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Direct observation of electron density reconstruction at the metal-insulator transition in NaOsO3
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The 5d transition-metal oxides offer further opportunities to test our understanding of the interplay of correlation
effects and spin-orbit interactions in materials in the absence of a single dominant interaction. The subtle balance
between solid-state interactions can result in mechanisms that minimize the interaction energy, and in material
properties of potential use for applications. We focus here on the 5d transition-metal oxide NaOsO3, a strong
candidate for the realization of a magnetically driven transition from a metallic to an insulating state exploiting the
so-called Slater mechanism. Experimental results are derived from nonresonant and resonant x-ray single-crystal
diffraction at the Os L edges. A change in the crystallographic symmetry does not accompany the metal-insulator
transition in the Slater mechanism and, indeed, we find no evidence of such a change in NaOsO3. An equally
important experimental observation is the emergence of the (300) Bragg peak in the resonant condition with
the onset of magnetic order. The intensity of this space-group-forbidden Bragg peak continuously increases
with decreasing temperature in line with the square of intensity observed for an allowed magnetic Bragg peak.
Our main experimental results, the absence of crystal symmetry breaking, and the emergence of a space-group-
forbidden Bragg peak with developing magnetic order, support the use of the Slater mechanism to interpret the
metal-insulator transition in NaOsO3. We successfully describe our experimental results with simulations of the
electronic structure and with an atomic model based on the established symmetry of the crystal and magnetic
structure.
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I. INTRODUCTION

The metal-insulator transition (MIT) has been a key topic of
condensed matter physics since Verwey’s pioneering work on
magnetite, the prototype of this class of transition [1,2]. The
strong interest arises from its deep links to the fundamental
interactions of correlated electron physics, and poses a major
challenge in our understanding of complex systems. Until
now, 3d transition-metal oxides have been widely studied
displaying striking phenomena including high-temperature
superconductivity (most notably in cuprates [3] and pnictides
[4,5]), colossal magnetoresistance [6,7], and metal-insulator
transitions [1,8]. This variety of phenomena stems from several
competing interaction terms associated with the charge, orbital,
and magnetic degrees of freedom.

Recent studies prove that 5d transition-metal compounds
are just as fascinating as they display several striking physical
properties. Due to the larger spatial extent of the 5d orbitals
in comparison to 3d orbitals, 5d transition-metal compounds
experience a large crystal-field splitting of t2g and eg states
(≈2 eV above the Fermi energy) and thus, notably, have
relatively weak electronic correlations according to conven-
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tional wisdom. While the electron correlation, parametrized
by the Hubbard correction term U , diminishes in size on
descending the periodic table from 3d to 5d elements, the
spin-orbit interaction increases in value with increasing atomic
number. In addition, there is a strong p-d hybridization
resulting from the large orthorhombic distortion that is caused
by the octahedral rotation, which affects the bandwidth in
these simple perovskites. Orthorhombic distortion here refers
to the distortion from ideal cubic to orthorhombic structure
(e.g., tilting and rotation of OsO6 octahedra). To give an
estimate of such distortions, it is customary to introduce the
Goldschmidt tolerance factor [9], t , where t = 1 for ideal cubic
perovskite structure. The calculated value for NaOsO3 is t =
0.9077 and similar perovskite compounds have t (NdNiO3) =
0.913; t (GdFeO3) = 0.9021; t (TbMnO3) = 0.8505. In recent
studies, the focus was mainly on the interplay between the
spin-orbit coupling, the Coulomb repulsion, and the bandwidth
in iridates [10–13] and to a lesser extent in osmates [14–20].
Such a flurry of research in 5d systems has resulted in the
discovery of topological insulating phases, spin liquid behavior
[21], and bulk insulating states [10].

Particularly intriguing is the nature of the insulating state
in these 5d systems. It is currently under debate as to whether
this is of either Mott [11,22,23] or Slater [15–19] character.
The latter mechanism proposed by Slater more than 50 years
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ago [24] has the emergence of antiferromagnetic ordering as
the source of an electron localization that drives the system
into an insulating state. This insulating state is very distinct
from the metallic phase that characterizes the paramagnetic
regime above the Néel ordering temperature. In such a model,
electron correlations do not play any role, which is in contrast
to the case of the Mott scenario where it is the electron
correlations that favor the existence of an insulating ground
state. However, no clear evidence of a compound supporting
a magnetically driven metal-insulator “Slater” transition has
been found to date. Among the candidates that might exhibit
a Slater metal-insulator transition, the most promising is the
perovskite NaOsO3 [16,17,19].

NaOsO3 undergoes a metal-insulator transition and antifer-
romagnetic ordering at the same temperature, TMIT = TN ∼
410 K. This is a remarkably high temperature for a compound
for which the Coulomb electronic correlations should be
weaker than, or at most, comparable to the energy scale of the
spin-orbit interaction. The magnetic moment determined by
neutron refinement is 1 μB [16], which is less than expected
from the nominal valence Os5+ with three electrons singly
occupying the t2g levels as predicted from Hund’s rules. A
reduced moment is suggestive of the itinerant nature of the
5d electrons and of significant hybridization with neighboring
oxygen orbitals. The NaOsO3 crystallographic and magnetic
structures have been studied and a G-type antiferromagnet
with magnetic moments lying along the c axis (Pnma space
group) below TN was reported as well as the presence of a
small ferromagnetic moment along the b axis [15,16]. The
magnetic space group was determined to be Pn′ma′ (#62.448),
which belongs to the centrosymmetric crystal class m′mm′.
Small atomic displacements suggested [16] the absence of a
crystallographic phase transition in the vicinity of TN ∼ 410 K.
However, an anomaly in the a and c lattice constants in
vicinity of TN = TMIT was also reported. The metal-insulator
transition in NaOsO3 is known to be a second-order phase
transition from a metallic (above 410 K) to an insulating
state [15,16]. The concomitant MIT and antiferromagnetic
ordering, and possible absence of crystallographic symmetry
breaking, are suggestive of a Slater MIT. However, due to
the presence of energetically similar competing interactions,
a consensus on the nature of the metal-insulator mechanism
operating in this perovskite is absent. The current literature on
NaOsO3 includes pressing arguments for three mechanisms,
namely, a spin-driven Lifshitz mechanism using a magnetic
reconstruction of the Fermi surface [25], the aforementioned
Slater mechanism [16,17], and a Mott-Hubbard mechanism
that is independent of magnetic correlations and is the result
of an electron localization effect controlled by an on-site strong
Coulomb interaction that overcomes the delocalization, which
is determined by measuring the bandwidth [20]. In light of its
intriguing properties, NaOsO3 has been the subject of several
experimental [15,16,19,26] and theoretical [17,18,25] studies.

In order to validate the Slater mechanism, it is important to
demonstrate the absence of crystallographic symmetry change
occurring across the metal-insulator transition. Evidence from
x-ray and neutron powder diffraction suggests that this crys-
tallographic symmetry change is absent. Although powder
diffraction methods are sensitive to lattice distortions, they
are less sensitive to symmetry breaking with only smooth

variations of lattice constants. In recent years, resonant x-ray
scattering has proven to be a powerful technique to detect
symmetry breaking by measuring weak intensities at forbidden
reflections [27] that are directly related to the symmetry of
the charge density of the resonant atoms. This sensitivity
arises from the fact that, at resonance, the x-ray scattering is
strongly enhanced and phenomena that are usually negligible,
such as the asphericity of the atomic electron density, can be
observed. Thus, at resonance, the x-ray scattering factor is no
longer a scalar and must be treated as an anisotropic tensor
[creating an “anisotropy of the tensor of scattering” (ATS)
or Templeton-Templeton scattering] [28]. As a result, tuning
the incident x-ray energy, e.g., to the osmium L3 edge, gives
high sensitivity to the osmium’s coordination with its nearest
neighbors, as well as to spatial distortions and anisotropies of
the osmium electron density. Resonant scattering thus provides
the possibility to make a quantitative study of the microscopic
mechanism causing the MIT by observing the modification of
the Os electron density occurring across the MIT.

Hence, we have conducted resonant x-ray scattering ex-
periments at the Os L edges on a small single crystal of
NaOsO3 to determine whether or not there is a change in
the crystallographic symmetry across the MIT. Also, we have
focused on the forbidden reflections, (300) and (030), and
compared the experimental results with simulations performed
with the FDMNES package [29] as well as with atomic model
calculations, which provide direct insight into the physical
nature of the observed scattering intensity.

This paper is organized as follows: in Secs. II and III we
describe the sample preparation and the x-ray resonant scatter-
ing technique used to perform the measurements. In Sec. IV,
we present the experimental results that provide evidence of
a change in the diffracted intensity of the (300) forbidden
reflection across the metal-insulator transition. In Sec. V, we
compare our observation with the FDMNES simulations and
with an atomic model calculation, from which we extract
quantitative information on the nature of the change in the
electronic structure across the phase transition.

II. EXPERIMENTAL DETAILS

Single-crystal samples of NaOsO3 were grown in pressures
up to 6 GPa as described in Ref. [15]. Several single crystals
with sizes of approximately 0.2 mm × 0.3 mm × 0.1 mm were
oriented with x-ray Laue back reflection and then polished
mechanically to have a well-defined surface perpendicular to
either the [100] or the [010] direction. Further x-ray characteri-
zation with Cu Kα radiation in an x-ray diffractometer enabled
the selection of high-quality crystals, having small mosaicity,
resulting in rocking curves with several Bragg reflections, e.g.,
(400), (600), (220), with full width half maximum of ∼0.01◦.

Resonant x-ray scattering experiments were carried out in
the vicinity of the osmium L3 and L2 edges at beamline I16 at
the Diamond Light Source. The beamline is equipped with a
6-κ diffractometer that can operate in horizontal and vertical
scattering geometries, with the scattered x rays in the plane
and perpendicular to the plane of the electron storage ring,
respectively. The beamline has a double-bounce silicon har-
monic rejection mirror system that provides exceptionally high
harmonic rejection over a wide energy range. The beamline
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FIG. 1. (Top panel) Energy dependence of the intensity of the
(030) forbidden reflection at fixed momentum transfer for selected
temperatures illustrating the peak intensity variation across the MIT
at Os L3 (left) and L2 edge (right) edges for ψ ∼ 90◦. The x-ray
absorption spectra (ABS) measured at the same energy range are also
shown. Spectra are not corrected for absorption. (Bottom panel) Same
as above, but for the (300) reflection. The azimuthal angle in this case
was ψ ∼ 0◦.

is equipped with a silicon monochromator with an energy
resolution of ∼1.5 eV at the energies corresponding to the
osmium L edges. The incident radiation was linearly polarized
perpendicular to the vertical scattering plane (σ polarization)
with a beam size of 0.2 mm (horizontal) × 0.03 mm (vertical).
A graphite (008) crystal was used at the Os L3 edge for
polarization analysis of the diffracted beam (with the state
of polarization denoted by primed quantities). For σ − π ′
scattering, the suppression of the σ − σ ′ channel was approxi-
mately 99.9%, and vice versa. A Pilatus 100 K photon-counting
pixel detector was used for the measurements performed
without polarization analysis. The Pilatus detector pixel size
(0.172 mm × 0.172 mm) results in an estimated momentum

resolution of 0.0016 and 0.0004 Å
−1

for measurements per-
formed with incident photon energy of 10.785 and 5.2 keV,
respectively. Throughout the paper we use the symbol ψ to
designate the azimuthal angle, which represents a rotation
of the sample around a selected diffraction wave vector. The
azimuthal angle reference position was chosen to be zero when
the [100] and the [010] directions are in the scattering plane.

Diffraction and absorption signals across the osmium L

edges (such as those illustrated in Fig. 1) are simultaneously
recorded from two different regions of interest with the Pilatus
pixel detector, while measuring the energy dependence of the
intensity of the diffraction peaks. Sharp multiple scattering
contributions to the diffracted intensity were determined and
minimized by performing several energy dependence scans of
the same reflection, with slightly different azimuthal angles.

We complemented this characterization with absorption
measurements in transmission geometry at the SuperXAS
beamline at the Swiss light source in the vicinity of the
osmium L edges and crystallographic single-crystal diffraction
performed with x rays having an incident energy of 16 keV at
the Swiss-Norwegian beamline at the ESRF [30].

III. RESONANT X-RAY SCATTERING

Resonant x-ray scattering combines the chemical sensitivity
of absorption (spectroscopy) and the atomic position sensi-
tivity of diffraction. The measured intensity is proportional
to the square of the unit-cell structure factor. To maximize
the sensitivity of the technique to detect crystallographic
symmetry breaking, measurements are typically focused on
forbidden or weakly allowed reflections. For such diffraction
conditions, only the scattering originating from the resonant
ions (weighted by a phase factor which depends on the
atom position and the scattering wave vector) contributes to
the diffracted intensity. To correctly compute the diffraction
intensity, all contributions to the x-ray atomic scattering factor
f should be considered. The most general expression for f is

f = fo + fm + f ′ + if ′′,

wherefo corresponds to the classical Thomson scattering of the
atom and fm is the nonresonant magnetic scattering amplitude.
f ′ and f ′′ are the two energy-dependent anomalous dispersion
correction terms of the atomic scattering factor. In particular,
f ′ and f ′′ describe the resonant scattering amplitude arising
from photon assisted electronic transitions between core and
empty states, with a scattered photon subsequently reemitted
when the electron and the core hole recombine [31]. When
the photon energy approaches the energy corresponding to an
absorption edge, the spectroscopy becomes sensitive to the
unoccupied states just above Fermi level. These unoccupied
states are highly sensitive to the local environment with its
symmetry and possible distortion, and provide an indirect
probe of the corresponding electronic density. This means
that, at resonance, the scattering can be strongly modified
and phenomena that can be usually neglected, such as the
asphericity of the atomic electron density, can be determined
[28,32,33]. By determining the dependence of the Bragg peak
intensity on the x-ray energy, polarization, and azimuthal angle
rotation, one can distinguish between structural (nonresonant
scattering from the fo term), electronic (e.g., “charge ordering”
or “charge disproportionation” and ATS), and spin (magnetic
scattering) contributions. Additional selectivity comes from
the choice of reflection related to the Fourier components of the
specific long-range order under investigation). Such sensitivity
is due to the fact that, at resonance, the x-ray scattering factor
is no longer a scalar quantity and should be treated as an
anisotropic tensor [34]. The tensorial nature of the scattering
process offers the possibility to directly determine tiny changes
in the electronic (or magnetic) structure of the sample with
incomparable sensitivity with respect to other techniques such
as neutron diffraction that are not directly sensitive to electronic
ordering.

Following Refs. [35,36], in the most general case the
structure factor F for a given reflection of index (hkl) can
be described as (omitting explicit polarization dependence for
the sake of clarity)

Fhkl =
∑

K,Q,q

(−1)QHK
−QDK

Qq�
K
q . (1)

The positive integer K is the rank of the multipole,
and the projection q can take (2K + 1) integer values that
satisfy the relationship −K � q � K . The first term HK

−Q
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describes the dependence of the structure factor on the
polarization of the incoming and outgoing x rays, DK

Qq reflects
a rotation of the local axes of the sample required to fulfill the
selected diffraction condition (depending on the orientation of
the sample compared to the surface normal), and �K

q is given
by

�K
q =

∑
d

eid.τ
〈
T K

q

〉
d
, (2)

where 〈T K
q 〉d is an atomic multipole that represents the elec-

tronic origin of the scattering, with the index d labeling the
position of the resonant ion in the unit cell. τ = (hkl) is
the scattering wave vector. Angular brackets 〈· · · 〉 denote the
expectation value of the enclosed electronic spherical tensor
operator, which is defined in Ref. [35]. For an electric-dipolar
(E1-E1) transition, multipoles of rank K up to 2 contribute
to the resonant process. The zeroth rank term (K = 0) corre-
sponds to an isotropic atomic charge contribution given, for
example, by the presence in the sample of resonant atoms with
different noninteger valence (e.g., Ni3+δ and Ni3−δ , with δ

being nonzero [27]). Such a charge imbalance is commonly
referred to as charge disproportionation. The K = 1 terms
correspond to time-odd dipole contributions (e.g., a magnetic
dipole), and K = 2 corresponds to time-even quadrupoles
(which can additionally reflect, for example, the degree of
hybridization with neighboring ions, e.g., ATS).

The structure factors for specific Bragg reflections in
NaOsO3 and their angular dependence are derived in
Appendix A.

IV. RESULTS

For the Slater model of a metal-insulator transition, lattice
distortions are not required to accompany the emergence of
the magnetic ordering and the appearance of the insulating
state. Therefore, the first step to validate the Slater model is to
confirm the absence of crystallographic symmetry breaking at
the metal-insulator transition. A common strategy here is to
verify the absence of any diffraction intensity at positions in
reciprocal space corresponding to forbidden reflections for the
crystallographic space group of the sample. A crystallographic
phase transition, from orthorhombic to monoclinic symmetry,
such as the one observed in some of the perovskite nickelates
[27,37–39], results in the loss of some space-group symmetry
elements. This changes the selection rules for forbidden
reflections, leading to the emergence of a measurable intensity
at specific reciprocal lattice points. NaOsO3 has already
been investigated extensively by x-ray and neutron powder
diffraction [15,16]. However, for very tiny deformations, these
methods might not be sensitive enough to detect a symmetry
change in the sample, if not guided by some compelling
evidence from other experimental results suggesting such
a symmetry break. Therefore, in order to test whether a
crystallographic symmetry break occurs at the metal-insulator
transition of NaOsO3, we took advantage of the superior
sensitivity of single-crystal diffraction over powder diffraction
methods. We performed a systematic search below the Néel
temperature TN for a diffraction signal at positions in reciprocal
space corresponding to forbidden reflections, using an x-ray
energy of 5.2 keV, which is far from the osmium absorption

edges. This choice of low x-ray energy also minimizes
intensities arising from “parasitic” signals caused by multiple
scattering of x rays within the sample due to the limited number
of reflections in the Ewald sphere. No intensity, from either
crystallographic symmetry breaking or nonresonant magnetic
scattering, was observed in a reciprocal lattice scan with an
acquisition time of 20 s per point. This indicates the absence
of crystallographic symmetry breaking and nonresonant
magnetic scattering, with NaOsO3 remaining in the same
Pnma space group above and below the metal-insulator
transition. Such results were subsequently corroborated
by x-ray single-crystal structural determination on smaller
crystallites, performed at the SNBL beamline at the ESRF.

Having confirmed that no crystallographic symmetry break-
ing takes place across the metal-insulator transition in NaOsO3,
we then focused our attention on the observation of possible
changes in the electron density occurring at the metal-insulator
transition. Such a variation in the electron density would pro-
vide insight into whether or not a specific electron localization
pattern occurs, e.g., charge ordering or orbital ordering, as
observed in manganites [40–48] or nickelates [27,39]. Such
an observation would yield deeper insight into the nature of
the metal-insulator transition and validate if relevant, on the
nature of the Slater mechanism in NaOsO3.

Therefore, we have performed resonant diffraction mea-
surements at x-ray photon energies corresponding to the L3 and
L2 osmium edges (2p → 5d electronic dipolar transitions).
Resonant x-ray diffraction was used to study selected magnetic
and ATS (sometimes also called “orbital ordering”) diffraction
peaks in NaOsO3. The possibility to tune the energy of the in-
cident x rays to the osmium L edges provides element-specific
electronic density distribution information that is not directly
accessible with any other technique. By selecting a particular
reflection, we are able to observe a specific component of the
distorted charge density.

For the case of a d3 ion, and in the absence of hybridization,
we expect a relatively weak intensity for the ATS peaks as
the singly occupied t2g spherically symmetric orbitals form a
representation of an angular momentum of L = 1 with zero
total angular momentum [18], which implies almost cubic
symmetry. In our experiments we have chosen to focus our
attention on the (030) and (300) ATS reflections. At such
reflections, the strong magnetic contribution (in the magnet-
ically ordered phase), which would make the measurements of
the ATS contribution challenging, is absent. Both reflections
were studied above and below the metal-insulator transition
(TN = TMIT = 410 K). The variation of the intensity of such
reflections as a function of the x-ray energy, in the vicinity of
theL3 andL2 edges, is given in Fig. 1. By comparing the energy
spectra in the metallic (>410 K) and the insulating phase
(<410 K), we have found an important difference between the
two (030) and (300) ATS reflections. While the (030) reflection
displays only a gradual change of intensity as a function of
temperature, with no change in shape, the spectrum of the
(300) undergoes a dramatic change across the metal-insulator
transition at TN ∼ 411 K. At both the L3 and L2 edges, an
extra feature appears in the spectra in the insulating state
(for the L3 edge the relevant feature is indicated by EA in
Fig. 1) corresponding to the inflection point of the absorption
spectrum. This energy typically corresponds to an electronic
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FIG. 2. Azimuthal angle dependence of the (300) integrated
reflection intensity at 300 K acquired using the Pilatus pixel detector
at the resonant energy EA (closed circles). The observed signal is
consistent with a σ − π ′ origin (continuous line).

resonance involving the unoccupied 5d orbitals, and to changes
that could correspond to the emergence of either magnetic
ordering or electron structure rearrangement.

To determine the origin of the change in the spectral shape
of the (300) reflection at the energy EA = 10.878 keV, we
performed a characterization of the variation of its intensity
as a function of the azimuthal angle ψ and also as a function
of the polarization of the scattered x rays which was then
compared with the structure factor expression given by Eq. (1).
The azimuthal angle dependence, presented in Fig. 2, was
recorded without a polarization analyzer since preliminary
measurements with polarization analysis at selected azimuthal
angles showed intensity only in the rotatedσ − π ′ polarization.
The fact that there is no intensity in the σ − σ ′ channel
indicates that charge ordering or charge disproportionation
[associated with the K = 0 term in Eq. (1)] cannot contribute
to the observed (300) diffracted intensity. Charge ordering
requires the presence of Os atoms in different oxidation states,
whose scattering would interfere constructively and give a
finite intensity in the σ − σ ′ channel. The fact that the Os atoms
have the same oxidation state is consistent with the reported
crystallographic structure.

Assuming the reported magnetic structure [16] is correct,
no magnetic signal (contributions from rank K = 1 tensors)
should contribute to the (300) reflection as defined by the
structure factor in Eq. (1). Therefore, we consider only the
contribution to the diffracted intensity related to the electronic
quadrupole K = 2 term. Applying symmetry arguments as
described in the Appendix A, one obtains the following
expression for the expected azimuthal angle dependence
for the different polarization channels of this reflection:
Fσσ ′ = Fππ ′ = 0 and Fσπ ′ ∝ 〈T 2

1 〉′ cos(θ )cos(ψ ), where θ is
the Bragg angle, ψ is the azimuthal angle, and 〈T 2

1 〉′ is the
real part of the quadrupole 〈T 2

1 〉.

FIG. 3. Comparison of the temperature-dependent intensity of the
(300) ATS and (330) magnetic reflections at an x-ray photon energy
corresponding to EA = 10.878 keV. The estimated critical exponents
αhkl for the two reflections are α330 = 0.72 ± 0.08 and α300 = 1.7 ±
0.1, respectively. In the inset, the same data in the vicinity of TN and
normalized by the intensities of the respective reflections measured
at T = 395 K are shown, demonstrating the critical behavior of the
two reflections.

The observed azimuthal intensity (Fig. 2) displays, within
experimental uncertainties, a cosine squared modulation,
which is consistent with the modulation expected from the
space-group symmetry, Pnma, given that the origin of the
signal is ATS (anisotropic scattering).

However, a magnetic origin for the (300) reflection at EA

cannot be excluded a priori. Therefore, we measured the
variation of the intensity of the (300) reflection, I300(T ), across
the Néel temperature and compared it to that of the (330)
magnetic reflection. Both temperature evolutions are shown in
Fig. 3 as well as a power law fit. We note that I300(T ) remains
finite, albeit weak, above TN (see peak EA in Fig. 1). The
origin of this residual intensity is the tail in the spectra of the
neighboring resonating feature present at EB = 10.888 keV
(which we associate to ATS scattering because of its weak
temperature dependence).

The fitting of the temperature dependence of the diffracted
intensity to a power law I = (1 − T/TN )αhkl results in an
estimate for the critical exponents, α330 = 0.72 ± 0.06 and
α300 = 1.7 ± 0.2, respectively, for the two reflections. This
finding establishes that the temperature dependence of I300(T )
and [I330(T )]2 have their critical behavior below TN within the
experimental accuracy, such that α300 ∼ 2 × (α330). The two
estimated critical exponents for the temperature dependence of
the two different reflections can be used to draw conclusions
about the nature of the diffracted intensity for the (300)
reflection, namely, whether it is of magnetic or ATS origin. The
(330) reflection is of magnetic origin as established in Ref. [16].
If both reflections were of magnetic origin, in the simplest case
we would expect the critical exponent for both reflections to
be the same. In addition, different critical exponents have been
measured for odd and even rank harmonic satellite reflections
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in some incommensurate magnetic 3d systems [49,50], which
arise from an incommensurate magnetic structure and lattice
distortions, respectively. Therefore, different critical exponents
strongly favor an alternative origin of the diffracted intensity
to a magnetic one.

To completely rule out a magnetic origin in the (300) signal,
we looked for intensity in the π − π ′ polarization channel.
The presence (absence) of signal in the π − π ′ channel would
be expected in the case of a magnetic (electric quadrupole)
origin. Specifically, π − π ′ measurements were carried out at
several azimuths. The absence of (300) diffracted intensity in
the π − π ′ channel, indicates the electronic (ATS) nature of
the (300) reflection at the energy EA. Therefore, our results
suggest that, at the resonant energy EA, the (300) intensity
reflects an induced electronic ordering driven by long-range
order of magnetic dipoles.

Having experimentally established the electronic origin of
the (300) reflection, we can now compare the temperature
evolution of the spectral features of (300) ATS reflection at
energies EA and EB . By comparing the absorption spectra
with the resonant diffraction one (see Fig. 1), we see that the
energy EA corresponds to electronic transitions to unoccupied
states next to the Fermi energy, while EB corresponds to
electronic transitions to excited states lying in the (unoccupied)
conductive band. Such excited states are less affected by the
occurrence of the phase transition, because their occupation
level is not strongly affected by the temperature increase.
Therefore the resonant x-ray diffraction spectrum at EB is
not strongly affected by the temperature increase as seen in
Fig. 1, whereas the electronic states for the (300) reflection
show a significant change near the Fermi level. This change
could reflect the opening of an insulating gap, which is known
to occur at TN [19].

V. FIRST-PRINCIPLES CALCULATIONS

A. FDMNES calculations

The original model proposed by Slater for a metal-insulator
transition does not require the presence of electron correlation
effects or the presence of the spin-orbit interaction. To ascertain
whether the NaOsO3 metal-insulator transition follows the
Slater mechanism or not, we make a comparison between
the experimentally observed change in the electron density
from our resonant diffraction experiment with first-principle
calculations in which the influence of the spin-orbit interaction
and the electron correlations can be optionally taken into
account. This possibility is offered by the FDMNES package
[29,51,52] which is based on the density functional theory
(DFT) approach. Taking the large spatial extent of the osmium
5d wave function into consideration means that the density
functional theory approach is appropriate to calculate the final
states of the absorption process. We have therefore used the
FDMNES package to calculate the energy dependence of the
observed reflection at the Os L3 and L2 edges.

By comparing the FDMNES simulations with the experimen-
tal data we can ascertain if the spin-orbit interaction and elec-
tron correlations are relevant to describe the physical properties
of the material. FDMNES is an ab initio code that calculates
the x-ray spectroscopic response of a sample in the vicinity
of an absorption edge. It requires only the crystallographic

structure of the material, as well as the magnetic structure, if
applicable. It is relativistic, and the spin-orbit interaction and
electron correlations can be selectively taken into account by
introducing the corresponding correction terms. Therefore, it
is straightforward to estimate the influence of, for example,
the electron correlations on the spectroscopic response of the
sample.

For NaOsO3, we have assumed a G-type magnetic structure
with moment parallel to the c axis as reported in Ref. [16]
and we have disregarded the weak ferromagnetic component
[15], since it is negligibly small compared to the antifer-
romagnetically ordered moment. With information on the
crystallographic and magnetic structure, the program com-
putes the spin-polarized electronic density of states of the
specified absorbing atom surrounded by neighboring atoms
within a given distance specified at the beginning of the
calculation. Subsequently it calculates diffraction spectra for
well-defined x-ray polarizations and Bragg wave vectors. For
our simulations we have used the muffin-tin approximation,
with a cluster radius around the resonant atom of 6 Å. The
simulated diffraction spectra are corrected for self-absorption
effects as well as the reduction in the x-ray penetration depth
and the consequent reduction in the scattering volume that
occurs as the photon energy is swept across the absorption
edge [53].

We have performed simulations at T = 300, 390, and
420 K. For the simulations at T = 390 and 420 K we have used
the atomic positions reported in the Supplemental Material of
Ref. [16]. For T ∼ 300 K we have used the atomic positions
in Ref. [15].

It is observed (see Fig. 4) that including the effect of the spin-
orbit interaction (SOI) (which applies only to the final states,
since the strong spin-orbit interaction for the 2p core orbitals
states is always accounted for by the splitting into the L2 and
L3 manifolds), does not substantially change the absorption
spectra. The green line in Fig. 4 illustrates the simulated
absorption spectra at the L3 edge for a cluster radius of 6 Å.

We now focus our attention to the resonant diffraction
spectra of the (300) and (030) reflections calculated at the L3

edge. We find a good qualitative agreement with the exper-
imental data of the (300) and (030) reflections, respectively.
FDMNES also calculates a cosine dependence on the azimuthal
angle for the (300) reflection, which is in agreement with the
measurements.

Next, we checked how the simulations of the resonant
diffraction spectra are influenced by the spin-orbit interaction,
SOI. It turns out that including the spin-orbit interaction
produces only subtle changes in the simulations, the subtle
differences being [comparing Fig. 4(a) with Fig. 4(b), and
Fig. 4(c) with Fig. 4(d)] the intensities of the diffraction spectra
for the 430 K metallic state is slightly lower and qualitatively
in line with what is observed experimentally. Additionally,
inclusion of the presence of magnetic ordering in the simulation
also does not produce a significant change in the simulated
spectra. The weak influence of the presence of magnetic
ordering can be related to the fact that the structural input
already includes the magnetoelastic deformations originating
from the presence of long-range magnetic ordering.

For the calculations performed at theL2 edge, the agreement
with the experimental data is similar to that for the L3 edge.
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FIG. 4. FDMNES simulations of the temperature dependence of the intensity of the (030) reflection (top line) and of the (300) reflection
(bottom line). All plots show energy scans at fixed momentum transfer at selected temperatures and x-ray absorption spectrum across the Os
L3 edge. All simulations were performed with a cluster radius of 6 Å. Panels (a), (b) display the simulations for the (030) reflection spectra
excluding (no SOI) and including (SOI) the effect of the spin-orbit interaction (SOI). Panels (c), (d) show simulations performed on the (300)
reflection.

At both edges, inclusion of the Hubbard correction term
(which takes into account the electron correlations) also
produces only subtle changes between the experimental and
simulated spectra. At both L2,3 edges, the inclusion of the
spin-orbit interaction does not appreciably change the sim-
ulated spectra. We can therefore infer from our simulations
that spin-orbit coupling and electron correlations play a minor
role in determining the experimentally observed significant
decrease in (300) intensity in the diffraction spectra across the
metal-insulator transition. As a result, the (300) spectral change
can be ascribed to a magnetoelastic distortion occurring in the
vicinity of TMI. However, it is not clear from the simulations
if such changes are driven by the magnetic ordering directly,
which would be suggestive of the Slater scenario.

One of the key experimental observations that could
potentially confirm the Slater mechanism is the temperature
dependence of the intensity of the (300) reflection at the
EA energy, since this is proportional to the square of the
intensity of the magnetic (330) peak. As this task lies beyond
the current capability of FDMNES, we turn our attention to
an atomic model calculation, which is described in the next
section. The advantage of such a model is that the temperature
dependence of the (300) reflection naturally follows from an
explicit calculation of the atomic multipole 〈T 2

q 〉 appearing
in Eq. (2).

B. Atomic model calculation

The main conclusion drawn in the previous section, namely,
the weakness of the electron correlation effects, motivates us to
use an atomic model including multipoles, which are defined
by discrete symmetries. This approach has the advantage of
giving direct insight into the physical origin of the diffracted
intensity measured at Os L edges.

The atomic model calculation first analyzes the distortion
modes driving the parent cubic structure to the observed
orthorhombic one. It subsequently shows how the deformation
of the cubic structure leads to the appearance of diffracted
intensity, which violates the selection rules of the orthorhombic
Pnma structure. As a next step, outlined in Appendix B, we
consider a medium coupling scheme to obtain the ground-state
wave functions for the Os atom in the presence of crystal-field
potential and spin-orbit coupling. Combining such results
with a description of the exchange energy represented by
a molecular field makes it possible to calculate the matrix
element that gives an estimate of the quadrupole responsible
for the intensity observed at the (300) reflection as well as its
temperature dependence in the vicinity of the phase transition
temperature. In particular, we demonstrate that an atomic
model can well describe the (300) intensity including its tem-
perature dependence, directly linking it with the appearance of
the antiferromagnetic ordering.

115116-7



N. GURUNG et al. PHYSICAL REVIEW B 98, 115116 (2018)

FIG. 5. The chemical structure of NaOsO3 (Pnma) is displayed in the left-hand panel. Positioning of an almost perfect OsO6 octahedral
can be described relative to an undistorted reference structure (central panel) with the b axis normal to the plane of the diagram. The two angles
θ0 (octahedral rotation) and ϕ0 (octahedral tilt) used in the text to define the b axis in the distorted structure (left-hand panel) are illustrated
in the right-hand panel. Definitions of angles that define the rotation and tilt of the O-Os-O axis of an octahedron relative to the crystal axes
(a, b, c).

More quantitatively, we utilize the knowledge of the mag-
netic space group Pn′ma′ to calculate unit-cell structure
factors (Appendix A) and to perform a symmetry analysis of
lattice distortions (Appendixes B and C). In the first place, we
conclude that ATS scattering is due to quadrupoles 〈T 2

+1〉′ at
(h, 0, 0), 〈T 2

+1〉′′ at (h, h, 0), and 〈T 2
+2〉′′ at (0, k, 0) for h

and k odd. Note that the quadrupole 〈T 2
+1〉′′ is not mentioned

by Calder et al. [16], most likely due to its negligible contri-
bution compared to the magnetic scattering intensity from the
magnetic (330) reflection. In order to calculate an expression
for the quadrupole we employ analytical techniques. It turns
out that such results can be conveniently expressed taking
into account the lattice deformation from the parent cubic
phase, involving rotation and tilting of the OsO6 octahedra.
Specifically, the lattice distortions, depicted in Fig. 5, are
classified as octahedral rotation and tilt angles θo and ϕo

(two primary order parameters), respectively, as shown in
the right-hand panel of Fig. 5. As a consequence, the angles
factorize in expressions for the quadrupoles (C3). The intensity
of the (300) Bragg peak is successfully attributed to the first
primary order parameter (octahedral rotation described by the
angle θo).

The quadrupole to be compared with experimental data is
derived from [see Eq. (B2) in Appendix B]

〈
T 2

0

〉
T

⎛
⎝

1 0 0
0 −2 0
0 0 1

⎞
⎠.

After application of the transformation of coordinates in
Eq. (B1), one finds 〈T 2

+2〉′′ ∝ Fσπ ′ (030) ∝ (xy) = 0, 〈T 2
+1〉′ ∝

(xz) ∝ Fσπ ′ (300) = {(3/2) sin (2θo)〈T 2
0 〉

T
}, and 〈T 2

+1〉′′ ∝
(yz) = 0. The latter results mean that the origin of the (030)
Bragg peak is the second primary order parameter (octahedral
tilting, ϕ0).

The precise structure of the spin-orbit coupling and crystal-
field potential in a medium coupling scheme is derived from
symmetry. Likewise, the (030) intensity is accounted for by
octahedral tilting.

With such assumptions, it is possible to calculate the
saturation value of the quadrupole 〈T 2

0 〉 and how it is related to
the average magnetic moment 〈Sc〉. As outlined in Appendix B,

it can be shown that 〈T 2
0 〉 is proportional to 〈Sc〉2 and that

within a molecular-field calculation, 〈Sc〉 ∝ (1 − T/TN )1/2

as the temperature approaches TN . Therefore the intensity
of a Bragg peak (h, 0, 0) with h odd is proportional to
〈Sc〉4α(1 − T/TN )2, as observed experimentally.

This conclusion is also fully consistent with general sym-
metry arguments based on the Landau free-energy decompo-
sition. The irreducible magnetic order parameter which drives
the transition to the magnetic Pn′ma′ space group is one
dimensional [54] and therefore can only form either a bilinear
coupling term with time-odd quantity or a linear-quadratic
term with time-even quantity transformed by totally symmetric
representation of the paramagnetic Pnma space group. No
other coupling schemes are symmetry allowed. The first option
imposes the critical behavior identical with the magnetic order
parameter; the second one implies a twice bigger critical
exponent. The time-even 〈T 2

0 〉 quadrupole does not break
any symmetry and therefore is allowed to be coupled to the
magnetic order parameter with the critical behavior consistent
to that observed experimentally.

We summarize briefly our findings based on our atomic
model calculation in Table I, in order to explain the temperature
dependence of space-group-forbidden reflections. First we

TABLE I. Summary of the origin of the diffracted intensity for
the investigated Bragg reflections in the vicinity of the osmium L3,2

edges below and above the metal-insulator transition temperature TN

determined from our atomic model. For each reflection, the source
of the diffracted intensity above and below the Néel temperature
TN is given. The last column summarizes the order parameters and,
where relevant, its relation with the average ordered antiferromagnetic
magnetic moment 〈Sc〉.

Contribution Contribution(s) Order
Reflection T > TN T < TN parameter

(300)EA
None Magnetically induced ATS

〈
T 2

0

〉
T

∝ 〈Sc〉2

(300)EB
ATS ATS

〈
T 2

1

〉′
θ0

(030) ATS ATS
〈
T 2

2

〉′′
ϕ0

(330) ATS Magnetism + ATS 〈Sc〉
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examine the metallic state (T > TN ). Above TN , except for
the feature EA of the (300) spectra (denoted I

EA

300), all other
measured forbidden reflections have an electronic ATS contri-
bution. This contribution is due to the octahedral rotation and
tilting associated with the Pnma crystallographic structure.

For the insulating state (T < TN ), the feature EB of the
(300) spectra (IEB

300) and the (030) reflection (I030) have a
weak ATS intensity and spectral shape dependence, which we
ascribe to weak temperature dependence of the secondary order
parameters 〈T 2

1 〉′
θ0

and 〈T 2
2 〉′′

ϕ0
. The subscripts θ0, ϕ0 highlight

their relationship with the octahedral rotation and tilting,
respectively. Conversely, the strong temperature dependence
of the (330) magnetic reflection intensity I330 below TN reflects
the emergence of the antiferromagnetic ordering in the sample.
Such long-range ordering is described by an order parameter
representing the average magnetic moment 〈Sc〉. The source
of I

EA

300 below TN is a magnetically induced quadrupole 〈T 2
0 〉T

whose nonzero value originates from the asymmetry in the
Os charge density due to the octahedral rotations. We have
also shown that our model successfully describes the I

EA

300
temperature dependence, which is proportional to 〈Sc〉4.

VI. DISCUSSION

The goal of this work is to clarify the nature of the
metal-insulator transition in NaOsO3, which has recently been
proposed to be of Slater type [16]. The Slater metal-insulator
transition mechanism relies on the following three conditions:
(i) the lack of a significant lattice distortion and absence of crys-
tallographic symmetry breaking, (ii) a negligible role played
by electron correlation effects, and (iii) the opening of the
insulating gap being a result of the onset of antiferromagnetic
ordering.

As for point (i), our x-ray single-crystal diffraction experi-
ments indicate indeed that NaOsO3 undergoes an isostructural
metal-insulator transition across TN , satisfying the Slater
requirements. Condition (ii) is also satisfied as the electron
correlations are weak [18,25] and our FDMNES simulations sug-
gest that correlations do not influence the resonant scattering
intensity and can therefore be neglected. Finally, condition
(iii) is compatible with our observation of the temperature
dependence of the (330) and (300) diffracted intensities, which
reflect the magnetic and electronic ordering, respectively. In
particular, the fact that the estimated critical exponents for the
temperature dependence of these two reflections are correlated
indicates that the change in the Os electron density across
TN is actually magnetically induced. Therefore, our work
supports the Slater scenario for the metal-insulator transition
in NaOsO3. The question that then arises is how exactly the
antiferromagnetic ordering drives the sample into an insulating
state. In order to answer this question, it is necessary to look
at electronic I

EA

300 diffracted intensity carefully and understand
the change in its intensity across TN .

From previous studies on distorted perovskite systems,
e.g., in Ca2RuO4 [55], a similar change in the intensity of
a forbidden reflection was attributed to “orbital ordering,”
without the need for the Slater mechanism. Here, orbital
ordering refers to emergence of a broken symmetry state
in which localized occupied orbitals form a regular pattern,

arising solely from crystallographic symmetry breaking. In
systems where the change in the lattice distortions across TMI

is too small to detect, this is referred to as an “orbital ordering”
phase transition instead of an otherwise apparent structural
phase transition. However, in the case of NaOsO3, since there
is no crystallographic symmetry breaking across TN , we can
exclude orbital ordering, and we need to look for an alternative
physical mechanism to explain the source of the change in the
electronic I

EA

300 diffracted intensity across TN .
The most likely alternative mechanism for the emergence

of I
EA

300 below TN = TMI in the resonant diffraction spectra is
a change in the Os 5d orbital population. Below TMI, i.e., on
entering the insulating phase, some of the partly occupied states
become depopulated due to the opening of the insulating gap,
thus allowing specific excitation channels to become available
for the resonant process. In order to obtain quantitative in-
formation on the change in the Os 5d orbital population in
the vicinity of the metal-insulator transition, it is necessary to
measure the intensity of several forbidden reflections. These
forbidden reflections correspond to the different components of
the asymmetry of the resonant ion (Os) electron density, and
thus provide a way to reconstruct its electron density across
TMI. This reconstruction process is usually quite challenging
due to the large number of the intermediate states available
for the core electron in the excitation process, as well as
the presence of strong electron correlations in the systems.
However, for the case of NaOsO3, such difficulties are fortu-
nately not so severe. This is because the electron correlations
are weak in this 5d system and our FDMNES simulations
suggest that such correlations do not influence the resonant
scattering intensity and can therefore be neglected. In addition,
since deformation of the OsO6 octahedra is very small, an
analytical calculation of the quadrupoles purely allowed by
symmetry can be performed. Indeed, this calculation based
on our atomic model explains the temperature dependence
observed for the magnetic (330) and forbidden (030) diffracted
intensities in the vicinity of TN . This model also finds that the
electronic I

EA

300 diffracted intensity is directly proportional to
the square of a single quadrupole component, 〈T 2

0 〉T , and that
I

(EA )
300 temperature dependence increases with the fourth power

of the average ordered magnetic moment 〈Sc〉, as observed
experimentally. Therefore, using our atomic model, we were
able to reconstruct the change in the electron density occurring
at the metal-insulator transition.

In order to visualize this change in electron density of the
Os ion across TMI, we plot the isosurfaces of the 5d electron
density of the Os ion above and below the TMI [Figs. 6(c) and
6(d), respectively]. Since the Os5+ 5d shell is partially filled,
its charge distribution deviates significantly from spherical
symmetry in both the metallic and insulating states. In order to
plot the isosurfaces of 5d electron density, we first need to know
the number of electrons per orbital. To begin with, in a localized
electron picture of the charge distribution for Os5+, one would
assume that there is one valence electron in each of the t2g

orbitals as dictated by Hund’s rules. However, for the itinerant
5d system, one would expect substantial p-d hybridization,
and a more realistic picture is given in Ref. [18], which is
based on local spin density approximation (LSDA) ab initio
calculations. These calculations performed for the insulating
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FIG. 6. (a) Isosurface of the 5d electron density of Os ions in
the insulating state of NaOsO3. The isosurface colors highlight the
symmetry relation between the Os ions in the unit cell, i.e., Os ions
sitting at (0 0 1/2) and at (1/2 0 0) positions are related by a rotation
about the c axis of 180°. For clarity only selected Os atom and
oxygen (represented as green and red spheres for Wyckoff positions
4c and 8d , respectively) are shown. (b), (c) are the reconstructed
5d electron density distributions for the metallic and the insulating
phases, respectively.

state in NaOsO3 suggest an occupation of 0.7 electrons per
orbital for majority t2g orbitals and an occupation of about 0.3
electron per orbital for the majority eg and all the minority d

orbitals, which are formally unoccupied. We used these values
as a starting point to plot an isosurface of the Os charge density
in the insulating state [see Fig. 6(c)]. In the metallic state,
according to our experimental observation combined with our
symmetry analysis, the eg states become thermally populated
leading to a change in the charge density towards a slightly
more spherical shape [see Fig. 6(b)] with an occupation of
about 0.5 electron per orbital for all the eg orbitals, as extracted
from the symmetry analysis performed in Sec. V B.

By comparing Figs. 6(b) and 6(c), it becomes clear that the
Os electron density undergoes only a minor change in shape at
the metal-insulator transition. This result is not surprising as the
change in the lattice constants and the osmium-oxygen bonding
angle are of the order of a fraction of a percent [16] across
TMI. Nevertheless, such small changes can substantially affect
the resonant x-ray diffraction response of the sample as has
been seen from our experiments in combination with a detailed
symmetry analysis (Sec. V B and Appendix A). Therefore
resonant x-ray diffraction is an ideally suited technique to
detect even the slightest changes occurring in the electron
density of the resonant ion across TMI.

VII. CONCLUSIONS

From our single-crystal nonresonant and resonant x-ray
diffraction experiments, we establish that NaOsO3 fulfills the
prerequisites of a Slater metal-insulator transition as follows:
First, no crystallographic symmetric breaking occurs across
TMI. Second, the presence of weak electron correlations in
the 5d NaOsO3 system has been confirmed by the ab initio
calculations performed with the FDMNES software. Third, the
antiferromagnetically driven change of Os electron density
across TN = TMI results in the opening of the insulating

gap. Specifically, it is the appearance of the electronic (300)
diffracted intensity below TN that reflects the change in the
Os 5d orbital population across TMI, which has been well
explained by our theoretical atomic model.

To conclude, our results favor the Slater mechanism as the
origin of the metal-insulator transition in NaOsO3.

The raw data and the FDMNES simulation files that support
this study are available via the Zenodo repository [56].

Note added. Recently, we became aware of Refs. [69,70]
which argue for the presence of weak correlations in the
paramagnetic phase.
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APPENDIX A

X-ray and neutron Bragg diffraction experiments have
established the chemical structure Pnma (#62) for NaOsO3,
which is often the case for perovskite oxides, with Os ions using
sites 4a that possess inversion symmetry, 1̄, and no more. The
superstructure is due to the cooperative rotation and tilting of
the OsO6 octahedra as in the GdFeO3-type perovskite. In this
Appendix we outline the derivation of exact unit-cell structure
factors for (h00), (0k0), and (hh0) Bragg peaks.

An appropriate electronic structure factor is

�K
Q =

∑
d

exp(id · τ )
〈
T K

Q

〉
d, (A1)

where the Bragg wave vector τ = (h, k, l), and sites labeled
d in a cell are occupied by Os ions. Universal expressions
for Fμν ′ (E1-E1) are written in terms of two quantities, AK

Q =
{(�K

Q + �K
−Q)/2} and BK

Q = {(�K
Q − �K

−Q)/2}. Here, μ and
ν ′ denote the incoming and outgoing x-ray polarization states,
respectively.

The metal-insulator transition proceeds without change to
the crystal symmetry, and the G-type motif of Os magnetic
dipoles possesses a commensurate propagation vector k =
(0, 0, 0). Data in Fig. 3 of Ref. [15] are evidence of weak
ferromagnetism. Os ions use sites 4a with site symmetry 1̄ in
Pn′ma′ and they are

(0, 0, 0)1↑ : (1/2, 1/2, 1/2)2↑ :

(0, 1/2, 0)3↓ : (1/2, 0, 1/2)4 ↓,

where arrows indicate relative orientations of dipole moments
along the c axis inferred from diffraction data [16]. Sites (1)
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and (3) are related by antitranslation (0, 1/2, 0). Also, (2) and
(4) are related similarly. Whereas (1) and (2) are related by
a simple body-center translation (1/2,1/2,1/2). Also, (3) and
(4) are related similarly.

With this information one finds

�K
Q = [1 + σθ (−1)h+l (−1)Q]

× [〈
T K

Q

〉 + (−1)h+k+lσθ (−1)K
〈
T K

−Q

〉]
, (A2)

where h, k, and l are integer Miller indices and σθ is the time
signature. Bulk properties are prescribed by �K

Q evaluated for
h = k = l = 0. By taking σθ = −1 a ferromagnetic motif of
dipoles (K = 1) parallel to the b axis is allowed.

The result (A2) applies to the calculation of a unit-cell
structure factor for magnetic neutron diffraction on using σθ =
−1. Bragg peaks are attributed to magnetic dipoles. Reflections
have been indexed by extinction rules k odd and h + l odd, and
they refer to a magnetic moment = (0, 0, μc ) [16].

Henceforth, we focus attention on the interpretation of
x-ray Bragg diffraction with signals enhanced from tuning the
primary energy to the energy of a parity-even absorption event.
In this instance, σθ = (−1)K and �K

Q = (−1)h+k+l�K
−Q, while

the first bracket in (A2) demands that (K + Q + h + l) is
even. Hence, a motif of antiferromagnetic dipoles (K = 1)
alternating along the c axis (Q = 0) can be observed with k

odd and h + l odd, in accord with neutron diffraction data
[16]. Taking Q odd yields the rule h + l even for magnetic
multipoles with K odd. In this case,

�K
Q = 2

[〈
T K

Q

〉 + (−1)k
〈
T K

−Q

〉] = 2
[〈
T K

Q

〉 − (−1)k
〈
T K

Q

〉∗]
.

(A3)

Applied to dipoles (K = 1, Q = ±1), this result says that
antiferromagnetic moments along the a axis are visible at k odd
(�1

a = −4
√

2〈T 1
+1〉′) while ferromagnetic moments along the

b axis are visible at k even (�1
b = −4

√
2〈T 1

+1〉′′). Note that �1
a

and �1
b are purely real. Turning attention to other components,

one finds (�K
Q + �K

−Q) = 0 for (h + k + l) odd.
The last result means AK

Q = 0 for (h, 0, 0) with h odd.
In consequence, corresponding unit-cell structure factors for
unrotated polarizations Fσσ ′ = Fππ ′ = 0. The allowed BK

Q

possess (K + Q) odd, with BK
0 = 0 by definition. We find

B2
1 = (4〈T 2

+1〉′) and

Fσπ ′ (E1-E1) = cos(θ ) cos(ψ )
〈
T 2

+1

〉′
. (A4)

In this (h, 0, 0) structure factor, and all subsequent struc-
ture factors, we drop a factor 4 that comes from the number of
Os ions in a unit cell. The origin of the azimuthal angle scan
(ψ = 0) finds the c axis and magnetic moments normal to the
plane of scattering.

Structure factors for (h, 0, 0) that we have considered are
directly proportional to �K

Q because the Bragg wave vector is
parallel to the x axis as depicted in Fig. 1 of Ref. [36] that
defines states of polarization in the primary and secondary
beams. Hence, B2

1 = −�2
1 in the derivation of Eq. (A4) with

a minus sign due to rotation by 180° about the c axis. For
(0, k, 0) we must allow for a rotation of �K

Q by 90° about the
c axis,

AK
Q = i sin (πQ/2)�K

Q and BK
Q = cos(πQ/2)�K

Q, (A5)

for k odd. Nonvanishing �K
Q possess (K + Q) even, and

E1-E1 structure factors are determined by A1
1 = −(i

√
2〈T 1

a 〉)
and B2

2 = −(2i〈T 2
+2〉′′). For (0, k, 0) with k odd one finds

Fσ ′σ = 0,

Fσπ ′ (E1-E1) = − i cos(θ )
[
(1/

√
2) cos(ψ )

〈
T 1

a

〉

+ i sin(ψ )
〈
T 2

+2

〉′′]
,

Fππ ′ (E1-E1) = − (i/
√

2) sin(2θ ) sin(ψ )
〈
T 1

a

〉
. (A6)

Time-even, 〈T 2
+2〉′′, and time-odd, 〈T 1

a 〉, multipoles in the
rotated channel of polarization differ by a 90° phase. However,
the magnetic moment is observed to be parallel to the c axis
leading us to expect 〈T 1

a 〉 ≈ 0.
The third, and last, set of Bragg peaks we consider are

indexed by (h, h, 0) with h odd [16]. From (A2), �K
Q =

�K
−Q and the rank and projection of nonvanishing �K

Q are
constrained by (K + Q) odd. One needs

AK
Q = cos(ϕQ)�K

Q and BK
Q = i sin(ϕQ)�K

Q (A7)

to evaluate structure factors, which we choose to report as
functions of AK

Q and BK
Q to ease complexity of the notation.

Using unit-cell lengths a ≈ 5.392 Å, b ≈ 7.608 Å [16] we find
ϕ ≈ 144.67◦. Of the three contributions to E1-E1 unit-cell
structure factors, A1

0 and B2
1 are purely real and A2

1 is purely
imaginary, with A2

1 ∝ B2
1 ∝ 〈T 2

+1〉′′. We find

Fσσ ′ (E1-E1) = − i sin(2ψ )A2
1,

Fσπ ′ (E1-E1) = − (i/
√

2) cos(θ ) sin(ψ )A1
0 − i sin(θ )

× cos(2ψ )A2
1 − cos(θ ) cos(ψ )B2

1 , (A8)

Fππ ′ (E1-E1) = (i/
√

2) sin(2θ ) cos(ψ )A1
0

− isin2(θ ) sin(2ψ )A2
1.

The dipole A1
0 α〈T 1

0 〉 does not contribute to diffraction in
the rotated channel of scattering at the origin of the azimuthal-
angle scan. When the c axis is in the plane of scattering (ψ =
90◦) the structure factor Fπ ′σ (E1-E1) is a combination of 〈T 1

0 〉
and 〈T 2

+1〉′′, and Fσσ ′ (E1-E1) = 0. Calder et al. [16] report the
result Fσσ ′ (E1-E1) = 0 and it is likely they used ψ = 90◦. In
which case, data for intensity in the rotated channel are caused
by the magnetic dipole and, also, a nonmagnetic quadrupole,
〈T 2

+1〉′′, that was previously omitted from interpretations of
data. Note that (h, 0, 0) Bragg peaks are created by the real
part of the same quadrupole, i.e., 〈T 2

+1〉′.

APPENDIX B

In this Appendix we derive a quantitative expression for
the quadrupole 〈T 2

0 〉T , which is at the origin of the diffracted
signal observed at the (300) Bragg peak. In order to do so,
we first note that besides the large tilting and rotation of the
OsO6 octahedra, causing the departure from cubic symmetry,
the octahedra preserve their shape and are almost perfect.
The variation of the six bond distances between O and Os
is smaller than 0.4% of the largest distance, and the O-Os-O
angles are 90°, to a very good approximation [15]. The large
orthorhombic distortion leaves a hybridization gap of ≈1.6 eV
between t2g and eg antibonding manifolds [26], in addition
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to reducing the t2g bandwidth [15]. Hence, local electronic
structure can safely be assigned to equally occupied t2g orbitals
retaining local cubic symmetry in the OsO6 octahedron.

The axes of an octahedron depart substantially from the
crystal axes, and the corresponding distortion, in the form of
tilt and rotation of the O-Os-O axis, has values θo ≈ ϕo ≈ 10◦
[15]. Taking θo = 0◦ and ϕo = 0◦ returns to the undistorted
structure with orthonormal axes (xo, yo, zo) transforming to
(a, b, c) with

xo = (cos θo, 0, −sinθo),

yo = (sin ϕo sin θo, cos ϕo, sin ϕo cos θo), (B1)

zo = (cos ϕo sin θo, −sinϕo, cos ϕo cos θo).

Our analysis of quadrupoles in Pn′ma′ that contribute to
ATS scattering shows that the octahedral rotation accounts for
the (300) intensity. This is specifically due to the octahedral
rotation in tetragonal P 4/mbm with Os ions at sites 2a that
possess site symmetry 4/m on the b axis (Appendix C). The
quadrupole to be compared with experimental data is derived
from

〈
T 2

0

〉
T

⎛
⎝

1 0 0
0 −2 0
0 0 1

⎞
⎠. (B2)

This form of the quadrupole is consistent with site
symmetry 4/m on the y axis, with elements (xx ) = (zz)
while the element (yy) obeys {(xx) + (yy) + (zz)} = 0.
After application of the transformation of coordinates
in Eq. (B1), one finds 〈T 2

+1〉′ ∝ (xz) ∝ Fσπ ′ (300) =
{(3/2) sin (2θo)〈T 2

0 〉
T
}, 〈T 2

+1〉′′ ∝ (yz) = 0, and 〈T 2
+2〉′′ ∝

Fσπ ′ (030) ∝ (xy) = 0. The latter result means that the origin
of the (030) Bragg peak is the second primary order parameter
(octahedral tilting, ϕ0). In this case, Eq. (B2) is replaced by
a quadrupole Eq. (C2) that explicitly displays the lower-site
symmetry 2/m on the x axis contained in orthorhombic
Imma. Lower symmetry allows off-diagonal elements in the
quadrupole and nonvanishing values for elements (xz), (yz),
and (xy ). However, the value of (xz) from octahedral tilting
is not a natural source of the temperature dependence of the
(300) Bragg peak as we successfully argue in the remainder
of this subsection.

In our model, it is assumed that an admixture of excited
terms due to the spin-orbit interaction can be neglected, so
that we are concerned only with the ground term 4F of
pentavalent Os. Furthermore, the spin-orbit interaction is taken
to be appreciably stronger than the Jahn-Teller coupling and
quenches the latter, to a good approximation.

In octahedral symmetry, the ground-state of d3 is a half-
filled t2g shell with a high-spin configuration S = 3/2 and
L = 3(4F ). Some previous studies of the d3 configuration in
cubic symmetry were motivated by Cr3+ in Al2O3 (pink ruby)
[57]. This configuration is robust against the strength of the
crystal-field energy relative to the spin-orbit coupling, which
determines Hund’s first rule. If the spin-orbit interaction is
the dominant force in determining electronic states of an Os
ion, then the total angular momentum J is a good quantum
number. Atomic states are |J,±1/2〉, |J,±3/2〉 with J =
3/2 for 4F3/2(d3). This coupling scheme gained favor in a
simulation of electronic structure [58], but our measurements

on NaOsO3 rule against it for this material. Calculations of
the quadrupole 〈T 2

0 〉 using J = 3/2 in E1-E1 diffraction
amplitudes for L3 and L2 absorption edges differ by a factor
10(〈T 2

0 〉
L2

/〈T 2
0 〉

L3
= −10), resulting in a factor 100 difference

in intensity. In contrast, our measured intensities are roughly
equal at the two edges, and even if we consider the correction of
intensity by absorption effects, this would lead only to a lower
bound of 1/5 in the ratio. Thus, we consider a medium coupling
scheme, which takes into account the crystal-field potential and
spin-orbit coupling, and find L3 and L2 intensities that match
our measurements.

The ground state of the crystal-field potential is an or-
bital singlet |�2〉 = [|+2〉 − |−2〉]/√2 with states |M〉 =
|L = 3,M〉. The orbital angular momentum in |�2〉 is fully
quenched, but it is made nonvanishing by a relatively large
spin-orbit interaction (λS · L) with positive λ. Likewise,
quadrupoles that create Templeton-Templeton scattering at
space-group-forbidden reflections are proportional to λ.

In this coupling scheme, the ground state of 4F belongs
to the quadruplet �8 representation of the double cubic group
(the notation U ′ is also used for this representation [59]). The
representation of the group spanned by the components of a
dipole is �4. Nonvanishing matrix elements of a dipole in �8

are allowed if the direct product �8 × �4 contains �8, and
�8 × �4 = (�6 + �7 + 2�8). The fact that �8 × �4 actually
contains �8 twice indicates that allowed matrix elements are
defined by two factors. (This result is usefully contrasted with
the direct product �5 × �4, say, that contains �5 once. As a
consequence, a dipole in �5 can be mapped to a fictitious
angular momentum using one unique proportionality factor.)
Moreover, the �4 component of the direct product �8 × �8

is symmetric, and thus the dipole must be time odd for
an odd number of electrons [59–64]. The representations of
the group spanned by the components of a quadrupole are
�3 + �5. The direct product �8 × �3 contains �8 once, while
�8 × �5 contains �8 twice. However, the quadrupole T 2

0 that
is required is unique in �3 leaving one proportionality factor
to be determined by an explicit calculation.

We denote by |�〉, with � = ±1/2,±3/2, the four partners
of the quadruplet �8, which can be viewed as replacements for
|J,±m〉 used in the extreme case of a dominant spin-orbit
interaction. Keeping in mind the aim to find an expression for
the exchange energy acting on an Os ion in mind, we choose

〈� = 1/2|Sz|� = 1/2〉 = v, and

〈� = 3/2|Sz|� = 3/2〉 = u,

where u and v are real positive numbers with u > v (actual
values of the parameters u and v are inferred from measure-
ments. Formally, however, they can be related to crystal-field
energies and eigenvalues calculated by Lea, Leask and Wolf
[65]. With this line of reasoning, u and v are functions of
a parameter x used by the authors to quantify energies and
eigenvalues). A singular property of the �8 manifold is that a
matrix element of a transverse component of a dipole taken
between � = 3/2 and � = −3/2 can be different from zero.
Applied to the dipole operator (L + 2S) this property results
in Zeeman states not being equally spaced. The quadrupole T 2

0
is represented by the operator {3(�z)2 − 15/4} that transforms
like �3, where (�z|�〉) = �|�〉 and the constant 15/4 =
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(3/2)(5/2) is the one expected for an operator space with
maximum projections � = ±3/2. The proportionality factor
in T 2

0 ∝ {3(�z)2 − 15/4} is to be determined, in the same way
that a reduced matrix element in the Wigner-Eckart theorem
must be determined by an explicit calculation.

Identities 〈� = −1/2|Sz| = −1/2〉 = −v and
〈� = −3/2|Sz|� = −3/2〉 = −u flow from the equivalence
of a diad axis of rotation symmetry on the y axis of the cubic
group and time-reversal symmetry. A tetrad axis of rotation
symmetry on the z axis forbids off-diagonal matrix elements
of Sz. Likewise, 〈�|T 2

0 |�〉 is independent of the sign of �,
while

〈� = 1/2|T 2
0 |� = 1/2〉 = −〈� = ±3/2|T 2

0 |� = ±3/2〉.
Middey et al. [20] conclude from their simulations that t2g

orbitals are split by a superexchange due primarily to nearest-
neighbor Os ions. Our exchange energy is represented by a
molecular-field value (−J 〈Sc〉Sc ) with J the superexchange
parameter. As a consequence, the thermal average of the
quadrupole in �8 symmetry is

〈
T 2

0

〉
T

= −〈
T 2

0

〉
(2/Z){cosh(Au) − cosh(Av)}, (B3)

where T is the temperature, A = {J 〈Sc〉/(T
√

2)} and

Z = 2[cosh(Au) + cosh(Av)] (B4)

is the partition function. The factor (1/
√

2) in A arises because
the molecular field is aligned with the crystal c axis, whereas
states |�〉 are defined in axes of the reference structure depicted
in the center panel of Fig. 5. Evidently, −〈T 2

0 〉 is the saturation
value of 〈T 2

0 〉T . For small A,
〈
T 2

0

〉
T

∼= −〈
T 2

0

〉{(u2 − v2)/(u2 + v2)
2}〈Sc〉2. (B5)

The spin moment is derived from

〈Sc〉 = (
√

2/Z){u sinh(Au) + v sinh(Av)}, (B6)

which leads to

〈Sc〉 ∝ (1 − T/TN )1/2,

as the temperature approaches TN = {(u2 + v2)J/(2
√

2)}.
The intensity of a Bragg peak (h, 0, 0) with h odd is
proportional to (1 − T/TN )2, according to the molecular-field
calculation.

A calculation of the proportionality factor 〈T 2
0 〉 =

〈� = 1/2|T 2
0 |� = 1/2〉 is aesthetically pleasing, because it

demonstrates that 〈T 2
0 〉 arises from spin-orbit interaction in

the medium coupling scheme. To this end, we derive ap-
proximations to |�〉 using perturbation theory. A d3 ground
state |�2; σ 〉 is a product (|S, σ 〉|�2〉) using an orbital sin-
glet |�2〉. Specifically, orbital angular momentum acquires a
value by spin-orbit mixing of |�2; σ 〉 and |�5; α〉 which are
separated by an energy �o, and a result 〈�2; σ |Lz|�2; σ 〉 ≈
−(8λ/�o)σ is derived from first-order perturbation theory (an
apparently similar calculation of 〈Lz〉 for pentavalent Os in
pyrochlore-type Cd2Os2O7 omits the contribution linear in λ

that we report, and use of an erroneous relation 〈Lz〉 ∝ λ2

understandably yields a misleading interpretation of dichroic
signals [66]).

One finds 〈�2; σ |T 2
0 |�2; σ 〉 = 0 for all spin projections

σ , as already mentioned. A spin-orbit interaction creates

admixtures of |�2; σ 〉 and |�5; σ ′〉, where |�5〉 is triply
degenerate in perfect cubic symmetry (orbital states |�2〉 and
|�5〉 are separated by an energy 10 Dq). Addition of a tetragonal
distortion reduces the degeneracy of |�5〉 to a singlet state
|�5, α〉 = {|+2〉 + |−2〉}/√2, and a pair of Kramers degener-
ate states, one component of which is |�5, β〉 = [

√
(5)|+1〉 −√

(3)|−3〉]/√8. All three �5-states mix with |�2; 1/2〉. An
off-diagonal matrix element of T 2

0 between |�2; 1/2〉 and
|�2; −1/2〉 is zero, because the two states are related by time
reversal and this quadrupole is time even. Likewise, diagonal
matrix elements of T 2

0 are identical. After a lengthy calculation,
we obtain

〈
T 2

0

〉 ∼= − 14
√

(2/3) (λ/�)〈�5, β; 3/2|T 2
0 |�2; 1/2〉

− 2(λ/�o)〈�5, α; 1/2|T 2
0 |�2; 1/2〉

= − (±)(λ/45)
√

(2/3)[(7/�) + (1/�o)], (B7)

which is correct to leading order in λ. An energy difference
(� − �o) is created by a tetragonal addition to the crystal-field
potential. The negative sign in 〈T 2

0 〉 applies at the L3 absorption
edge and the plus sign applies at L2.

Several resources are used in the derivation of (B7) in
addition to applications of perturbation theory for |�〉. First,
the reduced matrix element of a quadrupole operator (Eq. (73)
in Ref. [35]). Therein unit tensors W(1, 1) and W(1, 3) are
calculated with fractional parentage coefficients for hole states
in the d configuration [67], specifically Eq. (3.8) and Table I.
Unit tensors are reduced matrix elements of specific operators,
e.g., S · L is an operator equivalent for W(1, 1). Matrix elements
in the Russell-Saunders coupling scheme are best calculated
with an identity (D.1) in Ref. [35].

The saturation value of the magnetic moment μc =
〈Lc + 2Sc〉 ≈ [2 − (8λ/�o)](u/

√
2) and the orbital moment

opposes the spin moment in agreement with Hund’s third rule.
Hence, an increase in the coupling parameter λ diminishes μc,
a behavior which accords with a comprehensive simulation
of the influence of the spin-orbit interaction on electronic
structure [58]. Using (8λ/�o) = 0.2, which is a typical value
for orbital angular momentum induced by the crystal-field
potential, the observed saturation moment μc ≈ 1.0 implies
u ≈ 0.79 [16] (published estimates of |Lc〉/|2Sc〉 include
≈ − 0.12 [17] and ≈ − 0.09 [18]). A large covalency, which
is anticipated in simulations of electronic structure showing
strongly hybridized Os 5d and O 2p states [17,18] with
antiferromagnetic order causes problems for a quantitative
determination of magnetic moments by neutron diffraction.
Hubbard and Marshall discuss various consequences of cova-
lent bonding depending on local crystal symmetry [68]. These
include an apparent loss of the magnetic moment through
full cancellation of unpaired spins at ligands, due to their
symmetric placement with respect to antiparallel moments on
metal ions as in magnetic NaOsO3 or, conversely, magnetic
contamination of nominally nuclear Bragg peaks from less than
full cancellation of unpaired spins at ligand sites. A substantial
reduction of u from its nominal value can stem from strong p-d
hybridization, evidence for which is found in results recorded
by Jung et al. [18] from their simulation of insulating NaOsO3,
with a uniform 30% reduction in the occupation of t2g orbitals,
and a similar magnitude for occupations of orbitals that are
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formally unoccupied is found. These findings support the use
of u and v as empirical quantities. Another small reduction in
the magnetic moment comes from the rotation and tilt of the
octahedron, which is exemplified by the difference between
the two structures depicted in Fig. 5; the reduction factor is
(cos θ0 cos ϕ0) which is likely to be a 3% effect.

APPENDIX C

We have successfully argued that diffraction at the space-
group-forbidden reflection (300) can be attributed to an octa-
hedral rotation using P 4/mbm. Likewise, diffraction at (030)
is accounted for by octahedral tilting using Imma. Here, we
present the supporting case for this assertion and provide
additional details of the mode analysis for the distortions,
namely, rotation and tilting.

The orthorhombic Pnma structure is illustrated in Fig. 5;
the distorted structure that fits NaOsO3 is depicted in the
left-hand panel, and it is derived from a reference structure in
the center panel by rotation and tilting of almost perfect OsO6

octahedra. Angles θo and ϕo that quantify the rotation and tilt-
ing are shown in the right-hand panel and defined specifically
in Eq. (B1). These distortions represent two distinct order pa-
rameters associated with M3+ (rotation) and R4+ (tilting) irre-
ducible representations of the parent cubicPm3̄m (#221) space
group. It is useful to decompose the orthorhombic structure
Pnma in terms of these primary order parameters and consider
them separately. This approach reveals the distortions relevant
to electronic properties discussed in the manuscript. The
M3+ (ηM, 0, 0) and R4+ (ηR, ηR, 0), order parameters have
tetragonal P 4/mbm and orthorhombic Imma symmetries,
respectively. Specifically, for octahedral rotation: P 4/mbm,
basis = {(0, 0, 1), (1, 0, 0), (0, 1/2, 0)} with Os ions at
sites 2a and site symmetry 4/m on the b axis, and, for octa-
hedral tilting: Imma, basis = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

with Os ions at sites 4a and site symmetry 2/m on the a

axis, with basis vectors expressed in terms of an orthorhombic
Pnma cell.

Quadrupole contributions engaged in Templeton-
Templeton scattering using an E1-E1 event are

〈
T 2

+2

〉′′ ∝ (xy) at (0, k, 0);
〈
T 2

+1

〉′ ∝ (xz) at (h, 0, 0);
〈
T 2

+1

〉′′ ∝ (yz) at (h, h, 0). (C1)

The quadrupole for octahedral rotation using P 4/mbm is
provided in Eq. (B2). The corresponding quadrupole for Imma

with rotation symmetry 2/m on the a axis is
⎛
⎝

p 0 0
0 q r

0 r s

⎞
⎠, (C2)

with trace (p + q + s) = 0. Rotations using angles θo and
ϕo defined in (B1) preserve the condition on the trace, and
the element (yz) = r when rotation angles are set to zero.
Complete results are
〈
T 2

+2

〉′′ ∝ (xy)

= (1/2) sin θo[(q − s) sin(2ϕo) + 2r cos(2ϕo)],
〈
T 2

+1

〉′ ∝ (xz)

= (1/2) sin(2θ0)[−p+qsin2ϕo+scos2ϕo+r sin(2ϕo)],
〈
T 2

+1

〉′′ ∝ (yz)

= (1/2) cos θo[(q − s) sin(2ϕo) + 2r cos(2ϕo)],
(C3)

Dependence on θo and ϕo in these expressions factorizes,
because the two angles are associated with two distinct order
parameters.
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