝν . As before, we
can take the square root of the Pauli Hamiltonian to obtain a
Dirac-like Hamiltonian, but now in ν-spin space:

ĤD� ∼

⎛
⎜⎜⎜⎝

0 Ŝν
+ 0 0

Ŝν
− 0 0 0

0 0 0 Ŝν
+

0 0 Ŝν
− 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�̃N L
mν m

�̃N+1 L
mν−1 m

�̃N̄ L
1−mν m

�̃N̄+1 L
−mν m

⎞
⎟⎟⎟⎠. (83)

The matrix is two-by-two block diagonal, and thus has the
same solutions given previously for the two-by-two IQHE
Dirac equation—except LLs are now CFs FLL subshells, and
states in neighboring magnetic fields now becomes states of
neighboring filling ν (or mν). The analogy with textbook four-
component Dirac equations is rather close: a ν-spin doublet
coupled by the operators Ŝν

±, paired with a similar doublet for
the electron-vortex-symmetric PH conjugate partners.

While the proposed Hamiltonian assigns the same ener-
gies to conjugate subshells, the corresponding energies of
many-CF wave functions differ because of the N̄ − N CFs
occupying the extra zero-mode subshell of the ν̄ > 1/2 FQHE
state. These CFs contribute to the energy through the mass
term that they carry in common with all of the other CFs.
There appears to be an interesting weak-field limit,

h̄ω = 2

√
π

8
h̄ωCoul,

in which this mass vanishes. It appears possible to select a
field where the mass vanishes, the zero-mode energy vanishes,
and the PH conjugate many-electron states are degenerate.
Even more exotically, one could envision applying a weak
field on the plane with its strength smoothly varying over the
plane. This could be arranged to produce domains of positive
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and negative mass, separated by a wall where that mass
vanishes. It would be interesting to explore such possibilities
further.

VII. SUMMARY

One of the important ideas in the FQHE, emerging from
the work of Jain and others, is that this open-shell, interacting
problem might have a much simpler underlying CF represen-
tation. To our knowledge, the GH2 construction is the only
explicit demonstration of such a mapping, providing simple
analytic trial wave functions for small N and all relevant
ν that are in excellent agreement with those obtained from
exact diagonalizations of the Coulomb interaction. The CFs
that emerge from the construction are spherical products of
electron and vortex spinors, with the spinors formed from
the aligned coupling of the underlying ladder operators. The
CF mapping takes a complicated, interacting one-component
electron system and maps it into a much simpler, noninter-
acting, two-component system consisting of tightly coupled
electrons and vortices.

The purpose of this paper has been to clarify the properties
and symmetries of GH2 CFs—their quantum numbers, the
algebraic relationships that link states of different fillings,
the connections between these symmetries and the underlying
microscopic structure of CFs, and the effective Hamiltoni-
ans that CFs satisfy. The elegant description of CFs derived
here—electron and vortex ladder-operator excitations of the
half-filled shell—helps one to see these connections.

Crucial to this work is the recognition of the role of ν-spin
and its connections to electron-vortex symmetry. ν spin does
not appear to have been considered previously. Given the
critical role that the analogous symmetry of isospin has played
in clarifying the spectroscopy and symmetries of QCD’s CFs,
protons, and neutrons, this is surprising to us.

We summarize our main results.
(1) We showed that the GH2 wave functions can be written

in equivalent CF and hierarchical forms, consisting respec-
tively of (i) p closed subshells occupied by N electrons
dressed by their intrinsic wave functions, or alternatively (ii)
N/p vortices carrying angular momentum L = p/2 dressed
by their own intrinsic wave functions, separated on the sphere
via spin-spin correlations.

(2) We introduced the ν-spin quantum number mν , a
second magnetic index, with N, L, m, mν then identified
as the complete set of CF quantum labels. We described
the algebra of the associated operators (Ŝν

0 , Ŝν
±). We also

employed ν spin to redefine the ladder operators for the FQHE
as four-component objects, d†

mν mL
, thereby treating electron

and vortex excitations symmetrically.
(3) We showed that all FQHE wave functions can be

arrayed in mirror symmetric multiplets indexed by mν , with
the vortex length N − 1 held constant across multiplets. The
closed-shell ν-spin multiplet states of maximum |mν | were
identified as the incompressible FQHE states. This connects
states in mirror ν-spin pairs: such states have the same N

and shell structure, but conjugate fillings p/(2p + 1) and
p/(2p − 1), depending on the sign of mν .

(4) We then described these states more elegantly as
aligned valence ladder operators acting on a scalar half-filled

intrinsic state. This identifies electron particle-hole conjuga-
tion b† ↔ b̃ as the transformation that, if performed on each
CF, converts an N -particle FQHE state of filling p

2p+1 into its
ν-spin mirror of filling ν = p/(2p − 1).

(5) We then turned to PH conjugation: in the context of our
constant N multiplets, PH conjugate states belong to different
multiplets, with m̄ν = 1 − mν , and with fillings p/(2p + 1)
and p̄/(2p̄ − 1) = (p + 1)/(2p + 1).

(6) We showed that the ν-spin raising operator [Ŝν
+]N̄−N

transforms the ν > 1/2 state into the PH conjugate state with
ν < 1/2, annihilating the N̄ − N CFs in the Ī = 1 subshell
in the process. We observed that the magnetic field strength
mS , not N , is preserved under ν spin. This led to a second
set of CF multiplets in which mS is constant, and to an
associated valence representation of the CFs as operators GHν

acting on the half-filled subshell. In these new multiplets, CFs
associated with the ν < 1/2 state, I = 1, . . . , p, and those
associated with the ν > 1/2 state, Ī = 2, . . . , p̄ = p + 1, are
members of the same ν-spin multiplet.

(7) This allowed us to show that PH symmetry is mani-
fested in CF representations of wave functions as a electron-
vortex exchange operation, b† ↔ v†. We also found that PH
conjugation is a mirror symmetry, though one that links the
conjugate states

� ↔ Ŝν
−�̄ and Ŝν

−� ↔ �̄P .

(8) From a combination of physics arguments and numer-
ical explorations, we concluded that the effective CF Hamil-
tonian is isospectral, formed from Ŝν

+Ŝν
−. The Ī = 1 subshell

containing N̄ − N CFs was identified as the zero mode; CFs
in this subshell have a mass in common with all others CFs,
but no other contribution to their energies. We showed that
the Pauli Hamiltonian can be linearized, cast into a Dirac
form. The degrees of freedom in the Dirac equation belong
to the same constant-mS multiplet and come in mirror pairs:
� ↔ Ŝν

−�̄ and Ŝν
−� ↔ �̄P .

Although we have worked on the sphere, our spherical
results carry over immediately to the plane: the algebraic pro-
cedure for mapping spherical results to the plane, described
in [7], is based on the correspondence between the spherical
operators Lx, Ly and the planar operators px, py . This
leads to appropriate analogs of the spherical scalar and tensor
products—a rather elegant way to create multielectron wave
functions that behave simply under translations, including
scalars that are translationally invariant.
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