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We study projected entangled pair states (PEPS) with continuous virtual symmetries, i.e., symmetries in the
virtual degrees of freedom, through an elementary class of models with SU(2) symmetry. Discrete symmetries of
that kind have previously allowed for a comprehensive explanation of topological order in the PEPS formalism.
We construct local parent Hamiltonians whose ground space with open boundaries is exactly parametrized by
the PEPS wave function, and show how the ground state can be made unique by a suitable choice of boundary
conditions. We also find that these models exhibit a logarithmic correction to the entanglement entropy and an
extensive ground space degeneracy on systems with periodic boundaries, which suggests that they do not describe
conventional gapped topological phases, but either critical models or some other exotic phase.
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I. INTRODUCTION

Tensor network states provide an entanglement-based de-
scription of wave functions of strongly correlated quantum
systems. Besides being a powerful numerical tool, they also
offer a systematic way of producing exact representations of
quantum wave functions with a rich variety of behavior [1].
In one dimension, they have been used to completely classify
phases resulting from both symmetry breaking and symmetry-
protected topological order [2–4]. The full classification of
phases in dimensions two and greater is currently still open,
due in some part to the existence of phases with intrinsic
topological order. Simple projected entangled pair state (PEPS)
representations have been found, for example, for the toric
code (and all other quantum double models) [5], string-net
models [6,7], and fermionic states with chiral topological order
[8–10]. The central role in all of these constructions is played
by a virtual symmetry of the tensor, this is, a symmetry in
the entanglement degrees of freedom. These symmetries, as
well as symmetry twists, are locally undetectable yet show
up in the global topological properties of the system: they
allow to parametrize the ground space manifold, to study
anyonic excitations and their statistics, and to determine the
entanglement properties of the system.

So far, studies of PEPS with virtual symmetries have
been restricted to models with discrete symmetry groups.
Conversely, continuous symmetries are expected to give rise to
qualitatively different behavior, as is apparent from other areas
of many-body physics. Discrete symmetries can, for example,
be spontaneously broken in less than three spatial dimensions at
finite temperature, while continuous symmetries cannot [11].
In the context of virtual symmetries and topological order, this
is particularly appealing. While the discrete symmetries hith-
erto studied have given a new perspective on known models in
a tensor network framework, a new type of symmetry may cor-
respond to unconventional phases beyond current knowledge.

In this paper, we initiate the study of PEPS with a continuous
virtual symmetry. We focus on the symmetry group SU(2)
and its fundamental representation and study the most general
PEPS with the simplest nontrivial virtual degrees of freedom,

in particular, its entanglement properties and the way in
which it appears as a ground state of a local Hamiltonian.
Specifically, we show how we can naturally define a parent
Hamiltonian from the PEPS tensor on a 2 × 2 patch, and
that the PEPS exactly parametrizes its ground space manifold
on any region with open boundary conditions, an important
property known as the intersection property in the PEPS
literature [12]. Subsequently, we show that by a suitable choice
of boundary terms, the parent Hamiltonian can be modified
such as to exhibit a unique ground state in any finite volume.
While this behavior is closely resemblant to that of PEPS
with finite virtual symmetry group, we find that with periodic
boundaries, the ground states cannot be parametrized purely in
terms of symmetry twists, and the system keeps a ground space
degeneracy which is exponential in the size of the boundary.
A closer analysis reveals that there are at least two types
of ground states: those which can be parameterized through
symmetry twists and which span a space of linear dimension
in the system size, and a distinct class of ground states which
correspond to extremal “frozen” spin configurations, which
are not coupled to other configurations by the Hamiltonian,
and which contribute an exponential number of states. Finally,
we also study the entanglement properties of PEPS wave
functions with virtual SU(2) symmetry and find that the system
exhibits a logarithmic correction to the area law, as opposed to
the constant correction for known gapped topological phases.
Overall, this indicates a behavior that is clearly distinct of those
of gapped topological phases with a finite number of anyons,
which exhibit a finite ground space degeneracy and a constant
correction to the entanglement entropy, and indicates either
critical behavior of the system or some unconventional kind of
order. We discuss possible interpretations of our findings in the
conclusions.

II. THE WAVE FUNCTION

In this section, we define PEPS with SU(2) symmetries,
introduce the formalism used for their analysis, and analyze
their entanglement properties.
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A. Projected entangled pair states

Projected entangled pair states (PEPS) are created from an
elementary 5-index tensor Ai

uldr , with the physical index i =
1, . . . , d (with d the physical dimension) and the virtual indices
u, l, d, r = 1, . . . , D (with D the bond dimension). The tensor
defines a fiducial state

|ψ1×1(A)〉 = =
∑
iuldr

Ai
uldr |i〉|uldr〉, (1)

where the box denotes both the tensor (with the legs the
virtual indices) and the fiducial state. From the fiducial state,
a family of states on the square lattice is generated by means
of contraction,

|ψ2×1(A)〉 =

= 〈φ+|r1,l2 |ψ1×1(A)〉 ⊗ |ψ1×1(A)〉, (2)

where |φ+〉 = ∑D
i=1 |ii〉, and so further for larger blocks.

Physical states are obtained by imposing boundary condi-
tions |X〉 ∈ (CD )⊗(2Nh+2Nv ),

|ψ2×1(A,X)〉 =

= 〈φ+|∂u1,u1〈φ+|∂u2,u2 . . . |ψ2×1(A)〉|X〉, (3)

where ∂u1, ∂u2, . . . are the indices of |X〉, u1, u2, . . . are the
indices of |ψ2×1(A)〉 and the 〈φ+| contract them. A particular
choice are periodic boundary conditions:

|X = PBC〉 = |φ+〉∂u1,∂d1 |φ+〉∂u2,∂d2 . . . . (4)

B. A class of SU(2)-invariant PEPS

Given a unitary representation Ug of a group G, we say that
a tensor is G-invariant if

= Ug ⊗ Ug ⊗ Ug ⊗ Ug|ψ1×1(A)〉

= |ψ1×1(A)〉 ∀g ∈ G. (5)

Here, the arrows denote the direction in which the Ug and
U

†
g act on the tensor A. Previous studies of G-invariant PEPS

have focused on discrete groups G [5]. In the following, we
generalize G invariance to the symmetry group G = SU(2)
and introduce a class of SU(2)-invariant PEPS, which we
subsequently study in detail.

We will focus on the case where D = 2, where Ug ≡ g is
the fundamental representation of g ∈ SU(2). A basis for the
two-dimensional subspace of (C2)⊗4 that is invariant under
Ug ⊗ Ug ⊗ Ug ⊗ Ug is given by {|w〉ul|w〉dr , |φ+〉ur |φ+〉dl},
where |w〉 = |01〉 − |10〉. Therefore, up to a constant factor,
the most general fiducial state Ã is of the form

= λ|0〉p|w〉ul|w〉dr + |1〉p|φ+〉ur |φ+〉dl, (6)

where λ ∈ C and |0〉 and |1〉 are normalized and linearly
independent, but not necessarily orthogonal.

A complication of the tensor Ã is that it involves different
entangled states and is not rotationally invariant. We will
now introduce another tensor A, which only requires one
kind of entangled state, is rotationally invariant for λ = 1, yet
generates the same family of states. Specifically, we will show
that for any region, there exists an invertible operator B acting
on the virtual indices at the boundary such that

|ψNh×Nv
(A,X)〉 = |ψNh×Nv

(Ã, BX)〉. (7)

In the special case of even Nh and Nv and periodic boundary
conditions (PBC), B|X = PBC〉 = |X = PBC〉. The price we
pay is that A will no longer be explicitly SU(2)-invariant. Yet,
we will see that using A instead of Ã simplifies the majority
of the derivations in this paper. Specifically, define

= λ|0〉p|φ+〉ul|φ+〉dr + |1〉p|φ+〉ur |φ+〉dl . (8)

The tensor A is clearly rotationally invariant for λ = 1.
To show Eq. (7), note that

= = , (9)

where Y = ( 0 1
−1 0) and all matrices act from left to right and

from top to bottom. Inserting now the middle form of (9) into
the even and the right-hand side into the odd sublattice of the
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square lattice, we obtain

=

= , (10)

which proves (7) with

B = Y ⊗ 1 ⊗ Y ⊗ 1 · · · ⊗ Y T ⊗ 1 ⊗ · · · . (11)

The states generated by A are therefore equivalent to those
generated by the SU(2)-invariant tensor Ã up to invertible
boundary terms which can be absorbed into the boundary
conditions X. In the following, we will therefore work with
the tensor A, and thus restrict to Nh, Nv even on PBC.

C. The loop picture

We will now introduce graphical notation that will provide
a convenient way of expressing configurations of the PEPS
through loop patterns. To this end, we introduce the rule

|0〉 → ∣∣ 〉
,

|1〉 → ∣∣ 〉
.

(12)

This prescription, e.g., leads to∣∣∣∣∣∣∣
1 0 1 0
0 1 1 1
1 0 0 0
1 1 0 1

�

→ . (13)

To each such physical configuration corresponds a configu-
ration of virtual states, obtained by contracting the tensors
with the corresponding physical states on that patch with open
boundaries (note that for 〈0|1〉 	= 0, this requires projecting
the physical state onto the dual basis vector). Since the
virtual |φ+〉 form the same pattern as the and , and
are connected by projecting onto 〈φ+|, which yet again yields
|φ+〉, each open loop corresponds to a virtual state |φ+〉 at
the corresponding virtual indices at the boundary, while each
closed loop contributes a factor of 2 (due to our choice of
normalization).

Let us now rigorously establish such a framework. In the
following, we always consider an Nh × Nv patch. The degrees
of freedom at the boundary are numbered from 1, . . . , 2N ,
N = Nh + Nv , as shown in Fig. 1(a).

(a)
10 6

1 2 3

12

11

9 8 7

5

4

(c)(b)

FIG. 1. Connectivity patterns and classes. (a) shows a con-
nectivity pattern, here {(1, 12), (2, 3), (4, 5), (6, 7), (8, 11), (9, 10)}.
(b) and (c) show two loop patterns which are compatible with
the connectivity pattern in (a). All compatible patters form the
connectivity class corresponding to (a). For the loop pattern shown in
(b), nL = 1 and bL = 3.

A connectivity pattern p on the boundary of the patch
is a pairing of the numbers 1, . . . , 2N , N = Nh + Nv , into
noncrossing tuples {(a1, b1), . . . , (aN, bN )}, see Fig. 1(a).

A loop pattern L is a tiling of the patch with tiles and ,
such as in Figs. 1(b) and 1(c). To each loop pattern L, there is
a corresponding loop state |L〉 of the physical system, namely
the product state that is obtained by replacing with |0〉 and

with |1〉. For a loop pattern L, we denote by nL the number

of closed loops in L and bL is the number of -tiles in L.
Each loop pattern L is compatible with a single connectivity
pattern p(L), namely, the one that is obtained by reading off the
boundary pairs, which are connected by L. A connectivity class
Cp for a given connectivity pattern is the set of all loop patterns
which are compatible with p. We will denote the vector space
spanned by all loop states |L〉 in the connectivity class Cp by
V (Cp ).

A boundary matching is a state on the virtual degrees
of freedom at the boundary corresponding to a connectivity
pattern p = {(a1, b1), . . . , (aN, bN )}, that is,

|m(p)〉 = |φ+〉a1,b1 ⊗ · · · ⊗ |φ+〉aN ,bN
. (14)

This terminology permits us to write down the wave
function of our PEPS in a concise way:∣∣ψNh×Nv

(A)
〉 = ∑

connectivity
patterns

p

|m(p)〉 ⊗
∑
L∈Cp

|L〉2nLλbL . (15)

The proof is immediate from the definition of the tensors,
and the fact that each closed loop contributes a factor of 2,
as discussed above.

The set of all boundary matchings |m(p)〉 is linearly
independent and forms a basis of the space of all staggered
spin 0 states (i.e., spin 0 up to a action of Y on every second
site). This can be seen as follows: different |m(p)〉 correspond
to different noncrossing partitions of the boundary points into
pairs, which form maximally entangled states. Application of
Y on every other boundary site turns such a matching of |φ+〉
into a matching of singlets, i.e.,

Y ⊗ 1 ⊗ · · · ⊗ Y ⊗ 1|φ+〉a1,b1 ⊗ · · · ⊗ |φ+〉aN ,bN

= |w〉a1,b1 ⊗ · · · ⊗ |w〉aN ,bN
. (16)

The set of noncrossing singlet matchings is a minimal basis
for the spin 0 space, in particular, the matchings are mutually
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linearly independent as shown in Refs. [13–15]. Indeed, there
this is proven as follows. First, all singlet matchings, noncross-
ing or otherwise, form an overcomplete basis of the spin 0
space. However, each crossing matching can be “uncrossed”
using the relation

= 1

2
+ 1

2
, (17)

where the points are spin-1/2 particles and the lines indicate
singlet pairings with a suitably chosen orientation. Using this
relation iteratively, one can express every spin 0 state as a
superposition of crossing-free singlet pairings. Since there are

1
N+1 ( 2N

N
) noncrossing matchings which coincides with the

dimension of the spin 0 subspace of 2N qubits, these form
a minimal basis. Since Y ⊗ 1 ⊗ · · · ⊗ Y ⊗ 1 is an invertible
operator, the |m(p)〉 form a minimal basis of the staggered spin
0 space.

This implies two things. First, we can restrict any boundary
condition X to the staggered spin 0 space. Second, there exists a
dual basis {〈m∗(p)|}p of that space such that 〈m∗(p)|m(q )〉 =
δpq .

Using the dual basis, we can construct states that are
superpositions of all loop patterns in the same connectivity
class,∣∣ψNh×Nv

(A,X = |m∗(p)〉)
〉 = ∑

L∈Cp

|L〉2nLλbL . (18)

For instance, for p = and λ = 1,

|ψ3×3(A,X = |m∗(p)〉)〉 = 2 + + . . . (19)

Moreover, since {|m∗(p)〉p} forms a basis of the space of
staggered singlets (and thus of all relevant boundary condi-
tions), we can express the PEPS obtained from any boundary
condition X as∣∣ψNh×Nv

(A,X)
〉 = ∑

p

〈X|m(p)〉
∑
L∈Cp

|L〉2nLλbL

=
∑

p

〈X|m(p)〉 ∣∣ψNh×Nv
(A, |m∗(p)〉)

〉
.

(20)

D. Configuration counting

In the following, we will determine the dimension of the
space

SNh×Nv
:= span

{∣∣ψNh×Nv
(A,X)

〉∣∣X ∈ C2Nh+2Nv
}

(21)

of all physical configurations accessible with our tensor net-
work. This on the one hand will be relevant when computing
the entanglement entropy in Sec. II E, and on the other hand,
when determining the ground space degeneracy with open
boundaries in Sec. III. As we have just seen in Eq. (20), SNh×Nv

is spanned exactly by the states given in (18).
These states are linearly independent—unless they are

zero—due to the linear independence of different |L〉, which
follows from the linear independence of |0〉 and |1〉. In order
for Eq. (18) to be nonzero for a given connectivity pattern p,

it must hold that Cp is nonempty. We will call connectivity
patterns p for which Cp is empty forbidden, otherwise we call
p allowed.

An example of a forbidden connectivity pattern on a 2 × 2
patch is

222 33322
1111111111111111

66666666666666
121221111111111111111 1111111111111111111

7777777777777

33
5555555555555555
. (22)

The intuitive reason for this connectivity class to be empty
is the fact that it requests too large amounts of entanglement
between the upper and lower boundary of the system, more than
can be mediated by the bulk: the connectivity pattern requires
four maximally entangled states between top and bottom half,
while the PEPS only has two bonds along that cut. If we tried
to find a loop pattern that matches the connectivity pattern, we
would see that the first two north-south connections fill up all
available space:

. (23)

In order to compute the dimension of SNh×Nv
, we therefore

need to determine the number of allowed connectivity patterns
for that given system size, which we denote byN (Nh,Nv ). The
explicit form of this number is constructed in Appendix B, and
given in Eqs. (B5) and (B6). For the main statements of this
paper, the asymptotic behavior will be sufficient. If we take
Nh and Nv to the thermodynamic limit in a fixed aspect ratio
Nv/Nh =: α − 1, then [as proven in Appendix B, Eq. (B40)]
the asymptotic behavior is essentially that of the Catalan
numbers. Specifically, denoting the size of the boundary by
N = Nh + Nv , we find that N scales asymptotically as

N (α,N ) = 4N

N3/2

[
k(α) + O

(
1

N

)]
(24)

with k(α) a function of the aspect ratio which is independent
of N .

E. Entanglement entropy

We are now ready to determine the scaling behavior of the
entanglement in our model. To this end, consider a partition of
the Nh × Nv torus into a (small) rectangle Q of size Lh × Lv ,
and the (large) rest R. Our goal is to determine the zero Renyi
entropy S0(ρQ) of the reduced state on Q, that is, the logarithm
of the Schmidt rank of |ψNh×Nv

(A, PBC)〉 in said partition. To
this end, note that by construction∣∣ψNh×Nv

(A,PBC)
〉 = (�Q ⊗ �R )|φ+〉|∂Q|, (25)

where �Q is the linear map |ψLh×Lv
(A, •)〉 from the boundary

to the bulk in Q and correspondingly for �R , and the |φ+〉|∂Q|
are placed along the boundary between Q and R, which has
length |∂Q| = 2Lh + 2Lv =: L.

As we have seen in the preceding section, the map �Q

provides a bijection between the space Vallowed spanned by all
|m∗(p)〉 with p an allowed matching, and its image SLh×Lv

.
�R , on the other hand, provides a bijection between the full
staggered spin 0 spaceV0 and its image in R, as long as Q is suf-
ficiently small [specifically, if min{Nh,Nv} > 3

2 (Lh + Lv )], as
in that case there are no forbidden matchings. Intuitively, this
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follows from the fact that forbidden matchings arise due to
space constraints at the corners, and the region Q is concave;
we provide a proof in Appendix C.

Thus, up to these bijections, |ψNh×Nv
(A, PBC)〉 equals

(�Vallowed ⊗ �V0 )|φ+〉|∂Q|, which has Schmidt rank equal to
dim Vallowed = N (Lh,Lv ). Using (24), we obtain that for a
fixed aspect ratio of Q, S0(ρQ) scales as

S0(ρQ) = L ln 2 − 3

2
ln(L/2) + ln k + O

(
1

L

)
(26)

with a nonuniversal constant ln k that depends on the aspect
ratio of Q.

As expected, the first term corresponds to the area law
|∂Q| ln D, D being the bond dimension of the PEPS. Neverthe-
less, the subleading term is logarithmic rather than a constant
as in topologically ordered models. Such corrections have been
investigated in Ref. [16]. There, entropies for conformal two-
dimensional quantum critical points, like the quantum dimer
[17,18] and the quantum eight-vertex model [19] have been
studied. The authors find a universal logarithmic correction
to the area law, which depends on the associated conformal
field theory and the geometrical details of the partition. In
particular, the same theory can have a pure area law for region
A being a disk, while for A rectangular, logarithmic corrections
appear. Similarly, in our case, the notion of allowed and
forbidden connectivity patterns—which is fundamental to our
calculation—depends on the shape of the partition. Curiously,
the models studied in [16] were found to lie at the boundary of
topologically ordered phases [20].

III. PARENT HAMILTONIANS

In the following, we will study how our SU (2)-invariant
wave function can appear as a ground state. To this end, we
will construct a local parent Hamiltonian and subsequently
characterize its ground space, both for open boundary con-
ditions (OBC) and on the torus. In particular, we will show
that the parent Hamiltonian possesses a property known as
intersection property [2,12], and that we can obtain a unique
ground state with OBC by gapping out the boundary. In the
following, we will focus on the case λ = 1.

A. Construction of the Hamiltonian and intersection property

Parent Hamiltonians for PEPS are constructed by taking a
plaquette of spins and finding a positive operator that annihi-
lates any state that looks like the PEPS on that patch, while
penalizing orthogonal states. In our case, the Hamiltonian acts
on a 2 × 2 plaquette. To this end, define

S2×2 := span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣∣∣∣∣X ∈ (C2)⊗8

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (27)

and set

h = 1 − �S2×2 (28)

to be the projector onto the orthogonal complement of S2×2.
For any patch, we can then define

H =
∑
x,y

h(x,y), (29)

where (x, y) is the top left spin of h(x,y), and the sum runs over
all x and y on the patch, according to the chosen boundary con-
ditions. By construction, H � 0 and h(x,y)|ψNx×Ny

(A,X)〉 =
0 for all X, and thus, any |ψNx×Ny

(A,X)〉 is a ground state
of H . The remaining question is thus to understand whether
these states fully span the ground space of H . For OBC, this
is known as the intersection property (that is, the intersection
of the ground spaces of the h(x,y) is given by the PEPS with
arbitrary boundary on the larger patch).

In order to understand the structure of an arbitrary ground
state of H , let us consider the action of h in terms of the loop
picture. It is convenient to introduce the following notation for
loop states on 2 × 2 plaquettes:∣∣∣∣∣∣

〉
=|B〉,

∣∣∣∣∣∣
〉
=|E1〉,

∣∣∣∣∣∣
〉
=|E2〉,

∣∣∣∣∣∣
〉
=|E3〉,

∣∣∣∣∣∣
〉
=|E4〉,

∣∣∣∣∣∣
〉
=|O1〉,

∣∣∣∣∣∣
〉
=|O2〉,

∣∣∣∣∣∣
〉
=|O3〉,

∣∣∣∣∣∣
〉
=|O4〉,

∣∣∣∣∣∣
〉
=|O5〉,

∣∣∣∣∣∣
〉
=|O6〉,

∣∣∣∣∣∣
〉
=|O7〉

∣∣∣∣∣∣
〉
=|O8〉

∣∣∣∣∣∣
〉
=|O9〉,

∣∣∣∣∣∣
〉
=|O10〉,

∣∣∣∣∣∣
〉
=|O11〉.

(30)
We will refer to |B〉 as bubbles, |Ei〉 as tadpoles, and |Oi〉 as
bubble-free states. Furthermore, define

|φ〉 = 1

2
√

2

[
2|B〉 +

4∑
i=1

|Ei〉
]

. (31)

Then, each local term has 12 possible ground states:

|Oi〉 , i = 1, . . . , 11 and |φ〉. (32)

Taking a general state |g〉 = ∑
i oi |Oi〉 +∑

i ei |Ei〉 + b|B〉,
a direct calculation reveals that h|g〉 = 0 if and only if ei =
ej ∀i, j and ei = b/2 ∀i. That is, in order to be a ground state
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of h, the states |B〉 and |Ei〉 must appear with the relative
amplitudes 2 : 1 : 1 : 1 : 1, as in |φ〉—and this is the only
condition in order to be a ground state.

We can thus interpret the Hamiltonian as defining a random
walk on the space of loop configurations,

2 � � � � ,

(33)
i.e., any two states coupled by the transition (33) must appear
in any ground state in superposition with the given relative
amplitude. Differently speaking, for any orbit of the random
walk (33) acting on all sites, there is at most one ground state
per orbit. In the following, we will call such a move between
loop configurations a surgery move and use the notation L′ =
σ (L) to describe the fact that loop patterns L′ and L are related
by such a move. We will denote sequences of surgery moves
by capital letters, e.g., � = σ1 . . . σM .

We will now use this interpretation to prove that for H

on an OBC rectangle, there is exactly one ground state per
connectivity pattern, that is, the ground space is given by

SNh×Nv
:= span

{∣∣ψNh×Nv
(A,X)

〉∣∣X ∈ C(2Nh+2Nv )},
this is precisely the intersection property. In particular, it entails
that the degeneracy of the parent Hamiltonian is given by
N (Nh,Nv ).

To start with, note that each surgery move leaves the
connectivity pattern invariant, i.e., 〈K|h|L〉 = 0 if K ∈ Cp 	=
Cq  L. The Hamiltonian is therefore block diagonal in the
loop basis,

H =
⊕

p

Hp, (34)

where the Hp are supported on V (Cp ). Now pick the basis
|ψp〉 := {|ψNh×Nv

(A,m∗(p))〉}p of SNh×Nv
, cf. Eq. (18). Each

of these states is by construction a ground state of H , and
lives in the corresponding block V (Cp ) of the Hamiltonian.
It thus remains to show that the random walk defined by H

couples any two configurations L,L′ ∈ Cp. As argued above,
this uniquely fixes the ratios of the coefficients

∑
L∈Cp

cL|L〉
for any given p, which thus must be equal to those of |ψp〉.
[Note that the fact that |ψp〉 is a ground state implies that the
ratio must be independent of the chosen path �(L) = L′ of
surgery moves.] Indeed, as we show in Appendices A and D,
for any given connectivity pattern p, we can define a canonical
pattern L0 such that any L ∈ Cp can be connected to L0

through a sequence �0 of surgery moves, L0 = �0(L), and
thus, any two L,L′ ∈ Cp are connected through a sequence �

that goes through L0,

L = �−1
0 (�′

0(L′)), (35)

where L0 = �′
0(L′). Differently speaking, the random walk

(33) is ergodic in the space of loop states with a fixed
connectivity pattern.

This implies that (up to normalisation), on a OBC patch of
size Nh × Nv ,

|ψp〉 =
∑
L∈Cp

2nL |L〉 (36)

is the unique ground state of H in sector p, i.e., H has one
ground state per connectivity pattern Cp, and the space of all
ground states is given by SNh×Nv

.

B. Open boundary conditions and unique ground state

We have just seen that the parent Hamiltonian possesses
the intersection property—the ground space manifold on any
rectangular patch is precisely given by those configurations that
can be obtained by choosing arbitrary boundary conditions. In
the following, we will show that, for Nh,Nv even, it is possible
to gap out the boundary, that is, to add boundary terms to the
parent Hamiltonian which yield a unique ground state.

To this end, we target

|ψ〉 = (37)

as the unique ground state, and proceed by constructing its
parent Hamiltonian. In the bulk, the parent Hamiltonian will
be the same as before. On the boundary, however, extra terms
appear. Specifically, we consider a 2 × 1 tile

(38)

at either boundary, and define

R(2n−1,1),(2n,1) := span

{ ∣∣∣∣∣X ∈ (C2)⊗4

}
(39)

(and rotated versions thereof) and the corresponding parent
Hamiltonian

h′
(x1,y1 ),(x2,y2 ) = 1 − �R(x1 ,y1 ),(x2 ,y2 ) . (40)

It is easy to check that h′, together with the original parent
Hamiltonian on the corresponding 2 × 2 patch, has exactly the
same ground space as the “true” parent Hamiltonian derived
from that patch of |ψ〉 including the boundary condition (and
containment, which suffices for |ψ〉 to be a ground state, holds
trivially). On the other hand, the parent Hamiltonians on the
shifted patches remain unchanged. Thus

H ′ := H +
Nh/2∑
n=1

[
h′

(2n−1,1),(2n,1) + h′
(2n−1,Nv ),(2n,Nv )

]
+

Nv/2∑
n=1

[
h′

(1,2n−1),(1,2n) + h′
(Nh,2n−1),(Nh,2n)

]
(41)

is a parent Hamiltonian of |ψ〉 and has |ψ〉 as a ground state.
Let us now show that this ground state is unique. To this end,

note that the ground space of h′ on a 2 × 1 patch is spanned
by the states

|θ1〉 = + + 2 ,

|θ2〉 = . (42)
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Thus h′ imposes the additional constraint that in any ground
state the states in |θ1〉 must appear as superpositions with
the corresponding weights. Arguing as before, this fixes the
relative amplitudes of any two loop patterns coupled by the
additional surgery move

� � 2 (43)

on the corresponding 2 × 1 patches, and rotated versions
thereof.

As we show in Appendix F, any loop pattern can be
transformed to a loop pattern in the “minimal” connectivity
class

pmin = (44)

by using the original (bulk) surgery moves, together with the
additional surgery move (43) obtained from h′ (which allows to
change the connectivity class). On the other hand, we have seen
in Sec. III A that any two loop patterns in a given connectivity
class—specifically, the minimal one above—are connected
through bulk surgery moves. Thus, it follows that any two loop
patterns can be connected by combining bulk and boundary
surgery moves, and thus, the relative amplitudes of all loop
patterns are fixed and therefore equal to those found in |ψ〉,
Eq. (37). We thus infer that |ψ〉 is the unique ground state
of H ′.

C. Periodic boundary conditions

Let us now study the ground space structure of the parent
Hamiltonian (29) on a system with periodic boundary condi-
tions (PBC); recall from Sec. II that this requires Nh and Nv

to be even. To this end, we will resort to the description of
the PEPS in terms of the tensor Ã, Eq. (6), rather than A (see
Sec. II B). Note that due to the gauge relation (7) between them,
both A and Ã have the same parent Hamiltonian as defined
in (28).

Let us first consider an approach that allowed to fully
characterize the ground space for G-injective PEPS with finite
symmetry group G [5]. (In the following, all arrows point from
left to right and top to bottom by convention.) First, note that
the fundamental symmetry (5) is stable under concatenation,
e.g.,

=

= , (45)

i.e., any closed loop of symmetry operators leaves a simply
connected patch invariant. This is particularly interesting when

we consider closed boundary conditions:

= = .

(46)
Virtual string operators of the form U⊗Nv

g , which wrap verti-
cally around the torus, can therefore be freely moved around
the torus, and correspondingly horizontal loops V

⊗Nh

h , i.e., the
state

|ψNh×Nv
{Ug, Vh}〉 = (47)

on the torus is independent of the position of the strings, as long
as [Ug, Vh] = 0 (otherwise, the strings might not be movable
where they intersect).

It is now clear that any such state |ψNh×Nv
{Ug, Vh}〉 is a

ground state of the parent Hamiltonian H = ∑
h(x,y), since for

any local term h(x,y), the strings can be moved such that they are
outside the region where h(x,y) acts. In the case of G-injective
PEPS with finite symmetry group, it could be shown that these
states precisely parametrize the full ground space of H [5]. For
Abelian groups, all (g, h) yield linearly independent ground
states |ψNh×Nv

{Ug, Vh}〉, while for non-Abelian groups, linear
dependencies arise as certain (g, h) yield identical states.

Let us now consider the case of G = SU(2). Clearly,

S ′ = span
{∣∣ψNh×Nv

{U,V }〉∣∣U,V ∈ SU (2), [U,V ] = 0
}
(48)

is inside the ground space of H . What is the dimension
of S ′? Without loss of generality, we can restrict to U =
diag(eiφ, e−iφ )—otherwise, we conjugate each Ã with the
unitary which diagonalises U , leaving the state invariant. Then
(up to basis permutations),

U⊗Nv = eiNvφ1( Nv
0 ) ⊕ ei(Nv−2)φ1( Nv

1 ) ⊕ · · · ⊕ e−iNvφ1(NvNv ),

(49)

for arbitrary values of φ, and thus, the closure U⊗Nv
g

on its own parametrizes a (Nv + 1)–dimensional subspace
(e.g. by choosing Fourier angles φk = 2πk/(2Nv + 1), k =
−Nv/2, . . . , Nv/2). In order to satisfy [U,V ] = 0, we must
have V = diag(eiθ , e−iθ ), and thus, S ′ is at most (Nh +
1)(Nv + 1)-dimensional. However, it is easy to see that there is
at least one more redundancy: by conjugating each Ã with the
Pauli X operator, we map φ → −φ, θ → −θ . This reduces the
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number of possibilities by a factor of 2, except at φ = θ = 0.
As we show in Appendix G, the remaining states are indeed
linearly independent, and thus,

dim S ′ = (Nh + 1)(Nv + 1) + 1

2
.

One might think that this parameterizes the full ground
space of H , just as for G-injective PEPS with finite G.
However, this is not the case. To see this, consider an arbitrary
bit-string b ∈ {0, 1}Nh . Then, we define the product state |v(b)〉
by stacking Nv copies of b on top of each other and then
identifying 0 → |0〉 and 1 → |1〉, for example,

|v(0101)〉 = . (50)

Horizontally stacked states |h(b)〉 are defined accordingly.
Clearly, there are 2Nh + 2Nv − 2 of these states (since only
the all-0 and all-1 states are doubly counted). Finally, all
of them are ground states, since, by definition, no plaquette

locally looks like any of |B〉 = |0 1
1 0

〉, |E1〉 = |0 0
1 0

〉, |E2〉 = |0 1
0 0

〉,
|E3〉 = |1 1

1 0
〉 or |E4〉 = |0 1

1 1
〉, even across the boundary. Note that

in all of these configurations, the winding of the loops around
the torus is maximal in at least one direction (horizontally or
vertically). We will call these states isolated states, as they are
not coupled to any other loop configuration by the Hamiltonian.

We therefore find that the ground space degeneracy of
H is at least exponential in Nv and Nh, and thus cannot be
parametrized by strings of symmetry operations alone. In fact,
e.g., the states

|v(0101)〉 = , |v(1010)〉 = (51)

are indistinguishable by any such string operation. It is worth
pointing out, however, that all of these ground states are
isolated and in the sector with maximal winding number, so it
might still be possible that in the remaining sectors, the ground
space can be parametrized succinctly in terms of the symmetry.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have studied PEPS with continuous virtual
symmetries. Specifically, we have considered the class of
SU(2)-invariant PEPS with the fundamental representation of
SU(2), and studied their entanglement properties and their
relation to local Hamiltonians. First, we have introduced the
most general form of tensors invariant under the fundamental
representation of SU(2). From the local tensor, we have
constructed local parent Hamiltonians acting on 2 × 2 sites,
and characterized their ground space structure. For open
boundaries, we have found that the ground space on rectangular
patches on any size is always exactly parameterized by the
PEPS, a property known as the intersection property. We were

further able to show that by choosing appropriate Hamiltonian
terms at the boundary, the system acquires a unique ground
state. On a system with periodic boundary conditions, we
have found a ground space degeneracy which grows with
the system size. We were able to attribute this to at least
two distinct mechanisms: first, closing the boundaries with
symmetry twists of SU(2), in analogy to finite symmetry
groups, yields a linearly growing number of ground states;
and second, extremal isolated spin configurations yield an
exponentially growing number of states. Regarding the entan-
glement properties of the state, we found that the zero Renyi
entropy has a logarithmic correction to the area law scaling.

The observed results are clearly distinct from those found
for known topologically ordered phases, and point towards a
critical nature of the wave function (due to the logarithmic cor-
rection to the entanglement entropy and the algebraic ground
space degeneracy, if the isolated states are ignored), or possibly
some other exotic phase. Interestingly, for λ = 1 and an
orthogonal physical site basis, 〈0|1〉p = 0, the normalization of
the loop model corresponding to the SU(2)-invariant PEPS can
be mapped to the partition function of the Q = 16 state Potts
model at the phase transition between ordered and disordered
phase (see Appendix E), which is known to be a first-order
transition with a finite correlation length; however, the mapping
implies exponential decay of diagonal observables only. It
may still be the case that other observables exhibit critical
correlations (as is the case for the plaquette-flip for a related
quantum loop model [21]). Thus, further studies might be
required to determine the precise nature of the wave functions
considered, and the way in which it is affected by the choice
of λ and the local basis.

An interesting observation is that, for periodic boundaries
and λ = 1, we obtain exactly the wave function of a quantum
loop model |ψNh×Nv

(A, PBC)〉 = ∑
L dnL |L〉, which was stud-

ied in Refs. [22,23]. The main focus of those works is the case
where the so-called topological weight is d = 2 cos

(
π

k+2

)
< 2

for k a positive integer. In that case, a Hamiltonian with a finite
number of ground states on the torus in the thermodynamic
limit can be found, in contrast to the exponential degeneracy
we find in our model. The topological weight in our PEPS
wave function is given by the bond dimension d = 2. While our
construction can be extended to any integer d > 2, it is unclear
whether a PEPS description with constant bond dimension
exists for the quantum loop models investigated in the above
references.

Finally, let us briefly comment on the significance of
our findings with respect to numerical investigation of both
loop models and other PEPS with continuous symmetries.
First, in our model, when computing diagonal observables,
the PEPS contraction coincides with the result of a Monte
Carlo simulation [24]. This might indicate that PEPS with
continuous symmetries beyond this model are susceptible
to Monte Carlo schemes, and replacing the computationally
heavy PEPS contraction in such a manner may prove useful,
e.g., in variational calculations. Second, the existence of a
virtual symmetry enables the use of quantum numbers. For
example, the PEPS transfer matrix inherits the full SU(2)
symmetry of our tensor and one can attempt to find fixed points
within each spin sector separately, thereby speeding up the
computation.
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APPENDIX A: ALLOWED CONNECTIVITY PATTERNS
AND THE CANONICAL LOOP PATTERN

Both the degeneracy of the parent Hamiltonian and the
entanglement entropy depends on the number N (Nh,Nv ), i.e.,
the number of connectivity patterns on an Nh × Nv patch,
which have at least one compatible loop pattern. In order
to show that this number is equal to N (Nh,Nv ) ∼ 4N

N3/2 in
Appendix B, we need to introduce the following terminology:

Definition: lattice and boundary. Define

X :=
{

1

2
,

3

2
, . . . ,

2Nh − 1

2

}
× {0, 1, . . . , Nv},

Y := {0, 1, . . . , Nh} ×
{

1

2
,

3

2
, . . . ,

2Nv − 1

2

}
. (A1)

The (Nh,Nv ) lattice is defined as

LNh,Nv
= X ∪ Y . (A2)

The boundary BNh,Nv
⊂ LNh,Nv

is

BNh,Nv
= {

(x, y) ∈ LNh,Nv

∣∣x ∈ {0, Nh} or y ∈ {0, Nv}
}
.

(A3)

Definition: tuple distance. Let a, b ∈ LNh,Nv
, a 	= b and

writing a = (ax, ay ), b = (bx, by ), the x distance (y distance)
of the tuple (a, b) is

�x(a, b) = bx − ax, �y(a, b) = by − ay. (A4)

A tuple (a, b) is

horizontal if |�x(a, b)| > |�y(a, b)|,
vertical if |�x(a, b)| < |�y(a, b)|, and

diagonal if |�x(a, b)| = |�y(a, b)|. (A5)

A horizontal tuple (a, b) is upper if ay + by � Nv , otherwise
it is lower. A vertical tuple (a, b) is left if ax + bx � Nh,
otherwise it is right.

In the main text, we define allowed and forbidden matchings
by the existence of at least one compatible loop pattern. We
will now give a more useful definition in terms of Flow and
then show that the definitions are equivalent, i.e., show that for
each allowed connectivity pattern as defined here there exists
at least one loop pattern: the canonical loop pattern. The fact
that there cannot exist a loop pattern for forbidden matchings
is easy to see.

Definition: Flow. For i ∈ {1, Nh − 1} (i ∈ {1, Nv − 1})
and a, b ∈ LNh,Nv

, the tuple (a, b) goes through vertical

(horizontal) cut i if (a, b) is horizontal (vertical) and

ax < i and bx > i

(ay < i and by > i).
(A6)

For p, a connectivity pattern, the flow through vertical (hori-
zontal) cut i, denoted by Flow(p, i, vert) (Flow(p, i, hor)) is
the number of bonds t ∈ p that go through vertical (horizontal)
cut i.

Definition: forbidden matchings. We call a connectivity pat-
tern p vertically forbidden if there exists i ∈ {1, 2, . . . , Nh −
1} such that

Flow(p, i, vert) � Nv + 1 (A7)

or horizontally forbidden if there exists i ∈ {1, 2, . . . , Nv − 1}
such that

Flow(p, i, hor) � Nh + 1. (A8)

A connectivity pattern that is not forbidden is allowed.
Definition: the canonical loop pattern. Given an allowed

connectivity pattern p = {(a1, b1), . . . , (aN, bN )}, we con-
struct the loop pattern explicitly. (1) We start with the empty
loop pattern L = {}. (2) (Initial and final pieces.) For each
ti = (ai, bi ), determine whether it is horizontal, diagonal,
or vertical. If ti is horizontal or diagonal and ai (bi ) ∈ X
then define āi = ai + (1/2,±1/2) and b̄i = bi + (−1/2,±1/2),
depending on whether ai (bi ) are located on the top or bottom
boundary. Similarly, if ti is vertical and ai (bi ) ∈ Y , define
āi = ai + (±1/2, 1/2) and b̄i = bi + (±1/2,−1/2). Else, just set
āi = ai and b̄i = bi . This causes all horizontal and diagonal
bonds effectively go from Y to Y and all vertical bonds
to go from X to X . (3) (Choosing a bond.) Pick a bond
t = (a, b) ∈ p, such that all bonds inside t have been picked
already. Since two paths cannot be mutually inside each other,
there always exists such a path, except if all bonds have been
chosen. In that case, continue with step 8. Define a new partial
path m = {(a), ā} (the brackets indicate to only add a if a 	= ā).
(4) Set j = 1 and v1 = ā. (5) If vj = b̄, add the completed
path m = {(a), ā, v2, . . . , b̄, (b)} to L and go back to step
3. Otherwise continue with the step 6. (6) (Diagonal partial
paths.) If the pair (vj , b̄) is diagonal, consider without loss
of generality the case where x(b̄) > x(vj ) and y(b̄) > y(vj ).
Then, set vj+1 = vj + (1/2, 1/2). In the other cases, extend the
path towards b̄ analogously. In principle, vj+1 could already be
occupied by a path q. However, as will become clear in the next
step, all paths are constructed monotonously, i.e., horizontal
paths advance towards the right in each step and vertical
paths advance towards the bottom. Therefore one can draw
a horizontal (vertical) cone if q is horizontal (vertical) and the
endpoints, lets call them aq and bq , must lie inside the cone as
well, one to the right (top) of vj+1 and one to the left (bottom).
It is easy to see that the bonds (aq, bq ) and (a, b) are crossing,
violating the assumption that m is a valid matching. Add vj+1

to p, set j ← j + 1 and go back to step 5. (7) (All other types
of partial paths.) If (vj , b̄) is not diagonal, consider without
loss of generality (a, b) to be a lower horizontal bond (all other
cases follow analogously). By construction (see below), at any
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vj
sin
1

sin
2

sin
1
inin

vj

FIG. 2. s in
′

1 touching the boundary.

point, (vj , b̄) remains horizontal. Define

s in
1 = vj + (1/2, 1/2),

sout
1 = vj + (1/2,−1/2),

s in
2 = s in

1 + (1/2, 1/2),

sout
2 = sout

1 + (1/2,−1/2). (A9)

If neither of s in
1 and s in

2 is occupied or in the boundary, set
vj+1 = s in

1 and vj+2 = s in
2 . Otherwise, set vj+1 = sout

1 and
vj+2 = sout

2 . Add vj+1 and vj+2 to p, set j ← j + 1 and go
back to step 5.

Again, in principle, one of s in
1 and s in

2 and one of sout
1 and

sout
2 could be occupied or in the boundary. We are now going to

show that in this case p is forbidden, i.e., there is too much flow
going through a horizontal/vertical line. First, let us assume
that s in

2 is occupied. Denote by q the path that contains s in
2 and

call its endpoints (aq, bq ). Then q must be horizontal, which
can be verified using the fact that (vj , b) is horizontal. As
such, vj + (1/2, 3/2) ∈ q, since vj is still free. Now we have
two horizontal paths, p and q, both go through x(vj ) and their
vertical distance at that point is 2. By construction, the vertical
distance must remain even all the way through to the initial and
final points of paths q and m, which implies that there is an odd
number of boundary points between am and aq and between bm

and bq . Hence there is one horizontal bond (ar, br ) that goes
through x(s in

2 ) and (aq, bq ) lies inside it.
Consider now sin′

1 = s in
1 + (0, 1) and sin′

2 = s in
2 + (0, 1). If

either of them are in the boundary, the situation is depicted in
Fig. 2. Otherwise, consider the progression from vj + (1/2, 3/2)
to s in

2 : it is an up-move and it is occurring in a lower horizontal

path. Hence either of sin
′

1 or sin
′

2 must be occupied. If sin
′

2
is occupied, the above argument can be repeated until one
reaches the boundary to findNv − y(vj ) + 1/2 horizontal bonds
that go through x(s in

2 ). If sin′
1 is occupied, its path must be

horizontal and running parallel to q, in particular making an
up-step around sin′

1 . Again, we can continue the argument until
we arrive at the boundary. The same argument can be used if
initially s in

1 is occupied instead of s in
2 . In either case, we find

Nv − y(vj ) + 1/2 horizontal bonds that go through x(s in
2 ).

Now, by assumption, also either sout
1 or sout

2 is occupied.
We can reverse top and bottom in the argument above to find
another y(vj ) + 1/2 horizontal bonds which go through x(s in

2 ).
Note that the path that contains sout

2 is necessarily upper, since
otherwise, m would be inside it and it could not exist yet by
construction.

We have hence found Nv + 1 bonds in p that go through
a single vertical cut, contradicting the assumption that p is
allowed. (8) (Adding bubbles) Now for each bond, we have
created a connecting path. It is possible, however, that not
all points in LNh,Nv

are occupied. In this case, we add small
bubbles to the pattern.

FIG. 3. The boundary cut into regions by vertical and horizontal
cuts at x and y.

It remains to show that the loop pattern thus created is is
compatible with p, i.e., that the boundary points of all paths
correspond to tuples in the connectivity pattern, or—differently
phrased—for a tuple (a, b) ∈ p, whether the corresponding
path in L starting with a can end at a point b′ 	= b. By
construction, once (vj , b) becomes diagonal, it will surely
have the correct ending point. Again, let us consider without
loss of generality a horizontal path. Then, after �x steps, the
horizontal distance to the target is zero. Hence, either we have
arrived at the correct ending point, or the partial path has
become vertical during the construction. To become vertical,
however, the path must have gone through a point where its
remainder was diagonal, hence ensuring that the correct ending
point was reached. The resulting loop pattern is the canonical
loop pattern of p.

APPENDIX B: THE NUMBER N (Nh, Nv )

Now that we have seen that there is at least one loop
pattern for each allowed connectivity pattern, we can count
the forbidden connectivity patterns.

1. We can count horizontally and vertically forbidden
connectivity patterns individually

Claim. A connectivity pattern cannot be both horizontally
and vertically forbidden.

Proof. Let p be a connectivity pattern and assume it is
both horizontally and vertically forbidden. Then denote the
vertical lines at which there is an oversaturated cut by x and y,
respectively. These lines cut the patch into four areas, A, B, C,
and D as depicted in Fig. 3.

Now if each of the bonds cuts only either the horizontal or
vertical line, then there would need to be at least Nh + Nv + 2
bonds in total, hence at least two bonds cut both lines, without
loss of generality going from boundary A to boundary D in
the figure. There could be more than two bonds crossing from
A to D—let us denote the total number by κ , the lowest one
by a and the highest one by b. These bonds partition the areas
A and D into AL, AR and DL, DR , respectively. For their size,
clearly

|AL| + |AR| + κ � |A|, |DL| + |DR| + κ � |D| (B1)

holds. There remain Nh − κ + 1 bonds to be found for the
horizontal violation and all of these must have boundary points
in AR and DR . Similarly, there remain Nv − κ + 1 bonds to
be found for the vertical violation and all of these must have
boundary points in AL and DL. Hence we have the inequalities

|AL| + |DL| � Nv − κ + 1,

|AR| + |DR| � Nh − κ + 1. (B2)
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FIG. 4. The mapping φh for an allowed connectivity pattern.

Adding the two inequalities and inserting inequalities (B1), we
obtain

|A| + |D| � Nv + Nh + 2, (B3)

and since |A| + |D| = Nv + Nh, we arrive at a
contradiction. �

2. A bijection between connectivity patterns and Dyck paths

Definition: Dyck paths. A Dyck path or mountain diagram
of size n is a lattice path in Z2 from (0,0) to (2n, 0) consisting
of n up steps of the form (1,1) and n down steps of the form
(1,−1), which never goes below thex axisy = 0. The maximal
height of a Dyck path is the maximum y coordinate of the path.
Denote all Dyck paths of size n by Dn.

Definition: Bijection between connectivity patterns and
Dyck paths. We define two maps

φh : (Nh,Nv )-connectivity patterns �→ DNh+Nv
,

φv : (Nh,Nv )-connectivity patterns �→ DNh+Nv
. (B4)

The image of a given connectivity pattern p under the map φh

is given as follows. We start with the empty Dyck path and
sequentially look at the boundary points in the order given in
Fig. 4. Then, we add an up-step to the Dyck path if the partner
of the boundary point we are currently reading has not been
read yet. Otherwise, we add a down-step. For φv , we follow
the same procedure with the labeling given by Fig. 5 instead.

A couple of remarks are in order. (1) The resulting path is
a Dyck path: for it to pierce through the x axis, one would
need to read more second halves than first halves up to a
given point, which is clearly impossible. Also, there is an equal
number of second halves and first halves in total, so the final
step ends up on the x axis again. (2) The maps φh and φv are
bijective. The map φ−1

h reads the Dyck path sequentially from
start to end, while scanning through the boundary points in the
order given in Fig. 4. Whenever a down-step is encountered,
a bond is added to the connectivity pattern by matching
the currently active boundary point with the last open one.
Again, φ−1

v works analogously with the labeling given in
Fig. 5. (3) For i ∈ {1, 2, . . . Nh − 1}, F low(p, i, vert ) is given
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FIG. 5. The mapping φv for a forbidden connectivity pattern.

by the height of φh(p) after Nv + 2i steps. Similarly, for
j ∈ {1, 2, . . . Nv − 1}, F low(p, j, hor ) is given by the height
of φv (p) after Nh + 2i steps. In particular, p is horizontally
(vertically) forbidden if the maximal height of φh(p) (φv (p))
is greater than Nh (Nv).

3. Three expressions for the number of Dyck paths
with restricted height

Claim (number of allowed matchings). Let Cn = 1
n+1

(2n

n

)
be the regular Catalan number. For a given Nh,Nv ∈ N,
the number of horizontally (vertically) forbidden connec-
tivity pattern is given by CNh+Nv

− f (Nh,Nv ) (CNh+Nv
−

f (Nv,Nh)), where we can give three expressions for the
numbers f (Nh,Nv ):

f (Nh,Nv ) = 4N

1 + Nh

2

Nh+2∑
j=1

sin

(
πj

Nh+2

)(
cos

(
πj

Nh+2

))2N

=
∑
k�1

(
2N

N − k(Nh + 2) − 1

)

− 2

(
2N

N − k(Nh + 2)

)
+
(

2N

N−k(Nh+2)+1

)
=
(

d

dz

)2N ∣∣∣∣
z=0

1

1 − z2

. . . − 1
z2

, (B5)

where the continued fraction has Nh instances of z2 and N =
Nh + Nv . As a direct corollary, since forbidden matchings are
either horizontally or vertically forbidden and the number of
all matchings is CNh+Nv

, we obtain the total number of allowed
matchings:

N (Nh,Nv ) = f (Nh,Nv ) + f (Nv,Nh) − CNh+Nv
. (B6)

For later convenience, we will introduce f (Nh, α), with
the aspect ratio αNv = N = Nh + Nv . Since the number of
vertically forbidden matchings is equal to the number of
horizontally forbidden matchings on a 90◦ rotated patch and a
90◦ rotation corresponds to α → α

α−1 , we can rewrite Eq. (B6)
as

N (Nh, α) = f (Nh, α) + f

(
Nh,

α

α − 1

)
− CαNh

. (B7)

Proof. Let Nh,Nv ∈ N. We are going to count the horizon-
tally allowed connectivity pattern and show that they are equal
to CNh+Nv

− f (Nh,Nv ). From the definition of Dyck paths, we
need to count all mountain diagrams of half-length Nh + Nv

whose maximum height exceeds Nh. To this end, we set up
a sequence of counting vectors vi ∈ NNh+1. After n steps, we
would like the number of paths with height h that never exceed
Nh in height to be given by (vn)h. Hence, setv0 = (1, 0, . . . , 0),
indicating a single path with height 0, the empty path. Now we
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are going to sequentially apply linear operations

vi+1 = Mvi, (B8)

for i ∈ {1, . . . , 2N}, where M is an Nh+1 × Nh+1 matrix,
defined as

M =

⎡⎢⎢⎢⎢⎣
0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎤⎥⎥⎥⎥⎦. (B9)

For each existing path of length n and height h, the matrix M

has the effect of creating two new paths of height h + 1 and
h − 1, while automatically cutting off paths with height greater
than Nh and smaller than 0.

Finally, the vector v2Nh+2Nv
contains the number of paths

of all heights after 2Nh + 2Nv steps, out of which we are only
interested in proper Dyck paths, the number of which is stored
in (v2N )1 = (M2Nv0)1. The matrix M is a tridiagonal Toeplitz
matrix with eigenvalues Dj = 2 cos

(
πj

Nh+2

)
and eigenvectors

Sij = 1√
1+ Nh

2

sin
(

πij

Nh+2

)
. Since S is orthogonal,

(M2Nv0)1 =
Nh+2∑
j=1

S1jD
2N
j (S−1)j1

=
Nh+2∑
j=1

(S1j )2D2N
j

= f (Nh,Nv ). (B10)

The second form is an application of the combinatorics of
watermelons [25]. For the last expression, we allude to a
tool from analytical combinatorics, the symbolic method [26].
Assume that we want to calculate the number bn of binary
words of length n. Then we can write down a combinatorial
equation

B = ε︸︷︷︸
empty word

∪ B × 0︸ ︷︷ ︸
append a zero

∪ B × 1︸ ︷︷ ︸
append a one

(B11)

meaning “A binary word is either the empty word or a binary
word ending on zero or a binary word ending on one.” The
machinery of the symbolic method teaches us to translate this
equation into a generating function:

B(z) = 1 + zB(z) + zB(z) ⇒
B(z) = 1

1 − 2z

=
∑
n�0

2nzn, (B12)

such that we can extract the numbers bn = (d/dz)2NB(z)|z=0

from the coefficients of the Taylor series. To calculate the
number D2n of Dyck paths of length 2n, we use the first passage
decomposition:

D = ε︸︷︷︸
empty path

∪ ↑ ×D× ↓ D︸ ︷︷ ︸
an up-step followed by a Dyck path,

a down-step and another Dyck path

(B13)

meaning “A Dyck path is either empty or an up-step follwed by
a Dyck path, a down-step and another (possibly empty) Dyck
path.” Similarly, this translates to

D(z) = 1 + zD(z)zD(z) ⇒

D(z) = 1 − √
1 − 4z

2z

=
∑
n�0

Cnz
2n, (B14)

where Cn is the nth Catalan number. Finally, to obtain a
generating function Dh(z) for the number of Dyck paths with
maximal height h, we start with D0(z) = 1, since there is
exactly one path with length zero: the empty path. Again, we
decompose the path to the left and right of its first passage of
zero:

Dh(z) = 1 + zDh−1(z)zDh(z) ⇒
Dh(z) = 1

1 − z2

. . . − 1
z2

=
∑
Nv�0

f (h,Nv )z2(h+Nv ). (B15)

�

4. Proof of (24)

We will now show that

N (N,α) = 4N

N3/2

[
k(α) + O

(
1

N

)]
(B16)

cf. Eq. (B7) with the function k(α) given by

k(α) =
√

π

2
+

√
π

2
(α − 1)3/2 − π−1/2. (B17)

In order to calculateN (Nh, α), it is sufficient to compute the
asymptotic behavior of f (N,α) since the vertically forbidden
loop patterns can be transformed into horizontally forbidden
ones under the 90◦ rotation α → α

α−1 . The asymptotic behavior
of the Catalan numbers is known to be 4N/N3/2√π . It remains
to calculate the expression

g(Nh, α) :=
√

Nh

Nh+2∑
j=1

sin

(
πj

Nh + 2

)
cos

(
πj

Nh + 2

)2N

.

(B18)

First, observe that the summand is symmetric around j = Nh+2
2

(if Nh is odd, we can omit the
(�Nh+2

2 �) th from the sum as this
term is exponentially small in Nh). Therefore

g(Nh, α) := 2
√

Nh

Nh+2/2∑
j=1

sin

(
πj

Nh+2

)
cos

(
πj

Nh+2

)2αNh

.

(B19)

We will proceed with the computation of the sum in four
steps. First, we will truncate the sum, using the exponential
suppression of terms with j on the order of Nh. Second, we
will replace the cosine by a Gaussian. Third, we Taylor expand
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the sine and finally, we replace the sum by an integral that we
can compute analytically. All of these approximations induce
an error O(1/N ).

Let us now establish the relevant claims.
Definition.

e1(N ) :=
√

N

N/2∑
j=�N/π�

sin2

(
πj

N

)
cos2αN

(
πj

N

)
. (B20)

Claim. Truncation of the sum.

e1(N ) = O(N3/22−αN ). (B21)

Proof. For j in the interval [�N/π�, N/2], for N large
enough we have that jπ/N � π/4 and therefore

e1(N ) �
√

N

N/2∑
j=�N/π�

sin2

(
πj

N

)
cos2αN (π/4)

=
√

N

N/2∑
j=�N/π�

sin2

(
πj

N

)
2−αN

� N3/22−αN . (B22)

�
Definition.

e2(N ) :=
√

N

�N/π�∑
j=1

sin2

(
πj

N

)[
e−αN ( πj

N
)2 −cos2αN

(
πj

N

)]
(B23)

Claim. A cosine raised to a high power becomes a Gaussian.

e2(N ) = O
(

1

N

)
. (B24)

Proof. For simplicity, define xj = πj

N
and M = 2αN . Using

cos(x) � 1 − 1
2x2 > 0 in the interval x ∈ [0, 1] and the fact

that each term in the sum is positive, we have

e2(N ) �
√

N

�N/π�∑
j=1

sin2(xj )

[
e− x2

j

2 M −
(

1 − 1

2
x2

j

)M
]

=
√

N

�N/π�∑
j=1

sin2(xj )

⎡⎣e− x2
j

2 M −
(

1 −
1
2x2

j M

M

)M
⎤⎦ .

(B25)

Since 1
2x2

j < 1, we can use the inequality
(
1 −

1
2 x2

j M

M

)M �

e

− x2
j

2 M (1− 1

1−
x2
j
2

)

, combined with 0 < sin(xj ) < xj and e−y �
1 − y to arrive at

e2(N ) �
√

N

�N/π�∑
j=1

x2
j

[
e− x2

j
M

2 − e

− x2
j

2 M 1

1−
x2
j
2

]

=
√

N

�N/π�∑
j=1

x2
j e

− x2
j
M

2

[
1 − e

x2
j

2 M (1− 1

1−
x2
j
2

)]

�
√

N

�N/π�∑
j=1

x2
j e

− x2
j
M

2

⎛⎝−x2
j

2
M

⎛⎝1 − 1

1 − x2
j

2

⎞⎠⎞⎠
�

√
NM

2

�N/π�∑
j=1

x6
j e

− x2
j
M

2
1

1 − x2
j

2︸ ︷︷ ︸
�2

� N5/2 2α

π

1

�N/π�
�N/π�∑
j=1

x6
j e

− x2
j
M

2 . (B26)

The sum is the right Riemann sum of the function f (x) =
π2x6e−x2αNπ2

, with an error given by∣∣∣∣∣∣ 1

�N/π�
�N/π�∑
j=1

x6
j e

− x2
j
M

2 −
∫ 1

0
π2x6e−x2αNπ2

dx

∣∣∣∣∣∣ � dmax

2�N/π� ,

(B27)

where dmax is the maximum of the derivative f ′(x) in the
interval [0, 1]. A direct calculation reveals that

dmax = c(Nα)−5/2 (B28)

for some constant c. Plugging (B28) and (B27) into (B26)
yields

e2(N ) = N5/22απ

∫ 1

0
x6e−x2αNdx + O

(
1

N

)

� N5/22απ

∫ ∞

0
x6e−x2αNdx + O

(
1

N

)

= N5/22απ
15

√
π

16
(Nαπ2)−7/2 + O

(
1

N

)

= O
(

1

N

)
. (B29)

�
Definition.

e3(N ) :=
√

N

�N/π�∑
j=1

e−αN ( πj

N
)2

[
sin2

(
πj

N

)
−
(

πj

N

)2
]

.

(B30)
Claim. Replacing the sine.

e3(N ) := O
(

1

N

)
. (B31)

Proof. Taylor expanding the sine yields

sin2(x) = x2 − 1
3 cos(2ξ )x4 (B32)

for some ξ ∈ [0, x]. Plugging (B32) into (B30) and using a
Riemann sum bound akin to (B27) leads to

e3(N ) �
√

N

�N/π�∑
j=1

e−αN ( πj

N
)2

(
πj

N

)4

� N3/2π2
∫ 1

0
x4e−αNx2π2

dx
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� N3/2π2
∫ ∞

0
x4e−αNx2π2

dx

� N3/2π2 3

8

√
π (απ2N )−5/2

= O
(

1

N

)
. (B33)

�
Definition.

r (N ) :=
√

N

�N/π�∑
j=1

x2
j e

−αNx2
j (B34)

Claim. Computation of the integral.

r (N ) :=
√

π

4α3/2
+ O

(
1

N

)
. (B35)

Proof. The usual bound for the Riemann sum (B27) implies

r (N ) =
√

N�N/π� 1

�N/π�
�N/π�∑
j=1

x2
j e

−αNx2
j

=
√

N�N/π�π2
∫ 1

0
x2e−αNx2π2

dx + O
(

1

N

)
.

(B36)

We can extend the integral to infinity by noting that x2 � xex2
:∫ ∞

1
x2e−αNx2

dx �
∫ ∞

1
xe1−αNx2

= e−αN+1

2(αN − 1)

= O(e−N ), (B37)

implying that

r (N ) =
√

N�N/π�π2
∫ ∞

0
x2e−αNx2π2

dx + O
(

1

N

)
=

√
N�N/π�π2

√
π

4(αNπ2)3/2
+ O

(
1

N

)
=

√
π

4α3/2
+ O

(
1

N

)
. (B38)

�
Corollary 1.

g(Nh, α) =
√

π

2α3/2
+ O

(
1

Nh

)
. (B39)

Proof. This follows directly from the four previous
claims. �

Corollary 2.

N (α,N ) = 4N

N3/2

[
k(α) + O

(
1

N

)]
. (B40)

Proof. For large N , we have

N (α,N ) = 4N

[
N

−3/2
h g(Nh, α)

+ N
−3/2
h g

(
Nh,

α

α − 1

)
− N−3/2π−1/2

]
= 4N

[
N

−3/2
h

√
π

2α3/2

+ N
−3/2
h

√
π

2 α
α−1

3/2 − N−3/2π−1/2

]

= 4N

N3/2

[√
π

2
+

√
π

2
(α − 1)3/2

− π−1/2 + O
(

1

N

)]
. (B41)

�

APPENDIX C: THE MATRIX �R IN (25) IS INVERTIBLE

The matrix �R : Vmatchings �→ V B
loops maps connectivity pat-

terns on the boundary of a hole inside the torus onto loop
patterns on the complement of the hole. A priori, this map
does not have to be invertible. We show here that for a torus
much larger than the hole, �R is invertible. More precisely,
if the size of the rectangular hole is Lh × Lv and the torus is
Nh × Nv , then we require

min{Nh,Nv} > 3
2 (Lh + Lv ). (C1)

The kernel of �R is nonempty if and only if for every
connectivity pattern, there exists a loop pattern on R that is
compatible with it. The following procedure produces such a
loop pattern for an arbitrary inside connectivity pattern.

(C2)

Since we work on the torus, we can draw the rectangle in the
center of our lattice. (1) Close any nearest neighbours in a
minimal way (as shown in the figures). Clearly, these cannot
interfere with each other. This can be done within one tile from
the hole.

(C3)
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(2) Remove the connected pairs from the connectivity
pattern. There must necessarily be at least one newly formed
nearest-neighbor pair. Connect these minimally, avoiding the
bonds that are already closed. This can be done within two tiles
from the hole.

(C4)

(3) Again remove the connected pairs from the connectivity
pattern, creating new nearest neighbours. As long as there is
enough space on the torus, these pairs can be closed minimally.
For each nested bond, one more tile of space is needed.

(C5)

(4) Fill the rest of the loop pattern arbitrarily. For a hole of
size Lh × Lv , there can be at most �Lh+Lv

2 � nested bonds.
Therefore, if min{Nh,Nv} > 3

2 (Lh + Lv ), then there is enough
space in every direction for the above procedure to generate a
compatible loop pattern.

APPENDIX D: UNIQUENESS OF THE GROUND STATE
WITHIN A GIVEN CONNECTIVITY CLASS

Having defined the canonical loop pattern of a connectivity
pattern, we can now prove that the Hamiltonian defined by (28)
is ergodic in the sense that for every two loop patterns L and
L′ in the same connectivity class, there exists a sequence of
surgery moves such that

L′ = σM (σM−1(. . . σ1(L)) . . . ). (D1)

The algorithm to arrive at the canonical loop pattern from
an arbitrary starting pattern from surgery moves only contains
three steps. (1) Tadpoles and larger bubbles are cut off. (2) All
paths are consecutively made as short as possible. Any path
with nonminimal length must necessarily contain both vertical
and horizontal bay-type plaquettes [Fig. 6(b)]. This pair must
necessarily contain a loop in their inside. The loop can be
moved through the bay by three consecutive surgery moves. If
the bays had previously been adjacent, the path is now shorter,
otherwise the bays are now closer together. Therefore any path
can be made as short as possible. Note that any surgery move
only acts on one path plus a surrounding loop so previously
shortened paths will always stay shortest during the application
of further elementary moves in this step. (3) Every path now

(a) (b)

(c) (d)

FIG. 6. Bringing a given loop pattern (a) into the canonical pattern
with the same boundary matching (d). In step 1, tadpoles and larger
bubbles are cut off into small bubbles (b). Every path is shortened
as much as possible in step 2 (c). The remaining ambiguity is the
trajectory of longer paths. For the sake of uniqueness, they are moved
as close as possible to the north-west boundary (d).

exclusively consists of up and down moves, the order of which
may still differ from the canonical loop pattern, i.e., the path
might not run as close as possible to the north-west boundary
of the patch [Fig. 6(c)]. For the pattern to be compatible with
the same boundary matching, the area between the current and
the desired trajectory for any given path must be filled with
small bubbles. We are finished after moving all the bubbles
through the appropriate bays.

APPENDIX E: MAPPING TO THE CLASSICAL
DELTA POTTS MODEL

In this section, we will prove that certain correlation
functions in the PEPS decay exponentially for λ = 1 (8), by
establishing a mapping to an observable in a classical model.
We will start out with the case u = 〈0|1〉p = 0 and comment
on the general case later on. For better readability, we denote
the state at λ = 1, u = 0 on a torus of size Nh × Nv with both
Nh and Nv even by

|ψ〉 := ∣∣ψNh×Nv
(u = 0, λ = 1)

〉 = ∑
loop patterns L

2nL |L〉. (E1)

Definition.

σ̃z(�x) :=
{
σz(�x) if �x is on the even sublattice
−σz(�x) if �x is on the odd sublattice. (E2)

A plaquette �x = (x1, x2) is on the even (odd) sublattice if x1 +
x2 is even (odd). The top left plaquette has coordinates (1,1).

C[�x, �y] := 〈ψ |σ̃z(�x)σ̃z(�y)|ψ〉
〈ψ |ψ〉 − 〈ψ |σ̃z(�x)|ψ〉 〈ψ |σ̃z(�y)|ψ〉

〈ψ |ψ〉2 .

(E3)
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(a) (b)

(c) (d)

FIG. 7. Typical configurations in the Fortuin-Kasteleyn expan-
sion of the partition function of the Potts model. The green lines
correspond to the clusters in the expansion. Each cluster configuration
is associated with a unique loop pattern. (a) A typical configuration
of the Potts model in the ordered phase, (b) a typical configuration in
the disordered phase, (c) the Potts model at the phase transition point
for Q > 4, and (d) for values Q � 4. Only for the latter, loops of
all length scales occur, whereas the bounded loop length in all other
cases corresponds to a finite correlation length.

Claim.

C[�x, �y]
|�x−�y|→∞−−−→ e

|�x−�y|
ξ (E4)

for some ξ > 0.
Proof. Consider a classical Q-state Potts model with spins

residing on the vertices of the net lattice. The net lattice is a
square lattice rotated by 45◦ where the distance between the
vertices is increased by a factor

√
2 (the vertices are marked

with green dots in Fig. 7). The classical spins take values σ ∈
{1, . . . ,Q}. The Hamiltonian of the model is given by

H = −
∑
〈ij〉

δ(σi, σj ), (E5)

where 〈ij 〉 indicates nearest neighbors on the net lattice. For a
plaquette of the original square lattice located at �x, define by
�xa and �xb the two spins adjacent to that plaquette (the order
will not matter for our purposes). Define the following “link”
observable in the Potts model that acts on two spins:

O�x ({σ }) :=
{

1 if σ�xa
= σ�xb

1+Q

1−Q
if σ�xa

	= σ�xb

. (E6)

Consider the expectation value of O�x in such a Potts model at
inverse temperature β:

〈O�x〉 = 1

Z

∑
{σ }

O�x ({σ })
∏
〈ij〉

e−βδ(σi ,σj ) (E7)

= 1

Z

∑
{σ }

O�x ({σ })
∏
〈ij〉

[1 + vδ(σi, σj )], (E8)

where v = eβ − 1. We now expand the product in the spirit of
the Fortuin-Kasteleyn expansion [27,28], yielding 2E terms,

where E is the number of edges of the net lattice:

... = 1

Z

(∑
{σ }

O�x ({σ })︸ ︷︷ ︸+v
∑
{σ }

O�x ({σ })δ(σ1, σ2)︸ ︷︷ ︸+ · · ·
)

.

(E9)

Here we have associated subgraphs G′ of the net lattice
G to each of the terms in the expansion, where G′ has an
edge between i and j if the expansion term contains δ(σi, σj ).
Let us investigate each sum individually. The first sum runs
over Q4 configurations. In Q3 of those, σ�xa

= σ�xb
, implying

O�x ({σ }) = 1. In the other Q3(Q − 1) terms, σ�xa
	= σ�xb

and
O�x ({σ }) = (1 + Q)/(1 − Q). Therefore the sum evaluates to∑

{σ }
O�x ({σ }) = Q3 + Q3(Q − 1)

1 + Q

1 − Q
= −Q4. (E10)

The second sum contains Q3 configurations and because there
is a δ-function between spins 1 and 2, σ�xa

= σ�xb
in all of them,∑

{σ }
O�x ({σ })δ(σ1, σ2) = Q3. (E11)

Adding all these of contributions yields

〈O�x〉 = 1

Z

∑
G′⊆G

Qn(G′ )vb(G′ )Õ�x (G′), (E12)

where n(G′) is the number of connected components in G′,
b(G′) is the number of bonds and

Õ�x (G′) =
{

1 if G′ has a link at �x
−1 otherwise. (E13)

Each subgraph G′ of the net lattice can be associated to a unique
loop pattern L(G′) on the square lattice (Fig. 7), such that for
the number of closed loops, we have

nL(G′ ) = n(G′) + c(G′) and (E14)

Õ�x (G′) = 〈L(G′)|σ̃z(�x)|L(G′)〉 , (E15)

where c(G′) is the number of circuits in G′. Plugging Euler’s
relation

n(G′) = c(G′) − b(G′) − V, (E16)

with V the number of vertices in G and (E14) into (E12) yields

〈O�x〉 = 1

Z

∑
G′⊆G

√
Q

n(G′ )√
Q

n(G′ )
vb(G′ )Õ�x (G′)

=
√

Q
−V

Z

∑
G′⊆G

√
Q

n(G′ )+c(G′ )
(

v√
Q

)b(G′ )

Õ�x (G′)

=
∑

L

√
Q

nL
(

v√
Q

)b(G′ ) 〈L|σ̃z(�x)|L〉∑
L

√
Q

nL
(

v√
Q

)b(G′ )
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β→ln(1+√
Q)−−−→
∑

L

√
Q

nL 〈L|σ̃z(�x)|L〉∑
L

√
Q

nL

Q→16−−−→ 〈ψ |σ̃z(�x)|ψ〉
〈ψ |ψ〉 . (E17)

This argument can be repeated for the correlator

〈O�xO�y〉 = 〈ψ |σ̃z(�x)σ̃z(�y)|ψ〉
〈ψ |ψ〉 , (E18)

thereby showing that

C[�x, �y] = 〈O�xO�y〉 − 〈O�x〉 〈O�y〉 , (E19)

i.e., the staggered σz correlation function in the λ = 1-PEPS
is equal to the link-link correlation of a classical Q = 16 Potts
model at β = ln(1 + √

Q). The model is known to undergo a
phase transitions at that point for all values of Q. While this
transition is critical for Q � 4 [21–23,29–34], it is of first order
for Q > 4 [35,36], implying that the local correlator (E19)
decays exponentially, proving (E4). �

A more general, alternative proof invokes the mapping
between the norm of the PEPS to a Potts partition function.
To this end, define the tensor network using tensors (8) with
independent variables on every site, i.e.,∣∣ψ(λ(1,1), λ(1,2), . . . , λ(Nh,Nv )

)〉 =: |ψ (�λ)〉, (E20)

Taking derivatives with respect to different λ will yield the
expectation value of some local diagonal operator acting on,
e.g., one site, DPEPS(�x),

∂

∂λ�x
ln 〈ψ (�λ)|ψ (�λ)〉 = 〈ψ (�λ)|DPEPS(�x)|ψ (�λ)〉

〈ψ |ψ〉 . (E21)

Introducing the effective coupling strengths �β via

λ�x =
⎧⎨⎩
√

eβ�x −1√
Q

if �x is on the even sublattice√ √
Q

eβ�x −1
if �x is on the odd sublattice ,

(E22)

one can directly calculate that

〈ψ (�λ)|ψ (�λ)〉 = C( �β )
∑

L

√
Q

nL
∏

�x

(
eβ�x−1

√
Q

)b�x (L)

︸ ︷︷ ︸
Zinhom Potts

, (E23)

where b�x (L) is 1 if G′(L) has a bond at �x and 0 otherwise.
Here, Zinhom Potts is the partition function of a Potts model with
different effective couplings between every pair of spins, given
by (E22). The constant is given by

C( �β ) =
∏
�x odd

(
eβ�x − 1√

Q

)
. (E24)

Therefore

〈ψ (�λ)|DPEPS(�x)|ψ (�λ)〉
〈ψ |ψ〉 = ∂β�x

∂λ�x

∂

∂β�x
ln(C( �β )Zinhom Potts ).

(E25)

As usual, taking logarithmic derivatives of the partition func-
tion will yield some classical observable DPotts(�x):

. . . = 〈DPotts(�x)〉 . (E26)

In particular, the point �λ = �1 corresponds to the original Potts
model at its phase transition with all coupling strengths equal,

〈DPEPS(�x)〉λ=1 = 〈DPotts(�x)〉β=1+√
Q . (E27)

Taking higher derivatives yields three-point and higher-order
correlators. In our case, Q = 16 and all such operators decays
exponentially even at the phase transition. This argument
can be expanded by linearity to conclude that all diagonal
correlators of the PEPS must decay exponentially.

Finally, for u 	= 0, the mapping has to be carried out with
respect to two coupled Potts models, whose phase diagram
is also known [37–39]. As the nature of the phase transition
remains unchanged, we expect the correlation function to
behave in the same manner as derived above.

APPENDIX F: OPEN BOUNDARY CONDITIONS
AND UNIQUE GROUND STATE

In Sec. III B, we prove that the ground state of a modified
parent Hamiltonian is unique. The key step in the proof is the
fact that the minimal connectivity pattern can be reached from
arbitrary starting loop patterns.

Claim. For every loop pattern L, there exists a sequence �

of bulk moves (33) and boundary moves (43), such that

p(�(L)) = pmin, (F1)

where pmin is given by (44).
Proof. We are going to construct � explicitly, starting from

an arbitrary loop pattern L. We begin in the top left corner.
Combining boundary moves on the first horizontal and vertical
dominos and potentially a bulk move on the plaquette in the
top left corner, we can transform the top left corner of L into

(F2)

We proceed similarly for all other corners:

(F3)

Now we continue sequentially, column by column. If the
top domino looks like or , transform it into

using (43). If it is in the state, we will see now that the
corresponding plaquette can be brought into the |B〉 state, after
which the bubble is cut off and the boundary move is applicable
again.
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There are two scenarios. In the first, the top -domino
has a bubble or tadpole underneath it:

(F4)

In this case, the bubble can be moved up to the topmost
plaquette using bulk moves. It can then be cut off to transform
the top domino into . In the second scenario, there is no
bubble or tadpole in the column:

(F5)

Then, there must necessarily be Nv paths passing through the
column left to right. Only Nv − 4 of them can originate from
the west boundary, since 4 + 4k out of the Nv + 4k boundary
points to the left of the kth column are already connected with
their nearest neighbours. Therefore, at least two pairs of paths
must actually be a single path, which has a tadpole to the left of
the column. This tadpole can be moved into the column upon
which we recover situation 1, e.g.,

→ (F6)

The bottom tile is transformed into in the same manner
to arrive at

(F7)

After fixing the top and bottom dominos column by column,
we apply the same procedure to the left and right boundary.
Evidently, once a boundary domino is in the correct state
(e.g., for top dominos), it will never be touched again

during this procedure, allowing us to sequentially bring the
connectivity pattern into minimal form. �

APPENDIX G: DIMENSION OF THE
STRING-INSERTED SUBSPACE

Let Nh, Nv be even and define

|ψ{U,V }〉 :=

U

Ū

U

Ū

V̄VV̄V

, (G1)

where the boxes are A tensors defined in Eq. (8) and periodic
boundary conditions are enforced such that the tensor network
lives on an Nh × Nv torus (we have dropped the subscript indi-
cating the system size for better readability in the following).
Note that one has to complex conjugate every other unitary in
order for one to be able to pull the strings through a row or
column of tensors, respectively. If U and V commute, these
strings can be moved freely through the system and it follows
that H |ψ{U,V }〉 = 0 for the parent Hamiltonian defined in
(29). The purpose of this section is to compute the dimension
of this string-inserted subspace of the ground state manifold:

S ′ := span{|ψ{U,V }〉|[U,V ] = 0, U, V ∈ SU (2)}. (G2)

We will show that

dimS ′ = (Nh + 1)(Nv + 1) + 1

2
. (G3)

To this end, it is useful to make the following definition.
Definition. For a tuple of (j, k) ∈ Z2, define

g(j, k) =

⎧⎪⎨⎪⎩
gcd(j, |k|) if j, k 	= 0
j if k = 0, j > 0
|k| if j = 0, |k| > 0
1 if k = j = 0

. (G4)

We make the following observations. (1) The winding
number of a nontrivial loop in, say, the horizontal direction
is equivalent to the difference of how many times that loop
crosses the U subset of the right boundary versus how many
times it crosses the Ū subset of the right boundary. These
are the odd and even points on the boundary, respectively, as
shown in (G1). An equivalent statement holds for nontrivial
winding in the vertical direction. (2) If in a given loop pattern
L there is a loop winding nontrivially around the torus j

times in the horizontal direction and k times in the vertical
direction, then all nontrivial loops have winding number (j, k)
or (−j,−k) (in fact, half of the loops will have winding number
(j, k) and the other half (−j,−k)). Therefore we may denote
the winding sector of such a loop pattern by W (L) = (j, k).
To remove ambiguity, we enforce j � 0. (3) A loop cannot
wind around the torus (j, k) times if g(j, k) 	= 1. (4)A loop
pattern in a given winding sector (j, k), can have nNT L ∈
{2, 4, . . . , min{�Nh/j�, �Nv/k�}} nontrivial loops. Therefore
we redefine the winding sector of a loop pattern that has
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nNT L/2 loops wrapping around the torus (j, k) times and
nNT L/2 loops wrapping around the torus (−j,−k) times as
W (L) = (j × nNT L/2, k × nNT L/2).

We are now ready for some helpful definitions and short-
hand notations.

Definition.

Ñh := Nh + 1, (G5)

Ñv := Nv + 1. (G6)

Definition.

|j, k〉 :=
∑
L s.t.

W (L)=(j,k)

2nL |L〉. (G7)

By the orthogonality of the physical basis states, different |j, k〉
are clearly orthogonal:

〈j, k|j ′, k′〉 := δjj ′,kk′ |||j, k〉||2 (G8)

and by the above observations |||j, k〉||2 	= 0 for all (j, k) ∈ I .
Definition.

Dφ =
(

eiφ 0
0 e−iφ

)
, (G9)

WNv
(φ) : =

Nv/2⊗
i=1

Dφ ⊗ D̄φ, (G10)

W̃ l
Nv

: = WNv

(
πl

Ñv

)
. (G11)

Definition.

|ψφ,θ 〉 := |ψ{Dφ,Dθ }〉, (G12)

|ψ̃l,m〉 := ∣∣ψφ= πl

Ñv
,θ= πm

Ñh

〉
. (G13)

Definition.

I =
{

(x, y)|x = 0, . . . , Nv/2,

y = 0, . . . Nh/2 if x = 0
y = −Nh/2, . . . , Nh/2 if x 	= 0

}
. (G14)

Counting the number of elements in I reveals that

|I | = (Nh + 1)(Nv + 1) + 1

2
. (G15)

Definition.

|φkx,ky
〉 := 1

ÑvÑh

Nv∑
l=0

Nh∑
m=0

e
2πi( kx l

Ñv
+ kym

Ñh
)|ψ̃l,m〉. (G16)

Definition.

M(jk),(lm) :=
[

2 cos

(
πjl

g(j, k)Ñv

+ πkm

g(j, k)Ñh

)]2g(j,k)

(G17)

for any set of integers j, k, l, and m.

Claim.

dim S ′ � |I |. (G18)

Claim.

dim S ′ � |I |. (G19)

Together, (G18), (G19), and (G15) entail that

dim S ′ = (Nh + 1)(Nv + 1) + 1

2
. (G20)

Proof. To prove (G18) starting from the definition of S ′, we
can first restrict the unitaries U and V to be diagonal, i.e.,

S ′ = span{|ψφ,θ 〉|φ, θ ∈ [0, 2π ]}. (G21)

This is because any state that is generated by nondiagonal
U and V is related to a state with U and V diagonal by
conjugating the whole network with S, where S is the unitary
that simultaneously diagonalises U and V . Because of the
fundamental symmetry of the PEPS tensor, this conjugation
leaves the state invariant.

As a first step, we are going to show that

S ′ = span{|ψ̃l,m〉}
l=0,...Nv

m=0,...Nh

. (G22)

Because |ψφ,θ 〉 depends linearly on WNv
(φ) ⊗ WNh

(θ ), it is
sufficient to show that

span
{
WNv

(φ) ⊗ WNh
(θ )
}

= span
{
W̃ l

Nv
⊗ W̃m

Nh

}
l=0,...Nv

m=0,...Nh

. (G23)

Clearly,

span
{
WNv

(φ) ⊗ WNh
(θ )
}

⊇ span
{
W̃ l

Nv
⊗ W̃m

Nh

}
l=0,...Nv

m=0,...Nh

, (G24)

and we will prove the reverse inclusion by showing that

ÑvÑh � dim span
{
WNv

(φ) ⊗ WNh
(θ )
}

� dim span
{
W̃ l

Nv
⊗ W̃m

Nh

}
l=0,...Nv

m=0,...Nh

� ÑvÑh. (G25)

The first inequality of (G25) follows by expanding the
operator

WNv
(φ) = eiNvφ1(Nv

0 ) ⊕ ei(Nv−2)φ1(Nv
1 ) ⊕ · · · ⊕ e−iNvφ1(Nv

Nv
),

(G26)

which, for general values of φ spans an Ñv-dimensional space.
The second inequality in (G25) is a trivial conclusion of (G24).

To see the validity of the third inequality, consider the matrix
whose columns are made up of the distinct diagonal entries of
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W̃ l
Nv

for l = Nv

2 , Nv

2 − 1, . . . , 0, Nv,Nv − 1, . . . , Nv

2 + 1:

FNv
=
⎛⎝ | |

diag
(
W̃

Nv/2
Nv

)
diag

(
W̃

Nv/2−1
Nv

)
. . .

| |

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6 . . .

1 ω3 ω6 ω9

...
. . .

⎞⎟⎟⎟⎟⎟⎠, (G27)

which is simply Ñv times the Ñv × Ñv discrete Fourier matrix
[we have set ω = exp(2πi/Ñv)], and therefore has full rank
equal to Ñv . Applying these arguments to both tensor factors
individually yields (G25).

Finally, we will prove that

span{|ψ̃l,m〉}
l=0,...Nv

m=0,...Nh

= span{|ψ̃l,m〉}(l,m)∈I (G28)

by showing that for each (l, m) /∈ I , there exists an (l′,m′) ∈ I

such that |ψ̃l,m〉 = |ψ̃l′,m′ 〉. The key observation is that

|ψ{U,V }〉 = |ψ{XUX†, XV X†}〉, (G29)

|ψ{U,V }〉 = |ψ{−U,V }〉, (G30)

|ψ{U,V }〉 = |ψ{U,−V }〉, (G31)

which follows from the fact that conjugating the whole
tensor network with iX ∈ SU (2) leaves the state invari-
ant and the numbers of Us and V s are both even.
Inserting U = diag(exp(πil/Ñv ), exp(−πil/Ñv )) and V =
diag(exp(πim/Ñh), exp(−πim/Ñh)), we obtain

|ψ̃l,m〉 = |ψ̃−l,−m〉, (G32)

|ψ̃l,m〉 = ∣∣ψ̃l±Ñv,m

〉
, (G33)

|ψ̃l,m〉 = ∣∣ψ̃l,m±Ñh

〉
. (G34)

Using (G32)–(G34), for each (l, m) ∈ [0, . . . Nv] × [0, . . . Nh]
we can now find an (l′,m′) ∈ I such that |ψ̃l,m〉 = |ψ̃l′,m′ 〉,
which imply (G28) and, together with (G22) show that

dim S ′ � |I |. (G35)

�
Proof. [Proof of (G19)] Because of (G22) and the |φkx,ky

〉
being linear combinations of the |ψ̃l,m〉 via definition G, it is
clear that

S ′ ⊇ span
{∣∣φkx,ky

〉}
(kx ,ky )∈I

. (G36)

Also, from the observations made in the beginning of this
section and (G7) and (G17), we see that

|ψ̃l,m〉 =
∑

(jk)∈I

M(jk),(lm)|j, k〉. (G37)

The matrix elements of M can be simplified using the binomial
theorem. For better readability, we are going to suppress the

argument of g = g(j, k),

M(jk),(lm) =
[

2 cos

(
j lπ

Ñvg
+ kmπ

Ñhg

)]2g

= [
e

πi
g

( j l

Ñv
+ km

Ñh
) + e

− πi
g

( j l

Ñv
+ km

Ñh
)]2g

=
2g∑

a=0

e
2πi
g

( j l

Ñv
+ km

Ñh
)(a−g)

(
2g

a

)
. (G38)

Plugging (G37) and (G38) into definition (G16) yields

∣∣φ(kx ,ky )
〉 = ∑

(jk)∈I

2g∑
a=0

(
2g

a

)
|j, k〉

× 1

Ñv

Nv∑
l=0

[
e

2πi

Ñv
( j

g
(a−g)−kx )]l

︸ ︷︷ ︸
δ j

g (a−g)−kx∈ÑvZ

× 1

Ñh

Nh∑
m=0

[
e

2πi

Ñh
( k

g
(a−g)−ky )]m

︸ ︷︷ ︸
δ k

g (a−g)−ky∈ÑhZ

. (G39)

In principle, the constraints only enforce, e.g.,

k

g
(a − g) − ky = nÑh (G40)

for n ∈ Z. However, we will now show that if |n| � 1, then
it follows that |a − g| > g which entails that either a < 0
or a > 2g, in both cases the summation on a will be empty.
Rearranging (G40) and taking the absolute value yields

|a − g| = |nÑh + ky |
|k| g

� |n|Ñh − |ky |
|k| g

> Ñh

|n| − 1/2

|k| g

>
Ñh

2

2

Ñh

g

= g, (G41)

where we have used that |a + b| > |a| − |b|, |n| � 1, |ky | <

Nh/2 and |k| < Nh/2. This argument can be carried out for the
constraints originating from both the summation over l and m,
leaving us with

j

g
(a − g) = kx, (G42)

k

g
(a − g) = ky. (G43)

These equations mean that〈
j, k|φ(kx ,ky )

〉 = {( 2g

kxg/j+g

)
if kx/ky = j/k

0 otherwise
. (G44)
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In particular, by orthogonality of the |j, k〉, sectors with
different kx/ky are mutually orthogonal. As a final step, we
will investigate the sector that is spanned by the vectors

{∣∣φ(kx ,ky )
〉}

(kx ,ky )∈I
kx/ky=p/q

(G45)

for a fixed, completely reduced fraction p/q. The vectors in
this set have the form |φ(p,q )〉, |φ(2p,2q )〉, . . . . Since

〈p, q|φ(bp,bq )〉 =
(

2

b + 1

)
, (G46)

only |φ(1p,1q )〉 has nonzero overlap with |p, q〉. Therefore
|φ(1p,1q )〉 must necessarily be linearly independent from all
other vectors in that sector. We can therefore remove |φ(1p,1q )〉
from {|φ(kx ,ky )〉}(kx ,ky )∈I kx/ky=p/q and check the remaining basis
vectors for linear independence. Indeed, we can iterate this
procedure to show that in the remaining set, there exists exactly
one vector that has nonzero overlap with |bp, bq〉, which is
|φ(bp,bq )〉. Therefore

dim span
{∣∣φ(kx ,ky )

〉}
(kx ,ky )∈I

= |I |, (G47)

and by Eq. (G36), it follows that

dim S ′ � |I |. (G48)

�
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