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A powerful mechanism for constructing gauge theories is to start from a theory with a global symmetry,
then apply the “gauge principle,” which demands that this symmetry hold locally. For example, the global
phase rotation of a system of conserved charges can be promoted to a local phase rotation by coupling to
an ordinary U (1) vector gauge field. More recently, a class of particles has been studied featuring not only
charge conservation, but also conservation of higher moments, such as dipole moment, which leads to severe
restrictions on the mobility of charges. These particles, called fractons, are known to be intimately connected to
symmetric tensor gauge fields. In this work, we show how to derive such tensor gauge theories by applying the
gauge principle to a theory of ungauged fractons. We begin by formulating a field theory for ungauged fractons
exhibiting global conservation of charge and dipole moment. We show that such fracton field theories have a
characteristic non-Gaussian form, reflecting the fact that fractons intrinsically interact with each other even in
the absence of a mediating gauge field. We then promote the global higher moment conservation laws to local
ones, which requires the introduction of a symmetric tensor gauge field. Finally, we extend these arguments to
other types of subdimensional particles besides fractons. This work offers a possible route to the formulation of
non-Abelian fracton theories.
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I. INTRODUCTION

The concept of a gauge theory is one of the most impor-
tant elements of the toolbox of modern theoretical physics,
describing phenomena ranging from the fundamental particles
of the standard model to topological phases of matter in
solid state systems. Gauge theories are different from more
conventional field theories, in that they have an enormously
large degree of symmetry, partially due to a significant re-
dundancy in the description of physical states. Specifically,
gauge theories have local symmetries, involving independent
symmetry transformations at each point in space time, as op-
posed to the global symmetry transformations encountered in
ungauged field theories. A particularly elegant and powerful
approach to constructing gauge theories is to start from an
ungauged theory, with some global symmetry, then make the
demand that this symmetry should continue to hold locally.
Philosophically, the notion that a global symmetry should
continue to hold at the local level is known as the “gauge
principle”[1].

As a concrete example, consider a system of conserved
particles, described by a field �. Particle number conservation
will be encoded in the theory in the form of invariance of the
action under a global phase rotation:

� → eiα�, (1)

for constant α. In order to construct a gauge theory, we now
demand that the theory should be invariant under indepen-
dent phase rotations at each point in space time, i.e., under
� → eiα(x,t )� for a function α(x, t ) with arbitrary space-
time dependence. Adding such space-time dependence creates
problems for derivative operators in the theory, which no

longer transform covariantly:

∂μ� → eiα (∂μ + i∂μα)�. (2)

In order to restore gauge covariance and thereby obtain a
gauge-invariant action, we must introduce a gauge field to
absorb the noncovariant piece of this transformation. We do
this by defining a gauge-covariant derivative as

Dμ� = (∂μ − iAμ)� → eiαDμ�, (3)

where the gauge field Aμ must transform as Aμ → Aμ + ∂μα.
We can then easily write down a gauge-invariant Lagrangian
for the theory in terms of the gauge covariant derivative and
field invariants of the gauge field itself:

L = Lm[�,D�,D2�, . . .] + FμνF
μν, (4)

where the first term describes matter and its interaction with
the gauge field, while Fμν = ∂μAν − ∂νAμ is the standard
field strength tensor of a U (1) gauge field, describing the
dynamics of a photon mode. In this way, promoting the phase
rotation of a set of conserved particles from a global to a local
symmetry has led to the familiar Maxwell gauge theory.

Taking other types of global symmetries and “gauging”
them will result in other types of gauge theories. For exam-
ple, gauging a global symmetry described by a non-Abelian
Lie group will lead to a Yang-Mills theory [1]. As another
example, gauging a symmetry protected topological (SPT)
phase protected by group G will result in a topologically
ordered phase with gauge group G [2]. These types of gauging
procedures are now well established. In recent years, however,
a new set of unfamiliar symmetries and conservation laws has
come to light, pertaining to higher charge moments. These
new conservation laws are manifested in systems of particles
known as fractons, which have severely restricted mobility
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tracing directly to conservation of quantities such as dipole
moment [3]. (We refer the reader to a recent review [4] for
a broad perspective on fractons, and to selected literature
[3,5–26] for further details.) While global charge conservation
is associated with a global phase rotation, � → eiα�, global
dipole conservation is associated with a linearly varying phase
rotation, � → ei�λ·�x�. This symmetry transformation is nei-
ther a gauge symmetry nor one of the recently discussed
subsystem symmetries [8,27,28]. (Note that a subsystem sym-
metry is equivalent to an infinite number of higher moment
symmetries, which provide the more general framework.) It
is not immediately clear what sort of theory will result from
“gauging” such a set of symmetries and conservation laws.
A significant clue is provided by fracton phases in certain
spin, Majorana, and quantum rotor systems [3,6–11], which
are often described in the language of tensor gauge theories,
as opposed to the more familiar vector gauge fields obtained
from gauging conventional symmetries. In this work, we will
demonstrate explicitly how tensor gauge fields arise via appli-
cation of the gauge principle to a system of fractons, promot-
ing global higher moment conservation laws and symmetries
to local ones. This work serves as a useful complement to the
existing literature on gauging subsystem symmetries to obtain
discrete fracton models [8,10–12,25,27,29,30].

In order to study gauging a system of fractons, it is
first necessary to have a field theory for ungauged U (1)
fractons, which has not yet been studied in the fracton lit-
erature. (Earlier work [29] has studied a field theory for a
condensate of ungauged fractons, though as we will discuss,
such field theories cannot describe the mobility restrictions
of uncondensed fractons.) We therefore begin by formulating
a field-theoretic description of ungauged fractons exhibiting
global conservation of both charge and dipole moment. We
show that there is generically no nontrivial Gaussian action
(i.e., quadratic in the fracton fields) with these properties.
Rather, the natural field theory for the simplest fracton system
is quartic in the fracton fields. Similarly, field theories for
fracton systems conserving even higher moments will feature
even higher powers of the fields in the action. This type of
non-Gaussian behavior has already been found by Slagle and
Kim in the context of a gauge theory for the “X-cube” fracton
model [12]. This non-Gaussian nature of the field theory
reflects the fact that fractons necessarily interact with each
other even in the absence of a mediating gauge field, as we will
review. In this sense, there is no true “noninteracting” theory
of fractons.

With the ungauged theory in hand, we then proceed to
apply the gauge principle, demanding that the theory be in-
variant under local symmetry transformations. We show that,
for a theory conserving charge and dipole moment, the gauge
principle demands coupling to a rank-two symmetric tensor
gauge field, consistent with previously studied fracton phases
[3]. Similarly, local conservation of higher charge moments
will require the introduction of even higher rank tensor gauge
fields. In this way, the theory of symmetric tensor gauge fields
can be derived directly from a gauge principle, in close
analogy with more conventional gauge theories. Finally, we
consider extensions of this logic to other types of subdimen-
sional particles besides fractons, which also yield tensor gauge
theories upon application of the gauge principle. This work

opens a possible door to investigations of non-Abelian fracton
theories, via gauging non-Abelian analogs of higher moment
symmetries.

II. UNGAUGED FRACTON FIELD THEORY

We begin by constructing a field theory for ungauged frac-
tons, focusing on the simplest type: U (1) fractons exhibiting
conservation of both charge and dipole moment. We describe
the fractons by a matter field � along with its corresponding
charge density operator, ρ = �†�. We now wish to write
down an action for this theory which is consistent with global
conservation of charge and dipole moment. Since the charge
density ρ generates rotations of the phase of �, the de-
mand that the action respect charge conservation (

∫
ddx ρ =

constant) requires invariance of the action under the global
transformation:

� → eiα� (5)

for constant α. We also demand that the theory obeys con-
servation of dipole moment,

∫
ddx (ρ �x) = constant, which

requires an additional invariance under

� → ei�λ·�x� (6)

for constant vector �λ. In other words, the phase of the field
can now change by a linear function, instead of simply by a
global constant, as in the case of ordinary conserved charges.
For convenience, we combine both types of transformations
into the form,

� → eiα(x)�, (7)

where, in the present context, α(x) is restricted to be a linear
function.

In order to construct an action with the desired symmetries,
we look for operators O which transform covariantly under
the phase rotation, O → einαO for integer n. For ordinary
globally conserved charges, where α(x) is a constant, the
field � and all of its derivatives and powers transform co-
variantly. In the present case, however, the linear behavior of
α(x) restricts the set of covariant operators involving spatial
derivatives. While the field � itself is still covariant, it can
readily be checked that any number of derivatives acting on a
single power of � will not transform covariantly. Rather, the
lowest-order covariant derivative operator contains two factors
of �, taking the form,

�∂i∂j� − ∂i�∂j�. (8)

Under a generic transformation � → eiα(x)�, this operator
transforms into

ei2α (�∂i∂j� − ∂i�∂j�

+ i∂iα�∂j� + i∂jα�∂i� − (∂iα∂jα − i∂i∂jα)�2

− i∂iα�∂j� − i∂jα�∂i� + ∂iα∂jα�2)

= ei2α (�∂i∂j� − ∂i�∂j� + (i∂i∂jα)�2). (9)

For the phase rotations under consideration, where α(x) is a
linear function, we have ∂i∂jα = 0, such that

�∂i∂j� − ∂i�∂j� → ei2α (�∂i∂j� − ∂i�∂j�). (10)
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FIG. 1. Theories with only charge conservation have local dipole
creation operators, which lead to quadratic terms in the continuum
field theory limit. In contrast, a theory with dipole moment conserva-
tion has no such dipole creation operators. In this case, the smallest
creation operators are quadrupolar, leading to quartic terms in the
field theory.

It is then straightforward to construct a Lagrangian respecting
the charge and dipole conservation laws. To lowest order, this
Lagrangian takes the form,

L = |∂t�|2 − m2|�|2 − λ|�∂i∂j� − ∂i�∂j�|2

− λ′�∗2(�∂2� − ∂i�∂i�), (11)

where we have freely added a term with a single time
derivative and a mass term, which have no interplay with the
spatially dependent phase rotation. The constants λ and λ′
are arbitrary couplings. Note that, while the λ′ term contains
fewer derivatives than the λ term, it only contains diagonal
second derivatives (e.g., ∂2

x , but not ∂x∂y), indicating that
this term only describes longitudinal motion of dipoles. As
such, it is necessary to keep the λ term in order to correctly
describe transverse motion of dipoles. Also note that we have
here assumed rotational invariance, for simplicity. Additional
anisotropic terms may arise for certain lattice symmetries.

Equation (11) represents a field theory for ungauged frac-
tons, respecting global conservation of both charge and dipole
moment. Importantly, this lowest-order nontrivial action is
already non-Gaussian before coupling to any gauge field, con-
taining fourth powers of � in the action. This non-Gaussian
behavior could have been anticipated based on microscopic
considerations. For a theory of ordinary conserved charges,
local charge creation operators take the form of microscopic
dipoles, �†(x + 1)�(x), which lead to a quadratic term in the
action upon Taylor expansion. Meanwhile, in a theory with
conserved dipole moment, the local charge creation opera-
tors take the form of microscopic quadrupoles, as depicted
in Fig. 1, leading to quartic terms upon Taylor expansion.
Similarly, a theory with conserved quadrupole moment would
only have microscopic octupole operators, leading to an action
which is octic in the fracton field. This logic will extend to
conservation laws of any higher moment.

The non-Gaussian nature of the fracton action is also to be
expected, since fractons have an intrinsic ability to interact
with each other, even in the absence of a mediating gauge
field. While a fracton cannot move by itself, a fracton is
capable of limited mobility by “pushing off” other fractons
in the system via the following process: A fracton moves in
one direction by emitting a dipole in the opposite direction,
which then propagates to and is absorbed by a second frac-
ton, as depicted in Fig. 2. Such processes, which lead to a

FIG. 2. Fractons can interact via the exchange of virtual dipoles,
allowing two fractons to “push off” of each other.

“gravitational” attraction between fractons [14], are neatly
captured by the two quartic terms in the fracton action.

We mention in passing that, to describe a symmetry broken
system, such that �(x, t ) = �0e

iθ (x,t ) for constant �0 and
dynamical phase θ , the Lagrangian of Eq. (11) will simplify to
an ordinary Gaussian field theory on the phase θ , which trans-
forms as θ → θ + α(x) under the symmetries. The resulting
action takes the form,

L = 1

2
(∂tθ )2 − K

2
(∂i∂j θ )2, (12)

for some parameter K . For such symmetry broken phases,
where the mobility restrictions have been relaxed, the non-
Gaussian nature of the original action is unimportant. How-
ever, for describing a symmetric system with immobile
gapped fractons, one must retain the full quartic structure
of the field theory. Note that, if (∂i∂j θ )2 is replaced by
cos(∂i∂j θ ) in the above Lagrangian, then accessing the uncon-
densed phase becomes possible. However, such cosine terms
inherently require a choice of underlying lattice and do not
represent a true continuum field theory. Rather, the quartic
action of Eq. (11) must be used for a completely continuum
description of the fracton phase.

III. APPLICATION OF THE GAUGE PRINCIPLE

In the previous section, we derived a fracton field theory
which is invariant under � → eiα(x)� for linear functions
α(x), thereby respecting global conservation of charge and
dipole moment. We now wish to apply the gauge principle
and demand that the theory have a local symmetry, such that
α(x) is an arbitrary function of x. From the form of the
transformation seen in Eq. (9), it is easy to see that we can
construct a gauge-covariant object of the form,

�∂i∂j� − ∂i�∂j� − iAij�
2, (13)

if we have the transformation rules:

� → eiα�, (14)

Aij → Aij + ∂i∂jα. (15)

For notational simplicity, we define a gauge-covariant second
derivative operator Dij acting on �2 as follows:

Dij�
2 = �∂i∂j� − ∂i�∂j� − iAij�

2. (16)

More properly, we should define Dij as a bilinear operator
acting on two functions � and � as Dij [�,�] = �∂i∂j� −
∂i�∂j� − iAij��, where both fields must have the same
charge under the gauge transformation in order for the op-
erator to be covariant. (Note that, in the presence of multiple
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charged fields, only the total charge and dipole moment of the
system will be conserved, not for each field separately.) For
present purposes, however, we will only need the “diagonal”
element, Dij�

2 ≡ Dij [�,�]. We can also allow α to have
arbitrary time dependence if we introduce the gauge-covariant
time derivative:

Dt� = (∂t − iφ)�, (17)

where the field φ transforms as

φ → φ + ∂tα, (18)

behaving analogously to a “timelike” component of the gauge
field. We can also construct gauge-invariant quantities in-
volving only the gauge fields, analogous to the electric and
magnetic fields of ordinary U (1) gauge theory. For example,
in three spatial dimensions these take the form Eij = ∂tAij −
∂i∂jφ and Bij = εik
∂

kA

j . Making use of these quantities,

the Lagrangian for the gauged theory, to lowest order in
derivatives, must take the form,

L = |Dt�|2 − m2|�|2 − λ|Dij�
2|2 − λ′�∗2Di

i�
2

+ EijEij − BijBij . (19)

The gauge field sector of this Lagrangian is exactly of the form
studied in previous works on fracton tensor gauge theories,
specifically that of the scalar charge theory studied in Ref. [3].
However, we now have an explicit coupling to matter fields
which accounts for the higher moment conservation laws of
fractons. Through similar application of the gauge principle
to theories with even higher conserved moments, we could
also derive gauge theories featuring tensor gauge fields of rank
higher than two, which we do not carry through here.

IV. EXTENSIONS TO OTHER SUBDIMENSIONAL
PARTICLES

We now wish to extend these ideas to other types of
subdimensional particles, which have restricted mobility only
in certain directions. As a concrete example, we will focus
on one-dimensional particles, restricted to motion along a
line. A similar analysis will hold for two-dimensional par-
ticles. We focus on the simplest type of one-dimensional
particles, which carry a vector-valued charge �ρ. We take
these vector charges to exhibit global conservation of both
charge (

∫
ddx �ρ = constant) and angular charge moment

(
∫

ddx ( �ρ × �x) = constant). We describe these vector parti-
cles via a field �i corresponding to each component of the
charge vector, such that ρi = �

†
i �i , where no summation over

i is implied. In this section alone, all summations will be
indicated explicitly.

Conservation of vector charge implies that the action for
the theory should be invariant under independent phase rota-
tions on each component of the field:

�i → eiαi �i (20)

for constant vector αi , where this equation is to be interpreted
component-wise in some particular basis. Meanwhile, the
angular moment conservation law implies invariance under a
second set of transformations:

�i → ei
∑

jk εijkλj xk�i (21)

for constant vector λj . For convenience, we combine these
transformations as

�i → eiαi (x)�i , (22)

where for present purposes we have αi (x) = α0,i +∑
jk εijkλjxk for constants α0,i and λ. Note that the field

�i does not transform nicely under rotations (i.e., it is
not a valid vector). Nevertheless, at the end of the day,
we will obtain a true tensor gauge field upon applying the
gauge principle. The loss of manifest rotational invariance
introduced by �i may simply be a mathematical artifact. It
remains an open problem whether this theory can be rewritten
in a manifestly rotationally invariant way.

We now wish to construct an invariant action by identifying
the covariant operators in this theory. As usual, operators
without derivatives are automatically covariant. Meanwhile,
a derivative on �i transforms as

∂i�j → eiαj (∂i + i∂iαj )�j = eiαj (∂i + i
∑

k

εikjλk )�j .

(23)

We see that, at the level of single-field derivative operators,
we have covariance only when i = j , giving us the covariant
longitudinal derivative operators:

∂i�i → eiαi ∂i�i (24)

for each component i. To include transverse derivatives in
the action, however, we must once again proceed to two-field
operators. We can easily construct a covariant operator as
follows:

�i∂i�j + �j ∂j�i →
ei(αi+αj )(�i∂i�j + �j ∂j�i + i(∂iαj + ∂jαi )�i�j ). (25)

Taking αi (x) = α0,i + ∑
jk εijkλjxk , the last term above van-

ishes, leaving us with

�i∂i�j + �j ∂j�i → ei(αi+αj )(�i∂i�j + �j ∂j�i ). (26)

We can now write down a Lagrangian respecting vector charge
and angular moment conservation as a function of these
covariant operators:

L[�i , ∂i�i ,�i∂i�j + �j ∂j�i], (27)

where the lowest order term involving transverse spatial
derivatives is quartic in the fields.

Starting from this theory with global conservation laws, we
can now apply the gauge principle, giving αi (x, t ) arbitrary
space-time dependence, to promote the conservation laws to
local ones. In this case, the gauge-covariant operators become

�i∂i�j + �j ∂j�i − iAij�i�j , (28)

(∂i − iAii )�i , (29)

Dt�i = (∂t − i∂tφi )�i , (30)

where we have introduced a tensor gauge field which trans-
forms as

Aij → Aij + ∂iαj + ∂jαi, (31)

φi → φi + ∂tαi . (32)
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The corresponding action can be written down directly from
Eq. (27) by replacing all derivative operators with their gauge-
covariant versions, plus adding the appropriate field invari-
ants. The resulting gauge theory has exactly the structure
of the vector charge theory discussed in Ref. [3]. In this
way, tensor gauge theories of subdimensional particles can be
derived from a gauge principle, just like those for fractons.

V. CONCLUSIONS

In this work, we applied the “gauge principle” (i.e., pro-
motion of a global symmetry to a local symmetry) to a
system of fractons. We have shown how to formulate field
theories of ungauged fractons, obeying global conservation of
higher charge moments. These field theories are generically
non-Gaussian, reflecting the intrinsic ability of fractons to
interact without the need for a mediating gauge field. We then
promoted the global higher moment conservation laws to local
ones, which we have shown requires coupling the theory to
a symmetric tensor gauge field. In this way, the theory of
symmetric tensor gauge fields arises from a gauge principle
in much the same way as an ordinary vector gauge field.
We also discussed extensions of this logic to other types of
subdimensional particles besides fractons, which obey similar
gauge principles.

This work has the potential to open several new directions
in fracton physics. For example, by considering a fracton field
transforming under a non-Abelian Lie group, is it possible
to construct a non-Abelian tensor gauge theory? And what
would the properties be of such a system? Also, with an
explicit field theory for fractons, is it now possible to develop
more powerful technical tools to analyze fracton theories,
such as an analog of Feynman diagrams? By discretizing the
derivatives, can we write fracton theories on arbitrary lattices?
How do these field theories need to be modified to apply
to “type-II” U (1) fractons, featuring no mobile bound states
[31]? Does this field theory shed any light on the theory of
elasticity and its associated phase transitions [22,23,32–34]?
There are many exciting questions remaining to be answered.
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