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We study the zero temperature properties of the sub-Ohmic spin-boson model with quadratic spin-boson
coupling. This model describes experimental setups at the optimal working point where the linear coupling
between the qubit (spin) and the environmental noise (bosons) is zero and the leading coupling is quadratic.
In the strong coupling regime, we find that the existence of spin induces quantum phase transitions (QPTs)
between two states of environment: the normal state and a state with local distortions. The phase diagram contains
both continuous and the first-order QPTs, with nontrivial critical properties obtained exactly. At the QPTs, the
equilibrium state spin dynamics bears power-law ω dependence in the small frequency limit and a robust coherent
Rabi oscillation at high frequency. We discuss the feasibility of observing such environmental QPTs in the
qubit-related experiments.
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I. INTRODUCTION

The spin-boson model (SBM) is a frequently used
paradigm to study the influence of the environmental noise on
the quantum evolution of a two-level system [1–3]. The noise-
induced dissipation and dephasing are the central issues of a
variety of research fields, ranging from the electron/energy
transfer in biochemical systems [4–7] to the endeavour of
building a quantum computer [8–12]. Sufficiently strong cou-
pling to the bosonic bath also induces a localized-delocalized
quantum phase transition (QPT) in the two-level system [13–
18]. In recent years, there is much attention on the universality
class of this QPT and debate on the applicability of the
quantum-to-classical mapping in the deep sub-Ohmic regime
of this system [19–26]. Experimental realization of the SBM
has been proposed in various contexts, ranging from the
mesoscopic metal ring to cold atom systems [27–31].

The SBM belongs to the impurity-bath problem for which
the conventional focus is on the behavior of the impurity (a
small quantum system) under the influence of the bath. For
this purpose, the bath is regarded as stable and the influence
from the impurity to bath is neglected in the conventional
perturbative treatment. Such studies have been carried out
for SBM in which a spin is coupled linearly to the displace-
ment operator of harmonic oscillators. Note that recent study
disclosed changes in the bath close to the QPT [32] in the
linear-coupling SBM.

Recently, much attention is drawn to the SBM where a spin
is coupled to the square of the boson displacement operator.
It is triggered by the advances in the superconducting qubit
experiments [33–37] where the linear qubit-noise coupling is
tuned to zero to suppress the decoherence, leaving the lead-
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ing order coupling quadratic. The coherence time increases
significantly at this optimal working point (OWP) [34]. The
quadratic coupling also appears in experiments based on a
semiconductor quantum dot [38] and the bismuth donors in
silicon [39]. Theoretically, the effect of quadratic coupling
on the dephasing of qubit is analyzed [40–43]. Quadratic
electron-phonon coupling is used to explain the anomalous
temperature dependence of the absorption line shape for
quantum dot-based qubit systems [44,45]. Mohammad et al.
suggested that the nonlinear coupling leads to fundamentally
different behavior in the quantum Brownian motion [46].

With a quadratic spin-boson coupling, the symmetry of the
Hamiltonian is different from the linear coupling case, leading
to different QPTs. Roughly speaking, in the linear case with
positive coupling coefficient, positive 〈Sz〉 leads to 〈X〉 > 0
(negative 〈Sz〉 to 〈X〉 < 0) due to the XSz coupling, i.e., the
symmetry breaking occurs in both 〈Sz〉 and 〈X〉 (here X is
the displacement operator of the environmental bosons). In
this paper, we show that the strong quadratic coupling of the
form X2Sz induces positive or negative 〈X〉 if 〈Sz〉 < 0, i.e.,
the symmetry breaking only occurs in 〈X〉. This QPT is thus
regarded as an environmental QPT. The ground state phase
diagram contains first-order as well as continuous QPTs.
Via such QPTs, the environment of the qubit changes from
a normal state to a state with local distortions, leading to
new dynamics both for the spin and the bath. These QPTs
bear nontrivial critical properties amenable to experimental
detection.

The rest of the paper is organized as follows. In Sec. II,
we describe the model and the methods used to study it.
Section III is devoted to the main results, including the exact
solution at � = 0 and the NRG results for � > 0. Various
related issues of the quadratic-coupling SBM are discussed
in Sec. IV. The details of the exact solution at � = 0 is pre-
sented in Appendix A. The NRG formalism is summarized in
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Appendix B. In Appendix C, we present quantitative compar-
ison between NRG data and the exact solution at � = 0.

II. MODEL AND METHODS

A general Hamiltonian describing a two-level system cou-
pled to environmental noise can be written as

H = ε

2
σz − �

2
σx +

∑
i

ωia
†
i ai + 1

2
σzf (Ŷ ), (1)

where Ŷ = ∑
i λi (ai + a

†
i ) is the local boson displacement

operator. λi describes the local weight of the ith boson mode.
The two-level system is represented by a spin 1/2 with bias
ε and tunneling strength �. It is coupled to the bosonic bath
with mode energies {ωi} in terms of σz and Ŷ . In the weak
coupling limit, the function f (z) can be expanded into Taylor
series f (z) = g0 + g1z + g2z

2 + .... The conventional SBM
Hamiltonian is obtained by truncating the series at the linear
order. At the OWP of the superconducting qubit experiments
[33–39] and in other experimental setups [38,39], g1 is zero
and the leading coupling is quadratic in the boson coordina-
tion [40]. Truncating the series at this order and absorbing
the constant g0 into ε, we obtain the Hamiltonian of the
quadratic-coupling SBM,

HQSB = ε

2
σz − �

2
σx +

∑
i

ωia
†
i ai + g2

2
σzŶ

2. (2)

The effect of the bath on the spin is encoded into the bath
spectral function J (ω) defined as

J (ω) = π
∑

i

λ2
i δ(ω − ωi ). (3)

In this paper we mainly focus on the continuous bath with
a power law spectrum in small ω limit and a hard cutoff at
ω = ωc,

J (ω) = 2παωsω1−s
c (0 < ω < ωc ), (4)

which includes the most frequently encountered cases in
experiments such as the 1/f noise [40]. Quantitative predic-
tion for the single-mode Hamiltonian of the qubit-resonator
experiment [34] will be discussed in the end of this paper. The
coupling constant g2 can be absorbed into λi , or equivalently,
is set as unity in the numerical calculation below. In Eq. (4), α
controls the strength of the spin-boson coupling. Our study
is confined to the sub-Ohmic bath with 0 < s < 1 and the
conclusion is extended afterwards to the Ohmic case s = 1
and to s = 0 for the 1/f noise. ωc = 1.0 is set as the energy
unit.

Here we compare the symmetry of HQSB to that of the
linear-coupling SBM HLSB . At ε = 0, HLSB is invariant under
the combined boson and spin transformation UaiU

−1 = −ai

and UσzU
−1 = −σz. Previous studies disclosed that for the

sub-Ohmic (0 � s < 1) and the Ohmic (s = 1) baths, a strong
coupling strength may induce a spontaneous breaking of this
symmetry and the system enters the localized phase, in which
the quantum system is trapped to one of the two states and the
local bosons have finite displacements [13,14]. This transition
is the so-called delocalized-localized transition of the SBM.

With a quadratic coupling, HQSB is invariant under the
parity transformation UaiU

−1 = −ai alone. In case the spin is
in the state σz < 0, the quadratic coupling contributes negative
energies for boson modes proportional due to −〈Ŷ 2〉. When
overcoming the positive energies ωi of the low energy boson
modes, they lead to an instability of the bosons. Physically,
as the coupling strength increases, the harmonic potentials of
the environmental particles are softened and the instability
occurs when the potential wells are inverted, accompanied
with the divergence of particle numbers. At this transition,
the boson parity symmetry is spontaneous broken. Taking into
account the boson anharmonic potentials that are neglected
in HQSB , this instability will lead to a local distortion in the
environmental degrees of freedom. Even for a weak quadratic
coupling strength, the feedback effect of the impurity to
the bath can no longer be regarded as small and the bath
is intrinsically non-Gaussian. New dynamical behavior will
emerge both in the bath and in the impurity.

Such QPTs can be studied exactly at the nontunnelling
point � = 0 at which [σz,HQSB ] = 0. The eigenstates of
HQSB are in the form |� (+1)〉| + 1〉 and |� (−1)〉| − 1〉. | + 1〉
and | − 1〉 are eigenstates of σz with energies +1 and −1,
respectively. |� (±1)〉 are the corresponding boson states. In
each spin sector, the quadratic boson Hamiltonian can be
solved exactly. We use the equation of motion method for
the double-time Green’s functions to obtain the exact prop-
erties of HQSB at � = 0. The derivation is summarized in
Appendix A.

For general parameters, we study HQSB using the
Wilson’s numerical renormalization group (NRG) method
[47,48] adapted to bosonic bath [13,14]. The Wilson chain
Hamiltonian can be derived from an orthogonal transforma-
tion of the logarithmic-discretized bath. It is given as

HNRG = ε

2
σz − �

2
σx +

∞∑
n=0

[εnb
†
nbn + tn(b†nbn+1 + b

†
n+1bn)]

+ g2

2

η0

π
σzX̂

2. (5)

Here εn, tn ∝ �−n are the on-site and hopping energies of
the boson chain and � � 1 is the logarithmic discretization
parameter. The displacement operator Ŷ in Eq. (2) is nor-
malized as Ŷ = √

η0/πX̂ with X̂ = b0 + b
†
0. The local boson

annihilation operator reads

b0 =
√

π

η0

∑
i

λiai . (6)

Here η0 = π
∑

i λ
2
i = ∫ ∞

0 J (ω)dω. The formalism used for
NRG calculation is summarized in Appendix B. Thanks
to the exponential decay of energy scales along the chain,
the low energy eigenenergies and eigenstates of HNRG can
be obtained reliably by iteratively diagonalizing HQSB and
keeping the lowest Ms states after each diagonalization. For
each boson site to be added into the chain, we truncate
its infinite dimensional Hilbert space into a Nb-dimensional
space on the occupation number basis. The accuracy of NRG
result is controlled by three parameters: the logarithmic dis-
cretization parameter �, the number of kept states Ms , and
the boson-state truncation parameter Nb. In this work, we
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obtain the exact results at � = 1.0, Ms = ∞, and Nb = ∞
by extrapolating the NRG data from � = 1.6 ∼ 10.0, Ms =
60 ∼ 300, and Nb = 8 ∼ 50 to the above limit.

Here a remark on the applicability of the NRG is in order.
Previous studies of the QPT in linear-coupling SBM showed
that naive application of NRG gives incorrect exponents β, δ,
and x in the deep sub-Ohmic regime (0 � s < 1/2) [19], due
to the boson state truncation error [49,50] and the mass flow
error [20]. These errors only influence the order parameter
related exponents β and δ, and the susceptibility-temperature
exponent x defined at the critical point. In our NRG study
below, we study the critical behavior from the weak-coupling
side of the QPT and avoid those possibly problematic expo-
nents. We check the Nb dependence of the critical behavior to
exclude the possibility of boson state truncation error. We also
compare the NRG results with the exact solution at � = 0.
The perfect agreement in the exponents strongly supports the
reliability of our NRG calculation.

III. RESULTS

HQSB (� = 0) contains all the nontrivial properties of the
environmental QPTs except for the dynamics of σz. A finite
quantum tunneling � > 0 introduces nontrivial dynamics of
σz but only modifies the phase diagram quantitatively. Below,
we first study the � = 0 case, presenting the exact solution as
well as the NRG results. Then, we use NRG to study the effect
of finite quantum tunneling � > 0.

A. Nontunnelling point � = 0

The Hamiltonian HQSB at � = 0 reads

HQSB (� = 0) = ε

2
σz +

∑
i

ωia
†
i ai + g2η0

2π
σzX̂

2. (7)

Here X̂ is the normalized boson displacement operator defined
in Eq. (5). At this exact soluble limit, the dephasing properties
were analyzed in the context of the superconducting qubit at
the optimal working point [40] and the quantum dot qubit
quadratically coupled to acoustic phonons [44]. As confirmed
by our NRG calculation below, the universal critical properties
of the QPTs for general HQSB (�) are already well described
by this limit.

1. Exact solution for � = 0

The change of the environment by the presence of impurity
is best seen in the effective boson spectral function

CX(ω) = 1

2π

∫ +∞

−∞
CX(t )eiωt dt, (8)

with CX(t ) ≡ (1/2)〈{X(t ), X(0)}〉. We calculate the exact
expression for CX(ω) and the ground state energy difference
�Eg ≡ E(+1)

g − E(−1)
g between the two subspaces σz = ±1,

from which the exact ground state phase diagram can be
extracted. Using the Green’s function equation of motion
method, the exact expression for CX(ω) at T = 0 is obtained
as (see Appendix A for details)

CX(ω) =
1

2η0
J (ω){

1 − g2
η0

π
σz[g(ω) + g(−ω)]

}2 + g2
2J

2(ω)
(9)

for ω > 0. For ω < 0, CX(ω) = CX(−ω). The function g(ω)
is given as

g(ω) = 1

η0
P

∫ ∞

0

J (ε)

ω − ε
dε. (10)

For the specific J (ω) in Eq. (4), η0 = 2παω2
c/(1 + s) and

g(ω) = 1

ω
F

(
1, 1 + s; 2 + s;

ωc

ω

)
. (11)

Here F (α, β; γ ; z) is the hypergeometric function.
In the weak coupling limit α = 0, CX(ω) = J (ω)/(2η0)

recovers the normalized bare spectral function. A finite
quadratic coupling to the impurity exerts significant influence
on CX(ω). In particular, in the subspace σz = −1, a singular-
ity develops in CX(ω = 0) at α = αc which signals a contin-
uous QPT. Using the analytical continuation of F (α, β; γ ; z)
from |z| > 1 to |z| < 1, and considering F (α, β; γ ; z = 0) =
1, we find αc = s/(4g2ωc ). No QPT occurs for α > 0 in the
other subspace σz = +1. We denote the asymptotic behavior
of CX(ω) in the small frequency limit as CX(ω) ∝ ωy0 for
α < αc and CX(ω) ∝ ωyc at α = αc. The exact solution reads

CX(ω) =
{ 2(1+s)

π2s2
1
ωc

(
ω
ωc

)−s
, (α = αc );

(1+s)α2
c

2(αc−α)2
1
ωc

(
ω
ωc

)s
, (α < αc ).

(12)

This gives y0 = s and yc = −s. For a fixed α < αc, CX(ω) ∼
(ω/ωc )s for ω 	 ω∗ and CX(ω) ∼ (ω/ωc )−s for ω � ω∗.
There is a peak at the crossover frequency ω = ω∗, with

ω∗ = ωc

(
4

π2s2α2
c

) 1
2s

(αc − α)
1
s , (α < αc ). (13)

It corresponds to the crossover energy scale T ∗ between the
boson-stable state and the quantum critical regime. As α

approaches αc from below, the peak position moves to zero
frequency in a power law ω∗ ∝ (αc − α)zν , giving the exact
exponent zν = 1/s.

The two subspaces σz = ±1 have the ground state energy
difference

�Eg = E(+1)
g − E(−1)

g = ε + 1

π

∫ 0

−∞
ImH (ω + iη)dω.

(14)
Here, η is an infinitesimal positive number and

H (ω) = 2g2/π

1 − (2g2/π )2h2(ω)
[h(ω) + k(ω)], (15)

with

h(ω) =
∫ ∞

−∞

J (ε)ε

ω2 − ε2
dε,

k(ω) =
∫ ∞

−∞

J (ε)ε

(ω − ε)2
dε. (16)

For a fixed coupling strength α, E(+1)
g < E(−1)

g for very large
negative ε. E(+1)

g increases with increasing ε. A level crossing
occurs at ε = εf , at which the global ground state change
from the subspace σz = 1 to σz = −1. The spin-flip transition
point εf (α) is determined by �Eg (εf ) = 0. Taylor expanding
�Eg with respect to α and solving this equation, we obtain in
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FIG. 1. Ground state NRG phase diagram of HQSB (� = 0) for
s = 0.3. 〈X〉 = 〈b†

0 + b0〉 is the order parameter and 〈Sz〉 = 〈σz〉/2
is the spin polarization. The phase boundaries are the spin flip (up
triangles), continuous QPT (circles), and first-order QPT (squares)
lines. Lines are for guiding the eye. NRG parameters are Nb = 8
(empty symbols), Nb = 12 (plus-filled symbols), and the extrapo-
lated Nb = ∞ (solid squares). (αc = 0.0786, εc = −0.1273) (solid
dot) is the jointing point of the three transition lines). Inset: details
close to the jointing point, with the exact spin flip line (solid line)
and the weak-coupling expansion εf = −2α/(1 + s ) (dashed line).
NRG parameters are � = 2.0 and Ms = 60.

the small α limit

εf = − 2α

1 + s

(
g2ω

2
c

) + O(α3). (17)

2. NRG results for � = 0

We further study the nature of QPTs at � = 0 using
bosonic NRG. Quantitative comparison of NRG results with
the exact solution (see Appendix C) shows perfect agreement,
which benchmarks our NRG calculation. For simplicity, we
present results only for a generic sub-Ohmic bath s = 0.3.
Unless specified otherwise, qualitatively similar results are
obtained for other s values.

Figure 1 shows the ground state phase diagram on the α −
ε plane. Phases are characterized by different values of the
spin polarization 〈Sz〉 and the order parameter 〈X〉. The phases
with |〈X〉| = 0 and |〈X〉| �= 0 are called environment-stable
and - unstable phases, respectively. The boson parity sym-
metry is spontaneously broken in the latter. Phase boundaries
are obtained using NRG with Nb = 8 and 12. The spin flip
at ε = εf (α) and the continuous QPT at α = α(c)

c are found
insensitive to Nb, while the first-order QPT line at α = α(1)

c

moves with Nb and converges in the limit Nb = ∞ to the same
vertical line as the continuous QPT (solid squares with guid-
ing line), giving α(1)

c = α(c)
c = 0.0786. This value is slightly

larger than αexc
c = s/(4g2ωc ) = 0.075, due to the logarithmic

discretization error at � = 2.0. Extrapolating α(c)
c to � = 1.0

gives perfect agreement with αexc
c , as shown in Fig. 12 of

Appendix C. The three transition lines meet at a jointing point
(αc = 0.0786, εc = −0.1273) (solid dot in Fig. 1).

The inset of Fig. 1 shows details close to the jointing point.
There is very good agreement in the spin-flip line εf from
NRG using Nb = 8 and � = 2.0 (up triangles) and the exact

FIG. 2. NRG results for |〈X〉| and 〈Sz〉 as functions of α for
s = 0.3 and � = 0.0, for various ε values. The NRG parameters are
� = 2.0, Ms = 60, and Nb = 8.

solution from �Eg = 0 (solid line). This is due to the can-
cellation of errors of E(+1)

g and E(−1)
g in the NRG calculation,

since the error in the NRG ground state energy comes from its
treatment of bosons, independent of the spin state.

The first-order QPT is a level crossing induced by the
boson instability transition in the subspace σz = −1. For ε <

εc and small α, the subspace σz = −1 has higher energy than
the σz = 1 subspace. As we increase α to α = α(c)

c , E(−1)
g

decreases abruptly to −∞ at the boson-unstable QPT in this
subspace, leading to a sharp crossing of E(−1)

g and E(+1)
g .

This scenario of the QPTs suggests α(1)
c = α(c)

c for � = 0,
both being independent of ε. Indeed, although NRG gives
an ε-dependent α(1)

c for finite Nb, as shown in Fig. 13 of
Appendix C, it converges to the vertical line at α = α(c)

c in
the limit Nb → ∞ (solid squares in Fig. 1).

In Fig. 2, 〈X〉 and 〈Sz〉 are plotted as functions of α for
various ε values. For ε = −0.1 and −0.115 which are larger
than εc, as α increases, a spin-flip transition occurs first [jumps
in Fig. 2(b)] and it is followed by a continuous QPT at
larger α [continuous emerging of nonzero |〈X〉| at α = α(c)

c in
Fig. 2(a)]. For ε = −0.16, −0.2, and −0.26 which are smaller
than εc, both quantities jump discontinuously at α(1)

c . The
phase diagram can be mapped out from such plots. It is noted
that Fig. 2(a) shows only the qualitative behavior of 〈X〉 for
finite Nb. In the limit Nb = ∞, as shown in Figs. 11 and 13
in Appendix C, |〈X〉| diverges both at the continuous and
the first-order QPTs, being consistent with the scenario that
the harmonic potentials of the bath oscillators are inverted at
α > α(c)

c or α > α(1)
c .

As a direct product of NRG, the flow of the energy lev-
els can help identify various fixed points in the parameter
space. These fixed points are reflected by the mass of boson
excitations in the exact bosonic Green’s function. As shown
in Fig. 3, we found three distinct fixed points for ε = 0.1 >

εc. The stable fixed point obtained for α = 0.084 < α(c)
c is

identified as the free boson fixed point with 〈X〉 = 0 and
〈Sz〉 = −1/2. For α = 0.086 > α(c)

c , the excitation energies
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FIG. 3. NRG flow of excitation energies at s = 0.3, � = 0.0,
and ε = 0.1 > εc. The energy levels flow to three different fixed
points: a stable free boson fixed point for α = 0.084 < α(c)

c (solid
lines), an unstable critical fixed point for α = 0.08593945 ≈ α(c)

c

(dashed lines), and a strong-coupling fixed point for α = 0.086 >

α(c)
c (dash-dotted lines). The NRG parameters are � = 4.0, Ms =

100, and Nb = 8.

flow towards a state with twofold degeneracy. At this fixed
point, the harmonic potential of bath particles is inverted and
X̂ fluctuates between ±∞. In the large N regime, the numer-
ical error will lift the degeneracy and break the boson parity
symmetry, giving 〈X〉 �= 0 [51]. At α = α(c)

c , the excitation
energies flow to an unstable critical fixed point and 〈X〉 begins
to be nonzero continuously at this point.

To study the nature of the ordered phase, we plot in
Fig. 4 the flow of eigenenergies Ei (N ) (i = 1 ∼ 6), directly
obtained from diagonalizing the Wilson chain Hamiltonian
HN , without subtracting the ground state energy E1(N ).
This is done for ε > εc and α slightly larger than α(c)

c , i.e.,
in the boson-unstable phase. The energies for N < 14 are
independent of Nb since the flow is still in the weak-coupling

FIG. 4. NRG flow of Ei (N ) (i = 1, 2, 3, . . . , 6) at s = 0.3, � =
0.0, ε = 0.1 > εc, and α = 0.086 > α(c)

c , obtained using Nb = 8
(solid lines) and Nb = 12 (dashed lines). Inset: ground state prop-
erties of the fixed point Hamiltonian HN=30 as functions of Nb,
the energy E1(N = 30) (squares) and the boson occupancy number
〈b†

30b30〉N=30 (up triangles). The lines are for guiding the eye. Other
NRG parameters are � = 4.0 and Ms = 100.

FIG. 5. Flow diagrams near the QPTs for s = 0.3 and � = 0.0.
(a) Continuous QPT for ε = 0.1, αc ≈ 0.085934, and (b) first-order
QPT for ε = −0.2, αc ≈ 0.10147. From left to right, α increases for
α < αc (empty squares) and α decreases for α > αc (solid squares).
Lines are for guiding the eye. Inset of (a): power law fitting of
T 
 = �−N
 ∝ |α − αc|zν for α < αc (empty squares) and α > αc

(solid squares), giving zν = 3.333 and 3.338, respectively. NRG
parameters are � = 4.0, Ms = 100, and Nb = 12.

regime. The strong-coupling fixed point is reached for N > 16
and in that regime, the energies decrease with increasing
Nb. Note that the excitation energies, i.e., the differences
between the energy levels, do not change significantly with
Nb, including the twofold degeneracies. As shown in the inset,
both E1(N = 30) and the boson number 〈b†30b30〉N=30 at the
strong-coupling fixed point N = 30 are linear functions of
Nb, diverging in the limit Nb = ∞. As a result, the total
NRG ground state energy EQSB = ∑∞

n=0 �−nE1(n) tends to
negative infinity in the limit Nb = ∞. This supports that the
strong-coupling fixed point is the environment-unstable state
with inverted harmonic potentials for the bosonic modes.

To investigate the critical behavior of the QPTs, the exci-
tation energy flows are presented in Fig. 5 for α very close
to α(c)

c and α(1)
c . In Fig. 5(a), a typical critical behavior is

observed for ε = 0.1 > εc, with the standard scaling form.
The crossover energy scale T ∗ = �−N∗

is found to follow a
power law, T ∗ ∝ |αc − α|zν . The fitted exponent zν = 3.333
and zν = 3.338 from the two sides of α(c)

c agree well with
the exact solution zν = 1/s at s = 0.3. In Fig. 5(b), near the
first-order phase transition at ε = −0.2 < εc, a level crossing
in the energy flow is observed, accompanied with an abrupt
jump from Sz = 1/2 to Sz = −1/2.

B. Effects of finite quantum tunneling � > 0

1. The case of s=0.3

The quantum tunneling � > 0 introduces nontrivial
dynamics for σz but only modifies the phase diagram
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FIG. 6. Main figure: ground state phase diagram for s = 0.3 and
� = 0.1, obtained with Nb = 12. The continuous QPT, first-order
QPT, and spin flip lines are marked by empty circles, empty squares,
and empty up triangles with eye-guiding lines, respectively. The
jointing point of the continuous and the first-order QPTs is marked
by a solid blue dot. The spin flip line obtained with Nb = 20 (plus-
filled up triangles) and Nb = 30 (cross-filled up triangles) are also
plotted. Inset: the change of phase boundaries with Nb. Nb = 12
(empty symbols), Nb = 20 (plus-filled symbols), Nb = 30 (cross-
filled symbols), and the extrapolated Nb = ∞ (solid squares). NRG
parameters are � = 4.0 and Ms = 100.

quantitatively. Figure 6 shows the NRG phase diagram for
s = 0.3 and � = 0.1. The boson-stable state (〈X〉 = 0) on the
left side is separated from the boson-unstable phase (〈X〉 �= 0)
on the right by a continuous (for ε > εc ) or a first-order
(for ε < εc) QPT. The two QPT lines meet at the jointing
point (αc, εc ) (blue dot). The QPT lines in the main figure
are obtained with Nb = 12. The spin flip lines are obtained
with Nb = 12, 20, and 30 and they fall onto the same line,
showing that the spin-flip line is independent of Nb, same as
the � = 0 case. In order to show the Nb dependence of the
phase diagram, in the inset, we show the QPT lines for various
Nb values. It is seen that the continuous QPT line α(c)

c (circles)
is almost independent of Nb, while the first order QPT line
α(1)

c (squares) decreases with increasing Nb, converging to an
extrapolated line in the limit Nb = ∞ (solid squares).

The finite quantum tunneling induces several changes with
respect to � = 0. First, the phase boundaries shift quanti-
tatively. The continuous QPT line is no longer vertical but
depends on ε, especially near εc where the competition be-
tween ε and � is strong. For ε � �, α(c)

c is independent
of ε asymptotically. The jointing point of the continuous
and first-order QPT lines shifts upwards. Second, due to the
mixing of σz = ±1 subspaces by � > 0, physical quantities
change smoothly at the spin-flip line εf (α) which only marks
〈Sz〉 = 0 and has no quantum fluctuations. The ending point
of the spin-flip line lies on the first-order line and is below the
jointing point of continuous and first-order QPT lines. Third,
for � = 0, the QPT from a 〈Sz〉 < 0 state to another 〈Sz〉 < 0
state by increasing α is always continuous. In contrast, for
� > 0, a small ε window (below the jointing point and above
the ending point of the spin-flip line) opens, in which the

FIG. 7. |〈X〉| and 〈Sz〉 near the jointing point of the continuous
and the first-order QPTs, for s = 0.3 and � = 0.1. (a) |〈X〉|(α) for
various ε’s. From right to left, ε = −0.175, −0.15, −0.125, −0.085,
−0.037, −0.012, and 0.0. In (b) and (c), |〈X〉| and 〈Sz〉| values at
the upper and lower edge of the transition as functions of ε. NRG
parameters are � = 4.0, Ms = 100, Nb = 30.

QPT from a 〈Sz〉 < 0 state to another 〈Sz〉 < 0 state is first
order. For this ε regime, although 〈Sz〉 < 0 on the α < αc

side, due to spin fluctuations, the ground state contains a finite
components of spin up states. When α increases, according
to the scenario built at � = 0, the spin up components tend
to change into spin down state abruptly, making the transition
first order.

Focusing on the jointing point, we study in Fig. 7 how the
first-order QPT evolves into a continuous one as ε crosses
εc from below. In Fig. 7(a), |〈X〉|(α) curves are shown for
different ε values. As ε approaches εc from below, the jumps
in 〈X〉(α(1)

c ) [Fig. 7(b)] and 〈Sz〉(α(1)
c ) [Fig. 7(c)] decreases to

zero, first making a weak first-order QPT and then a continu-
ous one. Note that the spin is always polarized on both sides
of the QPT. Same as the � = 0 case, in the limit Nb = ∞,
|〈X〉| = ∞ and Eg = −∞ in the environment-unstable phase,
regardless of the order of QPT.

Besides the change of phase diagram, a finite � also
induces nontrivial dynamics for σz which is of utter impor-
tance for the realistic qubit experiments. The coherence in the
nonequilibrium evolution 〈σz〉(t ) can be partly reflected in the
equilibrium dynamical correlation function

CSz(ω) = 1

2π

∫ +∞

−∞
CSz(t )eiωt dt (18)

with CSz(t ) ≡ (1/2)〈{Sz(t ), Sz(0)}〉 [52]. At T = 0,
CSz(ω) = CSz(−ω) and it fulfills the sum rule∫ ∞
−∞ CSz(ω)dω = 1/4. For a nondegenerate ground state

|G〉, CSz(ω) = Aδ(ω) + C ′
Sz(ω), where A = 〈G|Sz|G〉2/2.

At � = 0, there is no dynamics in the Sz component and
CSz(ω) = δ(ω)/4. For � > 0, the spin is no longer fully
polarized in the z direction and the weight of CSz(ω) is
partially transferred from the ω = 0 to ω > 0 regime.
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FIG. 8. Dynamical correlations (a) CX (ω) and (b) CSz(ω) for
α � α(c)

c for s = 0.3, � = 0.1, and ε = 0.0 > εc. From top to bot-
tom, α = 0.091101 ≈ α(2)

c , 0.08, 0.09, and 0.09105. The fitted expo-
nents are for (a): y0 = 0.296 for α < αc, yc = −0.302 for α = αc,
and for (b): θ0 = 1.595 for α < αc, and θc = 0.396 for α = αc. The
zero frequency peak Aδ(ω) of CSz(ω) is not shown. NRG parameters
are � = 4.0, Ms = 100, Nb = 12, and B = 1.0 for broadening.

In Figs. 8(a) and 8(b), CX(ω) and CSz(ω) are presented
for ε = 0.0 > εc and α � α(c)

c . CX(ω) shown in Fig. 8(a)
has the same low frequency asymptotic behavior as � = 0,
i.e., CX(ω) ∝ ωs for α < α(c)

c and CX(ω) ∝ ω−s for α = α(c)
c .

CSz(ω) shown in Fig. 8(b) has a high frequency peak, which
represents the Rabi oscillation of a weakly damped qubit and
it is not changed by α even at αc. In the low frequency regime,
CSz(ω) ∝ ωθ0 for α < αc and CSz(ω) ∝ ωθc at α = α(c)

c . NRG
gives θ0 = 1.595 and θc = 0.396 for s = 0.3. For α < α(c)

c ,
CSz(ω) has the same crossover scale ω∗ as CX(ω), separating
the ωθ0 (for ω 	 ω∗) and ωθc (for ω � ω∗) behaviors. A zero
frequency peak Aδ(ω) is also present (not shown here).

Close to the first-order QPT at ε < εc and α � α(1)
c , CX(ω)

and CSz(ω) are similar to the ones at ε > εc and α < α(c)
c . At

α = α(1)
c , both correlation functions change abruptly into an

artifact of finite Nb. In the � = 0 case, the critical behavior
cannot be observed in the ε < εc and α < α(1)

c regime, be-
cause the lower subspace σz = +1 has no QPT. For � > 0,
due to the mixing of two subspaces, quantum critical behavior
can be observed in the intermediate frequency regime ω∗ 	
ω 	 �R for the weak first-order QPT at ε � εc and α �
α(1)

c . The crossover scale ω∗ decreases with increasing α and
reaches a finite value at the first-order QPT α = α(1)

c . As ε

approaches εc from below, ω∗(α = α(1)
c ) decreases to zero and

the first order QPT transits into a continuous one.
Figure 9 shows the dynamical correlation functions CX(ω)

and CSz(ω) at the critical point α = α(c)
c for a series of ε

in the regime ε > εc. Although CX(ω) is independent of
ε, CSz(ω) decreases with increasing ε, with the exponent
unchanged. This is because as ε increases, 〈Sz〉(α = α(c)

c )
decrease monotonically to −1/2, transferring the weight of
Csz(ω) from the ω > 0 regime to ω = 0. The prominent
Rabi peak corresponds to short-time coherent oscillations in
the population P (t ) = 〈Sz(t )〉 of the nonequilibrium situation

FIG. 9. Dynamical correlation functions (a) CX (ω) and (b)
CSz(ω) for different ε > εc ≈ −0.098, calculated for s = 0.3, � =
0.1, and α = α(c)

c (ε). From top to bottom, ε = −0.085, 0.0, 0.1, and
0.2. The corresponding 〈Sz〉 values are −0.310, −0.421, −0.465, and
−0.481. The fitted exponents in the small ω regime are yc = −0.298
in (a) and θc = 0.396 in (b). The zero frequency peak Aδ(ω) is
not shown. In (b), the vertical dashes mark the Rabi frequency ωR

estimated from 〈Sz〉 and �r ≈ �. NRG parameters are � = 4.0,
Ms = 100, Nb = 12. The broadening parameter B = 1.0.

[52]. The effective Rabi frequency ωR increases with ε. As-
suming an effective free spin Hamiltonian Heff = (εeff/2)σz −
(�r/2)σx , we can write ωR = √

εeff + �r where εeff contains
both ε and the static mean field from the quadratic coupling
(g2/2)σz〈Y 2〉. �r is the renormalized tunneling strength. The
estimated ωR by assuming �r ≈ � and using 〈Sz〉 from NRG
agrees well with the peak position in CSz(ω) (vertical dashes
in Fig. 9). This shows that robust coherent spin evolution
persists to the strongest coupling before the environmental
QPT occurs. The spin correlation function CSx

(ω) for the
dephasing properties of qubit was studied in Ref. [53]. It was
found that the high frequency peak in CSx

(ω) has no change
at α(c)

c , but broadened significantly only close to the spin
flip line ε = εf , showing enhanced dephasing at the spin flip
point.

2. Other s values

We carried out NRG study for other s values and confirmed
that the scenario of QPT established at s = 0.3 applies to the
whole sub-Ohmic regime 0 � s < 1, with important quantita-
tive differences. For � = 0, the structure of the phase diagram
is the same as that of s = 0.3 and NRG results agree well with
the exact solution. For � > 0, we find that the jointing point
in the phase diagram moves upwards with increasing s. That
is, εc increases with s and for larger s, the first-order QPT line
extends to larger ε values. At T = 0, the critical fluctuation
of X̂

〈X2〉 = 2
∫ ∞

0
CX(ω)dω ∝

∫ ∞

0
ω−sdω (19)

increases with s. For larger s, the ground state energy contains
a term 〈σzX

2〉 which changes more rapidly with the flipping
of spin. This makes the continuous QPT more difficult to
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FIG. 10. Exponents of CSz
(ω): θ0 and θc. The solid lines are θ0 =

1 + 2s and θc = 1 − 2s.

realize. Our NRG study for s = 0.7 supports that εc = ∞ for
any finite �, i.e., the transition is first order for any � > 0
and any ε, though this does not hamper the observation of
power-law CSz

(ω) in the intermediate frequency regime [53].
This behavior is well understood in the extreme case s � 1
where the infrared divergence in 〈X2〉 makes the continuous
QPT impossible. Here, the continuous versus first-order phase
transition is an interesting problem on its own, giving its
resemblance to the same problem in the crystal lattice [54].
A detailed study on this issue will be published elsewhere.
In the other limit s = 0 which is related to the 1/f noise
in the quantum circuit, a finite � induces a small but finite
α(c)

c . zν = 1/s diverges at s = 0 and a QPT of the Kosterlitz-
Thouless type occurs, as confirmed by the NRG calculation
(not shown). This is similar to the situation of linear-coupling
SBM [13].

The above analysis also explains the observation that for
larger s, reliable NRG calculations require larger Nb and are
hence more difficult. For studying the continuous QPT at
ε > εc, insufficient Nb could lead to artificial critical fixed
point and produce incorrect exponents zν, θ0, and θc. For
studying the first-order QPT at ε < εc, it may make an artifi-
cial continuous QPT. Up to now, quantitatively accurate study
of HQSB (� > 0) for s > 1 is still a technical challenge for
NRG. For the sub-Ohmic bath, however, we can get reliable
results using the boson number truncation up to Nb = 50 and a
large logarithmic discretization parameter � = 10.0. For s �
1 where the first-order QPT prevails, the critical exponents
can still be extracted reliably from the intermediate frequency
regime ω∗ 	 ω 	 ωR for ε � εc and α � α(1)

c (e.g., the data
point for s = 0.7 in Fig. 10).

In Fig. 10, we show the exponents θ0 and θc of CSz(ω).
They are defined as CSz(ω) ∝ ωθ0 for α < α(c)

c and CSz(ω) ∝
ωθc for α = α(c)

c . Since they appear only at � > 0, there is
no exact solution for them. The NRG data agree with the
analytical expressions θ0 = 1 − 2s and θc = 1 + 2s within an
error of 2%. This is in contrast to θ0 = s and θc = −s for
the linear-coupling SBM [13,19]. When extended to s � 1,
such behavior will lead to the breakdown of the sum rule of
CSz(ω) and prohibit the continuous QPT in the Ohmic- and
super-Ohmic regime.

IV. DISCUSSION AND SUMMARY

In this section, we discuss several issues regarding the
impurity-induced environmental QPT that we studied in this
paper. First, we note that the unphysical results 〈X〉 = ±∞
and Eg = −∞ in the boson-unstable state are the conse-
quences of incompleteness of the present model. In reality, the
boson number will not diverge even after the QPT occurs, be-
cause as the boson number increases, the interactions between
boson modes that are neglected in our quadratic-coupling
SBM, e.g., the anharmonic terms, will become important and
finally keep the boson number from diverging. They will in-
stead lead to a new stable state with finite 〈X〉, i.e., a state with
local environmental distortion. Close to the environmental
QPT on the weak-coupling side, the average boson number
is small and these interactions play a minor role. Therefore,
the quadratic-coupling SBM Eq. (2) has a limited applicability
range. It can be used to predict the existence of the impurity-
induced QPT, to describe the phase diagram as well as the
dissipation and dephasing effect due to the environmental
fluctuation on the α < αc side, but cannot tell us what the
exact ground state is in the parameter regime α > αc.

The environmental instability shows up differently in real
systems. For the superconducting flux qubit system [34],
〈X〉 �= 0 corresponds to an additional bias current in the
SQUID oscillator. In the experiment of quantum dot system
[44,45], however, the boson instability corresponds to a local
distortion of the crystal lattice. In the optical spectra signal
of an impurity center in crystals, the instability is detected
by the anomalous temperature dependence of the zero-phonon
line width due to the softening of bosonic modes close to the
environmental QPT [55]. In the NRG calculation, the boson
state truncation Nb mimics such a higher order anharmonic
effect accidentally. We find that although the existence of
the QPT is robust under this constraint of Hilbert space, the
critical exponents zν and θc may well be changed by it [49,50].

Second, we discuss the situation where both the linear
and the quadratic coupling are present. In that case, the
Hamiltonian reads

HSB = ε

2
σz − �

2
σx +

∑
i

ωia
†
i ai + g1

2
σzŶ + g2

2
σzŶ

2.

(20)

For general parameters g1 �= 0 and g2 �= 0, this Hamiltonian
has a lower symmetry than both the linear-coupling SBM
and the pure quadratic-coupling one. As a result, neither the
delocalized-localized transition nor the environmental stable-
unstable transition exists any more. Instead, similar to the
situation of linear-coupling SBM under a finite bias ε, it is
expected that the ground state smoothly interpolates between
different limiting symmetry-broken states of purely linear- or
quadratic-coupling Hamiltonians. The crossover lines sepa-
rating these phases are determined by the relative strength
of g1, g2, and the crossover energy scale T ∗ to the quantum
critical regimes in g1- and g2-only cases [56]. However, both
the bath and the spin dynamics will be severely influenced by
the existence of the quadratic coupling terms.

At finite temperatures, the QPT observed in HQSB no
longer exists, but turns into a crossover. At finite T , the
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quantum critical point at T = 0 will expand into a finite
parameter regime, the quantum critical regime, in which crit-
ical properties can be observed. The boundaries of this quan-
tum critical regime is determined by T ∗, the crossover energy
scale between the critical fixed point and the other stable fixed
points. Temperature dependence of physical quantities will
have the scaling form near the crossover. This scenario was
verified in the linear-coupling SBM and was the basis for a
proposal to observe the localized-delocalized QPT at finite
temperature in a mesoscopic metal ring system [27]. For the
quadratic-coupling SBM studied in this work, we expect that
the same scenario applies and can be used to observe the
signature of the environmental QPT in experiment.

Our conclusion about the environmental QPT can be
straightforwardly extended to the single boson mode case.
For the Hamiltonian of the circuit quantum electrodynamics
H = ωpa†a + (�/2)σx + (ε/2)σz + g2(a† + a)2σz [34], the
boson-instability occurs at g2/ωp > 1/4 for � = 0. Using the
parameters of the experimental setup of Ref. [34], we estimate
that g2 ∼ 5.0 MHz. Given ωp = 3.17 GHz, the actual ratio
g2/ωp ∼ 10−3, much smaller the critical value. However,
in the experiments of superconducting qubit, methods are
available to engineer the shape and strength of J (ω) [57]
for a continuous environment and to enhance the spin-boson
coupling to the ultrastrong regime for discrete boson modes
[58]. Especially, the new technique of switchable coupling can
boost the linear coupling from 102 MHz level to GHz level,
making it comparable to ωp [59]. The superconducting flux
qubit [36,37] or the quantum dot [38] under the 1/f noise
can also be tuned to the optimal working point. Considering
that our results predict that the 1/f noise with quadratic spin-
boson coupling gives a much smaller αc, we expect that these
advances can make it feasible to detect the environmental QPT
discussed in this work.

In summary, we predict an impurity-induced environmen-
tal QPT in the quadratic-coupling SBM which is realized in
a wide class of experimental setups. Using the exact solution
at � = 0 as well as NRG, we obtain the ground state phase
diagram which contains both continuous and first-order QPTs,
with nontrivial critical properties. The dynamical correlation
function of σz is obtained, showing robust Rabi oscillation
for α � α(c)

c . Physical consequences of such QPTs and the
feasibility of experimental observation are discussed.
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APPENDIX A: EXACT SOLUTION AT � = 0

In this appendix, we derive the exact solution at � = 0.
The Hamiltonian HQSB at � = 0 reads

HQSB (� = 0) = ε

2
σz +

∑
i

ωia
†
i ai + g2η0

2π
σzX̂

2. (A1)

Here X = b0 + b
†
0 and b0 = √

π/η0
∑

i λiai . For the spec-
tral function J (ω) specified in Eq. (4), η0 ≡ π

∑
i λ

2
i =

2παω2
c/(1 + s).

To solve HQSB (� = 0) exactly, we employ the
equation of motion (EOM) for the double-time Green’s
function 〈〈X|X〉〉ω. It is defined as 〈〈X|X〉〉ω ≡∫ ∞
−∞ Gr [X(t )|X(t ′)]eiωtdt and the retarded Green’s function

Gr [X(t )|X(t ′)] ≡ −iθ (t )〈[X(t ), X(t ′)]〉. At zero temperature
T = 0, the dynamical correlation function CX(ω) is expressed
in terms of 〈〈X|X〉〉ω as

CX(ω) = − 1

2π
Sgn(ω)Im〈〈X|X〉〉ω+iη. (A2)

Here η is an infinitesimal positive number. CX(ω) is an even
function of ω.

We start from the EOM of a GF component,

ω〈〈ai |X〉〉ω = 〈[ai, X]〉 + 〈〈[ai,HQSB ]|X〉〉ω. (A3)

At � = 0, the commutators in the above equation
read [ai, X] = √

π/η0λi and [ai,HQSB ] = ωiai +
g2λiσz

∑
l λl (al + a

†
l ). Using these expressions and their

Hermitian conjugates, we obtain

ω〈〈ai + a
†
i |X〉〉ω = ωi〈〈ai − a

†
i |X〉〉ω (A4)

and

ω〈〈ai − a
†
i |X〉〉ω = 2

√
π/η0λi + ωi〈〈ai + a

†
i |X〉〉ω

+ 2g2

√
η0/πσzλi〈〈X|X〉〉ω. (A5)

One can solve Eqs. (A4) and (A5) to obtain

〈〈ai + a
†
i |X〉〉ω =

√
π

η0

2λiωi

ω2 − ω2
i

+ g2

√
η0

π

2λiωi

ω2 − ω2
i

σz〈〈X|X〉〉ω. (A6)

Multiplying λi on both sides of the above equation and
summing over i, we obtain

〈〈X|X〉〉ω =
2π/η0

∑
i

λ2
i ωi

ω2−ω2
i

1 − 2g2σz

∑
i

λ2
i ωi

ω2−ω2
i

. (A7)

Using g(ω) defined in Eq. (10) of the main text, we have

〈〈X|X〉〉ω = g(ω) + g(−ω)

1 − g2η0

π
σz[g(ω) + g(−ω)]

. (A8)

Carrying out the analytical continuation ω → ω + iη and
taking the imaginary part, we obtain the exact expression for
CX(ω) in Eq. (9) of the main text. g(ω) can be simplified as

g(ω) = 1 + s

ωc

P
∫ 1

0

xs

ω/ωc − x
dx. (A9)

Finally we obtain [60]

g(ω) = 1

ω
F

(
1, 1 + s; 2 + s;

ωc

ω

)
. (A10)

Here F (α, β; γ ; z) is the hypergeometric function. For the
numerical calculation in 0 < ω < ωc and the analysis of
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CX(ω = 0), the above expression is transformed by analytical
continuation into (for ω > 0)

g(ω) = − 1

ωc

1 + s

s
F (1,−s; 1 − s; ω/ωc )

+ ωs

ω1+s
c

cos [π (1 + s)]�(2 + s)�(−s), (A11)

and

g(−ω) = − 1

ωc

1 + s

s
F (1,−s; 1 − s; −ω/ωc )

− ωs

ω1+s
c

�(2 + s)�(−s). (A12)

Here �(z) is the Gamma function. Series expansions can
then be used for numerical evaluations, F (1,−s; 1 − s; z) =
−∑∞

0 [s/(n − s)]zn for 0 � z < 1 [60]. Note that the ana-
lytical continuation does not apply to integer values of s =
0, 1, 2, ....

In order to calculate E(+1)
g and E(−1)

g , we start from the
expression at � = 0

Eσz

g = ε

2
σz + g2η0

2π
σz〈X2〉 +

∑
i

ωi〈a†
i ai〉. (A13)

The energy difference is

�Eg ≡ E(+1)
g − E(−1)

g

= ε + g2η0

2π

[〈X2〉(+1) + 〈X2〉(−1)
]

+
∑

i

ωi

[〈a†
i ai〉(+1) − 〈a†

i ai〉(−1)
]
. (A14)

The averages can be calculated from corresponding GFs using
the fluctuation-dissipation theorem. For this purpose, besides
〈〈X|X〉〉ω obtained above, we still need 〈〈ai |a†

i 〉〉σz
ω which is

obtained as

〈〈ai |a†
i 〉〉σz

ω = 1

ω − ωi

+ λ2
i

(ω − ωi )2

[
g2σz + g2

2
η0

π
〈〈X|X〉〉ω

]
.

(A15)
The fluctuation-dissipation theorem at T = 0 gives

�Eg = ε + 1

π

∫ 0

−∞
ImHω+iηdω, (A16)

with

Hω = g2η0

2π

[〈〈X|X〉〉(+1)
ω + 〈〈X|X〉〉(−1)

ω

]
+

∑
i

ωi

[〈〈ai |a†
i 〉〉(+1)

ω − 〈〈ai |a†
i 〉〉(−1)

ω

]
. (A17)

Inserting Eqs. (A8) and (A15) into this expression, we obtain
the results Eqs. (14)–(16) of the main text. Using the J (ω) in
Eq. (4) and Taylor expanding Eq. (A16), we obtain

�Eg = ε + g2

π

∫ 0

−ωc

J (−ω)dω + O(α3)

= ε + 2α

1 + s

(
g2ω

2
c

) + O(α3). (A18)

The approximate spin-flip line Eq. (17) is obtained as the
solution to �Eg = 0.

APPENDIX B: NRG FORMALISM FOR HQSB

In this appendix, we summarize the bosonic NRG formal-
ism used to study HQSB . Following the logarithmic discretiza-
tion method of Bulla [61], the Hamiltonian of the quadratic-
coupling SBM can be mapped into the star-type Hamiltonian

Hstar = ε

2
σz − �

2
σx + g2

2
σzŶ 2 +

∞∑
n=0

ξna
†
nan. (B1)

The local boson displacement operator Ŷ is expressed as Ŷ =∑∞
n=0 (γn/

√
π )(a†

n + an). The coefficients ξn and γn reads

ξn =
∫ �−nωc

�−(n+1)ωc ωJ (ω)dω∫ �−nωc

�−(n+1)ωc J (ω)dω
, (B2)

and

γn =
[∫ �−nωc

�−(n+1)ωc

J (ω)dω

]1/2

. (B3)

Carrying out an orthogonal transformation [47] for the boson
modes, one obtains the Wilson-chain Hamiltonian

Hchain = ε

2
σz − �

2
σx + g2

2
σzŶ

2

+
∞∑

n=0

[tn(b†nbn+1 + b
†
n+1bn) + εnb

†
nbn]. (B4)

Here Ŷ = √
η0/π (b†0 + b0). The coefficients tn and εn are

expressed by the following recursive formula (m � 0)

tm =
[+∞∑

n=0

[(ξn − εm)umn − tm−1um−1n]2

]1/2

, (B5)

um+1n = 1

tm
[(ξn − εm)umn − tm−1um−1n], (B6)

and

εm =
+∞∑
n=0

ξnu
2
mn. (B7)

The initial condition for the recursive calculation is t−1 = 0,
u−1n = 0, u0n = γn/

√
η0 with η0 = ∑+∞

n=0 γ 2
n .

The RG transformation is established for N � 0

HN+1 = �HN + �N+1[tN (b†NbN+1 + b
†
N+1bN )

+ εN+1bN+1bN+1], (B8)

with the starting Hamiltonian H0

H0 = ε

2
σz − �

2
σx + ε0b

†
0b0 + g2

2
σzŶ

2. (B9)

The chain Hamiltonian is recovered in the limit of N = ∞
as Hchain = limN→∞ �−NHN . The above NRG formalism is
the same as that for the liner-coupling SBM, except that we
replaced Ŷ in the linear-coupling term with Ŷ 2 [14].
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FIG. 11. The critical behavior of the order parameter |〈X〉| near
the continuous QPT α = α(c)

c , for s = 0.3, � = 0.0, and ε = 0.1 >

εc. (a) |〈X〉|(α) curves for different Nb values. From bottom to top,
Nb = 8, 12, 20, 30, 50. (b) Power law fitting of |〈X〉| = c(α − αc )β

with the fitted value β = 1.16 and α(c)
c = 0.09918, being indepen-

dent of Nb. (c) Log-log plot of the prefactor c versus Nb. The dashed
line gives the fitting c(Nb ) ∝ N 0.56

b in the large Nb limit. The NRG
parameters are � = 9.0, Ms = 100.

APPENDIX C: QUANTITATIVE COMPARISON OF NRG
AND EXACT SOLUTION AT � = 0

In this appendix, we make quantitative comparison be-
tween NRG results and the exact solution at � = 0, for
the order parameter 〈X〉, the phase boundaries, dynamical
correlation function CX(ω), and the exponents zν, y0, and
yc. For this purpose, we extrapolate NRG data to the limit
� = 1.0, Ms = ∞, and Nb = ∞.

Figure 11 shows the order parameter 〈X〉 and its critical
behavior near the continuous QPT at α = α(c)

c for s = 0.3 and
ε = 0.1 > εc. Different Nb values are used to extrapolate the
results to Nb = ∞. We used a large discretization parameter
� = 9.0 so that the data are independent of Ms . As shown
in Fig. 11(a), NRG always produces a finite |〈X〉| which
increases with Nb. In Fig. 11(b), for each Nb we show the crit-
ical behavior |〈X〉| ∝ c(α − α(c)

c )β with the critical exponent
β = 1.16 and α(c)

c = 0.09918, both being Nb independent. For
general 0 < s < 1 we find that β agrees well with β = (1 −
s)/(2s), same as the expression due to boson state truncation
obtained in the mean-field analysis of the linear-coupling
SBM [49,50]. With increasing Nb, the prefactor c increases as
c(Nb ) ∝ N0.56

b as shown in Fig. 11(c), leading to divergence
of |〈X〉| at the critical point α = α(c)

c in the limit Nb = ∞.
In Fig. 12, we extrapolate the NRG result α(c)

c obtained for
ε = 0.1 > εc to the exact limit � = 1.0. We plot the curves
for Ms = 100 and Ms = 200, with a sufficiently large Nb =
12. As shown in Fig. 12, a larger Ms can produce reliable
α(c)

c down to smaller � values. The four-point Lagrangian
extrapolation of the Ms = 200 data, using � = 1.6, 1.8, 2.0,
and 2.2, gives α(c)

c (� = 1.0) = 0.0749, very close to the
exact result αexc

c = s/(4g2ωc ) = 0.075 for s = 0.3. For other
ε > εc, the extrapolated values of α(c)

c (� = 1.0) coincide

FIG. 12. Extrapolation of α(c)
c (�) to � = 1.0 for s = 0.3, � =

0.0, and ε = 0.1 > εc. The squares and circles represent data ob-
tained using Ms = 100 and Ms = 200, respectively, with Nb = 12.
The four-point Lagrangian extrapolation using data of � = 1.6,
1.8, 2.0, and 2.2 gives the dashed line and the extrapolated value
α(c)

c (� = 1) = 0.0749, in good agreement with the exact value
αc = s/(4g2ωc ) = 0.075.

very well, being consistent with the ε independence of the
exact α(c)

c .
The extrapolation of the first-order QPT point α(1)

c to Nb =
∞ is demonstrated in Fig. 13 for s = 0.3 and ε = −0.2 < εc.
In Fig. 13(a), |〈X〉|(α) curves (empty circles with eye-guiding
lines) are plotted for different Nb values. The same curves are
also plotted for ε = 0.1 > εc (dashed lines) for comparison.
For ε = −0.2 and a fixed Nb, as α increases, |〈X〉| jumps at
α = α(1)

c (Nb ) from zero to a finite value and then stays on the

FIG. 13. The curves |〈X〉|(α) near the first-order QPT for s =
0.3, � = 0.0, and ε = −0.2 < εc. In (a), the empty circles with eye-
guiding lines are NRG data using various Nb’s. From bottom to top,
Nb = 8, 12, 20, 30, 50. The dashed lines are corresponding data for
ε = 0.1 > εc. (b) Distance of the first-order QPT point α(1)

c to the
continuous one α(c)

c as a function of 1/Nb. The solid squares are NRG
data and the solid line is a power law fit with the slope −0.4. (c)
|〈X〉| value at the upper edge of α(1)

c as a function of 1/Nb. The NRG
parameters are � = 9.0 and Ms = 100.
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FIG. 14. CX (ω) for s = 0.3, � = 0.0, and ε = 0.1 > εc. The
solid lines are NRG results and the dashed lines are exact solution
Eq. (9) of the main text. From bottom to top, α = αc − δα with δα =
1.0 × 10−2, 2.0 × 10−3, 4.0 × 10−4, 8.0 × 10−5, and 0.0. For NRG
and the exact solution, we use, respectively, αNRG

c = 0.085934484
and αexc

c = 0.075. The NRG parameters are � = 4.0, Ms = 100,
Nb = 12. The broadening parameter is B = 1.0.

curve of ε = 0.1, for which a continuous QPT occurs at α(c)
c =

0.09918. With increasing Nb, the nonzero |〈X〉| increases and
α(1)

c moves towards α(c)
c . Figure 13(b) shows that the distance

|α(1)
c − α(c)

c | ∝ N−0.4
b . This agrees with the conclusion from

the exact solution, i.e., the first-order QPT is a consequence
of level crossing made by the abrupt decrease of ground state
energy in the σz = −1 subspace when a continuous QPT
occurs and hence they have the same critical point α(1)

c = α(c)
c

in the limit Nb = ∞. |〈X〉(1)
c | shown in Fig. 13(c) is the value

at the upper edge of the jump α = α(1)
c + 0+. It also diverges

in the limit Nb = ∞, as expected. All the NRG results up
to now point to the conclusion that |〈X〉| = ∞ once the
environment enters the unstable state, irrespective of the order
of QPTs.

In Fig. 14, we compare the NRG result for the dynamical
correlation function CX(ω) with the exact one obtained from
Eq. (9) in the main text. Calculated at the same distance to
the respective critical point αNRG

c and αexc
c , the NRG results

obtained using � = 4.0, Ms = 100, and Nb = 12 and the
exact solution agree quite well in the power law, the scaling

FIG. 15. Comparison of the universal exponents calculated from
NRG and the exact solution. (a) The energy scale exponent zν.
Symbols are NRG data and the solid line zν = 1/s is the exact
solution; (b) exponents of CX (ω): y0 and yc. Symbols are NRG data
and the solid lines are exact solution y0 = s and yc = −s.

form, and the crossover frequency. Quantitatively, the NRG
results are smaller uniformly by 30% in magnitude. This error
comes mainly from the discretization error and can be reduced
by extrapolating � to unity. In the low frequency limit, the
power law behavior ωs for ω 	 ω∗ and ω−s for ω � ω∗ are
clearly seen, with a crossover scale ω∗ approaching zero as
α tends to α(c)

c . The exact CX(ω) curve has a sharp cutoff at
ω = ωc, inherited from the hard cutoff of J (ω) in Eq. (4). The
long tail of the NRG curves in ω > 1.0 is an artifact from the
log-Gaussian broadening used in NRG.

In Fig. 15, we compare the critical exponents obtained
from NRG (solid symbols) with the exact expressions (solid
lines) in the range 0 < s < 1. zν shown in Fig. 15(a) is the
critical exponent of the crossover energy scale T ∗ ∝ |α −
α(c)

c |zν . The NRG data agree well with the exact expression
zν = 1/s. In Fig. 15(b), the NRG results for y0 and yc are
compared with the exact expressions y0 = s and yc = −s.
Here y0 and yc are the low frequency exponent of CX(ω):
CX(ω) ∝ ωy0 for α < α(c)

c and CX(ω) ∝ ωyc at the critical
point α = α(c)

c . In summary, in this appendix we made a
detailed comparison between NRG and the exact solution for
� = 0 and good quantitative agreement is achieved.

[1] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).
[2] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[3] U. Weiss, Quantum Dissipative Systems, 2nd ed. (World

Scientific, Singapore, 1999).
[4] A. Garg, J. N. Onuchic, and V. Ambegaokarr, J. Chem. Phys.

83, 4491 (1985).
[5] D. Xu and K. Schulten, in The Photosynthetic Bacterial Reac-

tion Center: II. Structure, Spectroscopy and Dynamics, edited by
J. Breton and A. Verméglio (Plenum Press, New York, 1992).

[6] X. Song and A. A. Stuchebrukhov, J. Chem. Phys. 99, 969
(1993).

[7] L. Mühlbacher and R. Egger, Chem. Phys. 296, 193 (2004).
[8] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,

357 (2001).
[9] A. Shnirman, Y. Makhlin, and G. Schön, Phys. Scr. T102, 147

(2002).
[10] M. H. Decoret, A. Wallraff, and J. M. Martinis, arXiv:cond-

mat/0411174.
[11] J. Q. You and F. Nori, Phys. Today 58(11), 42 (2005).
[12] E. Novais and H. U. Baranger, Phys. Rev. Lett. 97, 040501

(2006).
[13] R. Bulla, N. H. Tong, and M. Vojta, Phys. Rev. Lett. 91, 170601

(2003).

115131-12

https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1063/1.449017
https://doi.org/10.1063/1.449017
https://doi.org/10.1063/1.449017
https://doi.org/10.1063/1.449017
https://doi.org/10.1063/1.465310
https://doi.org/10.1063/1.465310
https://doi.org/10.1063/1.465310
https://doi.org/10.1063/1.465310
https://doi.org/10.1016/j.chemphys.2003.08.021
https://doi.org/10.1016/j.chemphys.2003.08.021
https://doi.org/10.1016/j.chemphys.2003.08.021
https://doi.org/10.1016/j.chemphys.2003.08.021
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1238/Physica.Topical.102a00147
https://doi.org/10.1238/Physica.Topical.102a00147
https://doi.org/10.1238/Physica.Topical.102a00147
https://doi.org/10.1238/Physica.Topical.102a00147
http://arxiv.org/abs/arXiv:cond-mat/0411174
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1103/PhysRevLett.97.040501
https://doi.org/10.1103/PhysRevLett.97.040501
https://doi.org/10.1103/PhysRevLett.97.040501
https://doi.org/10.1103/PhysRevLett.97.040501
https://doi.org/10.1103/PhysRevLett.91.170601
https://doi.org/10.1103/PhysRevLett.91.170601
https://doi.org/10.1103/PhysRevLett.91.170601
https://doi.org/10.1103/PhysRevLett.91.170601


IMPURITY-INDUCED ENVIRONMENTAL QUANTUM PHASE … PHYSICAL REVIEW B 98, 115131 (2018)

[14] R. Bulla, H. J. Lee, N. H. Tong, and M. Vojta, Phys. Rev. B 71,
045122 (2005).

[15] S. Florens, D. Venturelli, and R. Narayanan, Lect. Notes Phys.
802, 145 (2010).

[16] N. Zhou, L. P. Chen, Y. Zhao, D. Mozyrsky, V. Chernyak, and
Y. Zhao, Phys. Rev. B 90, 155135 (2014); Y. Y. Zhang, Q. H.
Chen, and K. L. Wang, ibid. 81, 121105(R) (2010); C. Zhao, Z.
Lü, and H. Zheng, Phys. Rev. E 84, 011114 (2011).

[17] M. F. Frenzel and M. B. Plenio, New J. Phys. 15, 073046
(2013).

[18] M. Vojta, Philos. Mag. 86, 1807 (2006).
[19] M. Vojta, N.-H. Tong, and R. Bulla, Phys. Rev. Lett. 94,

070604 (2005); M. Vojta, N. H. Tong, and R. Bulla, ibid. 102,
249904(E) (2009).

[20] M. Vojta, R. Bulla, F. Güttge, and F. Anders, Phys. Rev. B 81,
075122 (2010).

[21] A. Winter, H. Rieger, M. Vojta, and R. Bulla, Phys. Rev. Lett.
102, 030601 (2009).

[22] A. Alvermann and H. Fehske, Phys. Rev. Lett. 102, 150601
(2009).

[23] C. Guo, A. Weichselbaum, J. von Delft, and M. Vojta, Phys.
Rev. Lett. 108, 160401 (2012).

[24] M. T. Glossop and K. Ingersent, Phys. Rev. Lett. 95, 067202
(2005).

[25] S. Kirchner and Q. Si, Physica B: Condensed Matter 403, 1199
(2008).

[26] S. Kirchner, Q. Si, and K. Ingersent, Phys. Rev. Lett. 102,
166405 (2009).

[27] N. H. Tong and M. Vojta, Phys. Rev. Lett. 97, 016802 (2006);
L. B. Yu, N. H. Tong, Z. Y. Xue, Z. D. Wang, and S. L. Zhu,
Science-China 55, 1557 (2012).

[28] P. O. Fedichev and U. R. Fischer, Phys. Rev. Lett. 91, 240407
(2003).

[29] A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P.
Zoller, Phys. Rev. Lett. 94, 040404 (2005).

[30] P. P. Orth, I. Stanic, and K. Le Hur, Phys. Rev. A 77, 051601(R)
(2008).

[31] D. Porras, F. Marquardt, J. von Delft, and J. I. Cirac, Phys. Rev.
A 78, 010101(R) (2008).

[32] Z. Blunden-Codd, S. Bera, B. Bruognolo, N.-O. Linden, A. W.
Chin, J. von Delft, A. Nazir, and S. Florens, Phys. Rev. B 95,
085104 (2017).

[33] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C.
Urbina, D. Esteve, and M. H. Devoret, Science 296, 886
(2002).

[34] P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. J. P. M.
Harmans, D. P. DiVincenzo, and J. E. Mooij, Phys. Rev. Lett.
95, 257002 (2005).

[35] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F.
Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, and G. Schön,
Phys. Rev. B 72, 134519 (2005).

[36] F. Yoshihara, K. Harrabi, A. O. Niskanen, Y. Nakamura, and
J. S. Tsai, Phys. Rev. Lett. 97, 167001 (2006).

[37] K. Kakuyanagi, T. Meno, S. Saito, H. Nakano, K. Semba,
H. Takayanagi, F. Deppe, and A. Shnirman, Phys. Rev. Lett.
98, 047004 (2007).

[38] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys.
Rev. Lett. 105, 246804 (2010).

[39] G. Wolfowicz, A. M. Tyryshkin, R. E. George, H. Riemann,
N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. W. Thewalt, S.
A. Lyon, and J. J. L. Morton, Nat. Nanotechnol. 8, 561 (2013).

[40] Y. Makhlin and A. Shnirman, Phys. Rev. Lett. 92, 178301
(2004).

[41] J. Bergli, Y. M. Galperin, and B. L. Altshuler, Phys. Rev. B 74,
024509 (2006).
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