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We show that the RKKY interaction in the two-impurity Anderson model comprise two contributions: a
ferromagnetic part stemming from the symmetrized hybridization functions and an antiferromagnetic part. We
demonstrate that this antiferromagnetic contribution can also be generated by an effective local tunneling term
between the two impurities. This tunneling can be analytically calculated for particle-hole symmetric impurities.
Replacing the full hybridization functions by the symmetric part and this tunneling term leads to the identical
low-temperature fixed point spectrum in the numerical renormalization group. Compensating this tunneling term
allows us to restore the Varma-Jones quantum critical point between a strong-coupling phase and a local singlet
phase even in the absence of particle-hole symmetry in the hybridization functions. We analytically investigate
the spatial frequencies of the effective tunneling term based on the combination of the band dispersion and
the shape of the Fermi surface. Numerical renormalization group calculations provide a comparison of the
distance-dependent tunneling term and the local spin-spin correlation function. Deviations between the spatial
dependency of the full spin-spin correlation function and the textbook RKKY interaction are reported.
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I. INTRODUCTION

Using technology based on quantum-mechanical phenom-
ena for efficient computations requires the realization of quan-
tum bits, which might be implemented via quantum impurity
systems [1–5]. Magnetic adatoms and molecules on surfaces
as well as nanostructured gate controlled devices could serve
as the smallest building blocks for such systems [6–19],
which allows the combination of traditional electronics with
novel spintronics and have been intensively studied in the last
decades.

The two-impurity Anderson model (TIAM) provides one
of the simplest systems of two independent local moments
that indirectly couple through the conduction band of the
host or substrate material. It is particularly interesting since
it accounts for the competition of two mechanisms [20–
35] that influence the magnetic properties of the ground
state. For a ferromagnetic Ruderman-Kittel-Kasuya-Yosida
(RKKY) [36–38] interaction JRKKY, both impurity spins align
parallel and are screened by the itinerant conduction elec-
trons, while for strong antiferromagnetic interactions, both
spins form an interimpurity singlet, which decouples from the
conduction band.

This observation triggered intensive research in the 1970s
and 1980s in the context of heavy fermions [39] since it
has been suggested that this competition provides a basic
understanding of this class of materials: depending on the
interaction strength either a heavy Fermi liquid or a antiferro-
magnetically ordered ground state is found driven by the local
singlet formation [40]. There is an ongoing discussion [41,42]
whether the change of ground states in a lattice system is
connected to a quantum phase transition [22,43,44] in a two-
impurity system.

The transition between these two singlet phases in the
TIAM is driven by the ratio between the Kondo temperature
TK and JRKKY [40,44–50]. While a quantum critical point
(QCP) separates both ground states in the presence of a
special kind of particle-hole (P-H) symmetry [22,43,49], the
quantum phase transition is replaced by a crossover if that
symmetry is broken [51]. Including the energy dependence
in the impurity coupling function generally leads to a P-H
asymmetric model and, consequently, to a crossover behavior.
Therefore the QCP found by Varma and Jones [22,43,44] is
a consequence of an oversimplification of the problem [52].
Recently, however, it has been shown [53] that for certain
dispersions and distances between the impurities the TIAM
exhibits a QCP, separating two orthogonal ground states with
different degeneracy. This QCP is of different nature and
has been experimentally observed in PTCDA-Au complexes
on an Au surface [12] and is driven by the additional di-
rect tunneling term between the two neighboring molecular
orbitals [12,53].

In this paper, we derive an analytical, nonperturbative
formula, based on a symmetry analysis of the parity dependent
and distance-dependent hybridization function, which allows
to map the emerging scattering terms onto an effective tunnel-
ing teff( �R) between the impurities. We present a full numerical
renormalization group (NRG) calculation [54–57] to prove
the equivalence of the effective and the original two-impurity
problem.

The construction of the effective tunneling term provides
a new insight to the nature of the AF contribution to the
RKKY interaction. For the wide-band limit, we find that the
AF contribution to JRKKY is determined by (teff )2/U , where
U denotes the Coulomb interaction. This result is contrary
to a separate two-step transformation: (i) a Schrieffer-Wolff
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transformation [58] onto the two-impurity Kondo model and
(ii) the perturbative calculation of JRKKY using this two-
impurity Kondo model, which would predict a 1/U 2 depen-
dency. Only at very large values of U , where charge fluctua-
tions are strongly suppressed, the characteristic energy scale
crosses over to the 1/U 2 textbook expression. The distance
dependence of the effective tunneling term can explain our
numerical findings that the impurity spin-spin correlation
function decays remarkably slower than the textbook expres-
sion of the RKKY interaction, even for a finite bandwidth of
the conduction band. We study the spatial anisotropy of this
tunneling term on a simple cubic lattice and find a surprising
direct connection between slow (fast) spatial oscillations and
particle (hole) doping, that is, beyond the standard 2kF oscil-
lations.

The understanding of the effective tunneling term enables
us to engineer the recovery of the Varma and Jones quantum
critical point in the TIAM for arbitrary distances, even for
a particle-hole symmetry broken model that generically only
shows a continuous change of the conduction electron scat-
tering phase. Such additional local tunneling term can also
naturally occur in neighboring molecular orbitals as shown by
density functional theory [12].

This paper is structured as follows. We start by defining
the model, its mapping onto the parity eigenbasis and the
fixed point (FP) structure of the NRG level flow in Sec. II. In
Sec. III, we review the different types of P-H symmetries and
derive the effective low-temperature description of the model,
based on an additional spatial-dependent local tunneling term
teff ( �R). This approach is applied in Sec. IV to restore the QCP
of Varma and Jones by investigating the impurity spectral
functions, the scattering phase of the Green function, and the
NRG level flow. We also cover the finite distance and finite
bandwidth corrections to the impurity spin-spin correlation
function. Section V is devoted to the analytical analysis of
the spatial frequencies governing the spatial anisotropy of
the spin-spin correlation function in a simple cubic lattice
as a function of the chemical potential, and, therefore, the
shape of the Fermi surface. We close with a summary in
Sec. VI.

II. THEORY

A. Two-impurity Anderson model

The Hamiltonian of the TIAM can be divided into three
parts:

HTIAM = Himp + Hhost + Hhyb. (1)

The impurity part is given by

Himp =
∑

l∈{1,2},σ
ε

f

l f
†
l,σ fl,σ + t

2

∑
l,σ

f
†
l,σ fl̄,σ

+ 1

2

∑
l∈{1,2},σ

Ulf
†
l,σ fl,σ f

†
l,σ̄ fl,σ̄ . (2)

The operator f
(†)
l,σ destroys (creates) an electron with spin

σ = ± on impurity l, whose onsite energy is labeled by ε
f

l . U
denotes the onsite Coulomb repulsion. Furthermore, we also
allow for a tunneling term t between both impurities. Such a

hopping term is realized in a system where the local orbitals
are given by the lowest unoccupied molecular orbitals of two
neighboring molecule complexes that start to overlap at short
distance and form dimers [12].

The metallic host is described by a free conduction band

Hhost =
∑
�k,σ

εc
�kc

†
�k,σ

c�k,σ , (3)

where c�k (c†�k ) is the annihilation (creation) operator of an elec-
tron in the conduction band with dispersion εc

�k . The interaction
between the impurities and the host accounted for by

Hhyb =
∑

l∈{1, 2}
�k, σ

(Vl�kc
†
�k,σ

ei�k �Rlfl,σ + H.c.). (4)

Here, Vl�k denotes the hybridization of the impurity located at
position �Rl with the conduction band state �k.

In the following, we consider the parity symmetric case,
V1�k = V2�k = V�k, ε

f

0 = ε
f

1 = ε
f

2 ; U1 = U2, unless stated oth-
erwise. Close to integer valence of one electron per impurity,
a local moment is formed at intermediate temperatures [58]
that is screened for T → 0 [20,21,55]. This is the case for
ε

f

0 ≈ −U/2 < 0 and will be the main focus of this paper.
The hybridization induces an effective Heisenberg ex-

change interaction, the RKKY interaction, between the two
impurities that alters in sign with the characteristic spatial
dependency of cos(2kF R)/Rd for RkF � 1 with d being the
spatial dimension of the host, assuming a simplified energy
dispersion of the conduction band.

We can also add an additional direct Heisenberg exchange
interaction J12 �S1 �S2 to the full two-impurity Hamiltonian

H ′
TIAM(J12) = HTIAM + J12 �S1 �S2 (5)

as an external control parameter for the investigation of the
QCP of the Varma-Jones (VJ) type [21].

B. Energy representation of the TIAM Hamiltonian

It is convenient to convert to a site-dependent and energy-
dependent operator [51,54], defining

cl,σ (ε) =
√

π

�(ε)

∑
�k

V�kδ
(
ε − εc

�k
)
ei�k �Rl c�k,σ , (6)

where the hybridization function �(ε),

�(ε) = π
∑

�k
|V�k|2δ

(
ε − εc

�k
)
, (7)

is determined from the equal-site anticommutator
{cl,σ (ε), c†l,σ ′ (ε′)} = δσσ ′δ(ε − ε′).

The hybridization takes the form

Hhyb =
∑

l∈{1,2}

∫ D

−D

dε

√
�(ε)

π
f

†
l,σ cl,σ (ε) + H.c. (8)

in the continuum limit, with the bandwidth 2D of the host.
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Using the effective hybridization matrix element V

given by ∫ D

−D

dε�(ε) = V 2π, (9)

we can define an effective conduction band density of states
(DOS), ρ(ε) = �(ε)/(πV 2).

The operators cl,σ (ε) are connected to the same single con-
duction band and are not linearly independent. Therefore they
are combined into parity eigenstates [12,20,22,43,51,59,60]
with even (e) and odd (o) parity that anticommute by sym-
metry. The spatial dependence in this even-odd parity basis
is included in the new orthogonal energy-dependent field
operators

cμ,σ (ε) =
√

π

�μ(ε)

∑
�k

V�kδ
(
ε − εc

�k
)(

ei
�k �R
2 + sμe−i

�k �R
2
)
c�k,σ ,

(10)

with μ ∈ {e, o}, �R = �R1 − �R2 and se = 1, so = −1. The ef-
fective hybridization functions,

�e(ε, �R) = π
∑

�k
|V�k|2δ

(
ε − εc

�k
)

cos2(�k �R/2),

�o(ε, �R) = π
∑

�k
|V�k|2δ

(
ε − εc

�k
)

sin2(�k �R/2), (11)

are defined such that the standard anticommutation relations
{cμ,σ (ε), c†μ′,σ ′ (ε′)} = δ(ε − ε′)δμ,μ′δσ,σ ′ are fulfilled. They
determine the effective coupling of the two different flavors
even and odd to the impurity and obey the sum rule

�(ε) = �e(ε, �R) + �o(ε, �R) . (12)

Introducing an even/odd parity basis also for the impurity
operators,

fμ,σ = 1√
2

(f1,σ + sμf2,σ ) , (13)

yields a flavor diagonal hybridization between the impurities
and these even/odd conduction bands:

Hhyb =
∑

μ∈{e,o},σ

∫ D

−D

dε

√
�μ(ε, �R)

2π
c†μ,σ (ε)fμ,σ + H.c.

(14)

By extracting the effective flavor coupling constant Vμ,

V 2
μ ( �R)π =

∫ D

−D

dε�μ(ε, �R), (15)

we define the effective DOS of the flavor bands by normaliza-
tion [57,61],

ρ̄μ(ε, �R) = 1

V 2
μ ( �R)π

�μ(ε, �R). (16)

One can always find a proper normalized ρ̄o(ε, �R) in the
limit �R → 0: the decoupling of the odd conduction band is
accounted for by Vo → 0. To this end, the hybridization can

be expressed as

Hhyb =
∑
μσ

Vμ( �R)
∫ D

−D

dε

√
ρ̄μ(ε, �R)c†μ,σ (ε)fμ,σ + H.c. ,

(17)

separating the coupling strength to the impurity from
the energy dependency of a normalized conduction
band used to construct the semi-infinite Wilson
chains [20,22,43,51,57,59,60]. Note that the energy
dependence of ρ̄μ(ε) generally destroys P-H symmetry.

The transformation of the local Coulomb interaction,

HU = 1

2

∑
l∈{1,2},σ

Ulf
†
l,σ fl,σ f

†
l,σ̄ fl,σ̄ , (18)

from the real space basis to the even/odd basis introduced in
Eq. (13) generates a large exchange interaction J = U/2 as
well as a corresponding pair-hopping term required for main-
taining the SU(2) spin symmetry—for details see Ref. [12].
This pair hopping term conserves the parity but violates the
flavor conservation in the even and odd channel similar to the
flavor violating term of the TIKM in Ref. [21].

Low temperature fixed points

In this section, we briefly review the known
low-temperature FP structure of the TIAM
model [20,22,43,51,57]. Since we are interested in the
competition between the Kondo effect and the singlet
formation due to the RKKY interaction, we focus on the
regime of single occupancy of each impurity orbital.

Starting from a single-impurity Anderson model in a
parameter regime where the Schrieffer-Wolff transforma-
tion [58] is applicable, the low-temperature FP is given by
a strong-coupling (SC) FP describing the Kondo effect. The
crossover to this FP is governed by a nonanalytic energy scale
TK that is exponentially small in terms of the bare coupling
constants. The local spin of the magnetic impurity is dynami-
cally screened by the conduction electrons and the remaining
conduction electron degrees of freedom decouple from the
impurity. Thus the SC FP agrees with that of a free electron
gas (FEG) with one electron removed that forms the Kondo
singlet. The conduction electrons close to the Fermi energy
acquire a phase shift δ in accordance with Friedel’s sum
rule [62,63].

While P-H symmetry pins the phase shift to δ = π/2, P-
H asymmetry leads to potential scattering in the conduction
band which changes the phase shift continuously. The SC FP
Hamiltonian

H SC(K ) = H SC
PH + K

∑
σ

(c̄†0σ c̄0σ − 1) (19)

is given [55,56] by a P-H symmetric term H SC
PH and a marginal

operator breaking P-H symmetry that is parameterized by the
constant K . The operators c̄nσ annihilate an electron with spin
σ on site n = 0, 1, . . . of the semi-infinite Wilson chain. All
other scattering terms are irrelevant. Below, we will make
use of the fact that the FP is fully characterized by a single
constant K defining a line of renormalization group (RP)
FPs [55,56].

115103-3



EICKHOFF, LECHTENBERG, AND ANDERS PHYSICAL REVIEW B 98, 115103 (2018)

For the two-impurity Kondo model, the effective RKKY
interaction [21] is given by the expression

J Kondo
RKKY =

∫ 0

−D

dε

∫ D

0
dε′ ρ(ε)ρ(ε′)

J 2

16

×
(

N2
e (ε)N2

e (ε′) + N2
o (ε)N2

o (ε′)
ε − ε′

− N2
e (ε)N2

o (ε′) + N2
o (ε)N2

e (ε′)
ε − ε′

)
(20)

in the limit T → 0, where the dimensionless normalization
functions Ne(o)(ε) are defined as

N2
e (ε) = 4

Nρ(ε)

∑
�k

δ(ε − ε�k ) cos2

( �k�r
2

)
,

(21)

N2
o (ε) = 4

Nρ(ε)

∑
�k

δ(ε − ε�k ) sin2

( �k�r
2

)
,

and ρ(ε) is the DOS of the original conduction band prior
to the mapping onto the even and odd basis—see Ref. [59]
for details. In order to understand the low-temperature FP
of the TIAM, we start from the Varma-Jones approxima-
tion [21] and neglect the energy dependency: N2

μ(ε) → N2
μ

as well ρ̄μ(ε) → ρ0, enforcing P-H symmetry of both DOS.
Then (20) reduces to Eq. (7) in Ref. [21],

HRKKY = J Kondo
RKKY

�S1 �S2

= (8 ln 2)ρ0(Je − Jo)2 �S1 �S2, (22)

where Je(Jo) is the Kondo coupling to the even (odd) channel
after the basis transformation—for a detailed derivation of this
expression see the appendix of Ref. [59].

Since only a FM RKKY interaction is dynamically gen-
erated by this simplification, an additional local spin-spin
coupling J12 �S1 �S2 has been added by the authors of Ref. [21]
by hand in order to access the AF RKKY regime. For a large
FM (−J12) � 0, the locally favored triplet is screened by both
conduction electron flavors via a two-stage Kondo effect since
generally Vo 	= Ve. The FP is given by H SC

PH and δμ = π/2.
For a large antiferromagnetic (AF) coupling, J12 � 0, a local
singlet is favored and the RG FP is given by those of a free
electron gas H FEG

PH and δμ = 0. Since P-H symmetry is only
compatible with these two scattering phases, there must be a
critical AF coupling at which the SC Kondo phase is replaced
by the local singlet phase [51]. This quantum critical point
(QCP) occurs at J12/TK ≈ 2.2 [22,43]. Once the full energy
dependency of ρ̄μ(ε) required for the correct description of
the RKKY interaction is taken into account, the Varma-Jones
QCP is replaced by a smooth crossover [45].

III. DERIVATION OF THE EFFECTIVE
TUNNELING TERM

Now we derive an analytical counter term to the bare
Hamiltonian that allows to restore the Varma-Jones QCP for
arbitrary impurity distances. The naive strategy would be to
add a suitable potential scattering term to the conduction
electrons to restore P-H symmetry at the FP [64]. The pa-
rameter K̄μ, however, is subject to an RG flow, and it is

very cumbersome to iteratively determine K̄μ. In addition, the
physical insight gained from such a term is limited.

It turns out that modifying the tunneling term in Himp

defined in Eq. (2) has an identical effect and the required
teff can be analytically derived from the coupling functions
�μ(ε, �R). There are essentially two scenarios. (i) If the im-
purities are P-H symmetric (εl = −U/2), there is a strong
symmetry restriction of the type of potential scattering counter
term. In this case, the low-temperature FP becomes P-H
symmetric and δe = δo = π/2. (ii) Local P-H asymmetry on
the impurities generates potential scattering in at least one
of the channels. Although we can modify these scattering
terms to achieve δe = δo, which is sufficient to restore the
Varma-Jones QCP [51,65], the scattering phases differ from
π/2. Since the parameters necessary to restore the QCP can
be analytically derived only for the first scenario, we start with
εl = −U/2 and come back to the second case latter.

A. Particle-hole symmetry and potential scattering

We now review the connection between P-H symmetry
and the arising potential scattering terms discussed by Affleck
et al. [51]. The TIAM with P-H symmetric impurities can
exhibit two different types of particle-hole symmetries. The
first type of P-H transformation requires a flavor diagonal
transformation

cμ,σ (ε) → c†μ,σ (−ε) (23)

and is a symmetry of the Hamiltonian if the effective conduc-
tion bands are compatible with

ρ̄μ(−ε, �R) = ρ̄μ(ε, �R). (24)

However, the system can also be invariant under the sec-
ond, flavor exchanging P-H transformation

ce/o,σ (ε) → c
†
o/e,σ (−ε) (25)

if V 2
μ ( �R)ρ̄μ(−ε, �R) satisfy the relations

V 2
e ( �R)ρ̄e(−ε, �R) = V 2

o ( �R)ρ̄o(ε, �R). (26)

In general, the potential scattering terms generated in higher
order of perturbation theory takes the form

Hs =
∑

μ∈{e,o}

∫ D

−D

dεdε′[Sμ(ε, ε′)c†μ(ε)cμ(ε′)]. (27)

If the original problem is P-H symmetric, the effective po-
tential scattering term must also satisfy the special type of
symmetry transformation. Depending on the type of P-H
symmetry, we require

first type −→ Se/o(ε, ε′) = −Se/o(−ε,−ε′),
(28)

second type −→ Se/o(ε, ε′) = −So/e(−ε,−ε′),

thus the scattering function must vanish at zero energy in the
presence of the first type of symmetry, whereas the second
type only requires a connection between the even and odd
channels:

first type −→ Se/o(0, 0) = 0,
(29)

second type −→ Se/o(0, 0) = −So/e(0, 0).
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Since the zero-energy scattering terms in the even and odd
channels in general lead to different phase shifts δe/o and
hence destroy the QCP, only the first type of P-H symmetry
ensures the existence of a QCP in the TIAM automatically.

B. Low energy description and effective tunneling

Even for a P-H symmetric dispersion εc
�k of the original

problem, the effective DOS ρ̄μ(ε, �R) defined in Eq. (16)
will generally not comply with any of the two types of P-H
symmetries. However, one can divide ρ̄μ(ε, �R) into the two
contributions

ρ̄ (±)
μ (ε, �R) = 1

2 [ρ̄μ(ε, �R) ± ρ̄μ(−ε, �R)], (30)

while ρ̄ (+)
μ (ε, �R) satisfies Eq. (24) and is normalized.

ρ̄ (−)
μ (ε, �R) has a vanishing integral spectral weight and,

therefore, cannot be interpreted as an effective bath. This term
breaks the P-H symmetry of first type and contributes to the
scattering terms.

Consequently, the Hamiltonian of each conduction band
flavor μ can be decomposed into

Hhost,μ = H+
host,μ + �H−

host,μ , (31)

where H+
host,μ describes a fictitious bath with P-H symmetry

of the first type, while �H−
host,μ stems from redistribution of

spectral weight due to ρ̄ (−)
μ (ε, �R) that can be accounted for

by an appropriately chosen scattering function Sμ(ε, ε′) in
Eq. (27).

We make use of the fact [55,56,64] that the P-H symmetry
breaking leads to a modification of the fixed point Hamilto-
nian controlled by a single scattering parameter Kμ in each
band, such that we alternatively can approximate the host by

Hhost,μ ≈ H+
host,μ + Kμ

∑
σ

(c̄†0μσ c̄0μσ − 1) . (32)

If ρ(ε), as defined below Eq. (9), is invariant under en-
ergy inversion, i.e., ρ(ε) = ρ(−ε), one can show that
V 2

e ( �R)ρ̄ (−)
e (−ε, �R) = −V 2

o ( �R)ρ̄ (−)
o (ε, �R). As a consequence,

Ke = −Ko or Kμ = sμK , and the problem is reduced to a
single parameter that determines the low-temperature effect
of ρ̄ (−)

e (ε, �R).
Now we turn to the full Hamiltonian of the TIAM that

also contains the local impurity degrees of freedom and the
coupling between both subsystems. An impurity interaction
that is invariant under the transformation

fe/o,σ → f
†
o/e,σ

⇔ f1,σ → f
†
1,σ ; f2,σ → −f

†
2,σ , (33)

but not under the transformation

fe/o,σ → f
†
e/o,σ

⇔ f1/2,σ → f
†
1/2,σ (34)

is only compatible with the second type of P-H transformation
and hence inevitably generates potential scattering terms in
the form of Ke = −Ko 	= 0 in the low-energy FP that is com-
patible to Eq. (29). Therefore we can replace the scattering
terms in Eq. (32) by an effective impurity interaction H eff

imp

that leads to the same low-energy FP. Note that the invariance
of H eff

imp under the transformations of Eq. (34) ensures that the
full Hamiltonian in Eq. (32) remains P-H asymmetric.

The only parity-conserving single-particle term involving
only impurity degrees of freedom that is invariant under local
P-H transformation of the second type, Eq. (33), but not
under (34) is given by

Heff
imp = teff

2

∑
σ

(f †
e,σ fe,σ − f †

o,σ fo,σ )

= teff

2

∑
σ

(f †
1,σ f2,σ + f

†
2,σ f1,σ ). (35)

This term is parameterized by a single parameter teff that has a
simple physical interpretation. It describes an additional elec-
tron tunneling term between the two impurities and is fully
compatible with Himp. Mahmoud et al. already mentioned
the existence of such an effective charge exchange in the
noninteracting two-impurity Anderson model on a lattice [66].

C. Estimate of effective tunneling

One of the key messages of this paper is that one can
subtract an appropriately chosen local impurity counter term
Heff

imp in order to restore the Varma-Jones QCP. It is well es-
tablished [45,51] that the QCP is destroyed only by scattering
terms compatible with the P-H symmetry of the second kind,
leading to different scattering phases in the even and the
odd channel. The goal of the counter term is to produce an
identical scattering phase δe = δo for T , ω → 0.

In order to gain some insight and actually calculate teff in
a certain limit, we demand that the low-temperature FP of the
full model HTIAM augmented with a counter term H eff

imp,

H eff
TIAM = HTIAM − H eff

imp, (36)

is identical to those of the effective model H+
TIAM

!= H eff
TIAM

where the full DOS ρ̄μ(ε, �R) in Eq. (17) has been replaced by
ρ̄ (+)

μ (ε, �R) of Eq. (30). If the parameters of the impurities are

P-H symmetric, i.e., ε
f

0 + U/2 = 0, the scattering phases of
H+

TIAM are distance independent and equal δe = δo = π/2 and
likewise in H eff

TIAM.
The phase shifts at the Fermi energy can be extracted from

the local single-particle Green functions. For the full problem
including the counter term, the Green function takes the form

Gμ(z, �R) =
(

z − ε
f

0 − �μ(z, �R) − �U
μ (z) + sμ

teff

2

)−1

,

(37)

where �U
μ (z) = �U

μ [G] denotes the correlation self-energy
that is given by a functional of the Green function [67], and

�±
μ (z, �R) = V 2

μ ( �R)
∫ D

−D

dω
ρ̄ (±)

μ (ω, �R)

z − ω
, (38)

�μ(z, �R) =
∫ D

−D

dω

π

�μ(ω, �R)

z − ω

= �(+)
μ (z, �R) + �(−)

μ (z, �R) . (39)
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For T → 0, the spectral function always takes the
form [62,63]

ρf
μ (0, �R) = lim

δ→0

1

π
�Gμ(0 − iδ, �R)

= 1

π�μ(0)
sin2 δμ (40)

relating the scattering phase δμ,

cot(δμ) = ε
f

0 + ��μ(0) + ��U
μ (0) − sμ

teff

2

�μ(0)
, (41)

to the ratio of the real and imaginary part of the inverse
Green function [62,63]. Note that the Fermi-liquid property
��U (0 ± iδ) = 0 at T = 0 has entered as well as a coupling
|�μ(0)| > 0.

In general, this a complicated problem determining teff by
the condition δμ = const. Therefore we restrict ourselves to a
locally P-H symmetric impurity ε

f

0 + U/2 = 0 that implies a
Hartree term ��U (0) = U/2. Since δμ = π/2 independent
of �μ(0), the nominator must vanish, which leads to the
condition

teff( �R) = 2sμV 2
μ ( �R)

∫ D

−D

dω
ρ̄μ(ω, �R)

ω

= 2sμ�(�μ(0, �R)) = 2sμ�(�(−)
μ (0, �R)). (42)

In order to set the stage for the full NRG calculations
below, we assume a constant DOS ρ(ε) = ρ0 = 1/2D and an
isotropic linear dispersion εc

�k = vF(|�k| − kF), where vF is the
Fermi velocity and kF the Fermi wave vector. The evaluation
of Eq. (11) can be performed analytically [22,43,59,60] for
different spatial dimensions

1d : V 2
μ ( �R)ρ̄μ(ε, �R) = 2V 2ρ0

{
1 + sμcos

[
RkF

(
1 + ε

D

)]}
,

(43)

2d : V 2
μ ( �R)ρ̄μ(ε, �R) = 2V 2ρ0

{
1 + sμJ0

[
RkF

(
1 + ε

D

)]}
,

(44)

3d : V 2
μ ( �R)ρ̄μ(ε, �R) = 2V 2ρ0

{
1 + sμ

sin
[
RkF

(
1 + ε

D

)]
RkF

(
1 + ε

D

)
}

,

(45)

where R = | �R| is the absolute distance between the impuri-
ties, V 2 is defined in Eq. (9), and J0(x) denotes the zeroth
Bessel function of the first kind. We defined �0 = V 2πρ0 and
plot the effective hopping parameter teff(R) as a function of
the dimensionless distance x = RkF/π for different spatial
dimensions in Fig. 1.

IV. APPLICATION OF THE EFFECTIVE
TUNNELING TERM

A. Study of the low-temperature fixed point

The effective scattering terms generated by the P-H asym-
metric DOSs ρ̄−

μ (ε, �R) influence the fixed point spectrum of
the full Hamiltonian HTIAM in Eq. (1). For the analysis the
distance dependence of these scattering terms, we examine
the fixed point properties of the full Hamiltonian HTIAM in

FIG. 1. Effective hopping element t eff for different spatial dimen-
sions d as a function of the dimensionless distance RkF/π .

Eq. (1), the P-H symmetric fraction H+
TIAM in Eq. (36) and the

FEG Hhost in Eq. (3) by means of NRG [54–57] in the P-H
symmetric case εf + U/2 = 0.

Figure 2 shows the low-temperature NRG FP spectrum for
a two-dimensional host as a function of the dimensionless
distance x = RkF/π and at odd iteration for the interacting
Hamiltonians and even iteration of the FEG. Since the odd
conduction band decouples for R → 0 [12,25,47], the level
flow of HTIAM matches those of H+

TIAM that is very different
to the flow of the FEG. This FP is well understood: only one
half of the local triplet state can be screened by the conduction
electrons and the system remains in an underscreened Kondo
fixed point [12,25,47,53].

In this paper, however, we will focus on finite distances.
The low-temperature FP spectrum of H+

TIAM at odd iterations
coincides with those of the free electron gas at even iterations
in contrast to those of the full Hamiltonian where the influence
of the effective potential scattering terms lifts the degeneracies
caused by the P-H symmetry of H+

TIAM. The periodic structure
of the fixed point spectrum of the full Hamiltonian as a
function of distance traces the oscillation of teff( �R) defined by
Eq. (42), which is also added to Fig. 2 as red solid curve. Note
that those distances where teff( �R) vanished, the FP spectra of
HTIAM matches the one for the P-H symmetric free electron
gas.

In order to check the accuracy of the predicted effective
hopping element, we need to prove that teff( �R) is able to
compensate the scattering terms due to P-H asymmetry in
ρ̄μ(ε, �R) so that the FP spectra of HTIAM − H eff

imp and H+
TIAM

become identical. These two FP spectra are depicted in Fig. 3.
The oscillations of the energy levels disappear in HTIAM −
H eff

imp as a consequence of the counter term H eff
imp and both fixed

point spectra coincide up to NRG discretization errors that
would require a small correction of analytically calculated teff

in order to obtain a perfect cancellation.
The single-particle spectral function of the impurities

depicted in Fig. 4 proves the restoring of the P-H sym-
metry around the Fermi energy by adding the additional
counter term. In the absence of the counter term, the spectral
function (black line) is asymmetric and the Kondo peak is
split [23,47,68] as can be seen in the inset of Fig. 4. By
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FIG. 2. Low-temperature fixed point spectrum for an odd num-
ber of NRG iterations as a function of the dimensionless distance
x = RkF/π for an isotropic linear dispersion εc

�k in two dimensions.
Comparison between the full Hamiltonian (green line), the sym-
metric fraction (blue line), and the free electron gas (dashed line).
In the strong-coupling fixed point, the energy levels corresponding
to an odd number of iterations are comparable with the even ones
from the free electron gas, since one conduction electron degree of
freedom is locked into a singlet with the impurity electron [22,43].
NRG parameters are discretization parameter � = 1.5, number of
the kept states Ns = 4000, U/�0 = 10, εf /�0 = −5, t/�0 = 0, and
D/�0 = 10.

compensating the intrinsic, effective tunneling, the splitting
of the Kondo resonance vanishes (light blue line).

B. Restoring the Varma and Jones quantum critical point

1. Local P-H symmetry on the impurities

The Varma and Jones (VJ) QCP is inevitably stable in the
presence of the P-H symmetry of the first type, as becomes

FIG. 3. Low-temperature fixed point spectrum for an odd num-
ber of NRG iterations as a function of the dimensionless distance
x = RkF/π for an isotropic linear dispersion εc

�k in two dimensions.
Comparison between the full Hamiltonian minus the effective tunnel-
ing (red line) and the symmetric fraction (blue line). NRG parameters
as in Fig. 2.

FIG. 4. One-particle spectral function of the impurities for dif-
ferent tunneling parameters and a spatial separation of RkF/π = 0.7
on a two dimensional surface. The effective tunneling t eff(RkF/π =
0.7) = −1.2954�0 leads to an P-H asymmetric gap formation around
ω = 0 that can be effaced with an additional hopping element t =
−t eff. NRG parameters as in Fig. 2 but with � = 2 and D/�0 = 30.

apparent by describing the Fermi-liquid phase in terms of the
phase shifts in the even and odd channels at zero energy [51].
Making use of the symmetry transformation (23) in combina-
tion with the boundary conditions for incoming and outgoing
conduction electrons,

c
(†) out
e/o (ε) = e(−)2iδe/o c

(†) in
e/o (−ε), (46)

pins the possible phase shift to δe/o = 0 ∨ π/2. As a result,
there is a QCP separating the Kondo-screening phase (δe/o =
π/2) and the interimpurity singlet phase (δe/o = 0), whereas
absence of the P-H symmetry of the first type allows a general
phase shift δe/o ∈ [0, π/2] with a smooth crossover from 0 to
π/2.

In the preceding section, Sec. IV A, we established the
restoration of the P-H symmetry of the first kind in the FP
spectrum by a counter H eff

imp. For a vanishing teff , the FP of
H eff

TIAM turns out to be already P-H symmetric.
In order to prove the presence of the QCP, we added a

direct Heisenberg exchange interaction J12 �S1 �S2 to the full
two-impurity Hamiltonian,

H ′
TIAM(J12) = HTIAM + J12 �S1 �S2. (47)

Figure 5(a) depicts three different FP level spectra as a
function of J12: for RkF /π = 1.2 with (red dashed line) and
without (light blue solid line) a counter term and at the special
distance RkF /π = 1.30925 (black solid line). In accordance
with the literature, the transition from the Kondo regime
(J12 → −∞) to the interimpurity singlet regime (J12 → ∞)
is continuous for a generic distance such as RkF /π = 1.2
[blue lines in Fig. 5(a)] without an additional counter term.

As demonstrated by the FP spectra, the Varma-Jones QCP
can be restored by adding a direct tunneling t∗ = −teff(R).
The level flow jumps discontinuously from one to another
FP spectrum at a critical coupling J c

12 revealing clearly the
QCP. Evaluating Eq. (42) for this distance yields t∗(RkF /π =
1.2)/�0 = −0.2915.
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FIG. 5. (a) Development of the low-temperature fixed point spec-
trum with increasing antiferromagnetic interimpurity spin exchange
J12/�0 in two dimensions. A smooth crossover appears for a general
P-H asymmetric Hamiltonian with t = 0 and t eff(R) 	= 0 (blue lines)
by contrast with a quantum phase transition for the special case
t∗ + t eff(R) = 0 (red lines) as well as t = 0 and t eff(R∗) = 0 (black
lines). The inset depicts a zoom around the critical value J c

12/�0. (b)
Scattering phase in the even and odd channels for a P-H symmetric
impurity, plotted against the impurity distance. The QCP exists for
δe = δo = π/2 at R ≈ 1.30925. NRG parameters as in Fig. 2 but
with � = 2.

Alternatively, the distance can be varied to values R∗
such that teff(R∗) vanishes and hence cot δe = cot δo = 0.
Figure 5(b) shows the distance dependency of the scattering
phase using the model parameters of Fig. 2. We determined
the shortest finite distance for which this condition is fulfilled
as R∗kF/π ≈ 1.30925. For this distance R∗, we scan the FP
level flow as a function of J12 and add the results to Fig. 5(a)
as solid black line. Clearly, we also find a QCP at almost the
same critical value for J12. The inset in Fig. 5(a) resolves
the very small distance dependent shift of the critical value
compared to the case of the generic distance RkF /π = 1.2
with the additional counter term.

2. Local P-H asymmetry on the impurities

Now we proceed to the generic case where also the local
P-H symmetry on the impurities is broken but the parity
remains conserved. For a fixed U , the single-particle energy
is given by the onsite energy εf = −U/2 + �ε where �ε

parameterized its deviation from the P-H symmetric point.
Leaving ε

f

0 = −U/2, the addition term

H�ε = �ε
∑

σ

(f †
e,σ fe,σ + f †

o,σ fo,σ ) (48)

accounts for the local P-H asymmetry on the impurities. It
leads to potential scattering parameter in the form of Ke 	=
−Ko. Since the absolute value of the scattering terms in the
even and in the odd channel does not coincide, it is not
possible to cancel both terms simultaneously by introducing
a direct tunneling term or varying the spatial separation.

We will demonstrate that the VJ QCP can be restored
by changing the low-energy scattering terms such that they
generate identical scattering phases in the even and the odd
channel, i.e., δe = δo. Zhu and Varma [65] pointed out that the
scattering phase acquires an additional contribution �δμ =
tan−1(πρ0Kμ) in the SC FP caused by a P-H asymmetry.

Since neither �δμ nor Kμ is directly accessible in the
NRG, we use a different strategy that is directly based on
the NRG FP spectra. Close to the P-H symmetric point,
the difference between the lowest single-particle excitation
relative to the NRG ground state, E1

μ, with an even parity
(μ = e) and an odd parity (μ = o),

�ω0 = E1
e − E1

o, (49)

is proportional to the difference of the phase shifts.
Tuning the interimpurity spin exchange J12 generically

drives the system continuously from a SC to a local singlet FP
and �ω0 changes continuously. For a sharp transition, �ω0

must vanish at the critical coupling J c
12,

J ′
12 = lim

δ→0

(
J c

12 + δ
)
. (50)

Note that the phase shifts at J12 = J c
12 are not defined. Since

the critical value J c
12 is unknown a priori, it leads to the self-

consistency condition

�ω0(�ε, R∗, t∗, U, J ′
12) = 0. (51)

This equation is solved iteratively.
As a starting point, we choose the critical value J c

12 for the
local P-H symmetric case, i.e., �ε = 0. Then we compute
�ω0 as a function of R (t , respectively) and determine the
roots for R∗

1 (t∗1 ) for constant t (R, respectively). In the next
step, we determine the J ′2

12 at the midpoint of the crossover
regime. Inserting J ′2

12 into Eq. (51) results in new R∗
2 (t∗2 ). This

steps are iterated until convergence is achieved. Starting at
the critical distance R∗

1 = 1.30925π/kF , obtained for �ε =
0, U/�0 = 10, and t/�0 = 0 in Sec. IV B 1, this procedure
converged after four iterations to R∗kF = 1.24049π to a pre-
cision of five digits.

Figure 6(a) displays the even and odd scattering phases
in the last iteration, i.e., for the critical spin exchange J c

12
as a function of the distance. This convincingly demonstrates
the consistency of our approach. Fixing the last value of J c

12,
the point of coincidence of the two scattering phases agrees
perfectly with the critical R∗(�ε/�0 = −2)kF = 1.24049π

obtained by the iteration procedure.
In order to prove that the VJ QCP is really restored for this

set of parameters, we present the FP level flow as a function of
the coupling J12 in Fig. 6(b) for the starting distance starting
distance R∗

1kF = 1.30925π (blue lines) and the final distance
R∗ (black lines). While only a crossover is observed for R∗

1 ,
clearly the VP QCP is restored at the final distance R∗ even
for �ε/�0 = −2. The additional term teff is not needed. Note
the FP level flow in both phases: the different magnitude of
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FIG. 6. (a) Scattering phase in the even and odd channel for a
P-H asymmetric impurity as a function of R. (b) Low-temperature
FP spectrum as a function of J12/�0 and �ε/�0 = −2 for R∗(�ε =
0)kF = 1.30925π (blue lines) and R∗(�ε = −2)kF = 1.24049π

(black lines). NRG parameters as in Fig. 5.

the P-H symmetry breaking scattering term in both phases is
clearly visible.

C. Splitting of the RKKY interaction in two contributions

The RKKY interaction between two local moments with a
distance R apart is mediated by the metallic host. This effec-
tive coupling constant JRKKY is distance dependent and shows
the characteristic alternating signs with 2kF oscillations—at
least for a simplified dispersion of the conduction electrons.

Consequently, we can divide the RKKY interaction into
two contributions with opposite signs. Extending the ar-
gument for a constant DOS [21,59] one can show that a
P-H symmetric effective DOS ρ̄ (+)(ε) can only generate
a ferromagnetic RKKY interaction J FM

RKKY at arbitrary dis-
tances as illustrated by Eqs. (20)–(22). Hence the antiferro-
magnetic contribution results from the breaking of the P-H
symmetry of the first type that can be parameterized by a
local teff.

Decoupling of the impurities from the effective conduction
electrons allows for an exact solution of this effective two-
impurity problem. For teff = 0, the local triplet state involving
both even and odd orbital is degenerate with the singlet state
given by the linear combination of both electrons in the even
or both electrons in the odd state [12]. A finite teff induces
an imbalance between the mixing of these singlet states and
an energy gain of Jex = |teff|2/U > 0 that can be interpreted
as effective interaction between the two local spins in the
local moment regime. Clearly, this local exchange mechanism
always generates an antiferromagnetic interaction.

FIG. 7. Impurity spin-spin correlation function as a function of
the distance for the full TIAM Hamiltonian, for the effective model
and the symmetric part H+

TIAM. A featureless symmetric conduction
band with a 2d linear dispersion has been used for the locally P-H
symmetric regime for T → 0. Parameters are U/�0 = 10, D/�0 =
100, Ns = 4000, and � = 2.

For the local P-H symmetric case, the analytic solution (42)
predicts teff ∝ ρ0V

2, and the Schrieffer-Wolff transforma-
tion [58] generates a local Kondo coupling JK ∝ V 2/U .
Therefore the local exchange term can be related to JK via

Jex = |teff|2
U

∝ U (ρ(0)JK )2. (52)

This is a generalization of the R → 0 analysis of FM RKKY
in an multi-impurity model [69] to AF contributions for arbi-
trarily distances R. The estimated order of magnitude of Jex ∝
1/U agrees perfectly with the cumbersome evaluation of a
Rayleigh-Schrdinger perturbation theory in forth order [69].
Our analysis provides a much simpler understanding of the
difference of the RKKY interaction in the two-impurity An-
derson model and in the two-impurity Kondo model.

Combining these two terms yields the total RKKY cou-
pling JRKKY = J FM

RKKY + Jex. This leads to the interesting fact
that by adding an additional interimpurity orbital hopping
term t , it is possible to change the sign of the total coupling
JRKKY in arbitrary direction. Typically, a tunneling term only
generates a AF exchange interaction, however, adding a t

with opposite sign compared to teff reduces the total tunneling
t̄eff = teff + t and may eventually cause a sign change to a
FM JRKKY. On the other side, starting from teff = 0, i.e., a
purely FM JRKKY and increasing t , induces a AF coupling
that become arbitrarily large and eventually will also lead to a
sign change.

To illustrate that the full energy-dependent TIAM can be
mapped to an effective model at low energies comprising an
P-H symmetric conduction band, generating the FM RKKY
interaction, as well as a local hopping term, which induces the
AF part J AF

RKKY, the impurity spin-spin correlation function of
both models, calculated by means of the NRG, is shown in
Fig. 7. The correlation function 〈〈�S1 �S2〉〉 for H+

TIAM is purely
positive demonstrating that the RKKY interaction J FM

RKKY for
a P-H symmetric DOS can only be FM [21]. The correlation

115103-9



EICKHOFF, LECHTENBERG, AND ANDERS PHYSICAL REVIEW B 98, 115103 (2018)

function of the effective model H+
TIAM + H eff

imp agrees excel-
lently with those of the full model in the short distance regime.
We discuss the corrections, which occur for larger distances
due to a finite bandwidth, in the next section.

Note that there are infinitely many distances R∗
n at which

teff = 0, so that JRKKY = J FM
RKKY holds. At these distances, the

spin-spin correlation function of all models coincided, and the
full energy-dependent model with an additional direct spin-
spin interaction J12 exhibits the VJ QCP.

Note that the effective tunneling teff, which restores the
P-H symmetric FP H+

TIAM = HTIAM − H (teff ), and the one
that restores the FP of the full Hamiltonian out of the P-H
symmetric fraction HTIAM = H+

TIAM + H (teff ), in general are
not fully identical. While for a P-H symmetric FP, only the
value at zero frequency is relevant, and, consequently, Eq. (42)
is exact, corrections stemming from the derivative dρ̄μ(ε)/dε

need to be taken into account to recover the FP of the full
Hamiltonian.

1. Finite bandwidth corrections

Focusing for a moment on a 1d conduction band with
a linear dispersion, we noticed that the amplitude of the
correlation function of the effective model H+

TIAM + H eff
imp will

not decay for teff given by Eq. (42). At the distances RnkF =
(2n + 1)π/2, the Hamiltonian is P-H symmetric of the second
type: the symmetric fraction of the effective DOS ρ̄+

μ (Rn, ε) is
constant and distance independent. Furthermore, the effective
tunneling is given by the analytical expression

teff
1d (Rn) ∝

∫ 1

−1

sin(RnkFx)

x
dx = 2Si(RnkF) , (53)

where Si(RnkF) is the sine integral, which is constant for
large distances Si(∞) = π/2. Apparently, the effective model
cannot capture the decay of the impurity spin-spin correlation
function for large distances and corrections to the effective
model need to be taken into account.

To estimate the magnitude of the corrections, we analyze
the resonant level model (U = 0), where we can derive an
analytic expression for the correlation function. One can show
that the correlation function is proportional to the difference
of the distance-dependent occupation of the even impurity
orbital ne( �R) and the odd impurity orbital no( �R),

〈〈�S1 �S2〉〉U=0 = − 3
8 [no( �R) − ne( �R)]2 . (54)

At zero temperature these occupation numbers are given by
the integral of the analytically obtained spectral functions

nμ( �R) =
∫ 0

−∞

dω

π

�μ(ω, �R)

(ω − �(�μ(ω, �R)))2 + �2
μ(ω, �R)

,

(55)

where the real and imaginary parts of the hybridization func-
tion can be decomposed into the contributions from both
symmetry types: �μ(ω) = �+

μ (ω) + �−
μ (ω) and �μ(ω) =

�+
μ (ω) + �−

μ (ω).
In order to derive corrections, we turn to the wide-band

limit. We can always find the lowest D such that ε̃�k =
ε�k/D ∈ [−1, 1] defines a dimensionless band structure. From
Eq. (11), it is clear that the energy dependence of �μ(ω)

and �(�μ(ω)) can be expressed through the dimensionless
functions fμ(ω/D) and Fμ(ω/D): �μ(ω) = �0fμ(ω/D),
�(�μ(ω)) = �0Fμ(ω/D) and the occupation number can be
written as

nμ( �R) =
∫ 0

−∞

dω

π�0

fμ

(
ω
D

, �R)
(

ω
�0

− Fμ

(
ω
D

, �R))2 + (
fμ

(
ω
D

, �R))2 .

(56)

For fixed hybridization strength �0, and �0/D → 0, the total
spectral weight is located around

ω0,μ ≈ �0Fμ(0) + O
(

�0

D

)
, (57)

where we can neglect the correction in the wide-band limit
D → ∞.

In the effective Hamiltonian, we include the contributions
�+

μ (ω) and ��+
μ (ω) exact, but �−

μ (ω) and ��−
μ (ω) only up

to zero order. In a Taylor series, the leading corrections are
generated by the derivatives of these functions. Since

d

dω
�(�−

μ (z))
∣∣
ω=0 ∝ P

∫ 1

−1

�−(x)

x2
dx = 0 , (58)

where x = ω/D, the leading corrections are proportional to
d

dω
�−

μ (ω)|ω=0, at least for small coupling strengths U/�0.
The distance dependence enters in d

dω
�−

μ (ω)|ω=0 differently
for different spatial dimensions, but is always proportional to
�0/D. For a linear dispersion, we obtain analytically

1d :
d

dω
�−

μ (ω)
∣∣
ω=0 ∝ RkF�0

D
, (59)

2d :
d

dω
�−

μ (ω)
∣∣
ω=0 ∝

√
RkF�0

D
, (60)

3d :
d

dω
�−

μ (ω)
∣∣
ω=0 ∝ �0

D
. (61)

In the limiting case of an infinite bandwidth �0/D → 0, the
effective tunneling determines the AFM part of the RKKY
interaction on all length scales in any dimension.

These theoretical considerations are backed by a compar-
ison of analytical calculations for the two-impurity resonant
level model (U = 0) in Fig. 8(a) and a full NRG study of
the spin-spin correlation function for a finite U/�0 = 10 in
Fig. 8(b) in 1d. Figure 8 shows the correlation as a func-
tion of x = (RnkF�0)/(πD) ∝ d�−

1d,μ/dω(ω = 0). In order
to extract the power-law of the universal corrections, we
logarithmically plot the antiferromagnetic correlation func-
tion normalized to its maximum value of −0.75. Panel (a)
depicts the evaluation of Eq. (54) for the resonant level
model, whereas panel (b) shows the results for the TIAM at
finite U/�0, calculated via the NRG. The figure combines
the scans for many different values of the band width at the
discrete distance RnkF = (2n + 1)π/2. Although the effective
tunneling is nearly constant, the universality with respect
to the scaling variable x is clearly demonstrated. For x →
0, the correlation function approaches a finite value above
its theoretical minimum. While the correlation function is
constant for small x the corrections become clearly visible
for 0.1 < x. Phenomenological, we found that a power-law
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FIG. 8. Impurity spin-spin correlation as a function of x =
(RnkF�0)/(πD) with RnkF = (2n + 1)π/2. (a) Correlation function
for the resonant level model (U = 0) calculated using Eq. (54)
for a 1d linear dispersion. (b) Correlation function for TIAM with
U/�0 = 10, ε/�0 = −5 calculated using the NRG with Ns = 4000
and � = 3.

fit ∝ x1/4 agrees remarkably with the data. Since the effective
tunneling is nearly constant, only the corrections lead to a
decay, wherefore the correlation is a universal function of the
parameter that characterizes the strength of these corrections.

2. U dependency of the RKKY interaction

For d
dω

�−
μ (ω)|ω=0 � 1, the corrections at large distances

are small, and HTIAM = H+
TIAM + H eff

imp is a good approxi-
mation. Our analysis, J AF

RKKY ∝ [teff ]2/U , demonstrates that
the RKKY interaction should be proportional to 1/U instead
of the 1/U 2 dependency expected by a separate two step
transformation: (i) a Schrieffer Wolff transformation onto the
two-impurity Kondo model and (ii) the perturbative calcula-
tion of JRKKY using this two-impurity Kondo model.

Figure 9(a) depicts the local entropy of the impurities
for a 1d linear dispersion, plotted against the dimensionless
temperature t = T · U/(teff )2 for the distances Rn as defined
above but a fixed ratio RnkF�0/D so that always an AF RKKY
interaction is generated. The different lines represent differ-
ent coupling strengths U/�0 in a range of 1 < U/�0 < 60.

FIG. 9. (a) Local entropy of the impurities as a function of the
dimensionless temperature t = T U/t2

eff for two different effective
distances RnkF�0/D. The different lines represent different cou-
pling strengths U/�0 in a range of 1 < U/�0 < 60. The crossover
temperature from the four-fold degenerate local moment regime a
singlet with entropy ln(1) determines the energy scale TRKKY of the
RKKY interaction. (b) Energy scale TRKKY rescaled by the square
of the coupling U/�0 as a function of the coupling in 1d. The
different lines indicate different values for d

dω
�−

μ (ω)|ω=0 ∝ RnkF�0
πD

,
which quantify the applicability of the effective Hamiltonian. NRG
parameters: Ns = 4000 and � = 3.

The FP spectra of the NRG level flow distinguishes the
two regimes JRKKY > TK (black line) and JRKKY < TK (blue
lines). In the upper panel of Fig. 9(a), the corrections can be
neglected, RkF�0/Dπ = 0.0075, and the universal crossover
of the entropy proves that JRKKY ∝ (teff )2/U .

This simple scaling does not hold for a larger
RkF�0/Dπ = 0.05 as demonstrated in the lower panel
of Fig. 9(a). Since the crossover to a local singlet should still
occur at a temperature scale JRKKY the energy curves suggest
a modification from the 1/U behavior.

In order to shed some light on the U dependency of JRKKY,
we calculated the crossover temperature TRKKY as a function
of U/�0. TRKKY is defined as the temperature where the
entropy Simp has reached the value Simp(TRKKY) = 1

2 ln(4) =
ln(2). Figure 9(b) shows TRKKY · (U�0)2 as a function of
the coupling strength U/�0 for different values of RnkF�0

πD
.
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FIG. 10. (a) Comparison of the standard RKKY interaction for
the TIKM and the square of the effective tunneling as a function
of the distance for a 3d linear dispersion. (b) Impurity spin-spin
correlation for the TIKM (black solid line) and the TIAM (lines
with points) as a function of the distance for a 3d linear dispersion.
Parameters: D/�0 = 10, Ns = 4000, and � = 2.

The linear increase of the curves for small U proves the
1/U dependency. For very large U , the curves approach
a constant. In this regime, JRKKY ∝ 1/U 2 in accordance
with the Schrieffer-Wolff transformation onto the TIKM. The
crossover from a charge fluctuation driven JRKKY ∝ 1/U to a
Kondo interaction driven JRKKY ∝ J 2 ∝ 1/U 2 does not only
depend on U but is also strongly influenced by the ratio
RkF�0/Dπ . Consequently, the replacement of the TIAM by
the TIKM is distance-dependent and requires more care than
just investigating the local regimes.

In the case of a linear dispersion in 3d, the corrections (61)
are R independent and the amplitude of teff always decays as
a function of R. Figure 10(a) shows a comparison of J Kondo

RKKY
calculated by the textbook expression, which can be found in
Appendix A of Ref. [59] as a black line with (teff )2 as light
blue line. While the envelope function of J Kondo

RKKY decays as
R−3 as expected from the analytical formula, (teff )2 × R3 is
increasing with distance for small R. Consequently, J AF

RKKY ∝
(teff )2 decays as R−2 in the wide-band limit for U/D � 1 in
contrary to the expected R dependency of J Kondo

RKKY.
While JRKKY describes an effective spin-spin interaction in

an effective local moment Hamiltonian, the R dependency of
the spin-spin correlation function is a different property that
is governed by the competition between the Kondo screening
and the RKKY interaction. Figure 10(b) depicts 〈�S1 �S2〉R3

in the TIAM for moderate values of U/�0 (blue and grey
curve with points). For a better comparison of the decay of
the envelope function, we normalized 〈�S1 �S2〉(R) at RkF = π ,
where the correlations are AF, thus positive values belong to
AF correlations.

The R dependence of teff governs the physics in the wide-
band limit and for small U/�0 [dashed line in Fig. 10(b)]. For
U → 0, the analytic equation (54) proves that the spin-spin
correlation function is purely AF, whereas the sign of J Kondo

RKKY
always oscillates with the distance. With increasing U/�0,
the FM correlations emerge continuously from the purely AF
function and the power-law decay of the correlation function
seems to cross from those of (teff )2 over to those of J Kondo

RKKY for
U/�0 → ∞. Note that we can not resolve this weak-coupling
regime using the NRG, since the numerical noise is rapidly
amplified by the R3 scaling for U/�0 > 15. We added 〈�S1 �S2〉
calculated for the two-impurity Kondo model with a Kondo
coupling ρJK = 0.25 as a solid black line in Fig. 10(b).
Just like small U/�0 in the Anderson model, large Kondo
couplings such as ρJK = 0.25 lead to a suppression of the FM
correlations due to the Kondo effect [70] and a slower decay
as J Kondo

RKKY, at least in the small distance regime.

V. SIMPLE CUBIC LATTICE

The RKKY interaction has been investigated for more
than 60 years and it is well established, that the anisotropy
caused by the lattice of the host has a strong influence on
the RKKY interaction [71–76]. However, for a large Kondo-
coupling JK and small U/�0 respectively, the Kondo effect
has a strong influence on the spin-spin correlation function
and the textbook expression for the RKKY interaction is not
sufficient to describe the magnetic order [70]. Therefore the
effective tunneling for an nonspherical band dispersion ε�k
provides additional insight to established knowledge on the
RKKY interaction.

In this section, we exemplify this by focusing on the well
studied simple cubic lattice with lattice spacing a at half band
filling. The dispersion ε�k in d dimensions takes the form

ε�k = −D

d

d∑
α=1

cos(kαa), (62)

for a nearest-neighbor tight-binding model with the hopping
parameter t = D/2d.

Defining a nesting wave vector �Q and the reciprocal lattice
vectors �Gα ,

�Q = π

a

d∑
α=1

�eα, �Gα = 2π

a
�eα, (63)

which satisfy the relations ε�k± �Q = −ε�k and ε�k± �Gα
= ε�k , we

can always find a bijection f : 1.Bz. → 1.Bz., �k → �k′, for
which ε�k′ = −ε�k ,

f (�k) = �k′ = �k + �Q +
d∑

α=1

z�k,α
�Gα, z�k,α ∈ {±1, 0}. (64)

Using this mapping, we analyze the effective DOSs with
respect to inversion symmetry in energy space as well as P-H
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symmetry:

�e(−ε, �R) = πV 2
∑

�k′

δ(ε − ε�k′ ) cos2{�k′ �R/2 − �/2},

�o(−ε, �R) = πV 2
∑

�k′

δ(ε − ε�k′ ) sin2{�k′ �R/2 − �/2}. (65)

Due to the additional phase �/2,

� =
(

�Q +
d∑

α=1

z�k,α
�Gα

)
�R, (66)

the hybridization function is P-H symmetric (� = nπ ) for
Rα/a ∈ Z only. We can distinguish between the two different
types of symmetries in the following way [51]:

d∑
α=1

Rα = 2na −→ first type, (67)

d∑
α=1

Rα = (2n + 1)a −→ second type. (68)

Since the two types of P-H symmetry generate a contribution
to the RKKY interaction with opposite sign, this result is
equivalent to the general RKKY oscillations on a bipartite
lattice at half-filling [77]. Moreover, the effective tunneling
vanishes for impurities placed on the same sublattice.

A. Two-dimensional lattice at half-filling

Figure 11(a) shows the square of the effective hopping
element in two dimensions, color-coded as a function of the
impurity distance �R = (Rx, Ry ). The periodic structure in
the two-dimensional plane indicate the importance of well-
defined momenta in k-space that govern the RKKY interaction
in real space.

In order to gain an analytical insight of the anisotropic
structure, we rewrite the effective tunneling of Eq. (42) as a
sum over the Brillouin zone

teff( �R) = γ sμ

∑
�k 	∈FS

1 + sμ cos(�k �R)

ε�k
, (69)

excluding the Fermi surface (FS) which does not contribute
to the principle value integral. All distance independent con-
stants are merged into the constant γ . The Fermi surface
is given by a square with the corners located at �p1/2 =
±(0, π/a) and �l1/2 = ±(π/a, 0). Furthermore, we introduce
the four midpoints of each side of the square, Ms,s ′ =
(sπ/2a, s ′π/2a) with s, s ′ = ±1.

In a second step, we perform a Fourier transformation into
k space,

teff(�q ) = γ

∫
d2R

∑
�k 	∈FS

ei �q �R cos(�k �R)

ε�k

=
{ γ̃

ε�q
, �q 	∈ FS

0, �q ∈ FS
(70)

exploiting the fact that the distance independent part vanishes
by symmetry for a P-H symmetric conduction band. For

teff(< Rx, Ry >)/Γ0
2(a)

0 1 2 3 4 5 6 7 8
Rx/a

0
1
2
3
4
5
6
7
8

R y
/
a

0

0.5

1

1.5

2

−2
−1
0
1
2
3

0 5 10 15 20 25 30 35 40 45 50

(b)

te
ff
/Γ
0

RkrF/π

R= R√
2

< 1,1>

R= R< 1,0>

FIG. 11. (a) Square of the effective hopping element in two
dimensions color-coded as a function of the impurity distance �R =
(Rx, Ry ). The intersections of the grid correspond to the positions
of the host atoms. (b) Effective tunneling along the basis and the
diagonal direction. The absolute value of the distance is rescaled by
k�r

Fa/π = 1/2 along the basis vector direction and k�r
Fa/π = √

2/2
along the diagonal direction.

inversion symmetric dispersion, ε�k = ε−�k , teff(�q ) obeys the
relation

teff(�q ) = teff(−�q ) (71)

and for P-H symmetry of the conduction band, the condition

teff( �R = 0) =
∫ ∞

−∞
teff(�q )d �q = 0 (72)

must hold.
The largest contribution to the k summation in Eq. (70) is

generated at the corners of FS, located at �p1/2 = ±(0, π/a)
and �l1/2 = ±(π/a, 0), and we can approximate the Fourier
transformation teff(�q ) by a sum of δ functions,

teff
corner(�q ) ∝

∑
i∈{1,2}

[δ(�q + �pi ) − δ(�q + �li )], (73)

with an appropriate prefactor that is independent of �q.
This simplified expression can be transformed back into

real space. Along the direction �n = �R/R, R = | �R|, teff
corner( �R)

is given by a product of modulations,

teff
corner( �R) ∝ sin

(
Rk�r

F,+
)

sin
(
Rk�r

F,−
)
, (74)

governed by the two characteristic spatial frequencies

k�r
F,± = π

2a
|nx ± ny | . (75)

115103-13



EICKHOFF, LECHTENBERG, AND ANDERS PHYSICAL REVIEW B 98, 115103 (2018)

FIG. 12. Impurity spin-spin correlation function in comparison
with the full effective tunneling t eff and the contributions that
originate from the corners �p1,2, �l1,2 t eff

corner along the direction �r =
1√
65

(�e1 + 8�e2 ) with D/�0 = 10 and U/�0 = 30. NRG parameters:
Ns = 3000 and � = 4.

Along the basis vector direction �n = �eα , the frequencies are
identical and the sign of the effective tunneling remains
positive.

Within this approximation, the amplitude of the oscillating
effective hopping remains constant. This provides a better un-
derstanding why the full teff( �R) plotted in Fig. 11(b) does not
decay as a function of the distance R and explains the different
oscillation frequencies in the different spatial directions.

To illustrate the quality of the approximation, a compari-
son between the full teff( �R) and the approximative quantity
teff
corner( �R) obtained from Eq. (74) is shown for a more generic

direction �n = 1√
65

(�e1 + 8�e2) in Fig. 12. The plot demonstrates
that the oscillations of the AF contribution to the RKKY
interaction are determined by k�r

F,±. We also added the spatial
dependency of the impurity spin-spin correlation function
along the same direction as grey dotted curve to Fig. 12
illustrating that the sign changes and the oscillatory behavior
tracks the spatial dependency of teff.

Since k�r
F,−, and with that Eq. (74), vanishes along the

diagonal rx = ry , the AF contributions cannot originate from
the points �p1/2 and �l1/2 in that case. Therefore we reexamine
the original expression. The main contributions to the sum in
Eq. (69) stem from k-points around the Fermi surface

�k′
± = lim

δ→0
�k∈FS ± δ�nFS

�k , (76)

where �nFS
�k denotes the local normal vector of the FS. If the

oscillations of the numerator cos(�k �R) in the vicinity of the FS
are small, in general for short distances, the generic spatial
structure should be reproduced by focusing on the summation
of a very small k-shell around the FS and we obtain the
approximation

teff( �R) ≈ t̃eff( �R) ∝
∑
�k′+

cos(�k′
+ �R)

ε�k′+

+
∑
�k′−

cos(�k′
− �R)

ε�k′−

. (77)

substituting ε�k′±
= ±δ∇�nFS

�k
ε�k into this expression, we can re-

strict Eq. (77) to a summation over the Fermi surface and a
directional derivation along �nFS

�k :

t̃eff( �R) ∝
∑
�k∈FS

lim
δ→0

cos
((�k + δ�nFS

�k
) �R) − cos

((�k − δ�nFS
�k

) �R)
δ∇�nFS

�k
ε�k

=
∑
�k∈FS

∇�nFS
�k

cos(�k �R)

∇�nFS
�k
ε�k

. (78)

We have shown above that the corners of the 2d Fermi
surface of a simple cubic lattice, at which the nominator and
denominator in Eq. (78) vanishes, do not contribute to teff( �R)
along the diagonal in real space. Therefore we focus on the
four midpoints Ms,s ′ = (sπ/2a, s ′π/2a). The dispersion is
linear around these points close to the FS and ∇�nFS

�k
ε�k ≈ 2

in appropriate units. Therefore we replace the denominator
in (78) by a constant and integrate over some part of the FS
around these midpoints, which can be easily parameterized by
a 1d integral,

t̃eff
mid( �R) ∝

(∫ π
2a

+τ

π
2a

−τ

dkx +
∫ − π

2a
+τ

− π
2a

−τ

dkx

)
[(�nFS

kx

�R)
sin

{
(Rxkx − Ry |kx |) + Ry

π

a

}]
. (79)

The distance from the midpoints included here is parametrized
by τ , and the explicit shape of the FS, |ky | = π/a − |kx |, was
inserted.

For a general direction, this leads to small contributions
due to the oscillations of the integrand. Only along the diag-
onal direction, these oscillations cancel. In addition Ryπ/a =
Rk�r

F,+ holds and we find a linear increase with the distance R,

t̃eff
mid

(
R√

2

(
1
1

))
∝ R sin

(
Rk�r

F,+
)
. (80)

This provides the deeper understanding of the surprising in-
crease of the amplitude of the full teff( �R) shown in Fig. 11(b).
Our analytical calculation links this observation to the prop-
erties of the dispersion at the midpoints of the FS for the
P-H symmetric band. Note that for large values of R, the
oscillations around the FS in the nominator of Eq. (77) lead
to a damping of the linear increase: the simplification entering
Eq. (78) are not valid for large R.

For larger distances R, the amplitude of the tunneling
stays constant in all directions as a consequence of the
perfect FS-nesting for a 2d simple-cubic dispersion at half-
filling. The linear increase of the effective tunneling along
the diagonal direction strongly depends on the structure of
the FS, but is not a consequence of FS-nesting and the
divergence of the Lindhard function in momentum space,
respectively.

The spatial and band width corrections to the spin cor-
relation function discussed in Sec. IV C predict a decay of
the correlation function even for constant teff that contains
the exact AFM RKKY interaction in the limit �0/D → 0.
Figure 13 depicts the impurity spin-spin correlation as a
function of the distance along the basis and the diagonal
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FIG. 13. NRG calculations of the impurity spin-spin correla-
tion function along the basis vector and the diagonal direction
with D/�0 = 10 and U/�0 = 30. NRG parameters: Ns = 3000 and
� = 4.

direction. As expected from the initially linearly increasing
and than constant teff in the diagonal direction, the correla-
tion function dominates in this direction. Its amplitude only
shows a slow decay as a function of R caused by the finite
bandwidth.

B. Particle and hole doping in two dimensions

The strong influence of the explicit shape of the Fermi
surface on the effective tunneling and the RKKY interaction,
respectively, can be demonstrated by adding an additional
chemical potential μ, which influences the energy dispersion
of the host and the level energy of the impurities

ε�k → ε�k + μ ; εf → εf + μ. (81)

Obviously, the chemical potential breaks P-H symmetry in
the initial conduction band but preserves parity. Our analysis,
however, remains valid and the P-H asymmetry can be still
casted into an distance-dependent hopping term

teff( �R) = �(�−
e (0, �R)) − �(�−

o (0, �R))

= γ
∑
�k 	∈FS

cos(�k �R)

ε�k
(82)

In a 2d simple cubic lattice with a nearest-neighbor tight-
binding description of the band dispersion, the sign of the
chemical potential determines the topology of the FS; a nega-
tive value of μ leads to a spherical structure of the FS, whereas
a positive potential induces general hole pockets.

In Sec. V A, we have shown that either the midpoints or
the corner points of the square FS are responsible for the
main contributions to the effective tunneling, depending on
the directional alignment of the impurities. Since a very weak
doping away from half-filling only deforms the FS around the
corner points, we expect a strong influence on the effective
tunneling only along the basis vector direction. Figure 14(a)
depicts the color-coded effective tunneling for electron and
hole doping, i.e., holelike and spherical FS. While the gen-
eral structure along the diagonal direction matches the P-H
symmetric case, the spatial frequency along the basis vector
direction varies significantly.

To understand this change in the frequency in the direction
of the basis vectors, we focus on teff

x (R) = teff(R�ex ) and
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−(teff)2/Γ20
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2cos
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FIG. 14. (a) Square of the effective hopping element in 2d as
a function of the impurity distance �R =< Rx/a, Ry/a >. The fre-
quency along the basis vector directions strongly depends on the sign
of the chemical potential and the topology of the FS, respectively.
The intersections of the grid correspond to the positions of the host
atoms. (b) NRG calculation of the impurity spin-spin correlation
function (blue line) and the square of the effective tunneling (black
line) along the basis vector direction. We added the analytically
extracted spatial contribution cos2(k∗

x (μ)R) as a dashed line. Param-
eters: D/�0 = 10, U/�0 = 30, Ns = 3000, and � = 4.

perform a one-dimensional Fourier transformation of (69):

teff(q ) = γ

∫ ∞

−∞
dR

∑
�k 	∈FS

eiqR cos(kxR)

ε�k

= πγ

t

∑
�k 	∈FS

δ(q − kx ) + δ(q + kx )

cos(kxa) + cos(kya) + μ/t
, (83)

where we substituted ε�k defined with respect to the chemical
potential.

We have to perform a ky summation for every q while kx

is fixed by δ functions. teff(q ) has the largest contribution for
those q values for which many k vectors (±q, ky ) are very
close to the FS.

We recall that upon hole doping the Fermi surface shrinks
and becomes more spherical. While the midpoints remain
almost unaltered, the major change occurs in the vicinity of
the corner points, which are shifted to smaller kx (ky) values
for ky = 0 (kx = 0). For negative μ, the major contribution
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arises from the intersection of the FS with the kx axis since the
FS is perpendicular to the axis at theses shifted corner points.
Solving εky=0 = 0 for k∗

x (μ) yields

k∗
x (μ)a = arccos(|μ| − 1) (84)

and therefore, the major contributions stem from large k∗
x (μ)

that develop adiabatically from kx = π . Simultaneously,
the contributions from the second pair of corner points,
(0,±π/a), rapidly vanishes with increasing hole doping. At
the end, we are left with

teff(q, μ) ≈ δ(q + k∗
x (μ)) + δ(q − k∗

x (μ)) (85)

⇔ teff(R,μ) ∝ cos[Rk∗
x (μ)] . (86)

The missing contribution for kx = 0 leads to a doubling of
the spatial frequency away from half-filling as can be seen in
Fig. 14(a) along the x (y) axis compared to Fig. 11(a).

The situation is qualitatively different for electron doping
(μ > 0), where the FS is formed by the four hole pockets.
The FS does not intersect with either k axis. However, the
FS becomes parallel to the ky axis close to the Brillouin zone
boundary for a small value k∗

x (μ),

k∗
x (μ) = arccos(1 − μ) . (87)

k∗
x (μ) evolves from kx = 0 at half-filling, while the contribu-

tion from kx = π/a vanished rapidly with increasing μ. As a
consequence, the spatial oscillation of teff( �R) along the x or y

axis are very slow as shown in Fig. 14(a) for μ = 0.01D.
A spherical deformation of the FS leads to a fast oscillation

of the effective tunneling with k∗
x (μ) ≈ 2 · k�r

F,±, in contrast
to slow oscillations in the presence of hole pockets. This is
illustrated for the two different cases in Fig. 14(b) where the
full teff( �R) (black solid curve) is compared to the main con-
tribution stemming from the spatial frequency k∗

x (μ) (dashed
line).

We augment this analysis for teff( �R) with the NRG calcu-
lation of the impurity spin-spin correlation function along the
basis vector direction, for positive and negative values of the
chemical potential.

For a negative chemical potential and a spherical FS,
the antiferromagnetic part of the correlation function almost
shows the same oscillations as the square of the effective
tunneling as can be seen in the upper panel of Fig. 14(b). The
small deviations of the correlation function from the behavior
of the effective tunneling can be ascribed to the FM part of
the RKKY interaction which is not captured by the effective
tunneling and evolves for finite U/�0.

In the presence of hole pockets, lower panel of Fig. 14(b),
the general characteristics of the slow oscillations can be
identified in the impurity spin-spin correlation function, too.
In the vicinity of a vanishing effective tunneling, only fer-
romagnetic correlations are observed. The sign of the corre-
lation function oscillates only in the presence of an antifer-
romagnetic contribution to the RKKY interaction, generated
by teff( �R).

Figure 15 shows the spin-spin correlation function (blue
curve) as well as the [teff]2 (black curve) as a function of
μ for a constant impurity distance �R in order to illustrate

FIG. 15. NRG calculation of the impurity spin-spin correlation
function for a coupling of U/�0 = 30 and the square of the effective
tunneling, plotted against the dimensionless chemical potential. The
RKKY interaction oscillates as a function of μ/D. Parameters:
D/�0 = 10, U/�0 = 30, Ns = 3000, and � = 4.

the nonlinear dependence of the frequency of the spin-spin
correlation function on the chemical potential.

C. Three-dimensional lattice at half-filling

In the previous sections, we demonstrated that the richer
spatial dependency of the spin-spin correlation function as
well as the effective tunneling, beyond the simplified isotropic
2kF oscillations, originates from the generically nonspherical
FS and can be analyzed by the investigation of the analytical
properties of the integrals.

We now extend our study to the 3d simple cubic disper-
sion. The effective tunneling term along the three symmetry
directions is depicted in Fig. 16. Just like in two dimensions,
the superposition of different frequencies account for complex
oscillations. The symmetry properties on the lattice places,
defined by Eqs. (67) and (68), are fulfilled.

FIG. 16. Effective hopping element in 3d plotted against the di-
mensionless impurity distance R/a. The anisotropic lattice structure
is mirrored in a strong dependence of the spatial frequency on the
directionality.
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FIG. 17. Doniach scenario in the TIAM for an impurity distance
�R = 〈3a, 0, 0〉. The inset depicts the impurity spin-spin correlation

function and illustrates the interimpurity singlet formation for large
values of U/�0. The continuous energy flow between the two fixed
points displays a crossover. NRG parameters: Ns = 3000 and � = 4.

1. AFM RKKY coupling: the Doniach scenario

In Sec. III, we discussed the transition from the Kondo
singlet to an interimpurity singlet ground state as a function
of an additional magnetic exchange interaction J12 in the
Hamiltonian. In principle, the transition can also be realized
by changing the ratio between the antiferromagnetic RKKY
interaction and the Kondo temperature. The transition is typ-
ically discussed in terms of the Kondo coupling JK in the
context of the TIKM. In lattice systems this is referred to
as the Doniach scenario [40]: the heavy Fermi liquid [39] is
replaced at the QCP by an AF ordered state generated by the
interimpurity singlets in a lattice.

Decreasing JK causes an exponential decay of TK, whereas
the RKKY interaction only falls off as J 2

K leading to an
increase of the ratio JRKKY/TK. In the TIAM, the Kondo
coupling JK is related to the ratio of the Coulomb interaction
U and the coupling strength �0.

Linneweber et al. investigated the TIAM on the three-
dimensional simple cubic lattice via a Gutzwiller variational
approach and found such a QCP at a critical Uc provided the
impurities are placed on the lattice sites [78]. The authors in-
dicated that their QCP is probably an artifact of the Gutzwiller
variational approach: the Gutzwiller trial wave function only
includes local correlations on the impurity site while the NRG
reveals already for the Kondo problem the extended nature of
the correlated singlet [59,60].

If the impurities are placed on different sublattices, e.g.,
if they are separated by an odd number of the lattice spacing
along the basis vector direction �R = Rodd〈1, 0, 0〉, the RKKY
interaction is always antiferromagnetic. The NRG level flow
of the stable FP as a function of U/�0 is shown in Fig. 17.
Clearly, the FP changes continuously from the SC fixed
point with P-H symmetry breaking scattering term to the
interimpurity singlet FP with the absence of a phase shift
of the conduction electron states. The crossover occurs in
the vicinity of U/�0 ≈ 14. The inset of Fig. 17 depicts the
corresponding impurity spin-spin correlation and illustrated

10−20 10−15 10−10 10−5 10−0

FIG. 18. The impurity entropy vs T for different values of U

for an impurity distance �R = 〈2a, 0, 0〉. (Inset) Impurity spin-spin
correlation function. NRG parameters: Ns = 3000, and � = 4.

the formation of a local interimpurity singlet in the limit of
U/�0 → ∞. No indication of a QCP is found by the NRG
when increasing U .

The absence of the QCP originates from the fact, that
the RKKY interaction cannot only be reduced to a spin
exchange interaction. The RKKY driven charge exchange
between the impurities, which is responsible for the antifer-
romagnetic interaction, generates marginal relevant operators
in the renormalization flow, driving the system away from the
QCP. In order to restore the QCP as a function of U/�0, a
compensating effective tunneling −teff( �R) has to be added as
well as an additional, antiferromagnetic spin exchange J12 that
would control the distance to the Varma-Jones type QCP.

2. FM RKKY coupling

If the impurities are placed on the same sublattice, the
RKKY interaction is ferromagnetic according to Eq. (67). Af-
ter the local moments are formed, they align with increasing
RKKY interaction, and the resulting triplet state is screened
in a two-stage Kondo effect [21]. This is clearly visible by
tracking the impurity entropy as a function of temperature [27]
for different values of U as depicted in Fig. 18. The local mo-
ment formation occurs on a scale of U/�0 leading to a ln(4)
impurity entropy contribution at intermediate temperatures.
By lowering T further, we observe the crossover to a local
triplet on the scale defined by JRKKY: The larger U is, the
more pronounced the consecutive two stage Kondo screening
is visible revealing the different unstable FP of the RG flow.

The inset of Fig. 18 shows the impurity spin-spin corre-
lation as a function of U/�0 and displays the formation of
a local interimpurity triplet. Since the Kondo temperature is
suppressed with increasing U , the RKKY interaction domi-
nates at higher temperature and favors a correlated triplet that
is collectively screened in a two stage process for T → 0.

We do not find a breakdown of the Kondo effect in the pres-
ence of FM RKKY interaction found in a recent perturbative
RG treatment of the TIKM [42]. While this RG approach fo-
cuses on the renormalization of the effective Kondo coupling
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at one of the impurity sites, the NRG includes all couplings
for both impurities on equal footing.

VI. SUMMARY AND CONCLUSION

Mapping the TIAM onto degrees of freedom with even
and odd parity symmetry generates two, in general P-H asym-
metric, hybridization functions. Both hybridization functions
can be decomposed into a symmetric part with respect to
the frequency and an asymmetric correction. Neglecting the
asymmetric part generates always a FM RKKY interaction.
A QCP as observed by Varma and Jones is found after
adding a direct antiferromagnetic exchange interaction. The
asymmetric part, however, is responsible for an additional
relevant scattering term at zero energy and hence destroys the
Varma and Jones QCP.

We have shown that the effect of the asymmetric part is
equivalent to an effective tunneling term between the two
impurities: replacing the full hybridization function by the
symmetrized contribution and this local tunneling term leads
to the identical low-temperature FP spectrum in the NRG.

This opened the door for restoring the QCP by adding
a suitable tunneling term to the full Hamiltonian at a fixed
distance R or by adjusting the distance between the impurities.
While the counter term can be analytically calculated for P-H
symmetric impurities, the term is determined by a numerical
iteration procedure for P-H asymmetric impurities. Using the
estimates from the case of P-H symmetric impurities as the
initial value, the parameter teff or R is iteratively adjusted
such that the lowest single-particle excitations in the even and
the odd channel are equal. We checked that these results are
consistent with the scattering phases of both single-particle
Green functions and found that both phases are also identical
at the QCP.

Using the replacement of the full model by a symmetric
hybridization function and a local tunneling term, provides a
better understanding of the antiferromagnetic contribution to
the RKKY interaction. In contrary to the RKKY interaction

of a two-impurity Kondo model resulting from a Schrieffer-
Wolff transformation, we find J AF

RKKY ∝ (teff )2/U . Only for
very large U , a crossover to J AF

RKKY ∝ 1/U 2 is observed.
Furthermore, the value of JRKKY decays much more rapidly
than J AF

RKKY. The distance dependency of the corresponding
spin-spin correlations, however, tracks the distance depen-
dency of (teff )2 indicating a significant deviation for small and
intermediate U .

For a constant tunneling teff, the impurity spin-spin cor-
relation function is governed by a dimensionless variable
that accounts for the distance-dependent correction and the
correction to the wide-band limit.

We analyzed the spatial anisotropy of the RKKY inter-
action as well as the impurity spin-spin correlation function
for square lattices in different dimensions. We identified the
major spatial frequencies that govern the oscillation in real
space for different chemical potentials close to half-filling and
linked them to the single-particle dispersion as well as the
shape of the Fermi surface.

No quantum phase transition is found upon increasing the
local Coulomb repulsion for a distance at which the RKKY
interaction is AF. The spin-spin correlation function as well as
the NRG low-temperature FP spectrum changes continuously
from the strong-coupling FP towards the flow characterizing
the local singlet phase. For a distance leading to a FM
RKKY interaction, a two-stage Kondo effect only becomes
more pronounced with increasing U . Therefore the Doniach
scenario for heavy fermion QCP requires lattice effects that
are included in the particle-hole Bethe saltpeter equation that
enters the lattice spin susceptibility.
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