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We study dynamic response of a Fermi liquid in the spin, charge, and nematic channels beyond the random
phase approximation for the dynamically screened Coulomb potential. In all the channels, one-loop order
corrections to the irreducible susceptibility result in a nonzero spectral weight of the corresponding fluctuations
above the particle-hole continuum boundary. It is shown that the imaginary part of the spin susceptibility,
Imχs (q, ω), falls off as q2/ω for frequencies above the continuum boundary (ω � vFq) and below the model-
dependent cutoff frequency, whereas the imaginary part of the charge susceptibility, Imχc(q, ω), falls off as
(q/kF )2q2/ω for frequencies above the plasma frequency. An extra factor of (q/kF )2 in Imχc(q, ω) as compared
to Imχs (q, ω) is a direct consequence of Galilean invariance. The imaginary part of the nematic susceptibility
increases linearly with ω up to a peak at the ultraviolet energy scale—the plasma frequency and/or Fermi
energy—and then decreases with ω. We also obtain explicit forms of the spin susceptibility from the kinetic
equation in the collisionless limit and for the Landau function that contains up to the first three harmonics.
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I. INTRODUCTION

The dynamical susceptibility χ (q, ω) of an interacting
Fermi system is a fundamental quantity which contains the
information about the strength of fluctuations of a particu-
lar order parameter. The charge (c) and spin (s) dynamical
susceptibilities can be measured directly by a number of
experimental techniques, such as inelastic electron [1] and
neutron [2] scattering, Raman scattering (both in parallel and
cross-polarization geometries) [3], and inelastic x-ray scatter-
ing [4]. In addition, χc,s (q, ω) determines the dispersions and
damping of the collective modes, such as zero-sound and plas-
mon modes in the charge channel, and the Silin-Leggett mode
[5,6] of a partially spin-polarized Fermi liquid (FL) or the
magnon mode [7,8] of a ferromagnetic FL in the spin channel.
Exchange by ferromagnetic fluctuations, whose spectrum is
parameterized by χs (q, ω), is believed to be the main pairing
mechanism in superfluid 3He and ferromagnetic supercon-
ductors. Finally, interaction of itinerant fermions with critical
magnetic fluctuations is responsible for the breakdown of FL
near a ferromagnetic quantum phase transition.

Dynamical response of a FL is well understood in the
hydrodynamic limit [9], i.e., at frequencies satisfying the
condition ωτqp � 1, where τqp is the quasiparticle scattering
time at finite T . This regime can be described with a minimal
knowledge about the mutual scattering of quasiparticles: All
that is required from this scattering is to be frequent enough
to establish local equilibrium. However, many experiments
and, in particular the most recent inelastic electron study of
a copper-oxide superconductor [1,10], are performed at high
enough frequencies and low enough temperatures so that the
system is in the collisionless regime, which corresponds to
ωτqp � 1.

There are much fewer theoretical results for dynamical
response of a FL in the collisionless regime. Typically, dy-

namical susceptibilities in this regime are calculated within
the random phase approximation (RPA), which amounts to
resumming the chains of free-fermion polarization bubbles
in the charge channel or the ladder diagrams in the spin
channel, or by solving the FL kinetic equation without the
collision-integral term. There are two well-known results in
this limit [9,11,12]: One is that the imaginary part of either
charge or spin susceptibilities scales as ω/q for ω � vF q, i.e.,
well below the boundary of the particle-hole continuum, and
another one is that the real part of the susceptibility scales as
q2/ω2 for ω � vF q, i.e., well-above the continuum boundary.
[In the charge channel, by “susceptibility” we understand its
irreducible part.] These scaling forms are the same as for
free fermions except for the prefactors which depend on the
Landau parameters of a FL. In this approximation, which
completely neglects the residual interaction between quasi-
particles or, equivalently, considers an excitation of a single-
particle hole pair, the imaginary part of any susceptibility is
strictly zero outside the particle-hole continuum.

For many purposes, however, one is interested in the spec-
tral weight of particle-hole excitations, Imχc,s (q, ω), outside
the continuum. To get a nonzero Imχc,s (q, ω) in this region,
one needs to take into account the residual interaction be-
tween quasiparticles or, equivalently, excitation of multiple
particle-hole pairs. Such processes in the charge channel were
analyzed in the context of plasmon attenuation outside the
particle-hole continuum [13,14] and renormalization of the
dielectric function of graphene [15] but, to the best of our
knowledge, the spin channel has not been considered in the
prior literature. The nematic susceptibility, i.e., a suscepti-
bility of a nonconserved order parameter, has recently been
considered in Ref. [16].

In this paper, we derive a number of explicit results con-
cerning dynamical response of a FL, at the level of both
noninteracting and interacting quasiparticles. The latter case
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FIG. 1. A sketch of the imaginary part of the spin (solid) and
charge (dashed) susceptibilities. The Bohr magneton is set to unity,
such that the units of χs and χc are the same. ωp (q ) denotes
the plasmon frequency which may depend on q. The particle-hole
continuum occupies the range 0 � ω � v∗

Fq. Outside the continuum,
Imχs (q, ω) falls off a q2/ω both in 2D and 3D. For ω � ωp (q ), the
tail of Imχc(q, ω) is smaller than that of Imχs (q, ω) by a factor of
(q/kF)2 � 1, which reflects Galilean invariance of the system. In the
intermediate range, v∗

Fq � ω � ωp (q ), Imχc(q, ω) increases with ω

as q2ω3 and q4ω3 in 2D and 3D, respectively. The relative magnitude
of χs and χc within the continuum depends on the interaction, and the
choice made in the sketch is completely arbitrary.

is considered at one-loop order in the dynamically screened
Coulomb interaction. We assume that T = 0 and that disorder
is negligible, i.e., that min{ω, vFq} � max{T , 1/τd}, where τd

is the mean free time due to disorder scattering. With these
assumptions, our main results are as follows:

(a) For frequencies well above the continuum boundary
but below some model-dependent cutoff, i.e., for vFq � ω �
ω0, the imaginary part of the spin susceptibility falls off in
a universal manner: Imχs (q, ω) ∝ q2/ω both for D = 2 and
D = 3. For ω � ω0, Imχs (q, ω) falls off faster than 1/ω. A
sketch of Imχs (q, ω) as a function of ω is shown by the solid
line in Fig. 1.

(b) In a Galilean-invariant system and for frequencies well
above the plasmon mode, ωp(q ), the imaginary part of the
charge susceptibility is suppressed by a factor of (q/kF)2 � 1
as compared to the spin one, i.e., Imχc(q, ω) ∝ (q/kF)2q2/ω.
[A sketch of Imχc(q, ω) as a function of ω is shown by the
dashed line in Fig. 1.] An extra factor of (q/kF)2 � 1 reflects
the fact that the real part of the conductivity of a Galilean-
invariant FL must vanish at q = 0 [14]. On a technical level,
the relative suppression of the charge susceptibility compared
to the spin one occurs as a result of partial cancellation
between the self-energy, ladder, and Aslamazov-Larkin (AL)
diagrams. Namely, the q2/ω term in Imχs (q, ω), which comes
from the sum of the self-energy and ladder diagrams, is
canceled by the same term from the AL diagrams, which
contribute to χc but not to χs . It is interesting to note that the
same suppression of charge fluctuations relative to spin ones
occurs also in 1D [17].

(c) In the intermediate range of frequencies, vFq � ω �
ωp(q ), Imχc(q, ω) raises towards a plasmon peak at ω =
ωp(q ) as q2ω3 in 2D and as q4ω3 in 3D.

The q2/ω asymptotic form of Imχs (q, ω) outside the con-
tinuum can be obtained by the following simple argument.
Spin conservation and analyticity require that χs (q, ω) ∝ q2

at q → 0; hence the factor of q2 follows immediately. The
1/ω dependence is the first nonvanishing term in the high-
frequency expansion, which is consistent with the requirement
that Imχs must be an odd function of ω. In 2D, the combina-
tion q2/ω already has the units of the density of states; hence
there is no room for more dimensional parameters, and the
final result is given by q2/ω multiplied by a dimensionless
coupling constant. In 3D, one needs an additional factor with
the units of momentum, which is provided by kF.

The rest of the paper is organized as follows. In Sec. II,
we analyze dynamic susceptibilities of a Fermi liquid at the
level of noninteracting quasiparticles, i.e., within the kinetic
equation with zero right-hand side. In Sec. III, we go beyond
the level of noninteracting quasiparticles and calculate the
spin (Sec. III B), charge (Sec. III C), and nematic (Sec. III D)
susceptibilities to one-loop order in the dynamically screened
Coulomb interaction. Our conclusions are given in Sec. IV.
Some technical details of the calculations are delegated to
Appendix.

II. DYNAMIC SUSCEPTIBILITY OF A FERMI LIQUID:
NONINTERACTING QUASIPARTICLES

A. Random phase approximation

For completeness, we remind the reader of well-known
RPA results for the charge and spin susceptibilities. For elec-
trons interacting via the Coulomb potential U0(q) = 2πe2/q

(in 2D) and U0(q) = 4πe2/q2 (in 3D), the RPA form of the
charge susceptibility is [18]

χc(q, ω) = χ (0)(q, ω)

1 + U0(q)χ (0)(q, ω)
, (2.1)

where χ (0)(q, ω) is the free-electron susceptibility. The spin
susceptibility, obtained by resumming the ladder series for a
Hubbard-like interaction with coupling constant U , is given
by [7]

χs (q, ω) = χ (0)(q, ω)

1 − U
2 χ (0)(q, ω)

. (2.2)

The imaginary part of χ (0)(q, ω) is nonzero only within the
particle-hole continuum, i.e., for ω < vFq (assuming that q �
kF). Within the RPA, the same is also true for Imχc,s (q, ω).
The vanishing of Imχc,s (q, ω) at the continuum boundary
as

√
vFq − ω in 2D and as 1/ ln2(vFq − ω) in 3D, reflects

the corresponding threshold singularities of χ (0)(q, ω). A
profile of Imχs (q, ω) within the RPA is shown in Fig. 2.
The imaginary part of the charge susceptibility is qualitatively
similar to that shown in Fig. 2, except for a sharp peak above
the continuum, which corresponds either to zero sound mode
(for neutral fermions) or to a plasmon (for electrons).

B. Collisionless kinetic equation for a Fermi liquid

In this section, we analyze the charge and spin suscepti-
bilities of a FL at the level of noninteracting quasiparticles.
Technically, this amounts to solving the kinetic equation in
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FIG. 2. Imaginary part of the spin susceptibility, χs (q, ω), within
the RPA [Eq. (2.2)]. The inset shows Imχs (q, ω) near the boundary
of the particle-hole continuum (ω = vFq), where it vanishes as√

vFq − ω and 1/ ln2(vFq − ω) in 2D and 3D, respectively. The di-
mensionless coupling constant is UNF /2 = 0.5 for both dimensions,
where NF is the density of states at the Fermi level.

the presence of a time- and position-dependent external per-
turbation but without the collision integral [9,11,12]. This ap-
proach is identical to summing up the ladder series, in which
polarization bubbles formed by quasiparticles are separated by
irreducible interaction vertices [19–22]. We will find analytic
solutions of the kinetic equation for several model forms of the
Landau function with a finite number of harmonics and solve
the kinetic equation numerically for the case of Coulomb
interaction.

Since the case of a perturbation in the charge channel is
analyzed in Refs. [9] and [12], we discuss the spin channel in
detail and give only the results for the charge channel later.
The starting point for the spin channel is the collisionless
kinetic equation for a FL in the presence of a weak, time-
dependent, and nonuniform magnetic field, B(r, t):

(∂t + v∗
F k̂ · ∇r )δn̂k − v∗

Fk̂ · ∇rδε̂kn
′
0 = 0, (2.3)

where v∗
F is the renormalized Fermi velocity, n0(ε) is the

equilibrium Fermi function, n′
0 ≡ ∂εn0(ε), n̂k is the occupa-

tion number, and ε̂k is the quasiparticle energy (the last two
quantities being 2 × 2 matrices). The commutator i[ε̂k, n̂k],
which describes precession of electron spins around the di-
rection of the external magnetic field [23], can be neglected
in the linear-response regime. As usual, a variation of the
quasiparticle energy is decomposed into two parts: One is the
Zeeman splitting due to the magnetic field (for a charged FL,
the magnetic field is assumed not to affect the orbital motion
of quasiparticles) and another one is due to a self-consistent
field from other quasiparticles

δε̂k(r, t ) = −B(r, t ) · σ + Tr′
∫

dDk′

(2π )2
f̂ (k, k′)δn̂k′ (r, t ),

(2.4)

where f̂ (k, k′) = Î Î ′f s (k̂ · k̂′) + σ · σ ′f a (k̂ · k̂′) is the Lan-
dau function, and Tr′ goes over the spin variables of the
“primed” quasiparticle. The nonequilibrium part of the distri-
bution function can be expanded over a complete set of Pauli
matrices

δn̂k(r, t ) = −n′
0u(k̂; r, t ) · σ . (2.5)

Substituting Eq. (2.4) and (2.5) into Eq. (2.3), evaluating the
traces, and switching to the momentum-space representation,
we obtain an integral equation for u(k̂; q, ω) (the last two
arguments in u will be omitted for brevity)

u(k̂) = P (k̂; q, ω)

[
−B(q, ω) +

∫
dk̂′

OD

Fa (k̂ · k̂′)u(k̂′)

]
,

(2.6)

where Fa (k̂ · k̂′) = N∗
F f a (k̂ · k̂′), N∗

F is the renormalized
density of states, OD is the full solid angle in D dimensions,
and

P (k̂; q, ω) = v∗
Fk̂ · q

ω − v∗
Fk̂ · q + i0+ (2.7)

is the propagator of a particle-hole pair with the total mo-
mentum q formed by a particle and hole, which move in
the directions of k̂ and −k̂, respectively. Since P (k̂; q, ω)
depends on the angle θk between k̂ and q, it can be expanded
over a complete set of angular harmonics

P (k̂; q, ω) =
{∑∞

�=−∞ ei�θkP�(q, ω),∑∞
�=0(2� + 1)P�(cos θk )P�(q, ω),

(2.8)

in 2D and 3D, respectively, with P�(x) being the Legendre
polynomial.

In 2D, the harmonics P�(q, ω) are given by

P�(q, ω) = −δ�,0 + z

∫ π

0

dθk

π

cos(�θk )

z − cos θk + i0+ (2.9a)

= −δ�0 +
{

(−i)|�|+1ei|�|ψ z√
1−z2 , z < 1;

e−|�|ψ z√
z2−1

, z > 1,
(2.9b)

where

z ≡ ω/v∗
Fq, (2.10)

sin ψ = z for z < 1 and sinh ψ = z for z > 1. Without loss of
generality, we take z to be non-negative. In what follows, we
will need explicit forms of the few first harmonics within the
continuum (z < 1):

P0(q, ω) = −1 − i
z√

1 − z2
, (2.11a)

P1(q, ω) = −z

(
1 + i

z√
1 − z2

)
, (2.11b)

P2(q, ω) = −2z2 + i
z√

1 − z2
(1 − 2z2). (2.11c)

In 3D, the harmonics P�(q, ω) are given by [12,24]

P�(q, ω) = −δ�,0 + z

∫ 1

−1

dy

2

P�(y)

z − y + i0+ (2.12a)

= −δ�0 + z

[
Q�(z) − i

π

2
P�(z)θ (1 − z)

]
, (2.12b)

where Q�(x) for |x| < 1 is the Legendre function of the
second kind, i.e., the second linearly independent solution of
the Legendre differential equation. For |x| > 1, Q�(x) is to
be understand as an analytic continuation of the Legendre
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function from the interval −1 � z � 1 to the entire plane.
Explicitly, the few first harmonics for z < 1 are

P0(q, ω) = −1 + 1

2
z

(
ln

1 + z

1 − z
− iπ

)
, (2.13a)

P1(q, ω) = z

[
−1 + 1

2
z

(
ln

1 + z

1 − z
− iπ

)]
, (2.13b)

P2(q, ω) = z

2

[
−3z + 3z2 − 1

2

(
ln

1 + z

1 − z
− iπ

)]
. (2.13c)

By definition, P0(q, ω) coincides (up to a factor of the density
of states) with the usual polarization bubble in the semiclassi-
cal limit of q � kF both in 2D and 3D.

Similarly, the Landau interaction function is expanded as

Fa (k̂ · k̂′) =
{∑∞

�=−∞ ei�(θk−θk′ )Fa
� ,∑∞

�=0(2� + 1)P�(k̂ · k̂′)Fa
� .

(2.14)

An expansion of u(k̂; q, ω) requires an additional consider-
ation. In general, there are three independent vectors that u
may depend on: k̂, q, and B. However, since the magnetic
field is transverse, i.e., q · B = 0, there are in fact only two
independent vectors. We can always choose B as the z axis and
q as the x axis. Then the vector function u depends only on
the angle θk between k̂ and q, while the direction of B defines
the direction of u. Therefore, u(k̂; q, ω) can be expanded over
angular harmonics in the same way as P (k̂; q, ω)

u(k̂; q, ω) =
{∑∞

�=−∞ ei�θk u�(q, ω),∑∞
�=0(2� + 1)P�(cos θk )u�(q, ω).

(2.15)

Substituting Eqs. (2.8), (2.14), and (2.15) into Eq. (2.6), we
obtain an infinite system of equations for u�(q, ω). In 2D, this
system reads

u� = −P�B +
∑
�′

P�−�′F
a
�′ u�′ , (2.16)

where we suppressed the argument (q, ω) for brevity. Noting
that Fa

−� = Fa
� and P−� = P�, we deduce that u−� = u�. In

3D, the corresponding system of equations reads

u� = −P�B +
∞∑

�′,�′′=0

(2�′ + 1)

(
� �′′ �′

0 0 0

)2

P�′Fa
�′′u�′′ ,

(2.17)

where ( j1 j2 j3
m1 m2 m3

) is a 3j symbol. In deriving Eq. (2.17),
we used the identity [25]∫ 1

−1

dx

2
P�1 (x)P�2 (x)P�3 (x) =

(
�1 �2 �3

0 0 0

)2

(2.18)

and permutation symmetry of the last result.
The induced magnetization is related to the zeroth har-

monic of u via

M(q, ω) = Tr
∫

dDk

(2π )D
σ δn̂k(q, ω) = N∗

F u0(q, ω). (2.19)

Once Eqs. (2.16) and (2.17) are solved, Eq. (2.19) allows one
to read off the expression for the spin susceptibility.

1. Limiting cases

a. Quasistatic limit. Equations (2.16) and (2.17) can be
solved analytically for an arbitrary Landau function in the
quasistatic regime, i.e., for ω � v∗

Fq or, equivalently, for z �
1. In 2D, P� in Eq. (2.9b) is reduced in this limit to

P� = −δ�,0 + (−i)�+1z. (2.20)

This asymptotic form can be readily reproduced by noting that
for z � 1 the integral in Eq. (2.9a) is controlled by the region
where k is almost perpendicular to q, i.e., where θk ≈ ±π/2.
If � is odd, one can safely set ω to zero in the denominator
of the integrand in Eq. (2.9a) because the zeros of cos(�θk )
and cos θk at θk = ±π/2 cancel each other. Then P2n+1 is real
and proportional to z while its imaginary part occurs only to
order z3. (The smallness of ImP2n+1 implies the weakness of
Landau damping in odd angular momentum channels, which
is an important feature of a nematic FL. [26]) If � is even,
cos(�θk ) is finite at θk = ±π/2 but cos θk vanishes, so the
pole in the integrand needs to be circumvented, which gives
a factor of iπ . As a result, the integral in Eq. (2.9a) is purely
imaginary and still proportional to z. Combining the even and
odd cases together, we arrive at Eq. (2.20).

Substituting Eq. (2.20) into Eq. (2.16) and solving the
resulting system iteratively to first order in z, we find

u� = B(q, ω)

[
δ�0

1 + Fa
0

− (−i)�+1z
1(

1 + Fa
�

)(
1 + Fa

0

)
+O(z2)

]
. (2.21)

Substituting the last result with � = 0 into Eq. (2.19), we
obtain an asymptotic form of the spin susceptibility for ω �
v∗

Fq [9,22]

χs (q, ω) = N∗
F

1 + Fa
0

[
1 + iω

v∗
F q
(
1 + Fa

0

)
]
. (2.22)

In 3D, the asymptotic forms of P� in Eq. (2.12b) for � =
2m and � = 2m + 1 read

P2m(q, ω) = −δm,0 − iπ

2

(−)m(2m)!

(m!)2
z,

P2m+1(q, ω) = (−)m+1 2m−1

m + 1
2

m!

(2m − 1)!!
z. (2.23)

The final result for the spin susceptibility in the 3D case differs
from that in Eq. (2.22) only by a coefficient of π/2 in the
imaginary part.

b. The region near the continuum boundary. Another region
which can be analyzed for an arbitrary Landau function is
just below the continuum threshold, defined by the condition
0 < (v∗

Fq − ω)/v∗
Fq = 1 − z � 1. We discuss the 2D case

first. For z ≈ 1, the integral for P�(q, ω) in Eq. (2.9a) is
controlled by a region of small θk. This means that most
of the spectral weight comes from particle-hole pairs that
are moving along k. Replacing cos θk in the denominator of
Eq. (2.9a) by 1 − θ2

k/2 and cos(�θk ) in the numerator by unity,
extending the region of integration from (0, π ) to (0,∞),
and solving the resultant integral, we find that P�(q, ω) in
this approximation does not depend on � and coincides with
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P0(q, ω):

P�(q, ω) = P0(q, ω) = − i√
2(1 − z)

. (2.24)

Taking P�(q, ω) out of the sum in Eq. (2.16), we solve the
system by multiplying both its sides by Fa

� and summing over
�. This yields the following limiting form of χs (q, ω) near the
threshold:

Imχs (q, ω) = N∗
F C

√
2(v∗

Fq − ω)

v∗
Fq

θ (v∗
Fq − ω), (2.25)

where C = const. Note that
∑

� F a
� in 2D is equal to the

Landau function in the forward-scattering limit, i.e., at θ = 0.
In 3D, the leading singularity in P� can be obtained by

integrating Eq. (2.12a) by parts. This yields

P�(q, ω) = P0(q, ω) = − 1
2 ln(1 − z). (2.26)

As in the 2D case, we can take P� outside the sum in
Eq. (2.17). The 3j symbol is eliminated with the help of the

normalization condition [27]
∑

�′ (2�′ + 1)(� �′′ �′
0 0 0 )

2 = 1,
and the resultant system is solved in the same way as in 2D.
The threshold behavior of Imχs (q, ω) in 3D is then found
to be

Imχs (q, ω) = N∗
F C

2π

ln2 2v∗
Fq

v∗
Fq−ω

. (2.27)

The argument presented above also yields C = 1
(
∑

� F a
� )2 .

However, a more detailed analysis shows that while
Imχs (q, ω) indeed vanishes near the threshold as

√
v∗

Fq − ω

and 1/ ln2(v∗
Fq − ω) in 2D and 3D, respectively, the overall

prefactor contains a more complicated combination of Fa
� .

The reason for this discrepancy is that the leading terms in P�

cancel each other and one needs to keep the subleading terms.
Finding a general form of C in Eqs. (2.25) and (2.27) turns out
to be a rather complicated problem which we are not going to
address here. In the next section, we will derive explicit forms
of C for special models of the Landau function.

2. Special cases of the Landau function

Aside from the two limits considered above, the dynamical
spin susceptibility can be found in a closed form only if the
Landau function contains a finite number of harmonics. The
simplest model is the s-wave approximation: Fa (θ ) = Fa

0 . In
this case, Eqs. (2.16) and (2.17) are reduced to the same form

ul = −P�B + Fa
0 u0P�. (2.28)

To arrive at this result in 3D one needs to recall that(
� 0 �′

0 0 0

)
= (−)�

′
δ�′,�′

1√
2l + 1

. (2.29)

Setting � = 0 in Eq. (2.28) and using Eq. (2.19), we immedi-
ately obtain the familiar RPA result

χs (q, ω) = −N∗
F

P0

1 − P0F
a
0

, (2.30)

where P0 is given by Eqs. (2.11a) and (2.13a) in 2D and
3D, respectively. Equation (2.30) is equivalent to Eq. (2.2)
upon identifying Fa

0 with −NF U/2. The imaginary parts of

χ ω( )

ω

ω

ωω

(a)

(b)

FIG. 3. Imaginary part of the spin susceptibility (normalized to
its static value) for a 2D (a) and 3D (b) Fermi liquid, obtained by
solving the kinetic equation for a model form of the Landau function,
which contains up to the three first harmonics in the spin channel.
The legends specify the harmonics of the Landau function following
the (F a

0 , F a
1 , F a

2 ) format.

χs (q, ω) for Fa
0 = −0.5 in 2D and 3D are shown by solid

lines in panels (a) and (b) of Fig. 3, respectively.
Next, we assume that the Landau function contains two

harmonics: Fa
0 and Fa

1 . In this case, an infinite system for the
harmonics of the distribution function in 2D [Eq. (2.16)] is
reduced to a 2 × 2 system for u0 and u1 = u−1:

u0 = −P0B + P0F
a
0 u0 + 2P1F

a
1 u1

(2.31)
u1 = −P1B + P1F

a
0 u0 + (P0 + P2)Fa

1 u1.

Solving this system and substituting u0 into Eq. (2.19), we
obtain for the spin susceptibility

χs (q, ω)

= −N∗
F

P0
[
1 − Fa

1 (P0 + P2)
]+ 2P2

1 Fa
1(

1 − P0F
a
0

)[
1 − Fa

1 (P0 + P2)
]− 2Fa

1 Fa
0 P2

1

,

(2.32)

where P0...2 are given by Eqs. (2.11a)–(2.11c). (The same
result has recently been derived in Ref. [22] by resumming
the ladder diagrams.) The imaginary part of Eq. (2.32) for
Fa

0 = −0.5 and Fa
1 = −0.3 is shown by the dashed line in

Fig. 3(a). For ω � v∗
Fq Eq. (2.32) reproduces the quasistatic

limit, Eq. (2.22), as it should. Expanding Eq. (2.32) near the
continuum boundary (ω ≈ v∗

Fq), we reproduce Eq. (2.25) with

C =
(

1 + Fa
1

Fa
0 + 2Fa

1 + Fa
0 Fa

1

)2

. (2.33)

For this model of the Landau function,
∑

� F a
� = Fa

0 + 2Fa
1 .

Therefore the actual result for C in Eq. (2.33) differs from
C = 1

(
∑

� F a
� )2 , which was obtained by neglecting higher-order

terms in P�.
Finally, we consider the case of the Landau function with

the first three harmonics: Fa
0 , F a

1 , and Fa
2 . The analytic form

of χs (q, ω) for this case is too long to be displayed here; its
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imaginary part is shown by the dotted line in Fig. 3(a) for
Fa

0 = −0.5, Fa
1 = −0.3, and Fa

2 = −0.2. Near the threshold,
Imχs (q, ω) is again reduced to Eq. (2.25) with

C =
(
1 + Fa

1

)2(
1 + [

Fa
2

]2)+ 2F2
(
1 + 2

[
Fa

1

]2)
Fa

0 + 2Fa
1 + 2Fa

2 + Fa
0

(
Fa

1 + Fa
2 + Fa

1 Fa
2

) . (2.34)

As in the previous case, C is also not expressed entirely in
terms of

∑
� F a

� .
Comparing the three cases shown in Fig. 3(a), we note

that inclusion of higher harmonics has a rather strong effect
on the overall shape of Imχs (q, ω) in 2D. In particular, the
square-root threshold singularity becomes less and less pro-
nounced as the number of harmonics in the Landau function
is increased.

Now we turn to the 3D case. For the Landau function
containing the first two harmonics, an infinite system of
equations in Eq. (2.17) is reduced to a 2 × 2 one with the help
of Eq. (2.29) and another identity for the 3j symbols [27]:(

1 1 �

0 0 0

)
=
{

�2+�−2√
(2−�)!(�+3)!

, for 0 � � � 2

0; otherwise.
(2.35)

Using these identities, we obtain

u0 = −P0B + P0F
a
0 u0 + P1F

a
1 u1

(2.36)
u1 = −P1B + P1F

a
0 u0 + 1

3 (P0 + 2P2)Fa
1 u1.

Accordingly, for the spin susceptibility we find

χs (q, ω)

= −N∗
F

P0
[
1 − 1

3Fa
1 (P0 + 2P2)

]+ P2
1 Fa

1(
1 − P0F

a
0

)[
1 − 1

3Fa
1 (P0 + 2P2)

]− Fa
1 Fa

0 P2
1

,

(2.37)

where P0...2 are given by Eqs. (2.13a)–(2.13c). Expanding
Eq. (2.37) near the threshold, we reproduce Eq. (2.27) with

C =
(
1 + 1

3Fa
1

)2(
Fa

0 + Fa
1 + 1

3Fa
0 Fa

1

)2 . (2.38)

As in the 2D case, the actual form of C differs from the
formula obtained by neglecting higher-order terms in P�. The
imaginary part of χs (q, ω) in Eq. (2.37) is shown by the
dashed line in Fig. 3(b) for Fa

0 = −0.5, and Fa
1 = −0.3. As

in 2D, the analytic result for the Landau function with three
harmonics is too long to be presented here; the corresponding
imaginary part is shown by the dashed line in Fig. 3(b) for
Fa

0 = −0.5, Fa
1 = −0.3, Fa

1 = −0.2. We see that inclusion of
higher harmonics in the 3D case has a less pronounced effect
on the shape of χs (q, ω) compared to the 2D one.

3. Numerical solution of the kinetic equation

We also performed a numerical solution of Eq. (2.16) for a
particular model of the Landau function corresponding to the
statically screened Coulomb potential. To first order in such
interaction and in 2D [28],

Fa (θ ) = −1

2

a∣∣sin θ
2

∣∣+ a
, (2.39)

0.2 0.4 0.6 0.8 1.0

0.5

1.

1.5
1. 1

0.00002
0.0001

0.9999995

Im ( , )

ω

FIG. 4. Imaginary part of the spin susceptibility (normalized to
its static value) for a model form of the Landau function corre-
sponding to the statically screened Coulomb potential in 2D. The
system of equations (2.16) was solved numerically using the first 101
harmonics of the Landau function in Eq. (2.39) with a = 0.5.

where a = κ/2kF, κ = 2πe2 NF is the inverse screening ra-
dius, and 0 � θ � 2π . The first N harmonics of Fa (θ ) are
found numerically and then Eq. (2.16) is diagonalized. The
resultant imaginary part of Imχs (q, ω) is shown in Fig. 4 for
a = 0.5 and N = 101. Note that the square-root threshold
singularity of Imχs (q, ω) is not visible in the main panel of
Fig. 4. This is the same behavior as we have already seen
for the Landau function with the first few nonzero harmonics
[cf. dashed and dotted lines in Fig. 3(a)]. However, the inset
in Fig. 4 shows that the singularity is still present in a very
narrow vicinity of the threshold.

C. Charge susceptibility

For a neutral FL, the expression for the compressibility
is derived along the same lines as in Sec. II B except for an
external perturbation in Eq. (2.3) is replaced by a classical
force, −∇U , where U is the potential energy, and the cor-
responding change in the occupation number is parameterized
by a scalar rather than a vector function. Explicit results for the
compressibility are obtained from those derived for the spin
susceptibility in Secs. II B 1 and II B 2 simply by replacing the
Landau parameters in the spin channel by those in the charge
channel, i.e., Fa

� → F s
� , � = 0, 1, 2 . . . .

For a charged FL, one needs to take into account the
difference between the external and total electric fields acting
on a given quasiparticle. The charge susceptibility can be
related to the compressibility of a fictitious neutral FL with the
same Landau function [9]. In the diagrammatic language, the
compressibility of a neutral FL plays the role of an irreducible
charge susceptibility, χ irr

c (q, ω), which contains all diagrams
that cannot be separated into two parts by cutting only one
interaction line. The relation between the full and irreducible
susceptibilities given by [9]

χc(q, ω) = χ irr
c (q, ω)

1 + U0(q)χ irr
c (q, ω)

. (2.40)

III. INTERACTING QUASIPARTICLES

A. Model

Interaction between quasiparticles can be taken into ac-
count by adding a collision integral to the right-hand side
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3)

+

+ + +

=

1)

+ +

+ +

2)

+

+

4) −

+

+

−

−

+

5) −

+

+

+

+

FIG. 5. Diagrams for a susceptibility to lowest order in the
dynamically screened Coulomb interaction (wavy line). Diagrams
1–3 give a correction to the spin susceptibility. Diagrams 1–5 give
a correction to the irreducible charge susceptibility. The full charge
susceptibility is obtained by resumming irreducible parts connected
by a single interaction line, with the result given by Eq. (2.40).

of the kinetic equation, Eq. (2.3). Alternatively, one can take
the same effect into account by calculating diagrams for the
susceptibilities beyond the RPA level for a particular model
of retarded, i.e., dynamically screened interaction. In this
paper, we adopt the diagrammatic method for the dynamically
screened Coulomb interaction,

U (q, ωm) = [
U−1

0 (q) + χ (0)(q, ωm)
]−1

, (3.1)

where, as before, χ (0)(q, ωm) is the free-electron susceptibil-
ity, U0(q) = 2πe2/q and U0(q) = 4πe2/q2 in 2D and 3D,
correspondingly.

The one-loop diagrams for the polarization bubble are
shown in Fig. 5, where the thick wavy line denotes the
dynamically screened Coulomb potential, given by Eq. (3.1).
The vertices are the unities in the charge channel and the Pauli
matrices in the spin one. The AL diagrams (diagrams 4 and 5)
vanish identically in the spin channel due to spin traces, and
the correction to the spin susceptibility is given by the sum of
diagrams 1–3:

δχs (q, ω) =
∑

α=1...3

δχ (α)(q, ω). (3.2)

On the other hand, all diagrams contribute to the irreducible
charge susceptibility

δχ irr
c (q, ω) =

∑
α=1...5

δχ (α)(q, ω). (3.3)

At the RPA level, δχ irr
c (q, ω) = 0 and χc(q, ω) is reduced

to Eq. (2.1). To obtain a correction to the RPA result, we
substitute χ irr

c (q, ω) = χ (0)(q, ω) + δχ irr
c (q, ω) into Eq. (2.1)

and expand to lowest order in δχ irr
c (q, ω) to obtain

δχc(q, ω) = δχ irr(q, ω)

[1 + U0(q)χ (0)(q, ω)]2
. (3.4)

B. Spin susceptibility

We note that only a dynamical interaction leads to damping
of quasiparticles and thus can give rise to a nonzero spectral
weight of the susceptibility above the continuum boundary.
Therefore, it is convenient to subtract off the static part of the
interaction

U (Q,�l ) = U (Q,�l ) − U (Q, 0) + U (Q, 0)

≡ U dyn(Q,�l ) + U (Q, 0). (3.5)

The contribution from the static part has been effectively
accounted for in Sec. II by solving the FL kinetic equation
without a collision integral. All one needs to do is to calculate
the Landau function to the lowest order in U (Q, 0). The result
will be some insignificant modification of the spectral weight
below the continuum boundary. In what follows, we neglect
this contribution and focus on the one from the dynamic part
of the interaction, U dyn(Q,�l ).

After some manipulations with the Green functions, the
sum of diagrams 1–3 in Fig. 5, which give a correction to
the spin susceptibility [Eq. (3.2)], can be written compactly
as (see Appendix for details)

δχs (q, ωm) = −
∫∫∫∫

dDQdDkd�ldεn

(2π )2(D+1)
U dyn(Q,�l )

× (εk+q − εk − εk+Q+q + εk+Q)2

(iωm − εk+Q+q + εk+Q)2(iωm − εk+q + εk )2

×[G(k, εn) − G(k + q, εn + ωm)][G(k + Q, εn + �l )

−G(k + Q + q, εn + �l + ωm)] (3.6)

Equation (3.6) is valid for q � kF and arbitrary ω. For a
parabolic spectrum (εk = k2/2m − k2

F/2m), the combination
(εk+q − εk − εk+Q+q + εk+Q) is reduced to (q · Q)2 for arbi-
trary q and Q. For an arbitrary spectrum, this combination is
simplified to [(vk+Q − vk ) · q]2 for small q.

1. Low frequencies: ω � vFκ

In this regime, typical momentum transfers Q are either
logarithmically larger (in 2D) or on the order (in 3D) of
the inverse screening radius κ , which needs to be chosen
much smaller than kF to keep the perturbation theory under
control. On the other hand, the internal bosonic frequencies
are on the order of the external one: � ∼ ω. Therefore, for
external frequencies in the range ω � vFκ � EF, the dynam-
ical polarization bubble in the screened Coulomb potential
can be expanded to leading order in �/vFQ: �(0)(Q,�) ≈

115139-7



ZYUZIN, SHARMA, AND MASLOV PHYSICAL REVIEW B 98, 115139 (2018)

−NF (1 + iCD�/vFQ), where C2 = 1 and C3 = π/2. Note
that vFκ is on the order of the plasma frequency in 3D and of
the plasmon dispersion evaluated at q ∼ κ in 2D. The range of
ω specified above corresponds to the FL regime, in which the
imaginary part of the self-energy scales as max{ω2, T 2} [29].

The rest of the calculations are fairly straightforward (see
Appendix 1 for details). The final result valid for an arbitrary
ratio ω/vFq and for a parabolic single-particle dispersion is
given by

δχs (q, ω) = λD ×

⎧⎪⎨
⎪⎩

q2ω4

(v2
Fq2−ω2−iδsgnω)5/2 ln EF

vFκ
,

i
kFq2ω3

[v2
F q2−ω2]2 ,

(3.7)

where the dimensionless coupling constants are given by

λ2 = e4

6π2v2
F

= r2
s

12π2
≈ 8.0 × 10−3r2

s , (3.8a)

λ3 = e4

36π2v2
F

kF

κ
= r

3/2
s

108π2
≈ 9.4 × 10−4r3/2

s , (3.8b)

and rs is the usual dimensionless coupling constant for the
Coulomb interaction, equal to the average distance between
electrons measured in units of the Bohr radius. The first
(second) lines in Eqs. (3.7) and (3.8a,3.8b) refer to the 2D
(3D) case. Note that the numerical prefactors in both cases are
quite small.

We emphasize that although the results in Eq. (3.7) were
derived in a particular model of a dynamically screened
Coulomb interaction, they are expected to apply to any generic
FL. The only change will be in the particular form of the
prefactor λD . Indeed, Eq. (3.7) resulted from the Landau-
damped form of the dynamic interaction, which is expected
to be obeyed in any FL.

We see that Imδχs (q, ω) is nonzero outside the continuum
(for |ω| > vFq): This is the main difference compared to the
result obtained for noninteracting quasiparticles. Explicitly,

Imδχs (q, ω) = λD ×

⎧⎪⎨
⎪⎩

q2ω4sgnω(
ω2−v2

Fq2
)5/2 ln EF

vFκ
θ (|ω| − vFq ),

kFq2ω3

(ω2−v2
F q2 )2 .

(3.9)

In the 2D case, the residual interaction between quasiparticles
does not affect the spectral weight below the continuum
boundary, because δχ

dyn
s (q, ω) is purely real for |ω| < vFq.

On the other hand, the corresponding correction in 3D is
purely imaginary, which means that the real part of suscep-
tibility is not affected by the residual interaction between
quasiparticles.

Far away from the continuum boundary (for vFq � |ω| �
vFκ), Imδχs assumes a universal form

Imδχs (q, ω) = λDkD−2
F

q2

ω
, (3.10)

with an extra factor of ln(EF/vFκ ) ∼ ln r−1
s in 2D. On ap-

proaching the continuum boundary (|ω| → vFq), Imδχs (q, ω)

diverges as

Imδχs (q, ω) = λD ×
⎧⎨
⎩

√
2

8
q2(vFq )3/2

(ω−vFq )5/2 θ (|ω| − vFq ),

1
4

kFvFq3

(ω−vFq )2 .
(3.11)

To eliminate the threshold singularities, one needs to resum
the series for the spin susceptibility. The lowest-order term
is the irreducible susceptibility found in this section. The
next-order term contains two irreducible susceptibilities, not
yet integrated over the angle between k and q, which are
separated by an irreducible static vertex proportional to the
Landau function in the spin channel. The second-order term
contains three irreducible susceptibilities and two irreducible
vertices, etc. The series can be cast into the form of an integral
equation which cannot be solved analytically for a general
form of the Landau function. Approximating the Landau
function by the � = 0 harmonic and expanding to the lowest
order in the irreducible susceptibility, we obtain a familiar
RPA result [8]

Imδχ̃s (q, ω) = Imδχs (q, ω)[
1 − Uχ0

s (q, ω)/2
]2 , (3.12)

where Imδχs (q, ω) is the imaginary part of the irreducible
susceptibility given by Eq. (3.9), χ0

s (q, ω) is the free-electron
spin susceptibility, and U = −2Fa

0 /NF . Of course, such an
approach is not rigorous, because Imδχs (q, ω) was calculated
for a long-range Coulomb potential while we approximated
the interaction by a delta function, when resumming the RPA
series. Nevertheless, it does give an idea of how the threshold
singularities in Imδχs (q, ω) are weakened due to concomitant
divergences in χ0

s (q, ω). For example, the (ω − vFq )−5/2 sin-
gularity in Eq. (3.11) is replaced by the (ω − vFq )−3/2 singu-
larity of the resummed susceptibility in Eq. (3.12). Complete
elimination of the threshold singularities requires additional
resummation of the series, which we will not attempt here.

The results presented above can be readily generalized
for an isotropic but otherwise arbitrary single-particle disper-
sion, εk = εk . The only changes will be in the values of the
dimensionless coupling constants in Eq. (3.7). For example, it
can be readily shown that the coupling constant in 2D [λ2 in
Eq. (3.8a)] needs to be replaced by

λ̄2 = e4

6v2
F

(
NF

meff

)2

, (3.13)

where vF = dεk/dk|k=kF
is the group velocity, NF =

kdk/πdεk|k=kF
is the density of states at the Fermi level, and

the effective mass m̄ is defined as

1

m2
eff

= 1

m∗2
+ 1

2m̃2
+ 1

m∗m̃
(3.14)

with

1

m∗ = 1

k

dεk

dk

∣∣∣∣
kF

and
1

m̃
= k

d

dk

(
1

k

dεk

dk

)∣∣∣∣
kF

. (3.15)

For parabolic dispersion, 1/m̃ = 0 while meff = m∗ = m, and
we recover Eq. (3.8a).
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2. Higher frequencies and the f-sum rule

At the level of noninteracting quasiparticles, the only re-
gion that contributes to the spin f -sum rule∫ ∞

0

dω

π
ωImχs (q, ω) = n0q

2

2m
(3.16)

is the particle-hole continuum, 0 � ω � vFq (here, n0 is the
number density). Due to residual interaction between quasi-
particles, the spectral weight “leaks out” from the continuum,
and now Eq. (3.16) needs to be satisfied over the whole range
of frequencies.

In the previous section, we found that Imδχs (q, ω) ∝ q2/ω

for vFq � ω � vFκ . A slow, 1/ω decrease of Imδχs (q, ω) in
this range of frequencies is insufficient to guarantee that the
spin f -sum rule is satisfied. Therefore, we need to consider
higher frequencies, ω � vFκ . In its turn, this interval can
be separated into two: vFκ � ω � EF (intermediate frequen-
cies) and ω � EF (high frequencies). The behavior in these
intervals differ substantially between 2D and 3D, and we
discuss these two cases separately.

a. 2D. For vFκ � ω � EF, the only change compared to
the case of ω � vFκ is that the logarithmic integral over the
momentum transfer Q is now to be cut at Q ∼ |ωm|/vF rather
than at Q ∼ κ . As a result, the factor of ln(kF/κ ) in the top
line of Eq. (3.7) is replaced by ln(EF/|ωm|). After analytic
continuation, we find

Imδχs (q, ω) = λ2
q2

ω
ln

EF

|ω| . (3.17)

We see that the decay of Imχs (q, ω) is even slower than
at lower frequencies and, therefore, we need to consider the
range of ω � EF. Details of the calculation are presented in
Appendix 1 c; the final result for this range reads

Imδχs (q, ω) = 3π2λ2
q2E3

F

ω4
sgnω. (3.18)

A fast, 1/ω4 decay guarantees the convergence of the integral
in Eq. (3.16), and thus the f -sum rule is controlled by ω ∼
EF.

b. 3D. In 3D, the integral over the momentum transfers
is not logarithmic [an indication of which is the lack of
the ln rs factor in the corresponding result for ω � vFκ ,
Eq. (3.7)]. Therefore, in contrast to the 2D case, the be-
havior of Imδχs (q, ω) changes dramatically already in the
intermediate frequency range (vFκ � ω � EF). As shown in
Appendix 1 d, in this range we have

Imδχs (q, ω) = 8 ln 2

3π2

e4

v2
F

kF

q2EF

ω2
sgnω. (3.19)

The integral in Eq. (3.16) still diverges but now only logarith-
mically. This means that the spectral weight above the con-
tinuum is distributed over a (formally) broad interval between
vFκ and EF. One should expect even faster decay at ω � EF;
indeed, we estimate that Imδχs (q, ω) ∝ sgnω/|ω|5/2 in this
range.

Note that the condition vFκ � EF can be satisfied only at
weak coupling; in most real systems, vFκ � EF. Therefore,
it would be correct to say that the spectral weight above the
continuum comes from the region ω ∼ EF both in 2D and 3D.

Also note that, unlike the low-frequency form [Eq. (3.7)], the
asymptotic forms at higher frequencies [Eqs. (3.17), (3.18),
and (3.19)] are not universal but rather specific for a given
model of the interaction.

C. Charge susceptibility

1. Cancellation of diagrams for the irreducible part

At the level of noninteracting quasiparticles, the irre-
ducible part of the charge susceptibility coincides with the
spin susceptibility upon replacing the FL parameters in the
spin sector by those in the charge sector: Fa

0 → F s
0 , Fa

1 →
Fc

1 . . . . However, this one-to-one correspondence is lost once
the interaction between quasiparticles is taken into account.
Technically, the difference between the two channels is due to
the AL diagrams (diagrams 4 and 5 in Fig. 5), which vanish
in the spin channel due to tracing out the Pauli matrices at the
vertices to zero, but are nonzero in the charge channel. Note
that the same AL diagrams are responsible for the differences
in the nonanalytic corrections in the charge and spin channels:
Such corrections are absent in the former but present in the
latter [30].

The sum of the two AL diagrams can be written as

δχAL(q, ωm) = δχ (4)(q, ωm) + δχ (5)(q, ωm)

= 4
∫∫

dDQd�l

(2π )(D+1)
(T 2 + |T |2)

×U (Q,�)U (Q + q,�l + ωm), (3.20)

where

T ≡
∫∫

dDkdεn

(2π )D+1
G(p, εn)G(p + q, εn + ωm)

×G(p + Q, εn + �l ). (3.21)

The analysis of δχAL is quite cumbersome for a generic ratio
of ω to vFq, so we restrict our analysis to the region of
frequencies well above the continuum but below the energy
scale set by the interaction, i.e., vFq � ω � vFκ . After some
algebra, the leading term can be shown to be (see Appendix 3
for details)

ImδχAL(q, ω) = −λD

q2

ω
×
{

ln
(
r−1
s

)
,

1,
(3.22)

where λD are given by Eqs. (3.8a) and (3.8b) in 2D and
3D, respectively. We see that the contribution AL is equal in
magnitude and opposite in sign to the contributions of the
self-energy and ladder diagrams (diagrams 1–3 in Fig. 5),
which are the same in the spin and charge channels. Therefore
the leading, q2/ω, term in the irreducible charge susceptibility
is canceled out between all the five diagrams

Imχ irr
c (q, ω) = Imδχs (q, ω) + ImδχAL

= 0 × O(q2/ω) + . . . . (3.23)

We stress that this cancellation is a specific feature of a
Galilean-invariant system. Indeed, the self-energy and ladder
diagrams are not crucially sensitive to particle-hole asym-
metry, i.e., one still gets a nonzero result if the spectrum is
linearized near the Fermi energy. In contrast, the AL diagrams
vanish if the spectrum is linearized [31], in which case the

115139-9



ZYUZIN, SHARMA, AND MASLOV PHYSICAL REVIEW B 98, 115139 (2018)

system becomes particle-hole symmetric. To get a nonzero
result, one needs to break the particle-hole symmetry by
retaining higher-order terms in the dispersion. This implies
that the first three and the last two diagrams in Fig. 5
contain different parameters characterizing the single-particle
dispersion, and, in general, cannot cancel each other. That
such cancellation occurs in the Galilean-invariant case, i.e.,
for k2/2m dispersion, is not an accident but a consequence
of a general relation between the charge susceptibility and
longitudinal conductivity, discussed in the next section.

2. Relation between the charge susceptibility and longitudinal
conductivity

Extracting the next after the q2 term directly from diagrams
1–5 in Fig. 5 would be a difficult task. Fortunately, this
problem can be circumvented by invoking a general relation
between the charge susceptibility and the longitudinal conduc-
tivity, which is based on the Poisson equation and Ohm’s law.
In D dimensions, this relation reads

χc(q, ω) = iq2σ||(q, ω)

e2ω

1

1 + 2πiADσ||(q, ω)/ω
, (3.24)

where A2 = q and A3 = 2. That the form of the equation
above differs between the 2D and 3D cases is related to
the fact that the units of the conductivity are different in
different dimensions. However, Eqs. (2.40) and (3.24) show
that the corresponding relation between the irreducible part of
χc(q, ω) and σ||(q, ω) is independent of D:

χ irr
c (q, ω) = iq2

e2ω
σ||(q, ω) (3.25)

or

Imχ irr
c (q, ω) = q2

e2ω
Reσ||(q, ω). (3.26)

Now we are going to invoke the result by Mishchenko,
Reizer, and Glazman [14], who showed that the T = 0
longitudinal conductivity of a 2D electron system is given by

Reσ||(q, ω) = e2

12π2

q2

k2
F

ln
vFκ

|ω| . (3.27)

This result applies to the range of frequencies of interest to
us, i.e., vFq � ω � vFκ . A factor of q2/k2

F in Eq. (3.27)
reflects the fact that, since the charge current is conserved in a
Galilean-invariant FL, the dissipative part of its conductivity
must vanish at q = 0. It is this factor that suppresses the
q2/ω contributions from diagrams 1–5 in Fig. 5. Combining
Eqs. (3.26) and (3.27), we find

Imχ irr
c (q, ω) = 1

12π2vFk
2
F

q4

ω
ln

vFκ

|ω| . (3.28)

Therefore, the leading term in Imχ irr
c (q, ω) of a Galilean-

invariant system scales as q4/ω (modulo a logarithmic factor).
A 3D analog of Eq. (3.27) for the longitudinal conductiv-

ity is not available. However, it is known that the plasmon
damping coefficient, γ (q ), scales as q2 in 3D [13]. [γ (q ) is
defined such that the plasmon pole is located at ω = ωp(q ) −
iγ (q ), where ωp(q ) is the plasma frequency in the absence
of damping.] From Eq. (3.24), it is easy to deduce that γ =

2πReσ [q, ω = ωp(q )]. Therefore, Reσ [q, ω = ωp(q )] ∝ q2

in 3D as well which, according to Eq. (3.26), implies that
Imχ irr

c [q, ωp(q )] ∝ q4. It would be natural to expect that the
frequency dependence is also 1/ω (up to a logarithmic factor).
We thus surmise that Imχ irr in 3D scales with ω and q in the
same way as in 2D, i.e.,

Imχ irr
c (q, ω) ∝ q4

ω
. (3.29)

Note that diagrams for the irreducible part of the charge
susceptibility cancel each other also in the one-dimensional
(1D) case for a linearized spectrum, e.g., for ε±

k = ±vF(k ∓
kF) (Ref. [17]). Keeping a curvature term (∼k2/2m) in the
dispersion, one gets nonzero Imχc outside of the continuum
[32–34], but it is smaller than the corresponding result for
the spin susceptibility also by a factor of q2/k2

F � 1. In the
1D case, the difference between the charge and spin chan-
nels receives a natural explanation within the bosonization
technique, in which the charge channel is mapped onto free
bosons while the spin channel is mapped onto the sine-Gordon
model. Although the cosine term in the sine-Gordon model
is marginally irrelevant for the repulsive interaction between
fermions, it does lead to damping of spin bosons and hence
to a nonzero Imχs already for a linearized dispersion. To
obtain damping of charge bosons, one needs to go beyond the
Luttinger-liquid paradigm by retaining a finite fermionic mass
[32–34].

The results of this section show, however, that the suppres-
sion of damping in the charge channel as compared to the
spin one occurs in all dimensions and thus does not rely on
such specifically 1D features, as integrability and spin-charge
separation. The underlying mechanism is Galilean invariance,
which suppresses the longitudinal conductivity, and thus the
charge susceptibility, by a factor of q2/k2

F. In contrast, the
spin susceptibility is free of such a constraint. If Galilean
invariance is broken by, e.g., lattice or spin-orbit interaction,
one should expect damping in the charge and spin channels to
be comparable, i.e., Imχ irr

c (q, ω) should also scale as q2/ω.

3. Full charge susceptibility

Having analyzed the scaling form of the irreducible charge
susceptibility in the previous section, we can now describe the
full charge susceptibility given by Eq. (3.24). The difference
between the two susceptibilities is mainly due to the plasmon
pole which is absent in the irreducible susceptibility but
present in the full one. Taking the imaginary part of Eq. (3.24),
we obtain

Imχc(q, ω) = q2

e2ω

σ ′(
1 − AD

2πσ ′′
ω

)2 + (
AD

2πσ ′
ω

)2 , (3.30)

where σ ′ ≡ Reσ||(q, ω) and σ ′′ ≡ Imσ||(q, ω). To lowest or-
der in the electron-electron interaction, σ ′′ = ne2/mω. Then
ADσ ′′/ω can be re-written as ω2

p(q )/ω2, where the plasmon
frequency ωp(q ) ∝ √

q in 2D and ωp(q ) = const in 3D, upon
which Eq. (3.30) acquires a more transparent form

Imχc(q, ω) = q2

e2ω

σ ′[
1 − ω2

p (q )
ω2

]2 + (
AD

2πσ ′
ω

)2
. (3.31)
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Away from the immediate vicinity of the plasmon pole, the
damping term can be neglected and Eq. (3.31) is further
simplified to

Imχc(q, ω) = q2

e2ω

σ ′[
1 − ω2

p (q )
ω2

]2
. (3.32)

For vFq � ω � ωp(q ),

Imχc(q, ω) ≈ q2ω3

e2ω4
p(q )

σ ′ ∝
{
ω3σ ′,
q2ω3σ ′,

(3.33)

where the first (second) line refers to the 2D (3D) case. For
a Galilean-invariant FL, σ ∝ q2 (up to a logarithmic factor in
2D), and

Imχc(q, ω) ∝
{
q2ω3,

q4ω3.
(3.34)

For ω � ωp(q ), the denominator in Eq. (3.32) can be replaced
by unity and the difference between the full and irreducible
charge susceptibilities disappears. In this region, therefore,

Imχc(q, ω) ≈ Imχ irr
c (q, ω) ∝ q2

ω
σ ′ ∝ q4

ω
, (3.35)

where we again assumed the Galilean-invariant case at the last
step (and omitted the logarithmic factor in 2D).

The imaginary part of the full charge susceptibility as a
function of frequency is sketched in Fig. 1 by the dashed line.
Figure 6 shows (on a semilogarthmic plot) the actual behavior
of Imχc(q, ω) in 2D, as given by Eq. (3.31) for parameters
specified in the legend. Note that the plasmon peak is flanked
by two regions on the left and on the right, with asymptotic
forms distinct both from the peak itself and from each other.

D. Nematic susceptibility

In the previous sections, we considered the spin and charge
susceptibilities which are related to the correlation functions
of conserved quantities. Consequently, both the spin and
charge susceptibilities vanish at q = 0 and finite ω, which
does affect their behavior at finite but small q: indeed, we
found that Imχs (q, ω) ∝ q2/ω and Imχc(q, ω) ∝ q4/ω for
a Galilean-invariant FL. On the other hand, a susceptibility
related to a nonconserved quantity does not have to vanish at

Im ,

ω

ωP 0.5

ω

FIG. 6. Semilog scale: Imaginary part of the charge susceptibil-
ity in 2D, as given by Eq. (3.31).

q = 0, and its behavior can be expected to differ significantly
from the charge and spin cases considered earlier in this paper.
The dynamic susceptibility of a nematic order parameter with
a d-wave symmetry near a quantum critical point has recently
been analyzed by Klein et al. [16]. For completeness, we
consider the spin susceptibility in the nematic channel with
a p-wave symmetry, χsc(q, ω), in a wide frequency interval,
including the range of ω � EF.

Alternatively, χsc(q, ω) can be viewed as the spin-current–
spin-current correlation function, where the spin current is
defined as J

ij
s (q) = ∑

k c
†
k+q/2v

i
kσ

jck−q/2. To be specific, we
pick the xz component of Js . Due to in-plane rotational
invariance, the result can be represent as the half sum of
the xz and yz components of the susceptibility. Because the
AL diagrams vanish due to spin traces, the leading-order
correction to χsc(q, ω) is given by diagrams 1–3 in Fig. 5,
where now a wiggle at a vertex denotes vσ z. Since χsc(q, ω) is
finite at q = 0, we will set q = 0 from the outset and study the
frequency dependence of χsc(ω) ≡ χsc(0, ω). Formally, the
problem is equivalent to finding the current-current correla-
tion function, χj (ω), without the AL diagrams. This problem
was considered in Ref. [35], where it was shown that the sum
of diagrams 1–3 at q = 0 can be written compactly as

δχsc(ωm)

=
∫∫∫∫

dDQdDkd�ldεm

(2π )2(D+1)

× (vk+Q − vk )2U dyn(Q,�l )

[i(�l + ωm) − εk+Q + εk][i�l − εk+Q + εk]

×G(k, εm)G(k + Q, εm + �l ). (3.36)

Following the analogy with the current-current correlation
function the result for δχsc(ω) can be deduced without any
computations. Indeed, the conductivity is related to χj (ω) via
Reσ (ω) = Imχj (ω)/ω. In its turn, the optical conductivity
of a FL is of the Drude form: Reσ (ω) ∝ 1/ω2τ (ω) with
1/τ (ω) ∝ ω2 for ω � EF. Therefore, Reσ (ω) = const (this
is the so-called “FL foot”; see, e.g., Ref. [36] and references
therein). Consequently, Imχj (ω) ∝ ω and, because χsc = χj

up to a factor of e2, Imχsc(ω) ∝ ω as well. The same ar-
gument applied to the z = 3 quantum critical point, where
σ (ω) ∝ ω−2/3 (Refs. [35,37,38]), yields Imχsc(ω) ∝ ω1/3 in
agreement with the results of Ref. [16].

In line with the argument presented above, an explicit
calculation for a FL with dynamically screened Coulomb
interaction gives (see Appendix 2 a)

Imχsc(ω) = λD

{
ln
(

kF
κ

)
ω,

3
2kFω,

(3.37)

for ω � vFκ , were λD are again given by Eqs. (3.8a) and
(3.8b). The low-frequency scaling form, Imχsc(ω) ∝ ω, is
expected to be valid for any FL, the only difference between
the results of particular models being in the prefactor of the ω

dependence.
In contrast to the case of a conserved quantity, the suscep-

tibility of a nonconserved quantity increases with frequency
for ω � vFq. However, Imχsc(ω) must decrease with ω at
high enough frequencies, because electrons are not able to
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follow very rapid oscillations of the external field. To see how
this increase is curbed off, we consider higher frequencies.
Delegating the computational details to Appendices 2 b and
2 c, we present here only the final results.

In 2D, the growth of Imχsc(ω) with ω continues through
the range vFκ � ω � EF, in which

Imχsc(ω) = λ2ω ln
EF

|ω| , (3.38)

until Imχsc(ω) reaches a maximum at ω = EF. At even higher
frequencies, ω � EF, Imχsc(ω) falls off as 1/ω2:

Imχsc(ω) = e4

v2
F

E3
F

ω|ω| . (3.39)

In 3D, Imχsc(ω) is independent of ω for vFκ � ω � EF :

Imχsc(ω) = 8 ln 2

π3

e4

v2
F

kFEF = const. (3.40)

A decrease of Imχsc(ω) with ω starts again at ω ∼ EF. One
can show that Imχsc(ω) ∝ sgnω/|ω|5/2 for ω � EF. A sketch
of Imχsc(ω) in a wide frequency interval is shown in Fig. 7.

IV. CONCLUSIONS

In this paper we have studied the dynamical response of a
FL in the spin, charge, and nematic channels. First, we consid-
ered noninteracting quasiparticles, which technically amounts
either to solving the FL kinetic equation without the collision
integral or to resumming RPA series without taking correc-
tions to the irreducible susceptibility into account. We solved
the FL kinetic equation both analytically, for the Landau
function containing up to the first three harmonics, and numer-
ically, for the Landau function corresponding to the statically
screened Coulomb interaction. We showed that although the
imaginary part of the susceptibility does exhibit an RPA-type
singularity just below the particle-hole continuum boundary,
i.e., Imχ (q, ω) ∝ √

v∗
Fq − ω and Imχ (q, ω) ∝ 1/ ln2(v∗

Fq −
ω) for ω → v∗

Fq − 0 in 2D and 3D, respectively, this behavior
becomes confined to a progressively narrower region near the
boundary, as the number of harmonics in the Landau function

ω

Im ( )

vF* q

FIG. 7. A sketch of the imaginary part of the spin-current (ne-
matic) susceptibility. For ω � vFq, the behavior is described by
Eqs. (3.37)–(3.40).

is increased. For example, the square-root singularity for
the screened Coulomb potential is visible only in the region
(v∗

Fq − ω)/v∗
Fq ∼ 10−6.

Next, we took into account the residual interaction between
quasiparticles within a model of the dynamically screened
Coulomb potential. The main effect of such interaction is to
produce a nonzero spectral weight of charge and spin fluctu-
ations outside the particle-hole continuum. We showed that,
at T = 0 and in the absence of disorder, Imχs (q, ω) behaves
as q2/ω for ω � v∗

Fq both in 2D and 3D. The behavior of
the charge susceptibility depends strongly on whether the
system is Galilean invariant or not. If it is (which was the case
considered in this paper), the tail of Imχc(q, ω) is suppressed
by factor (q/kF )2 � 1 as compared to that of Imχs (q, ω),
i.e., Imχc(q, ω) ∝ q4/ω. On a technical level, the suppression
occurs as a partial cancellation between the one-loop self-
energy, ladder, and Aslamazov-Larkin diagrams. However,
the suppression receives a more natural explanation within
the relation between the charge susceptibility and longitudinal
optical conductivity, σ ′

||(q, ω). In a Galilean-invariant system,
σ ′

||(q, ω) ∝ q2, hence an extra factor of q2 in Imχc(q, ω).
On the other hand, one should expect the charge and spin
susceptibilities to be comparable if Galilean invariance is
broken by, e.g., lattice or spin-orbit interaction.

The susceptibility of a conserved quantity, e.g., charge
or spin, vanishes at q = 0 and finite ω. This helps to un-
derstand the form of the high-frequency q2/ω tails in the
corresponding susceptibilities. On the other hand, the suscep-
tibility of nematic fluctuations or of spin fluctuations in the
presence of spin-orbit interaction [39,40] is not protected by
the conservation laws. In this case, the imaginary part of the
corresponding susceptibility increases linearly with ω ([16])
until a high-energy cutoff is reached.

Although we obtained the q2/ω asymptotic form in
one-loop perturbation theory for the dynamically screened
Coulomb potential, we believe that this form pertains to a FL
of any kind. Indeed, a degenerate system of electrons exhibits
a FL behavior for ω much smaller that effective plasma
frequency, vFκ (Ref. [29]), which is where our asymptotic
form is valid.

We also found the asymptotic forms of the spin, charge,
and nematic susceptibilities above the ultraviolet scales of
the model, i.e., the effective plasma frequency and Fermi
energy. In all cases, the susceptibilities are found to decrease
as sufficiently high frequencies. In contrast to the forms
mentioned in the previous paragraphs, however, the high-
frequency asymptotic forms are specific for the Coulomb
system. We hope that the results of this paper will be use-
ful in discriminating between the FL and non-FL behaviors
observed in the experiments on non-FL materials, such as
copper-oxide superconductors [1].
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APPENDIX: COMPUTATIONAL DETAILS

In this Appendix, we present the calculations of the irre-
ducible susceptibility (polarization bubble) beyond the RPA
level. The self-energy and ladder diagrams for the spin and
nematic susceptibilities are discussed in Appendices 1 and 2,
respectively. In Appendix 3, we demonstrate that the AL
diagrams cancel the self-energy and ladder ones in the charge
channel.

1. Self-energy and ladder diagrams for the spin susceptibility

a. Combining the diagrams

In this section, we calculate the sum of diagrams 1 and
2 (self-energy) and 3 (ladder) in Fig. 5. The sum of the two
self-energy diagrams is given by

δχSE(q ) = δχ (1)(q ) + δχ (2)(q )

= −2
∫

k

GkGk+q (Gk+q�k+q + Gk�k ), (A1)

where �k is the self-energy

�k = −
∫

Q

UQGk+Q, (A2)

UQ = 1

U−1
0 (Q) − �

(0)
Q

(A3)

is the dynamically screened Coulomb interaction, and U0(Q)
is the bare Coulomb potential. Whenever it does not lead
to confusion, we will be using the notation k = (k, εn),
Q = (Q,�l ) and q = (q, ωm). Also,

∫
k

is a shorthand for∫
dDk/(2π )D

∫
dεn/(2π ), etc. and Gk is a shorthand for

G(k, εn), etc.
Using the identity

Gk+qGk = 1

iωm − εk+q + εk
(Gk − Gk+q ), (A4)

we represent δχSE as the sum of two parts: δχSE(q ) =
δχ

(I )
SE (q ) + δχ

(II )
SE (q ), where

δχ
(I )
SE (q ) = 2

∫
k

GkGk+q (�k+q − �k )

(iωm − εk+q + εk )
(A5)

and

δχ
(II )
SE (q ) = 2

∫
k

G2
k�k − G2

k+q�k+q

(iωm − εk+q + εk )

= 2
∫

k

G2
k�k

[
1

iωm − εk+q + εk
− 1

iωm − εk + εk−q

]
.

(A6)

For |q| � kF, the fractions in the square brackets in Eq. (A6)
can be expanded as

δχ
(II )
SE (q ) = 2

q2

m

∫
k

G2
k�k

1

(iωm − vFk̂ · q)2
. (A7)

Next, we integrate the combination G2
k�k over εn and εk,

assuming that relevant |Q| are small: |Q| � kF. This yields

∫
dεk

∫
dεn

2π
G2

k�k

= −
∫

dDQ

(2π )D
d�l

2π

∫
dεk

∫
dεn

2π
G2

kGk+QUQ

=
∫

dDQ

(2π )D

∫
d�l

2π
UQ

vFk̂ · Q

(i�l − vFk̂ · Q)2
. (A8)

The fraction in the integrand of the last equation above is
odd upon a simultaneous change of variables �l → −�l and
Q → −Q, while UQ is even under either of these two oper-
ations. Therefore, δχ

(2)
SE (q ) = 0. The assumption of |Q| � kF

is justified because the range if integration over |Q| is effec-
tively limited by the (inverse) screening radius κ , which must
be chosen to be smaller than kF for the perturbation theory to
be under control. Keeping higher order of |Q| would result in
κ/kF corrections. Note that the vanishing of δχ

(2)
SE (q ) occurs

regardless of the choice of ω. This circumstance will be used
later for finding the high-frequency tail of the susceptibility.

Using Eq. (A2) for �k and applying identity (A4) again,
we rewrite δχ

(I )
SE as

δχ
(I )
SE (q ) = −2

∫
k,Q

(Gk − Gk+q ) )(Gk+Q − Gk+Q+q )

(iωm − εk+q + εk )2
UQ.

(A9)

With the help of Eq. (A4), the ladder diagram (diagram 3 in
Fig. 5) can be rewritten as

δχ (3)(q )

= 2
∫

k,Q

(Gk − Gk+q ) )(Gk+Q − Gk+Q+q )

(iωm − εk+q + εk )(iωm − εk+q+Q + εk+Q)
UQ.

(A10)

For the sum of the self-energy and ladder diagrams we
then find

δχs (q ) = δχ
(I )
SE (q ) + δχ (3)(q )

= −2
∫

k,Q

(Gk − Gk+q ) )(Gk+Q − Gk+Q+q )

iωm − εk+q + εk

×UQ

[
1

iωm − εk+q + εk
− 1

iωm − εk+q+Q + εk+Q

]
.

(A11)

It will prove to be convenient to rewrite the equation above in
a symmetric form by relabeling Q = p − k:

δχs (q ) = −2
∫

k,p

(Gk − Gk+q ) )(Gp − Gp+q )

iωm − εk+q + εk

×Up−k

[
1

iωm − εk+q + εk
− 1

iωm − εp+q + εp

]
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= −2
∫

k,p

(Gk − Gk+q ) )(Gp − Gp+q )

×Up−k

εk+q − εk − εp+q + εp

(iωm − εk+q + εk )2(iωm − εp+q + εp)
.

(A12)

We now symmetrize the equation above by rewriting
δχs (q ) = (1/2)δχs (q ) + (1/2)δχs (q ) and interchanging k ↔
p in one of the two terms, while keeping in mind UQ is an even
function of Q. This gives [41,42]

δχs (q ) = −
∫

k,p

(Gk − Gk+q ) )(Gp − Gp+q )

×Up−k

(εk+q − εk − εp+q + εp)2

(iωm − εp+q + εp)2(iωm − εk+q + εk )2
.

(A13)

Relabeling back p = k + Q, we arrive at the following form

δχs (q ) = −
∫

k,Q

(Gk − Gk+q ) )(Gk+Q − Gk+Q+q )

×UQ

(εk+q−εk−εk+Q+q+εk+Q)2

(iωm−εk+Q+q+εk+Q)2(iωm−εk+q + εk )2
.

(A14)

Equation (A14) is a general result valid for |q| � kF and
arbitrary ω. In what follows, we will analyze the various
limiting cases.

For a parabolic dispersion, εk = (k2 − k2
F)/2m, Eq. (A14)

is reduced to

δχs (q ) = − 1

m2

∫
k,Q

(Gk − Gk+q ) )(Gk+Q − Gk+Q+q )

×UQ

(q · Q)2

(iωm−εk+Q+q+εk+Q)2(iωm−εk+q+εk )2
.

(A15)

b. Low frequencies: ω � vFκ

In this section, we focus on the case of a parabolic dis-
persion. First, we consider ω small compared to the energy
scale set by the interaction, i.e., ω � vFκ . In this case, typical
momentum transfers are on the order of the (inverse) screen-
ing radius, i.e., |Q| ∼ κ � kF. (To be more precise, the final
integral over |Q| in 2D will be shown to be logarithmic, with
the base of support in the region κ � |Q| � kF.) Therefore,
the dispersions can be expanded as εk+Q+q − εk+Q ≈ vk+Q ·
q ≈ vFk̂ · q and εk+q − εk ≈ vFk̂ · q as before. With these
simplifications, Eq. (A15) is reduced to

δχs (q ) = − 1

m2

∫
k,Q

(Gk − Gk+q )(Gk+Q − Gk+q+Q)

×UQ

(q · Q)2

(iωm − vFk̂ · q)4
. (A16)

Next, we integrate the products of the Green’s functions in the
equation above first over εn and then over εk, and neglect |q|

compared to |Q| in the final result. This yields

δχs (q )

= − iNF

2m2

∫
dk̂
OD

∫
Q

[
2�l

i�l − vFk̂ · Q

− �l − ωm

i(�l − ωm) − vFk̂ · Q
− �l + ωm

i(�l + ωm) − vFk̂ · Q

]

×UQ

(q · Q)2

(iωm − vFk̂ · q)4
, (A17)

where NF is the density of states at the Fermi energy per
two spin orientations,

∫
dk̂ stands for the integral over the

direction of k, O2 = 2π , and O3 = 4π .
Now we decompose the momentum transfer Q into com-

ponents perpendicular (Q⊥) and tangential (Q||) to the Fermi
surface at point k, while assuming that |Q⊥| � |Q|||. The rest
of the calculations differ somewhat between the 2D and 3D
cases because of the differences in the geometry. We follow
the 2D case in detail and then just give the result for the 3D
one.

a. 2D. In 2D, we rewrite the dot product q · Q as

q · Q = |q||Q| cos(θkq + θkQ)

= |q|(Q⊥ cos θkq − Q|| sin θkq)

≈ −|q|Q|| sin θkq, (A18)

where θab is the angle between vectors a and b. At the last step
we employed the condition |Q⊥| � |Q||| (recall that Q|| is a
scalar in 2D). Under the same assumption, Q in the interaction
potential can be replaced by Q||, and the integral over Q⊥ can
be carried out using∫ ∞

−∞

dx

iy − x
= −iπsgny. (A19)

The integral over θkq is given by∫ 2π

0

dθkq

2π

sin2 θkq

(iωm − vF|q| cos θkq)4
= |ωm|

2
(
ω2

m + v2
Fq2

) 5
2

.

(A20)

After these two steps, δχs (q ) is reduced to

δχs (q ) = − NF

4m2vF

q2|ωm|(
ω2

m + v2
Fq2

) 5
2

∫ ∞

0

dQ||
2π

∫ ∞

−∞

d�l

2π
(2|�l|

− |�l − ωm| − |�l + ωm|)Q2
||UQ||,�l

. (A21)

Now we simplify the form of the interaction potential. As
we said before, typical |Q| ≈ |Q||| are expected to be on the
order of κ , whereas typical energy transfers (�) are expected
to be on the order of the external frequency: � ∼ ω. For
external frequencies in the interval ω � vFκ , we can take
the limit of � � vF|Q|, when the Matsubara form of the
free-electron bubble (in 2D) can be approximated as

�
(0)
Q = −NF

[
1 − |�l|

vF|Q|||
]
. (A22)
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Accordingly, the dynamic part of the Coulomb interaction is
reduced to

U
dyn
Q||,�l

= 2πe2κ

(|Q||| + κ )2

|�l|
vF|Q||| . (A23)

The integral over �l yields∫ ∞

−∞
d�l|�l|(2|�l| − |�l − ωm| − |�l + ωm|) = −2

3
|ωm|3.

(A24)

The final result is obtained by integrating over Q|| to
logarithmic accuracy:

δsχ (q ) = q2e2κNF

12πv2
Fm

2

ω4
mq2(

ω2
m + v2

Fq2
) 5

2

∫ kF

0
dQ||

Q||
(Q|| + κ )2

= e4

6π2v2
F

ω4
mq2(

ω2
m + v2

Fq2
) 5

2

ln
kF

κ
. (A25)

At this step, we see that typical Q|| are indeed in the interval
κ � Q|| � kF, and thus the condition �l/vF|Q||| � 1 is sat-
isfied. Upon analytic continuation, we obtain the top line of
Eq. (3.7) in the main text.

a. 3D. In 3D, the free-electron polarization bubble in the
quasistatic limit is of the same form as in 2D up to a numerical
prefactor

�
(0)
Q = −mkF

2π2

(
1 − π

2

|�l|
vF|Q|

)
. (A26)

The rest of the calculation differs only in that there is an
additional integral over the azimuthal angle but this does not
really complicate the matters. Without repeating the same
steps as in the 2D case, we simply quote the final result

δχs (q ) = mkF

18π2

q2|ωm|3(
ω2

m + v2
Fq2

)2

e4

vFκ
, (A27)

where κ2 = 4e2mkF/π is the inverse screening radius in 3D.
Upon analytic continuation, this gives the bottom line in
Eq. (3.7).

c. Intermediate frequencies: vFκ � ω � EF

a. 2D. In 2D, the only change compared to the case con-
sidered in the previous section is that the logarithmic integral
over Q needs to be cut at |ωm| rather than at vFκ . Then the
result valid at all frequencies below the Fermi energy can be
written as

δsχ (q ) = e4

6π2v2
F

ω4
mq2(

ω2
m + v2

Fq2
) 5

2

ln
EF

max{vFκ, |ωm|} . (A28)

Upon analytic continuation and for ω � vFκ , the last equation
gives the result in Eq. (3.17) of the main text.

b. 3D. In 3D, the analysis is more involved. We go back to
Eq. (A17), neglect the vFk̂ · q term compared to ωm, subtract

off the static potential, and integrate over k̂. This yields

δχs (q ) = − NF

m2ω4
m

∫
Q

(q · Q)2

vF|Q| U
dyn
Q

×
[

2�l tan−1 vF|Q|
�l

− (�l − ωm) tan−1 vF|Q|
(�l − ωm)

− (�l + ωm) tan−1 vF|Q|
(�l + ωm)

]
, (A29)

where

U
dyn
Q = U dyn(Q,�l ) = U (Q,�l ) − U (Q, 0). (A30)

We assume first and verify later that typical integration vari-
ables are in the range vF|Q| � |�l| ∼ |ωm| � vFκ . The first
inequality sign (�) is to be understood in the logarithmic
sense, while the last one is guaranteed by our choice of
the external frequency. Under these conditions, the dynamic
interaction can be approximated by

U
dyn
Q ≈ 1

NF

(
κ

|Q|
)4

�l

vF|Q| tan−1 vF|Q|
�l

. (A31)

Substituting this form into Eq. (A29) and rescaling the vari-
ables as x = �l/ωm (for ωm > 0) and y = vF|Q|/ωm, we
obtain

δχs (q ) = − 1

6π2

q2κ4

vFm2ω2
m

∫ EF/ωm

0

dy

y2
f (y), (A32)

where

f (y) =
∫ ∞

0
dxx tan−1

(y

x

)[
2x tan−1

(y

x

)
− (x − 1)

× tan−1

(
y

x − 1

)
− (x + 1) tan−1

(
y

x + 1

)]
.

(A33)

In Eq. (A32) we retained the upper limit of integration at
|Q| = kF in anticipation of a logarithmic divergence. To an-
alyze the behavior of f (y) for y � 1, we notice that a formal
expansion in y leads to a singularity of the integrand at x = 1.
Therefore, the integral is controlled by a narrow region around
x = 1. Introducing a new variable z = (x − 1)/y and setting
z = 0 in all but the last term in the square brackets, we obtain

f (y � 1) = 2y3
∫ ∞

0
dz

(
1 − z tan−1 1

z

)
= π

2
y3. (A34)

Therefore, the 1/y2 singularity at y → 0 in Eq. (A65) is
canceled. For y � 1, we apply the identity tan−1 x = π

2 −
tan−1 1

x
to the square bracket in Eq. (A66) and expand the

resultant expression in 1/y. This yields

f (y � 1) = 2y

∫ ∞

0
dx

x

x2 + y2
tan−1

(y

x

)
= (π ln 2)y.

(A35)

Therefore, the remaining integral over y is indeed logarithmic
and can be solved in the leading logarithmic approximation
with the result

δχs (q ) = − ln 2

6π

κ4

m2vF

q2

ω2
m

ln
EF

|ωm| . (A36)
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A nonzero imaginary part of δχs comes from the analytic con-
tinuation of the logarithmic factor. After analytic continuation,
we arrive at Eq. (3.19) of the main text.

d. High frequencies: ω � EF

In the preceding section, we considered the case when
the external frequency and momentum, ω and |q|, are small
compared to EF and kF, respectively. Now we focus on
the high-frequency regime, where ω � EF, while |q| is still
small, and consider only the 2D case. We recall that Eq. (A14)
was derived without any restrictions on ω. Since the integrand
is already proportional to q2 while we assume that vF|q| � ω,
we set |q| = 0 in the rest of the expression and obtain

δχs (q ) = − 1

m2ω4
m

∫
k,Q

(Gk − Gk+q ) )

× (Gk+Q − Gk+Q+q )(q · Q)2U
dyn
Q , (A37)

where U
dyn
Q is the dynamic part of the interaction. Integrating

the products of the Green’s functions in the equation above
over εm and k, we obtain a combination of polarization
bubbles

δχs (q ) = − 1

m2ω4
m

∫
k,Q

nF (εk )(q · Q)2UQ[2�(Q,�l )

−�(Q,�l + ωm) − �(Q,�l − ωm)]. (A38)

We first assume and then verify that in the current regime
�l ∼ ω and Q2/m ∼ ω, i.e., |Q| ∼ √

mω � kF.
The polarization bubble for |Q| � kF can be approximated

as [28,43,44]

�(Q,�l ) =
∫

d2k

(2π )2
nF (εk )

[
1

i�l − εk+Q + εk

− 1

i�l − εk + εk−Q

]

≈
∫

d2k

(2π )2
nF (εk )

[
1

i�l − Q2

2m

− 1

i�l + Q2

2m

]

= −n0

Q2

2m

�2
l + (Q2

2m

)2 , (A39)

where n0 is the number density. Next, using the condition of
|Q| � kF, we approximate the dynamic interaction as

U
dyn
Q = (2πe2)2 �(Q,�l ) − �(Q, 0)

[|Q| − 2πe2�(Q,�l )][|Q| − 2πe2�(Q, 0)]

≈ (2πe2)2

Q2
[�(Q,�l ) − �(Q, 0)]. (A40)

Substituting the last result into Eq. (A40), we find

U
dyn
Q = (2πe2)22mn0

1

Q4

�2
l

�2
l + (Q2

2m

)2 . (A41)

Now we substitute Eqs. (A39) and (A41) back into Eq. (A56)
and rescale the variables as x = �l/ωm and y = Q2/2mωm

(assuming that ωm > 0). This yields

δχs (q )

= −n2
0e

4

m

q2

ω4
m

∫ ∞

EF/ωm

dy

∫ ∞

0
dx

x2

x2 + y2

[
1

(x + 1)2 + y2

+ 1

(x − 1)2 + y2
− 2

x2 + y2

]
. (A42)

As before, we kept the lower limit at |Q| ∼ kF in anticipation
of a logarithmic singularity. The integral over x in the equation
above yields π/[2y(4y2 + 1)] and thus the remaining integral
over y indeed diverges logarithmically at the lower limit.
Solving this integral to logarithmic accuracy and noting that
the result must be an even function of ωm, we obtain

δχs (q ) = −πn2
0e

4

2m

q2

ω4
m

ln
|ωm|
EF

. (A43)

Performing analytic continuation, expressing n0 in terms of
the Fermi energy via n0 = mEF/π and taking the imaginary
part, we arrive at Eq. (3.18) of the main text.

2. Self-energy and ladder diagrams
for the nematic susceptibility

In this Appendix, we provide details of the calculation for
the spin susceptibility in the nematic channel with angular
momentum equal to unity. The sum of diagrams 1–3 in Fig. 5
at |q| = 0 is given by Eq. (3.36) of the main text.

a. Low frequencies: ω � vFκ

We consider a parabolic single-particle dispersion, when
vk+Q − vk = Q/m. Expanding the dispersions to linear order
in the momentum transfer Q, we integrate the product of the
Green’s functions in Eq. (3.36) first over εm and then over εk
to obtain

δχsc(ωm) = 2NF

m2

∫∫∫
dDQd�l

(2π )D+1

dk̂
OD

× Q2U dyn(Q,�l )vFk̂ · Q

[i(�l + ωm) − vFk̂ · Q][i�l − vFk̂ · Q]2
.

(A44)

a. 2D. Integrating over the angle between k and Q and
dropping an odd in �l part of the result, we obtain:

δχsc(ωm) = NF

(2π )2m2ω2
m

∫ ∞

0
d|Q||Q|3

∫ ∞

−∞
d�U dyn(Q,�l )

×
⎡
⎣ |�l|√

�2
l + v2

FQ2
− |�l + ωm|√

(�l + ωm)2 + v2
FQ2

⎤
⎦.

(A45)

As before, we first assume and then verify that typical |Q|
and �l satisfy |Q| � κ � �l/vF ∼ ωm/vF. Then the factor in
the square brackets in the equation above is reduced to |�l| −
|�l + ωm|, while the dynamic interaction can be replaced by

U dyn(Q,�l ) = N−1
F

κ2

(|Q| + κ )2

|�l|
vF|Q| . (A46)
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The integral over �l gives∫ ∞

−∞
d�l|�l|(|�l| − |�l + ωm|) = −1

3
|ωm|3. (A47)

From here, we already see that δχsc(ωm) ∝ |ωm|. Calculating
the remaining integral over |Q| to logarithmic accuracy, we
find

δχsc(ωm) = − 1

6π2

e4

v2
F

ln
kF

κ
|ωm|. (A48)

Upon analytic continuation, this gives the top line in
Eq. (3.37) of the main text.

b. 3D. In 3D, angular integration yields

δχsc(ωm) = NF

8π3vFm2ω2
m

∫ ∞

0
d|Q||Q|3

∫ ∞

−∞
d�U dyn(Q,�l )

×
[
�l tan−1 vF|Q|

�l

−(�l+ωm) tan−1 vF|Q|
�l + ωm

]
,

(A49)

whereas the dynamic interaction is approximated by

U dyn(Q,�l ) = π

2
N−1

F

κ4

(Q2 + κ2)2

|�l|
vF|Q| . (A50)

The rest of the calculations is similar to the 2D case, except for
the integral over |Q| is not logarithmic. After simple algebra,
we find

δχsc(ωm) = − 1

24π2

e4

v2
F

kF|ωm|. (A51)

Upon analytic continuation, this gives the bottom line in
Eq. (3.37) of the main text.

b. Intermediate frequencies: vFκ � ω � EF

a. 2D. Extension to frequencies in the intermediate re-
gion of vFκ � ω � EF is done in the same way as in Ap-
pendix 1 c: One only has to replace κ in the lower limit of the
logarithmic integral over Q by |ωm|/vF. Then the result can
be written as

δχsc(ωm) = − 1

6π2

e4

v2
F

|ωm| ln
EF

|ωm| . (A52)

Upon analytic continuation, this gives Eq. (3.38) of the main
text.

b. 3D. As was the case with the spin susceptibility (cf.
Appendix 1 c), extension to the intermediate range of frequen-
cies in 3D requires more work. As before, we approximate the
dynamic interaction in Eq. (A49) by Eq. (A31). Folding the
integral over � from (−∞,∞) to (0,∞), we arrive at

δχsc(ωm) = κ4

2π3vFm2

∫ EF/|ωm|

0

dy

y2
f (y), (A53)

where f (y) is given by Eq. (A66). Using the asymptotic
expansion of f (y) for large y (A35), and cutting the loga-
rithmically divergent integral at y ∼ 1 we find

δχsc(ωm) = ln 2

2π2

κ4

vFm2
ln

EF

|ωm| . (A54)

We see that Imδχsc(ω) is independent of ω in this frequency
interval and given by Eq. (3.40) of the main text.

c. High-frequency region: ω � EF

At the first step, we integrate the product of the Green’s
functions in Eq. (3.36) over εm and shift the fermionic mo-
menta in such way that all the Fermi functions are reduced to
nF (εk ):

χsc(ωm) = 1

m2

∫∫∫
d2Qd�ld

2k

(2π )5
nF (εk )Q2U dyn(Q,�l )

×
{

1

[i(�l+ωm)−εk+Q+εk]

1

[i�l−εk+Q+εk]2

− 1

[i(�l+ωm) − εk+εk−Q]

1

[i�l−εk+εk−Q]2

}
.

(A55)

As in Appendix 1 d, we first assume and then verify that
Q2/m � �l ∼ ωm. With this assumption, the differences of
the dispersions in the equation above can be replaced by
εk±Q − εk ≈ Q2/2m. After this step, the integral over k gives
the total number density n0. Then,

χsc(ωm) = n0

2m2

∫∫
d2Qd�l

(2π )3
Q2U dyn(Q,�l )

×
{

1[
i(�l + ωm) − Q2

2m

] 1[
i�l − Q2

2m

]2

− 1[
i(�l + ωm) + Q2

2m

] 1[
i�l + Q2

2m

]2

}
. (A56)

Substituting Eq. (A41) for the dynamic interaction into
Eq. (A56) and rescaling the variables as x = �l/ωm and
y = Q2/2mωm (with ωm > 0), we obtain

δχsc = n2
0e

4

mω2
m

∫ ∞

EF/ωm

dy

y

∫ ∞

−∞
dx

x2

x2 + y2

×
{

1

[i(x + 1) − y](ix − y)2

− 1

[i(x + 1) + y](ix + y)2

}
. (A57)

As before, we kept the lower limit of the integral over |Q|
at |Q| ∼ kF in anticipation of a logarithmic divergence. The
integral over x is equal to π/(4y2 + 1), and we indeed arrive
at a logarithmic integral over x

δχsc(ωm) = πn2
0e

4

mω2
m

∫ ∞

EF/ωm

dy

y

1

4y2 + 1
≈ πn2

0e
4

mω2
m

ln
ωm

EF
.

(A58)

As δχsc(ωm) must be an even function of ωm, it is obvious that
for an arbitrary sign of ωm the result should read

δχsc(ωm) = πn2
0e

4

mω2
m

ln
|ωm|
EF

. (A59)

Performing analytic continuation, expressing n0 in terms of
the Fermi energy, and taking the imaginary part, we arrive at
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Eq. (3.39) of the main text. A similar analysis shows that in
3D Imδχsc(ω) ∝ sgnω/|ω|5/2.

3. Contribution of the Aslamazov-Larkin diagrams to the
charge susceptibility

As we mentioned in the main text, the Aslamazov-Larkin
(AL) diagrams in the spin channel vanish identically due to
spin traces but they give a nonzero contribution to the irre-
ducible charge susceptibility. In this section, we show that in a
Galilean-invariant system the AL diagrams cancel the leading
contributions from the self-energy and ladder diagrams in the
region ω � vF|q|. The sum of the two AL diagrams (Fig. 5, 4
and 5) can be written as

δχAL(q, ωm) = χ (4)(q, ωm) + χ (5)(q, ωm)

= 4
∫

Q,�l

[T 2(Q, q,�l , ωm)

+ |T (Q, q,�l , ωm)|2]

×U (Q − q,�l − ωm)U (Q,�l ), (A60)

where a factor of 4 is due to the trace over spins, and

T (Q, q,�l , ωm) =
∫

k,εn

G(k, εn)G(k + q, εn + ωm)

×G(k + Q, εn + �l ) (A61)

is a “triangle” formed by the three Green’s functions.
First, we prove that δχAL(q → 0, ωm) = 0. This condition

guarantees charge conservation as we already know that the
sum of the self-energy and ladder diagrams does vanish at q =
0. The two AL diagrams cancel each other because

T ∗(Q, 0,�l , ωm) = −T (Q, 0,�l , ωm) (A62)

and thus T 2 + |T |2 = 0 at q = 0. To see this in more detail,
we put q = 0 in Eq. (A61), apply identity (A4) to the first
two Green’s functions in T , and recall that �(Q, ζm) =∫

k,εn
G(k + Q, εn + ζm)G(k, εn) is the polarization bubble on

the Matsubara axis. This yields

T (Q, 0,�l , ωm) = 1

iωm

[�(Q,�l ) − �(Q,�l − ωm)].

(A63)

We now recall that �(Q, ζm) is purely real and thus
T (Q, 0,�l , ωm) is purely imaginary, which proves our
assertion, Eq. (A62). [That �(Q, ζm) is purely real
follows from the spectral representation �(Q, ζm) =

(1/π )
∫

dzIm�(Q, z)/(z − iζm) and the condition that
Im�(Q, z) is an odd function of z.] The same requirement,
i.e., that any susceptibility on the Matsubara axis must be a
real-valued quantity, implies that the imaginary part of T 2

(at any q) must vanish on subsequent integrations, and thus
T 2 + |T 2| must be reduced to 2(ReT )2. We will be using this
observation later on.

We first assume and then verify that the Coulomb interac-
tion can be approximated by its static form. Finally, since we
are free to choose the external momentum q such that |q| � κ

while we expect that |Q| ∼ κ , we can also neglect q in one of
the Coulomb potentials. With these simplifications,

U (Q − q,� − ω)U (Q,�) ≈
(

2πe2

|Q| + κ

)2

. (A64)

Now we calculate the triangle T . Integrating over εn, we
obtain

T (Q, q,�l , ωm)

= −
∫

d2k

(2π )2

1

ωm + i(εk+Q − εk )

[
nF (εk ) − nF (−εk+Q)

�l + i(εk+Q − εk )

− nF (−εk+q) − nF (−εk+Q)

�l − ωm + i(εk+Q − εk+q)

]
. (A65)

At this point, the calculation deviates from the procedure
employed for the self-energy and ladder diagrams. Namely,
if we expand dispersions to linear order in q and Q, as we
did in the previous two sections, the entire T would be purely
imaginary and thus the T 2 and |T |2 terms would cancel each
other not only at q = 0 but also at finite q. To get a nonzero
result, we need to keep Q2/2m terms in the dispersions.
However, q2/2m terms can still be neglected because q can
be chosen arbitrarily small.

Shifting the momenta in Eq. (A65) in such a way that
all the Fermi functions become nF (εk ) and neglecting O(q2)
terms, we get

T (Q, q,�l , ωm)

= −
∫ kF

0

d|k||k|
2π

∫
dθkQ

2π

[
1

ωq�+
− 1(

ωq − i
m

Q · q
)
�−

− 1

ωq

(
�+ − ωq + i

m
Q · q

)
+ 1(

ωq − i
m

Q · q
)(

�− − ωq + i
m

Q · q
)], (A66)

where
ωq = ωm + ivFk̂ · q, �± = �l ± i(εk±Q − εk ). (A67)

Since |ω| � vF|q| by assumption, we can replace ωq by ωm everywhere. Next, we expand the integrand in Eq. (A66) to first
order in 1

m
Q · q, which yields

T (Q, q,�l , ωm) = T (Q, 0,�l , ωm) − i

m
Q · q

∫ kF

0

dkk

2π

∫
dθkQ

2π

[
1

ω2
m

(
1

�− − ωm

− 1

�−

)

− 1

ωm

(
1

(�+ − ωm)2
+ 1

(�− − ωm)2

)]
, (A68)

where the (purely imaginary) leading term T (Q, 0,�l , ωm) is given by Eq. (A63).
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Now we can see why linearization of the electron spectrum gives a zero result for the AL diagrams. Suppose that we perform
such linearization upon which �+ = �− = �l + ivFk̂ · Q. The angular integrals in Eq. (A68) are calculated using

I (z) =
∫ 2π

0

dφ

2π

1

iz − cos φ
= −i

sgnz√
z2 + 1

, J (z) =
∫ 2π

0

dφ

2π

1

(iz − cos φ)2 = i
∂

∂z
I (z) = − |z|

(z2 + 1)3/2
, (A69)

where z is purely real. (In the second line, we neglected the δ(z) term which gives no contribution to the imaginary part of the
susceptibility.) It is easy to see that the contributions to T from both the first and second terms in the square brackets in Eq. (A68)
are purely imaginary in this approximation, and thus the two AL diagrams cancel each other.

To get a nonzero result, we need to keep the Q2/2m terms in the dispersions, i.e., take �± as

�± = �l + i

(
1

m
k · Q ± Q2

2m

)
. (A70)

Keeping the Q2/2m term amounts to shifting z in Eq. (A69) by a complex number, which gives a real-valued correction to the
integral in the top line and imaginary-valued correction to the integral in the bottom one. However, such a correction will cancel
out between the two terms in the second round bracket in the integrand of Eq. (A68). Therefore, we need to keep only the first
round bracket in there. The rest of the integrations are performed as follows:

T (Q, q,�l , ωm) − T (Q, 0,�l , ωm) = − iQ · q
mω2

m
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2π
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⎭. (A71)

Now, we may safely expand the expression above to first
order in iQ2/2m; this gives a real-valued correction to T .
When T is squared, the cross term of T (Q, 0,�l , ωm) and the
O(Q · q) correction will vanish on integrating over the angle
between q and Q (such a term is purely imaginary and thus
must vanish anyway). Keeping only that part of T which gives
an O(q2) contribution to ImχAL(q, ωm), we obtain

T = − Q · q
4πω2

⎡
⎣ |�l − ωm|√

(�l − ωm)2 + v2
FQ2

− |�l|√
�2

l + v2
FQ2

⎤
⎦.

(A72)

Substituting this result back into Eq. (A60), and rescaling the
variables as x = �l/vF|Q| and y = ωm/vF|Q|, we find

δχAL(q, ωm) = vF

2π2ω4
m

∫
d2Q

(2π )2

(2πe2)2

(|Q| + κ )2

× (Q · q)2|Q|F
(

ωm

vF|Q|
)

, (A73)

where

F (y) =
∫ ∞

−∞
dx

(
|x − y|√

(x − y)2 + 1
− |x|√

x2 + 1

)2

. (A74)

We are interested in the limit of y � 1, when

F (y) = 3π

8
y2 − 2

3
|y|3 + O(y4). (A75)

Upon analytic continuation, the first term in Eq. (A75) con-
tributes only to the real part of the susceptibility and thus will
be discarded. Keeping only the second term and integrating
over Q, we obtain the final result for the AL contribution

δχAL(q, ωm) = −λ2
q2

|ωm| , (A76)

where λ2 is given by Eq. (3.8a). Upon analytic continuation,
the last result gives Eq. (3.22) of the main text.
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