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Long wavelength descriptions of a half-filled lowest Landau level (ν = 1/2) must be consistent with the
experimental observation of particle-hole (PH) symmetry. The traditional description of the ν = 1/2 state
pioneered by Halperin, Lee, and Read (HLR) naively appears to break PH symmetry. However, recent studies
have shown that the HLR theory with weak quenched disorder can exhibit an emergent PH symmetry. We find
that such inhomogeneous configurations of the ν = 1/2 fluid, when described by HLR mean-field theory, are
tuned to a topological phase transition between an integer quantum Hall state and an insulator of composite
fermions with a dc Hall conductivity σ (cf)

xy = − 1
2

e2

h
. Our observations help explain why the HLR theory exhibits

PH symmetric dc response.

DOI: 10.1103/PhysRevB.98.115105

I. INTRODUCTION

The fractional quantum Hall effect, which is exhibited by
two-dimensional electron systems in a large perpendicular
magnetic field, is a beautiful and mature subject [1,2]. A
major reason for this success is that quantum Hall states are
incompressible due to the presence of a gap to current carrying
excitations. By contrast, the compressible states that occur
near half-filled Landau levels have several aspects that remain
unclear. In this paper we restrict our attention to the half-filled
lowest Landau level (LLL) (filling fraction ν = 1/2).

An important open question is whether the half-filled LLL
with quenched disorder corresponds to a critical point or
a stable phase of matter. When the disorder is sufficiently
strong so that only integer quantum Hall plateaus exist, ex-
periments reveal a direct transition between a quantum Hall
state, corresponding to filling fraction ν = 1, and an insulator
with ν = 0 upon increasing the external magnetic field [3,4].
On the other hand, at weaker disorder, when some fractional
quantum Hall states of the Jain sequence appear, experiments
reveal that over a range of magnetic fields near ν = 1/2, the
Hall resistivity ρxy varies linearly with magnetic field, while
the longitudinal resistivity ρxx is nonzero [5]. This suggests
that for weaker disorder, the half-filled Landau level is a stable
compressible phase of matter. An understanding of how the
physics of strong and weak disorder regimes evolve into one
another remains elusive.

To address this question, one has to confront a notori-
ously difficult problem in which both disorder and strong
interactions play an essential role. To make some progress
on this issue, we employ the standard low-energy effective
description of the LLL in terms of composite fermions [6–12].
The nonperturbative effects of electron interactions in the
LLL lead to a description in terms of composite fermions
interacting with a fluctuating gauge field. In the presence
of quenched disorder, it is conceivable that disorder effects

may overpower those of gauge interactions among composite
fermions. Within a mean-field treatment that ignores gauge
fluctuations, we find that regardless of the disorder strength,
the half-filled LLL always corresponds to a critical point
rather than a stable phase of matter.

What are the properties of such a critical point? A feature
of two-dimensional electron systems is that the dc electrical
resistivity tensor itself can be a universal amplitude that
aids in characterizing a critical point [13,14]. We find that
when the quenched disorder is self-averaging and preserves
particle-hole symmetry of a half-filled lowest Landau level on
average, the electrical Hall conductivity equals σxy = e2/2h

at the critical point. This result holds over a broad range of
disorder strengths and suggests the emergence of particle-hole
symmetry.

It should be stressed, however, that the particle-hole sym-
metry discussed here is a low energy property of a quantum
critical point, and is not a microscopic symmetry. The latter
possibility has been actively discussed as a property of elec-
trons in a half-filled LLL interacting with two-body forces
in the clean limit, and when Landau level mixing is absent
(see the next section for a review). The manner in which
such explicit particle-hole symmetry of an effective theory for
a half-filled LLL is related to the emergent behavior at the
critical point at ν = 1/2 is the main topic of the present paper.

The paper is organized as follows. In the next section we
review the standard description of the half-filled Landau level
in terms of composite fermions pioneered by Halperin, Lee,
and Read (HLR). We then focus on the issue of particle-hole
symmetric response in the dc Hall conductivity of composite
fermions. To this end, we use supersymmetric quantum me-
chanics to prove certain sum rules for the Hall conductivity
of composite fermions which are corroborated by explicit nu-
merical calculations. Then, with certain natural assumptions
about the localization behavior of this theory, we show how
the HLR theory of composite fermions describes an integer
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quantum Hall plateau transition. In the final section, we
discuss the low-energy equivalence between HLR theory at
the integer quantum Hall transition critical point and theories
with explicit particle-hole symmetry formulated in terms of
Dirac composite fermions.

II. COMPOSITE FERMIONS AND PARTICLE-HOLE
SYMMETRY: BRIEF REVIEW

Electrons in a half-filled lowest Landau level (LLL) are
described by a 2 + 1-dimensional Lagrangian of the form

Lel = c†
(

i∂t + μ + At − 1

2me

(i∂j + Aj )2

)
c + · · · .

Here c(x) destroys a spin-polarized electron of mass me at
position x = (t, r ), At (r ) is a (static) electromagnetic scalar
potential, A(r ) = (Ax (r ), Ay (r )) is the electromagnetic vec-
tor potential corresponding to the uniform perpendicular
magnetic field B = ∇ × A(r ) > 0, and μ is the chemical
potential adjusted such that the Landau level is half-filled,
B = 4π〈c†c〉 [15]. The simplicity of the above Lagrangian is
deceptive: the effects of the interactions denoted by “· · · ” are
singular due to the extensive degeneracy of a partially filled
Landau level in the clean limit.

A conceptually simpler approach involves emergent parti-
cles known as composite fermions [6–12]. In the composite
fermion theory of Halperin, Lee, and Read (HLR) [8,9], the
low-energy behavior at ν = 1/2 is postulated to be governed
by the Lagrangian:

LHLR = Lf + Lcs + · · · ,

where

Lf = f †
(

i∂t + μ + At + at − 1

2m
(i∂j + Aj + aj )2

)
f,

Lcs = 1

2

1

4π
ada,

f (x) destroys a composite fermion of mass m, aα (x) for α ∈
{t, x, y} is an emergent U (1) gauge field with a Chern-Simons
term ada ≡ εαβγ aα∂βaγ that implements flux attachment,
where the antisymmetric tensor εtxy = 1 [16]. By virtue of
the at equation of motion,

4πf †f (r ) = −∇ × a(r ), (1)

two units of flux are attached to each composite fermion.
Since this flux attachment does not change the density of par-
ticles f †f (r ) = c†c(r ), at half-filling the composite fermions
feel on average a vanishing effective magnetic field Beff =
∇ × ( A + a). In a mean-field approximation, the fluctuations
of aα are neglected. The resulting mean-field ground state is
a system of finite density fermions in zero magnetic field,
i.e., a filled Fermi sea of composite fermions. Composite
fermion mean-field theory naturally accounts for the fact that
the ν = 1/2 state is compressible; it has led to many other
successful experimental predictions including that of large
cyclotron orbits dictated by the much smaller effective field
Beff , rather than the applied field B in the vicinity of half-
filling [5].

However, low-energy effective theories must be consistent
with observed symmetries. An important constraint comes

from particle-hole (PH) symmetry [17,18], which is an exact
symmetry of a half-filled lowest Landau level of electrons
in the limit of zero Landau level mixing and of an infinitely
strong magnetic field. Under a particle-hole transformation,
electrons filling an empty Landau level transform to holes
depleting a filled Landau level. Under this operation, the
zero-temperature dc electrical Hall conductivity [18,19]

σxy → 1

2π
− σxy. (2)

Since the half-filled Landau level is equivalently described
either by electrons or holes, particle-hole symmetry requires
σxy = 1/4π . In fact, PH symmetry requires this for all
frequencies below some characteristic scale. In this paper,
however, we are only concerned with the zero-temperature
dc response. Remarkably, particle-hole symmetric electrical
response is found experimentally at ν = 1/2 [3,20].

What are the implications of particle-hole symmetry for
composite fermions? It turns out that in order for the elec-
trical Hall conductivity σxy = 1/4π , the composite fermion
Hall conductivity in HLR theory, defined in terms of linear
response to aμ, must satisfy [19]

σ (cf)
xy = − 1

4π
, (3)

whenever the electrical resistivity ρxx �= 0. This may be
viewed as a necessary condition for satisfying particle-hole
symmetry at ν = 1/2. Naively, however, this relation seems to
be badly violated in HLR theory, since the composite fermions
see on average a vanishingly small effective magnetic field.
Why would such a system have a Hall conductivity on the
order of the quantum of conductance? For this reason, it was
suspected that the HLR theory failed to satisfy particle-hole
symmetry [19,21].

Recently an alternative theory, introduced by Son [22],
conjectured that a particle-hole symmetric half-filled Landau
level is described by Dirac composite fermions ψ (ψ̄ =
ψ†γ 0) with Lagrangian:

LDirac = iψ̄γνD
ν
aψ − 1

4π
Ada + 1

8π
AdA, (4)

where Dν
a = ∂ν − iaν, aν is again an emergent U (1) gauge

field, and γν are appropriate 2 × 2γ matrices. The Dirac
composite fermions above only carry emergent gauge charge
and are electromagnetically neutral. The Dirac theory is man-
ifestly particle-hole symmetric. At first sight, the Dirac and
HLR theories seem drastically different from one another,
and while the Dirac theory preserves PH symmetry, the HLR
theory appears to violate it.

Surprisingly, several recent papers [23–25] have found that
HLR theory can exhibit PH symmetric response provided
that inhomogeneous configurations (be it a spatially varying
external potential or quenched disorder) explicitly be taken
into account. (See Refs. [26–29] for other studies contrasting
the HLR and Dirac composite fermion theories and earlier
numerical work in Ref. [30] that found large overlap between
the wave functions corresponding to the HLR composite
fermion theory and ground states of particle-hole symmetric
electron Hamiltonians at ν = 1/2.)

115105-2



TOPOLOGICAL PHASE TRANSITION UNDERPINNING … PHYSICAL REVIEW B 98, 115105 (2018)

Our goal in the remainder of this paper is to explain
this behavior, i.e., why HLR theory can exhibit particle-hole
symmetric response: we will show that HLR mean-field the-
ory at ν = 1/2 describes a critical point between an integer
quantum Hall state (σ (cf)

xy = −1) and an insulator (σ (cf)
xy = 0)

of composite fermions with particle-hole symmetry dc Hall
response [Eq. (3)].

III. HLR THEORY WITH WEAK QUENCHED DISORDER

We first rewrite the HLR Lagrangian in terms of a shifted
gauge field aμ → aμ − Aμ:

LHLR = Lf + Lcs + · · · , (5)

with

Lf = f †
(

i∂t + μ + at − 1

2m
(i∂j + aj )2

)
f, (6)

Lcs = 1

2

1

4π
(a − A)d(a − A). (7)

We will consider spatially inhomogeneous configurations of
composite fermions. We do so by adding a weak spatially
varying correction to the chemical potential:

μ → μ(r ) = μ + V (r ), |V (r )| � μ. (8)

The quantity V (r ) is a quenched random variable with

V (r ) = 0, V (r )V (r ′) = σ 2
V e−|r−r ′|2/R2

, (9)

where the overline denotes averaging with respect to disorder.
In linear response to V (r ), there will be a spatial variation

of the composite fermion density:

〈f †f (r )〉 = n(r ) = χV (r ) + n, (10)

where χ is the composite fermion static compressibility and
n̄ ≡ B/4π is the average density at ν = 1/2. Neglecting
gauge fluctuations, the equation of motion of at sets the
relation between the composite fermion density and flux
variations:

n(r ) = B − b(r )

4π
= n̄ − b(r )

4π
, (11)

where b(r ) = εij ∂iaj (r ). Therefore, V (r ) gives rise to the
spatially varying magnetic flux b(r ):

b(r ) = −4πχV (r ) = −2mV (r ), (12)

whose statistical properties are determined by Eq. (9). In
Eq. (12) we identified χ = m/2π with the long wavelength
static compressibility of a free fermion gas. Since the wave
vector dependent compressibility χ (q ) = χ (0) = m/2π for
|q| < 2kF , we can expect this assumption to hold locally if
the disorder is sufficiently long ranged so that the Fourier
components of disorder for |q| > 2kF can be taken to be zero.
Recent work [23–25] (see Ref. [19] for an earlier discussion)
has found that Eq. (12), valid in the weak disorder limit when
gauge fluctuations are negligible, is an essential ingredient
for effecting particle-hole symmetric behavior of the HLR
composite fermion theory.

Incorporating the constraint Eq. (12) that determines aj

in terms of V (r ) into Lf , the composite fermion Lagrangian

becomes

Lf = f †
(

i∂t + μ + at − b(r )

2m
− 1

2m
(i∂j + aj )2

)
f. (13)

At the mean-field level where aμ is taken to be a static back-
ground field, the dynamics of composite fermions is governed
entirely by the Lagrangian Lf in Eq. (13) or, equivalently, the
free composite fermion Hamiltonian:

Hf = 1

2m

[
�2

x + �2
y + b(r )

]
, �j = −i∂j − aj . (14)

This Hamiltonian describes a Landau level problem of a sys-
tem of noninteracting composite fermions with gyromagnetic
ratio g = 2. Note, however, that only one spin species is
present. It is important to remember that g is determined by
the composite fermion compressibility χ .

A. Intuitive argument

In order to gain some intuition on the effects of disorder
on the free nonrelativistic composite fermion, consider two
equivalent, representative regions of space R1 and R2: the
first with V (r ) ≈ −V0 < 0 for r ∈ R1 and the second with
V (r ) ≈ V0 > 0 for r ∈ R2. With long wavelength disorder
(RkF � 1), the characteristic sizes of such regions will be
large compared to the Fermi wavelength. The local Hamilto-
nians governing the two bulk regions are

H1 = 1

2m
[( p + a)2 + |b0|], (15)

H2 = 1

2m
[( p − a)2 − |b0|], (16)

where ∇ × a = b0 = −2mV0 < 0 [31]. The (approximate)
bulk spectrum in each region is trivially obtained:

E1 = |b0|
m

(n + 1), (17)

E2 = |b0|
m

n, (18)

where n is a non-negative integer. Since b0 � μ, we expect
that many Landau levels will be filled in both regions. How-
ever, there is an “unpaired” Landau level at zero energy in the
V > 0 region, whereas the finite energy spectra are identical
in both regions.

This mismatch of spectra in the two regions due to the zero
mode has an immediate physical consequence: there will be
one extra Landau level filled in region R2. If we suppose that
the localization length due to disorder is small compared to
the range R of the disorder, then we may write an effective
response Lagrangian governing the two regions,

Lresponse = N

4π
ada − N + 1

4π
ada, (19)

where N is a large positive integer corresponding to the
number of filled Landau levels in the V < 0 region and the
two Chern-Simons terms have support on regions R1 and
R2. Upon volume averaging all such regions, we find the
following contribution to the averaged Hall conductivity, valid
on lengths scales large compared the size of any individual
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region:

σ avg
xy = − 1

4π
. (20)

B. Supersymmetric quantum mechanics

The spectra in Eqs. (17) and (18) are identical to that
of a two-dimensional spin-1/2 particle of charge e = 1 in a
transverse magnetic field b0 < 0 with Hamiltonian

H = �2
x + �2

y

2m
I2×2 − g

4m
b0σz (21)

at g = 2. Here I2×2 is a 2 × 2 identity matrix, σ z is the usual
Pauli matrix, and “spin-up” (“spin-down”) components are
labeled by their σz eigenvalue 1 (−1) and correspond to the
V < 0 (V > 0) regions. Although the spectra of H1 and H↑
defined above are the same, the Hamiltonians are different.
They differ from each other by a time-reversal operation. If we
define T to represent a time-reversal transformation, which
changes the sign of the vector potential while leaving the
sign of the scalar potential invariant, under which the HLR
Lagrangian is not invariant, we find H↑ = T −1H1T [32]. On
the other hand, H↓ = H2.

Now consider spatially varying potential and flux with the
spin-up and spin-down components defined on all of space.
The spin-up and spin-down components of the Hamiltonian
H = H↑ ⊕ H↓ become

H↑ = 1

2m

[
�2

x + �2
y − g

2
b(r )

]
, (22)

H↓ = 1

2m

[
�2

x + �2
y + g

2
b(r )

]
, (23)

with g = 2. The spin-down Hamiltonian H↓ is the HLR
mean-field Hamiltonian Hf in Eq. (14). Although the spin-up
component is not present per se in the physical problem of
interest, we will show that it is useful to introduce it in order
to prove that the composite fermions satisfy Eq. (20). One can
however think of H↑ as being naturally present in an ensemble
of disorder realizations. Since the disorder is particle-hole
symmetric, for every disorder realization V (r ) there is another
disorder realization −V (r ) in the ensemble. The spin-up com-
ponent can be considered to be the time-reversed Hamiltonian
of the latter disorder configuration. Consequently, the spin-
up particles experience a slaved disorder satisfying b(r ) =
2mV (r ), rather than the constraint in Eq. (12) that relates the
potential and flux disorder felt by the spin-down particles.

The utility of defining H↑ and H↓ this way is that H
realizes supersymmetric quantum mechanics. To see this, we
define the operators:

Q = �x − i�y√
2m

, (24)

Q† = �x + i�y√
2m

. (25)

Notice that these generalized Landau level ladder operators
remain well defined for arbitrary spatially varying magnetic
field. Since [�x,�y] = ib(x), we find [Q,Q†] = −b(r )/m.

At g = 2 only, we can write the Hamiltonians for the two spin
components in a supersymmetric form:

H↑ = QQ†, (26)

H↓ = Q†Q. (27)

As expected of a supersymmetric spectrum, the eigenvalues
of the two Hamiltonians are non-negative.

More importantly, supersymmetry guarantees that there
is an exact mapping between the finite-energy eigenvalues
and eigenstates of the spin-up and spin-down Hamiltonians.
If |ψ↓〉 is a normalized eigenstate of H↓ with energy E >

0, then |ψ↑〉 = Q√
E
|ψ↓〉 is a normalized eigenstate of H↑

with the same energy. This spectral equivalence implies that
if eigenstates at a particular nonzero energy are localized
(extended) for H↑, then they will be localized (extended) for
H↓ as well. Supersymmetry will enable us to make analyt-
ical arguments—that we will supplement with a numerical
calculation—for the Hall conductivity of the spin-down or
HLR composite fermions.

C. Hall conductivity sum rules

We now argue that the dc Hall conductivities of the spin-
down and spin-up eigenstates of H satisfy the following two
sum rules in the presence of weak disorder:

σ ↓
xy + σ ↑

xy = 0, (28)

σ ↓
xy − σ ↑

xy = − 1

2π
. (29)

The first equation is valid for disorder averaged Hall conduc-
tivities (denoted by an overline), while the second equations
is valid for each disorder realization. These sum rules say that
the spin-1/2 system defined by H has a vanishing electrical
Hall conductivity [Eq. (28)] and exhibits an integer spin Hall
response [Eq. (29)]. A consequence of these sum rules is clear:
σ (cf)

xy ≡ σ ↓
xy = −1/4π .

1. First sum rule

To establish the first sum rule in Eq. (28), it is sufficient
to show that H has a statistical time-reversal symmetry. Since
both spin-up and spin-down components are present and the
magnetic field is zero on average (and all of its higher odd
moments vanish as well), we expect this to be true.

More formally, we can define the time-reversal operation
in the spin space Ts = −iσyT . Under this time-reversal trans-
formation, the Hamiltonian

H �→ T −1
s HTs

=
(
T −1H↓T 0

0 T −1H↑T

)

= 1

2m

(
( p + a)2 + b(r ) 0

0 ( p + a)2 − b(r )

)
. (30)

The vector potential a → −a, the scalar potential [repre-
sented by the b(r ) term] is invariant, and spin up and spin
down are interchanged. This means that σ

↑
xy → −σ

↓
xy and
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σ
↓
xy → −σ

↑
xy so that the total Hall conductivity σ

↓
xy + σ

↑
xy

changes sign. From Eqs. (22) and (23) this is equivalent to
changing the sign of the potential. If the disorder ensemble is
particle-hole symmetric, V (r ) and its particle-hole conjugate
−V (r ) will appear with equal weights. Consequently, the
sum of the spin-up and spin-down Hall conductivity is equal
in magnitude but opposite in sign for these two disorder
configurations and its disorder average:

σ ↓
xy + σ ↑

xy = 0. (31)

2. Second sum rule

Establishing the second sum rule in Eq. (29) is more
involved. In fact, the presence of weak disorder is generally
necessary for it to be satisfied. Our strategy is to first consider
the spin Hall conductivity when

1

L2

∫
d2r b(r ) = b0 �= 0, (32)

where L2 is the area of our system. Physically, b0 corresponds
to the effective magnetic field experienced by the composite
fermions. By studying the spin Hall conductivity for nonzero
b0, we show analytically that b0 = 0 is a transition point at
which both the spin-up and spin-down Hall conductivities
change by −1/2π . We then confirm numerically that σ ↓

xy =
−σ ↑

xy = −1/4π at b0 = 0.
We begin by explaining why we expect this sum rule to

hold. Write b(r ) = b0 + b̃(r ), where b̃(r ) has zero average
and corresponds to the spatially varying part of the magnetic
field. For definiteness, consider b0 < 0. When b̃(r ) = 0, one
has sharp Landau levels at energies given by

E↑
n = |b0|

m
(n + 1), (33)

E↓
n = |b0|

m
n. (34)

At a given Fermi energy, the spin downs have exactly one
more Landau level filled than the spin ups. Since b0 < 0, each
Landau level contributes σxy = − 1

2π
to the Hall conductance.

The additional filled Landau level implies that the difference
of the spin-up and spin-down Hall conductivities satisfies
Eq. (29). Now add weak spatial variations so that b̃(r ) �= 0
and |b̃(r )| � |b0|. A schematic of the density of states is
shown in Fig. 1. Since our system consists of noninteracting
fermions, for all positive energy Landau levels, all states
are presumably localized except at one energy, where the
states are extended. It should be noted that the zero-energy
Landau level of spin downs does not spread in energy.
This is so because the spin ups cannot have states close to
the zero energy if the spatial variations of magnetic field
are small. Supersymmetric quantum mechanics implies that
the localized states and extended states lie at exactly the same
energies in the finite-energy spectra of the spin-up and spin-
down Hamiltonians. Thus, we continue to expect that Eq. (29)
remains true. Identical considerations hold when b0 > 0. In
this case, the plots of density of states of spin downs and
spin ups are reversed so that spin ups will contribute one
extra quantum of Hall conductance. However, since b0 > 0,
the spin-up and spin-down Hall conductivities will be positive.

FIG. 1. A schematic for the density of states of (a) down spin and
(b) up spin when average magnetic field b0 < 0 and spatial variations
of b(r ) are small compared to |b0|. The lowest Landau level of
down spins at zero energy does not spread as long as g = 2. Also,
according to Eqs. (33) and (34), the higher Landau levels spread more
in energy because to a leading order E↓

n ∝ nb(x ). All states except
one are assumed to be localized in each positive energy Landau level.
As a result of supersymmetric quantum mechanics, the locations of
extended and localized states match for the two spins. Anticipating
levitation [33] of extended states as the spatial variations of magnetic
field are made larger, we have drawn the extended state at a higher
energy than the center of each Landau level.

Thus, the sum rule in Eq. (29) is satisfied for any sign of b0 as
long as spatial variations of magnetic field are weak compared
to |b0|.

Now we would like to show that Eq. (29) is satisfied
for arbitrary b(r ). In this regard, supersymmetry plays a
crucial role. Since supersymmetry provides a one-to-one map
between finite-energy spin-up and spin-down eigenstates, we
expect such paired states to make identical contributions to
their respective Hall conductivities. In the Appendix A we use
supersymmetric quantum mechanics and the Kubo formula to
show that

∂

∂μ
(σ ↓

xy − σ ↑
xy ) = 0 (35)

whenever b0 �= 0 and the Fermi energy μ > 0. In proving
Eq. (35) we did not need to make specific assumptions
about the strength of the magnetic field variations or whether
the finite-energy states are localized or extended. However,
Eq. (35) does rely on unbroken supersymmetry.

It remains to determine the contribution of any states at
zero energy to σ

↓
xy − σ

↑
xy . The zero-energy states of H↑ in

Eq. (26) are annihilated by Q† and those of H↓ are annihilated
by Q. Consequently, there is no correspondence between
possible zero-energy states of H↓ and H↑. For any nonzero
b0, there is a spectral mismatch at zero energy. While both
H↑ and H↓ may admit zero-energy eigenstates when b0 �= 0,
their normalizability depends on the sign of b0. When b0 < 0,
only H↓ has normalizable zero-energy states [analogous to the
spectra in Eqs. (17) and (18)] and vice versa when b0 > 0 [34].
We would like to argue that these zero-energy states contribute
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1/2π (−1/2π ) to the up-spin (down-spin) Hall conductivity
for positive (negative) b0 regardless of the strength of b(r ).

To see this, let us take b0 < 0. (Identical considerations
apply when b0 > 0.) Reminiscent of a Landau level, the
number of normalizable zero-energy states of H↓ is equal to
the number of flux quanta N� = |b0|L2/2π passing through
the L × L planar system [34,35]. Importantly, this is true for
arbitrary magnetic fields b(r ) as long as Eq. (32) is satisfied.
This is also consistent with the earlier observation that the
Landau level at zero energy does not spread in energy as |b̃(r )|
is increased in strength.

We can now use Laughlin’s flux threading argument [36].
Because spin ups do not have any normalizable zero-energy
modes and there is a one-to-one correspondence between the
positive energy eigenstates of spin downs and spin up, under
a threading of flux, zero-energy states cannot continuously lift
up in energy. After exactly one flux quantum is adiabatically
threaded, a filled set of zero-energy states transforms back
to itself. Thus, the only change that could have happened is
that an integer number of spin-down fermions got transferred
across the system. Consequently, the Hall conductivity of a
filled set of zero-energy states is quantized. We can expect
that upon adiabatic switching on of the spatial variations
b̃(r ), the Hall conductivity should not change continuously.
Thus, the zero-energy states contribute −1/2π to σ

↓
xy − σ

↑
xy .

Importantly, this is true even when the spatial variations b̃(r )
are large compared to |b0| and the gap between zero- and
positive-energy states vanishes.

To better understand the topological aspect of zero-energy
states and their contribution to the spin-down Hall conductiv-
ity for b0 < 0, it is useful to consider the special case when
disorder is a function of a single spatial coordinate x. We
choose the gauge where the vector potential a = [ãy (x) +
b0x] ŷ with ∂xãy (x) = b̃(x). Zero-energy states satisfy the
equation Q� = 0, i.e.,

(∂x − i∂y − ay )�(r ) = 0. (36)

Introducing a scalar function �(r ) = �̃(x) − b0
x2

2 that sat-
isfies ∂x� = −ay so that ∇2� = −b(x), the solutions to
Eq. (36) take the form [35]

�k (r ) = N eikye
b0
2 (x−xk )2

e−�̃(x), (37)

where k is the momentum carried by the state in the y

direction, xk = k/b0, and N is a normalization constant.
The zero-energy wave functions �k are normalizable since
b0 < 0. [Zero-energy states of H↑ have the same form with
the replacements y �→ −y, b0 �→ −b0 and �̃(x) �→ −�̃(x).]
When the fluctuating component of b(r ) is zero, �̃(x) = 0
and the states �k precisely coincide with those of a lowest
Landau level in a uniform magnetic field, as expected.

We again use Laughlin’s flux-threading argument to de-
termine the contribution of the �k to the down-spin Hall
conductivity. To this end, we take the planar system to be a
L × L torus so that k ∼ k + |b0L| becomes quantized in units
of 2π/L and �̃(x) = �̃(x + L). Direct calculation shows that

〈�k+|b0|L|x̂|�k+|b0|L〉 − 〈�k|x̂|�k〉 = −L. (38)

States that differ by N� units of momentum are separated
by a distance L around the x direction. As we thread 2π flux

FIG. 2. A schematic of 〈xk〉 vs k for zero-energy wave functions
in Eq. (37). As seen in Eq. (38), xk is a periodic function of k. Or,
if k → k + |b0|L, xk → xk − L. Let us assume that k = 0 through
k = |b0|L − 2π/L are filled initially. After adiabatic threading of
one flux quantum, k → k + 2π/L. Thus, k = 2π/L through k =
|b0|L are filled now. Equivalently, k = 0 mode is now replaced
by k = |b0|L and the rest of the modes are unaffected. Since the
separation between these two modes is −L, one down-spin fermion
got transported across the system in negative x direction.

by adiabatically varying ay → ay + 2π/L, the zero-energy
states evolve back into themselves upon shifting k → k +
2π/L. In this process, Eq. (38) implies that a single spin-down
zero mode is transported across the system in the negative x

direction. A schematic description of this process is presented
in Fig. 2. This leads to −1/2π for the Hall conductivity of
spin-down zero modes when b0 < 0. Similar considerations
imply that the zero modes contribute +1/2π to σ

↑
xy when

b0 > 0.
Having seen that Eq. (29) applies quite generally for arbi-

trary b(r ) such that b0 �= 0, it is natural to expect that it should
be valid when b0 = 0. To verify this, we have performed
numerical simulations of the Hamiltonians in Eqs. (26) and
(27). The method closely follows Ref. [25]. Using a circular
cutoff � in the plane wave basis and a finite system size,
the left-hand side of Eq. (29) is calculated for various Fermi
energies. We average over NV = 25 disorder realizations and
calculate the standard deviation (not the statistical error in the
mean which would be smaller by a factor of

√
NV ). Our result

is plotted in Fig. 3. It agrees with the sum rule. Since the
standard deviation is found to be negligible, Eq. (29) holds
to a very good accuracy for a single disorder realization. In
addition, we find that the agreement improves upon increasing
the system size and/or the disorder strength.

Based on the above discussion and the numerical calcula-
tion, we conclude that Eq. (29) holds for arbitrary b(r ) and
μ > 0. Along with Eq. (28), this establishes upon disorder
averaging:

σ (cf)
xy = − 1

4π
(39)

at ν = 1/2.

D. HLR theory as a critical point

In this section we will argue that HLR theory lies at the
critical point between two integer quantum Hall states. The
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FIG. 3. Numerical calculation of σ ↓
xy − σ ↑

xy for various Fermi
energies for Hamiltonians in Eqs. (22) and (23) for b0 = 0. We have
taken m = 1. The energy and length scales are set by taking kF = 1
for the datapoint with highest Fermi energy. The cutoff in momentum
space is � = 3.3 and system dimensions are 160 × 160. In addition,
the disorder strength and range defined in Eq. (9) are σV = 0.034
and R = 6. We have taken an average over 25 disorder realizations
and calculated standard deviation to quantify the agreement between
numerics and Eq. (29) at b0 = 0. It is shown as the error bars in the
figure which can be seen to be negligible. The horizontal green line
represents σ ↓

xy − σ ↑
xy = −1/2π .

effective magnetic field b0 corresponds to an experimental
tuning parameter that tunes the electronic system to ν = 1/2.
Strictly speaking, a nonzero average magnetic field changes
the compressibility of the system. However, we assume that
b0 is small so that the density of states (which is equal to
the compressibility) gets smoothed out due to disorder and
equals its value at b0 = 0. A schematic DoS is shown in Fig. 4

FIG. 4. A schematic for density of states of Hf in Eq. (14) for (a)
b0 < 0 and (b) b0 > 0 when spatial variations of magnetic field are
large compared to b0. Only (a) has zero-energy states that are shown
as a Dirac delta function. The disorder washes out any quantum
fluctuations in the DoS due to presence of a nonzero b0 so that
ρ = m/2π at the Fermi-energy μ. We assume that all extended states
corresponding to higher Landau levels have levitated up [33] and thus
all positive energy states below the Fermi energy are localized.

for b0 < 0 and b0 > 0. As discussed in detail in the previous
subsection, when b0 < 0, the Hamiltonian Hf in Eq. (14) has
zero modes which contribute −1/2π to the Hall conductivity.
We assume that b0 is small enough so that all other extended
states corresponding to quantum Hall transitions in higher
Landau levels have levitated up [33] in energy and all positive
energy states are localized. Thus, the Hall conductivity at any
Fermi energy is σ (cf)

xy = −1/2π . For the case b0 > 0, there are
no normalizable zero-energy modes. Again, assuming that all
positive energy states are localized, we find σ (cf)

xy = 0 for all
Fermi energies. In summary,

σ (cf)
xy =

{− 1
2π

, b0 < 0,

0, b0 > 0.
(40)

Thus, b0 = 0 corresponds to the critical point of this integer
quantum Hall transition of composite fermions.

The tuning of effective magnetic field across b0 = 0 can
be understood as follows. When b0 < 0, the number of zero-
energy modes is given by |b0|L2/2π . Now, as we decrease
|b0|, the zero-energy states levitate up one by one while
keeping the Hall conductivity constant. For b0 > 0, they have
all levitated upward and the Hall conductivity is zero. This
phase transition happens for all Fermi energies at exactly b0 =
0 with σ (cf)

xy = −1/4π . Interestingly, this means that states at
all Fermi energies become critical. This is consistent with the
fact that changing the Fermi energy μ while keeping b0 = 0
corresponds to changing the density of composite fermions
and the external magnetic field B in proportion to each other
such that the electronic filling fraction ν = 1/2.

In terms of electrons, the dictionary between Hall con-
ductivities of composite fermions and electrons implies that
the state of electrons transitions from an integer quantum
Hall state with σxy = 1 to an insulator with σxy = 0 as b0 is
tuned from negative to positive values. As a consequence, it is
natural to identify the HLR theory as a critical theory for the
ν = 1 to ν = 0 integer quantum Hall transition of electrons.

IV. TOWARDS A LOW-ENERGY EFFECTIVE THEORY

In the previous section we argued that the HLR mean-field
theory exhibits particle-hole symmetric Hall conductivity in
the presence of weak, long-wavelength disorder. To conclude,
we present a natural guess for a low-energy effective theory
that produces such a response, upon disorder averaging. Pro-
vided that the range of the disorder R is large compared to the
localization length, the simplest way to proceed is to spatially
average Eq. (19):

Lresponse,avg = − 1

8π
ada. (41)

The N dependence drops out after spatial averaging. (This
term in the effective Lagrangian is also implied by the more
detailed analysis of the previous section.) The nonzero contri-
bution arises from the “unpaired” zero modes.

However, as written, there is a problem with the La-
grangian in Eq. (41): it violates gauge invariance [37–40].
The problem has a well-known resolution: in a simple-minded
approach in which gauge fluctuations are neglected, one views
the above Lagrangian as the result of integrating out a massive
two-component Dirac fermion (for consistency, we require
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that the mass of the fermion be greater than the Fermi energy
μ). In a well-defined theory with proper UV regularization
(say on a lattice), there is a partner fermion which must remain
gapless so that the effective theory describes a critical point: if
it were massive, it would generate an order unity correction to
the dc Hall conductance, which would violate the requirement
of particle-hole symmetry. Furthermore, the Lagrangian for
the massless Dirac fermion must possess a statistical time-
reversal symmetry (otherwise, it would contribute a nonzero
correction to σ (cf)

xy = −1/4π ). Thus, a natural low-energy
effective theory should take the form [41]

Leff = iψ̄γμDμ
a ψ − 1

8π
ada + Lcs, (42)

where we have included the Chern-Simons term present in the
original HLR Lagrangian in Eq. (7), which is a spectator for
our mean-field analysis in which aμ does not fluctuate. This
term must be included in Leff to correctly translate composite
fermion response to electrical response. Simplifying the above
expression we see that the CS terms for aμ cancel and we
arrive at the conjectured low-energy effective theory for a
particle-hole symmetric Dirac composite fermion in Eq. (4).

Further evidence for a massless Dirac Effective field theory
comes from the fact that exactly at b0 = 0, extended states
occur at all energies. This is true for a single free two-
component massless Dirac fermion in the presence of pure
flux disorder due to the presence of statistical time-reversal
symmetry.

We have arrived at this theory by observing that slaving
potential to flux disorder at g = 2 realizes a critical point
between an integer quantum Hall state (ν = −1) and trivial
insulator (ν = 0). We stress that the above theory emerges
only upon averaging over disorder in HLR theory and in
a weak-coupling limit where gauge fluctuations have been
neglected.

To further motivate this conclusion, it is helpful to chan-
nel lattice models [42–44] that realize integer quantum Hall
transitions. In such models, fermions are subject to periodic
chemical potentials as well as periodic magnetic fluxes (with
net zero flux through the system). At the critical point between
integer quantum Hall and trivially insulating states, the low
energy theory corresponds to a single two-component Dirac
fermion. Similar features appear to be at play here. In the
present case, the Chern-Simons term in Eq. (7) fixes the ratio
of the potential and flux variations, effecting the tuning to a
topological phase transition.

We may speculate at this point on the effect of gauge
fluctuations, which have been neglected throughout our anal-
ysis here. When gauge fluctuations are strong, the system is
governed by a strong-coupling fixed point the nature of which
remains poorly understood. However, following standard
practice (see, e.g., Ref. [45]), gauge fluctuations can be treated
perturbatively by including a variable-range Coulomb interac-
tion between electrons. As a result, we expect the theory above
to hold, with some alterations which may include anomalous
dimensions for various operators that smoothly vanish as the
limit of a 1/|r| Coulomb interaction is approached [46]. For
short-range gauge fluctuations, it remains unclear whether
particle-hole symmetric response is preserved.

V. EQUIVALENT ELECTRICAL RESPONSE OF HLRg=2

AND DIRAC COMPOSITE FERMIONS

In this section we look at the response of HLR theory
at g = 2 to deviations from half-filling in the absence of
disorder. We will substantiate the equivalence of the HLR
theory at g = 2 to the Dirac composite fermion theory by
observing that they behave identically. Let us take the uniform
effective magnetic field to be b0. The Hamiltonian of compos-
ite fermions at g = 2 is given by

H = ( p − a)2

2m
+ b0

2m
, (43)

where ∇ × a = b0. If b0 > 0, the nth Landau level has the
energy En = (n + 1) |b0|

m
and if b0 < 0, then the nth level is at

energy n
|b0|
m

. Working at constant chemical potential, we can
see that if p Landau levels are filled for b0 > 0, p + 1 Lan-
dau levels will be filled for b0 < 0. Therefore, the response
Lagrangian for these two cases is

L[a,A] = ζ
p + 1−ζ

2

4π
ada + 1

8π
(a − A)d(a − A), (44)

where ζ = sgn(b0). Upon integrating out the emergent gauge
field a, we arrive at

Leff
b0>0 = 1

4π

p

2p + 1
AdA, (45)

Leff
b0<0 = 1

4π

p + 1

2p + 1
AdA. (46)

Thus, we obtain particle-hole conjugate Jain sequence quan-
tum Hall states quite naturally.

We can compare this with the HLR theory at g = 0, where
the same number of Landau levels are filled for either sign of
b0. In this case, we would have been led to the filling fractions
ν = p

2p+1 and ν = p

2p−1 that are not particle-hole conjugate of
each other.

Now, let us compare this with the response in Son’s Dirac
composite fermion theory [22]. To do this, we first rewrite
Eq. (4) in the following manner:

LDirac = iψ̄γνD
ν
aψ + 1

8π
(a − A)d(a − A) − 1

8π
ada.

(47)

This form allows for a direct comparison with the HLR theory.
The last term above has the interpretation as the contribution
from a massive Dirac partner whose mass is much larger
than the energy scales of interest. For the remaining massless
fermion, when we tune away from ν = 1/2, we fill (p + 1/2)
Landau levels for either sign of the effective magnetic field.
Thus,

L[a,A] = ζ
p + 1

2

4π
ada + 1

8π
(a − A)d(a − A) − 1

8π
ada

= ζ
p + 1−ζ

2

4π
ada + 1

8π
(a − A)d(a − A). (48)

Consequently, the Dirac theory and the HLR theory with
g = 2 have the same response properties. The massive partner
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effectively adds another half-filled Landau level that, in con-
junction with the Landau levels of the massless Dirac fermion,
precisely reproduces the nonrelativistic spectrum of Landau
levels at g = 2.

As a complementary case, we can also keep the electron
density constant instead of the chemical potential. The HLR
theory predicts that the same number of Landau levels would
be filled for either sign of the effective magnetic field. Thus,
the response and effective Lagrangians are

L[a,A] = ζ
p

4π
ada + 1

8π
(a − A)d(a − A), (49)

Leff = 1

4π

p

2p + ζ
AdA. (50)

On the other hand, in the Dirac composite fermion theory, the
composite fermion and electron densities are given by

ρcf = B

4π
, (51)

ρe = B − b0

4π
. (52)

Thus, we have

ρcf = ρe + b0

4π
. (53)

Thus, composite fermion densities for the ζ = ±1 are

ρ±
cf = ρe ± |b0|

4π
, (54)

so

ρ+
cf − ρ−

cf = |b0|
2π

. (55)

Since the number of states in a Landau level are given by
|b0|/2π , we get that if (p + 1/2) Landau levels are filled for
b0 > 0, then (p − 1/2) Landau levels are filled for b0 < 0.
Therefore, the response Lagrangian is

L[a,A] = ζ
p + ζ

2

4π
ada + 1

8π
(a − A)d(a − A) − 1

8π
ada

= ζ
p

4π
ada + 1

8π
(a − A)d(a − A). (56)

We again find that the two theories produce identical response
to the deviations from ν = 1/2. However, we emphasize that
the value of “g” in the HLR theory does not matter if one
keeps the electron density constant.

VI. DISCUSSION

In the limit of vanishing disorder, Galilean invariance alone
implies that a half-filled Landau level exhibits particle-hole
symmetric electrical conductivity [47]. As such, when the
zero-temperature dc longitudinal resistivity vanishes, both the
Dirac [22] and HLR [9] composite fermion theories exhibit
particle-hole symmetric response. However, when spatial in-
homogeneity is present, the issue of particle-hole symmetry
is nontrivial. An appealing feature of the Dirac compos-
ite fermion theory is that it manifestly retains particle-hole
symmetry in the presence of disorder at long distances. By
contrast, as we have shown here, particle-hole symmetry in

the HLR theory is a subtle emergent property that is only
unearthed after a careful analysis of the problem, consistent
with earlier work [23–25].

Our main conclusion is that the HLR theory exhibits
particle-hole symmetric dc electrical response provided the
spatial inhomogeneity preserves particle-hole symmetry upon
disorder averaging (i.e., a statistical particle-hole symmetry).
The key reason for this is that the HLR theory with quenched
disorder, at least within a mean-field approximation where the
fluctuations of the emergent Chern-Simons gauge field are
ignored, is tuned to a topological quantum critical point at
which the change in the composite fermion Hall conductivity
�σ (cf)

xy = −e2/h. The same is true of the Dirac theory with
disorder, when analyzed to the same degree of approximation.
If both theories describe a quantum critical point separating
the same two phases, it is perhaps in keeping with notions
of universality that both descriptions of the half-filled Landau
level are the same at low energies.

The apparent (mean-field) equivalence of both the HLR
and Dirac descriptions of the half-filled Landau level reminds
us of network models for quantum Hall transitions [48]. It is
known that in such descriptions, the quantum Hall transition
is a percolation transition, and emergent descriptions in terms
of Dirac fermions can be obtained at the transition. A related
picture of a Dirac composite fermion theory arising at a
percolation transition between the HLR composite fermion
theory and its particle-hole conjugate [21] was also found in
Ref. [49]. The extent to which such descriptions are related to
the composite fermion theories studied here remains unclear
at present.

We showed that the mean-field Hamiltonian governing
HLR composite fermions is that of a free Fermi gas in slaved
disorder [see Eq. (12)] with gyromagnetic ratio g = 2. The
value g = 2 is closely related to the fact that composite
fermions at ν = 1/2 are thought of as electrons each bound
to two units of flux. It is natural to imagine that the HLR
composite fermion theory for the state at ν = 1/4 can be
similarly understood, but with a different gyromagnetic ratio
corresponding to four flux quanta bound to each electron. In
our investigations we have not found that such descriptions
yield a composite fermion Hall conductivity equal to half the
value at ν = 1/2. Because supersymmetry can be utilized only
at |g| = 2, there are no special properties expected away from
this value, at least within our mean-field approach. Never-
theless, it could be interesting to view the state at, say, ν =
1/4, hierarchically, i.e., as a metallic point that arises from
composite fermions tuned to a composite fermion integer
quantum Hall transition where �σ (cf)

xy = +e2/h.
Our treatment of both theories within a mean-field ap-

proximation where gauge fluctuations are neglected is the
reason that we only find a critical point, rather than a phase
of matter. Since free fermions with broken time-reversal
symmetry undergo Anderson localization except at quantum
critical points in two spatial dimensions, it follows that strong
interaction effects are needed to describe a putative metallic
phase in the vicinity of the half-filled Landau level. While
gauge fluctuations have certainly been studied in compos-
ite fermion theories, in the future it will be interesting to
study gauge fluctuation effects in the presence of quenched
disorder.
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Lastly, if both HLR and Dirac composite fermion descrip-
tions are equivalent at long wavelengths, the extent to which
their instabilities are identical remains unclear [50–54]. Such
instabilities occur both to incompressible fractional quantum
Hall states as well as compressible anisotropic states and
occur in half-filled higher Landau levels. Assessing whether
the different composite fermion descriptions of these phases
are similar or distinct is a problem we wish to address in the
future.
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APPENDIX: PROOF OF EQ. (35)

In this Appendix we will prove Eq. (35) using supersym-
metric quantum mechanics and the Kubo formula. Recall that
the spin-up and spin-down Hamiltonians are

H↑ = 1

2m
[( p − a)2 − b(r )], (A1)

H↓ = 1

2m
[( p − a)2 + b(r )]. (A2)

As discussed in the main text, the positive energy states of the
two Hamiltonians are related by |ψ↑〉 = Q√

E
|ψ↓〉 and the two

Hamiltonians can be written using the operator Q = �x−i�y√
2m

as

H↑ = QQ†,

H↓ = Q†Q.

The Hall conductivities of the two Hamiltonians can be
written using the single particle Kubo-formula:

σ ↑
xy = − i2π

L2

∑
n�=l

fn

(v↑
x )nl (v

↑
y )ln − (v↑

x )ln(v↑
y )nl

(En − El )2
,

σ ↓
xy = − i2π

L2

∑
n�=l

fn

(v↓
x )nl (v

↓
y )ln − (v↓

x )ln(v↓
y )nl

(En − El )2
,

where fn = θ (μ − En) is the Fermi-Dirac distribution at
zero temperature for a Fermi energy μ and vi represents
the velocity operator. Also, the indices n, l run over the
eigenstates of H↑ in the first equation and the eigenstates of
H↓ in the second equation so that for positive energy states:
|n↑〉 = Q√

E
|n↓〉. Now,

v̂↑
x = v̂↓

x = �x

m
= Q† + Q√

2m
,

v̂↑
y = v̂↓

y = �y

m
= Q† − Q

i
√

2m
.

Using this, we can rewrite spin-up and spin-down Hall
conductivities as

σ ↑
xy = 2π

L2

∑
n�=l

fn

|Q↑
ln|2 − |Q↑

nl|2
m(En − El )2

,

σ ↓
xy = 2π

L2

∑
n�=l

fn

|Q↓
ln|2 − |Q↓

nl|2
m(En − El )2

,

where Q
↑
ln = 〈l↑|Q|n↑〉 and similarly Q

↓
ln = 〈l↓|Q|n↓〉.

Now take the derivative of both equations with respect to
the Fermi energy μ. Using ∂fn

∂μ
= δ(En − μ) and considering

μ > 0, we have

∂σ
↑
xy

∂μ
= 2π

L2

∑
n�=l

δ(En − μ)
|Q↑

ln|2 − |Q↑
nl|2

m(En − El )2
, (A3)

∂σ
↓
xy

∂μ
= 2π

L2

∑
n�=l

δ(En − μ)
|Q↓

ln|2 − |Q↓
nl|2

m(En − El )2
. (A4)

We assume that 1
L2

∫
d2r b(r ) = b0 > 0 so that only the

spin-up Hamiltonian has zero-energy modes. Using super-
symmetric quantum mechanics, we have

Q
↓
ln = 〈l↓|Q|n↓〉

=
(

〈l↑| Q√
El

)
Q

(
Q†

√
En

|n↑〉
)

= 1√
EnEl

〈l↑|QQQ†|n↑〉,

Q
↓
ln =

√
En

El

〈l↑|Q|n↑〉 =
√

En

El

Q
↑
ln. (A5)

Thus, the derivative of the spin-down Hall conductivity can be
expressed in terms of spin-up eigenstates as

∂σ
↓
xy

∂μ
=2π

L2

∑
n �= l

El �= 0

δ(En − μ)
|Q↑

ln|2 En

El
− |Q↑

nl|2 El

En

m(En − El )2
. (A6)

Note that the sum over n, l now goes over the positive energy
eigenstates of H↑.

It is also useful to separate the contribution of zero-energy
states in Eq, (A3):

∂σ
↑
xy

∂μ
= 2π

L2

∑
n �= l

El �= 0

δ(En − μ)
|Q↑

ln|2 − |Q↑
nl|2

m(En − El )2

−2π

L2

∑
n �= l

El = 0

δ(En − μ)
|Q↑

nl|2
mE2

n

, (A7)

where we have used the fact that Q† annihilates zero-energy
states so that Q

↑
ln = 〈l↑|Q|n↑〉 = 0 if El = 0. Now subtract
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Eq. (A6) from Eq. (A7). After simplification we find

∂

∂μ
(σ ↓

xy − σ ↑
xy )

= 2π

L2

∑
n �= l

El �= 0

δ(En − μ)
|Q↑

ln|2
mEl (En − El )

+2π

L2

∑
n�=l

δ(En − μ)
|Q↑

nl|2
mEn(En − El )

. (A8)

At this point we can use the relation between the position
operator and its time variation:

i[H↑, ẑ] = dẑ

dt
= v̂x + iv̂y =

√
2

m
Q†, (A9)

where ẑ = x̂ + iŷ. This gives

〈l↑|Q†|n↑〉 = i

√
m

2
〈l↑|[H↑, ẑ]|n↑〉

= i(El − En)

√
m

2
〈l↑|ẑ|n↑〉. (A10)

Substituting into Eq. (A8) we obtain

∂

∂μ
(σ ↓

xy − σ ↑
xy )

= i2π
√

2m

L2

∑
n �= l

El �= 0

δ(En − μ)
Q

↑
lnz

↑
nl

El

− i2π
√

2m

L2

∑
n�=l

δ(En − μ)
Q

↑
nlz

↑
ln

En

. (A11)

We can now include the n = l term and remove the complete
set of states |l↑〉〈l↑| to get

∂

∂μ
(σ ↓

xy − σ ↑
xy )

= i2π
√

2m

L2

∑
n

δ(En − μ)〈n↑|ẑP 1

H↑
PQ|n↑〉

− i2π
√

2m

L2

∑
n

δ(En − μ)〈n↑|P 1

H↑
PQẑ|n↑〉 (A12)

where P projects onto the positive energy states of H↑. Notice
that R = Q 1

H↓
is a well defined operator since H↓ does not

have any eigenvalues equal to zero. Also, R is the right
multiplicative inverse of Q†, i.e., Q†R = I, where I is the
identity operator on the Hilbert space of H↑. It should be

noted that Q† does not have a left multiplicative inverse. Now
insert Q†R in appropriate places in the above scalar products:

∂

∂μ
(σ ↓

xy − σ ↑
xy )

= i2π
√

2m

L2

∑
n

δ(En − μ)〈n↑|ẑP 1

H↑
PQQ†R|n↑〉

− i2π
√

2m

L2

∑
n

δ(En − μ)〈n↑|P 1

H↑
PQQ†Rẑ|n↑〉.

(A13)

Since QQ† = H↑ and P 1
H↑

PH↑ = P :

∂

∂μ
(σ ↓

xy − σ ↑
xy )

= i2π
√

2m

L2

∑
n

δ(En − μ)〈n↑|ẑPR − PRẑ|n↑〉. (A14)

Since Q†|ψ〉 = 0 for zero-energy states, R = Q 1
H↓

projects
the the bra multiplying on the left to positive energy states.
Therefore, PR = R. Thus we find

∂

∂μ
(σ ↓

xy − σ ↑
xy )

= i2π
√

2m

L2

∑
n

δ(En − μ)〈n↑|[ẑ, R]|n↑〉. (A15)

We now use [ẑ,Q†] = 0 to prove that 〈n↑|[ẑ, R]|n↑〉 = 0 for
positive energy states. To see this, we use a series of identities:

ẑQ† − Q†ẑ = 0,

ẑ − Q†ẑR = 0,

Q†Rẑ − Q†ẑR = 0, (A16)〈
n↓

∣∣Q†[R, ẑ]|n↑〉 = 0,

〈n↑|[R, ẑ]|n↑〉 = 0.

The last two steps are valid for positive energy states. Substi-
tuting into Eq. (A15) we find

∂

∂μ
(σ ↓

xy − σ ↑
xy ) = 0 (A17)

for μ > 0 and when only H↑ has zero-energy states. This
is the case when b0 > 0. When b0 < 0, only H↓ will have
zero-energy states. This derivation can then be repeated by
exchanging the roles of up and down spins. Thus, Eq. (A17)
is valid for any b0 �= 0 and μ > 0. Notice that Eq. (A17) holds
for each disorder realization.
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