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We present theoretical results for the optical conductivity and the nonresonant Raman susceptibilities for three
principal polarization geometries relevant to the square lattice. The susceptibilities are obtained using the recently
developed extremely correlated Fermi liquid theory for the two-dimensional t-t ′-J model, where t and t ′ are the
nearest- and second-neighbor hopping. Our results sensitively depend on t, t ′. By studying this quartet of related
dynamical susceptibilities, and their dependence on t, t ′, doping, and temperature, we provide a useful framework
of interpreting and planning future Raman experiments on strongly correlated matter.
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I. INTRODUCTION

Inelastic or Raman scattering of electrons by photons (e-γ )
in strongly correlated systems is of considerable current inter-
est. The scattering intensity, given by the Kramers-Heisenberg
formula [1], consists of a resonant and a nonresonant piece. The
nonresonant piece depends only on the energy transfer. In con-
trast, the resonant piece also depends on the incident energy,
and it is the focus of this work. In typical weakly correlated
metals, this contribution is confined to a small energy window
of a few meV [2,3]. Raman scattering theory, if based solely
on density fluctuations, would give a vanishing contribution
as q → 0 due to the conservation law in that limit. The early
works of Refs. [2,4] showed that nonparabolic bands lead to
the coupling of light to a nonconserved operator (the stress
tensor operators discussed below), rather than the density.
These operators are exempt from conservation laws that govern
the density, and therefore they can lead to nonresonant Raman
scattering.

Recent experiments [5–17] in strongly correlated metallic
systems such as high-Tc superconductors have added further
complexity to challenge to our understanding. It is found
that the scattering is q-independent and extends over a much
larger energy range O (eV), and it is also observed to have
a complex T dependence [5–7,10,14]. To explain these, a
systematic reformulation of light scattering in narrowband
systems was developed in [18–23]. Shastry and Shraiman (SS)
[18,19] developed a theory of Raman scattering in Mott-
Hubbard systems using the Hubbard model, where nonparabol-
icity of bands is built in correctly, so that the conservation
law concerns are taken care of. However, the large energy
spread of the nonresonant signals remains unaccounted for.
It cannot arise from quasiparticles in Fermi liquids, and
hence SS argued that a large contribution from the incoher-
ent background of the electron spectral function is required
to explain the data (see, e.g., [5,6]). This qualitative argu-
ment is not fine enough to explain or predict differences
in backgrounds in different geometries. The latter remains
an unresolved problem, and it is the focus of the present
work.

Progress toward a solution at the microscopic level has
been slow since a suitable theory in two dimensions displaying
such a phenomenon has been lacking so far. In this work, we
apply the recently developed extremely correlated Fermi liquid
theory (ECFL) [24,25] to calculate the Raman cross sections
using the k-dependent bare vertices of Refs. [18,19]. This
theory provides a framework for controlled calculations in the
t-Jmodel, a prototypical model for very strong correlations,
and a limiting case of the Hubbard model. The theory has been
successfully benchmarked against essentially exact results in
d = 0 [26], d = 1 [27], as well as d = ∞ [28]. A recent
application of the theory to the physically important case of
d = 2 in Refs. [29,30] gives detailed results for the spectral
functions and the resistivity ρ in the t-t ′-J model, with nearest-
and second-neighboring hopping. The state obtained in ECFL
at low hole densities has a very small quasiparticle weight
Z � 1. A significant result is that the temperature dependence
of resistivity is nonquadratic already at T ∼ 100 K for low
hole doping.

In this work, we apply the solution found in Refs. [29,30] to
compute the Raman scattering, in three standard polarization
configuration channels A1g, B1g, B2g defined below [31]. The
results are applicable to either electron doping or hole-doped
cuprates by choosing the sign of t ′, and they may apply
to other strongly correlated systems as well. Following SS,
we also compare the Raman conductivities with the optical
conductivity, and we shall focus on the quartet of these results
on various values of material parameters.

The utility of comparing the optical conductivity with the
Raman response requires a comment. SS [18,19] suggested
that this comparison is useful, since these are exactly related
in a limiting situation of d = ∞. Further, in d = 2, 3, . . .

one often calculates the response within the bubble diagrams,
where again these are related. In the bubble approximation, also
used in the present work, one evaluates the current-current and
related correlation functions by retaining only the lowest-order
χJJ ∼ ∑

k (γk )2G(k)G(k) (i.e., bubble) terms with dressed
Green’s functions and suitable bare vertices γ . While this
calculation misses a contribution due to the renormalization
of one of the bare vertices γ → �, it is hard to improve on
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FIG. 1. Electrical and Raman resistivities from Eq. (5) at t ′ = −0.2 with varying hole doping δ, as marked. The T dependence of electrical
resistivity and the A1g resistivity are concave-down at small δ, while the B1g and B2g resistivity are flat or concave-up. Inset: The displayed
Fermi surfaces at δ = 0.12, 0.24 locate the maxima of ϒ(k, ω). The relevant squared vertices from Eq. (2) are shown as a heat map. The hot
spots are movable by varying t ′ and t .

this already difficult calculation for strong correlations, since
G is highly nontrivial. An exception is the special case of
d → ∞, where the vertex corrections vanish. Within the bub-
ble scheme, the bare Raman and current vertices are different
while everything else is the same. Therefore, one should
be able to relate the two experimental results and explore
the differences arising from the bare vertices. The “pseudo-
identity” of the transport and Raman resistivities has been
explored experimentally in Ref. [8] and finds some support.
In this work, we use the correct bare vertices in the different
geometries to explore the various Raman resistivities to refine
the theory. These different bare vertices have a different
dependence on the hopping parameters t, t ′, and the calcu-
lations reflect these in specific and experimentally testable
ways.

The neglect of vertex corrections also leads to a relationship
between various Raman susceptibilities at finite ω. In the
experiments of Ref. [6], the same quartet of susceptibilities
has been studied and found to have a roughly similar scale
for their ω dependence, although the curve shapes are distinct.
On the theoretical side, one interesting aspect of the results
of Refs. [29,30] is that the Fermi surface shape remains very
close to that of the noninteracting tight-binding model, while
of course conserving the area. Thus the Dyson self-energy is
a weak function of �k, unlike the strong dependence in one

dimension [27]. This fact implies that the vertex corrections,
while nonzero, are modest.

II. THE RAMAN AND CURRENT VERTICES

We use the t-t ′-J model with a tight-binding dispersion
[29] on the square lattice ε(k) = −2t[cos(kx ) + cos(ky )] −
4t ′ cos(kx ) cos(ky ), and we set the lattice constant a0 → 1.
The photons modulate the Peierls hopping factors as tij →
tij exp{ie/h̄ ∫ j

i
d�r. �A}, and the second-order expansion coeffi-

cients define the scattering operators. In this case, they are

Ĵα,q =
∑
kσ

Jα (k)C†
k+ 1

2 q,σ
Ck− 1

2 q,σ , (1)

where α is a composite index determined by the in-out
polarizations of the photon. With that the vertices Jα for the
three main Raman channels are

A1g : JA1g
(k) = 2t (cos kx + cos ky ) + 4t ′ cos kx cos ky,

B1g : JB1g
(k) = 2t (cos kx − cos ky ),

B2g : JB2g
(k) = −4t ′ sin kx sin ky,

xx : Jxx (k) = 2 sin kx (t + 2t ′ cos ky ). (2)

The definition of α = xx corresponds to the particle current
along x. It integrates the charge current into the same scheme
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FIG. 2. Shaded region for estimating the average scale of the
vertices.

as the Raman scattering. It is interesting that the B2g vertex is
independent of t , and is solely governed by t ′. The vertex B1g is
complementary given its independence of t ′. These geometries

sample different parts of k space in interesting ways due to their
different �k dependences.

We next define the calculated variables, and we display
the results for them from computations based on the spectral
functions found in Refs. [29,30]. Results in the ω = 0 dc limit
and also at finite ω are shown. Finally, we discuss the results
and their significance.

III. RAMAN AND CHARGE SUSCEPTIBILITIES

We summarize the formulas for the (nonresonant) Raman
susceptibility, and in the spirit of Refs. [18,19] we also define
a Raman conductivity and resistivity in analogy as follows:

χα (q, z) =
∑
nm

pn − pm

εm − εn − z
|(Ĵα,q )n,m|2, (3)

where pn is the probability of the state n. For visible light,
qa0 � 1 and therefore we set q → 0. The (nonresonant)
Raman intensity Iα [1–3,18,19] and the Raman conductivities
[18,19] are given by

Iα (0, ω) = χ ′′
α (0, ω)

(1 − e−βω )
, σα (ω) = ζα

χ ′′
α (0, ω)

Nsω
, (4)

with Ns the number of sites, and ζxx = e2 accounting for the
electric charge in the conductivity with all other ζα = 1. In the

FIG. 3. Dimensionless ρ̄xx (taken from Ref. [29]), ρ̄A1g
, ρ̄B1g

, and ρ̄B2g
at δ = 0.15 with varying second-neighbor hopping t ′, as marked

(same legend for all subfigures). Reference [8] displays data corresponding to the B1g geometry.
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FIG. 4. Dynamical conductivities σ̄α and susceptibilities χ̄ ′′
α (inset) for the hole-doped case t ′ = −0.2, T = 63 K at different δ, as marked.

In the experiments in Ref. [6] (Fig. 1), the same quartet of results is shown for LSCO. At the highest energy of over 1000 K, as in the data, the
susceptibility shows no sign of dropping off.

dc limit we define the Raman resistivities

ρα (0) = Ns

ζα

kBT

Iα (0, 0)
, (5)

where for α = xx, ρα is the usual resistivity.
The “pseudo-identity,” a statement of universality relating

electrical transport and the dc limit of Raman intensities noted
by SS in Refs. [18,19], is arrived at if we assume that ρα has a
similarT dependence for allα:Iα (0, 0) ∼ Cα

T
ρxx (T ) , whereCα

is an α-dependent constant. Thus ρ ∼ T σ behavior would give
rise to T 1−σ behavior for the Raman intensity in all channels.
We see in Fig. 1 that this suggestion is true for theA1g resistivity
at hole dopings, but it needs to be adjusted to the different k-
dependent filters that make the B1g and B2g channels different
from the others. Thus we limit the universality of the pseudo-
identity in this work, and we quantify the effects of the bare
vertices in the relationship between the members of the quartet
of susceptibilities.

Proceeding further using the bubble scheme we get the
imaginary part of the dimensionless susceptibility χ̄ ′′

α (0, ω) ≡
c0h
Ns

χ ′′
α (0, ω) as

χ̄ ′′
α (0, ω) = ω

〈
ϒ(k, ω)J 2

α (k)
〉
k
, (6)

where c0 ∼ 6.64 Å is a typical interlayer separation [29]. The
angular average is 〈A〉k ≡ 1

Ns

∑
k A(k) and the momentum

resolved relaxation scale is

ϒ(k, ω)

= 4π2

ω

∫ ∞

−∞
dy ρG(k, y)ρG(k, y + ω)[f (y) − f (ω + y)].

Here ρG(k, ω) is the electron spectral function. With ρ1,α ≡
c0h
ζα

, the corresponding dimensionless conductivity σ̄α (ω) ≡
ρ1,α × σα (ω) is given by

σ̄α (ω) = 〈
ϒ(k, ω)J 2

α (k)
〉
k
. (7)

From Eqs. (6) and (7), we can see χ̄ ′′
α (0, ω) = ω ∗ σ̄α (ω)

IV. PARAMETER REGION

We explore how the variation of second-neighbor hopping
t ′, doping δ, and temperature T affects the quartet of con-
ductivities and susceptibilities in the normal state. We focus
on optimal doping or slightly overdoped cases from electron-
doped (positive t ′) to hole-doped (negative t ′) systems. Our
temperature region starts from 63 K to a few hundred degrees
Kelvin.
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FIG. 5. Dynamical conductivities σ̄α and susceptibilities χ̄ ′′
α (inset) for the electron-doped case t ′ = 0.2, T = 63 K at different δ, as marked.

V. DC LIMIT AND ELECTRICAL RESISTIVITY RESULTS:

Using the spectral function from the second-order ECFL
theory, we calculate the dimensionless dc (ω → 0) electrical
and Raman conductivities σ̄α from Eq. (7). The corresponding
dimensionless resistivities are

ρ̄α = 1

σ̄a

= 1〈
ϒ(k, 0)J 2

α (k)
〉
k

. (8)

The electrical resistivity in physical units is given by ρxx =
ρ̄xx × ρ1,xx , with ρ1,xx = c0

h
e2 ∼ 1.71 m � cm [29].

We calculate typical quantities for the three Raman geome-
tries and the electrical conductivity from Eq. (2) as a set of
quartets below. The comparison of the figures in each set is of
interest, since the different functions in the bare vertices pick
out different parts of the k-space. In this paper, t = 1 serves
as the energy unit; for the systems in mind, we estimate [29]
t ∼ 0.45 eV.

In Fig. 1, we plot dc resistivity ρ̄xx and Raman resistivities
in the dc limit ρ̄A1g

, ρ̄B1g
, ρ̄B2g

varying hole doping δ and fixing
t ′ = −0.2. The four figures have a roughly similar doping
dependence, as suggested by the pseudo-identity. They all
decrease when the doping increases, although the curvature
changes more in ρ̄xx and ρ̄A1g

than the other two cases. This can
be understood from Eq. (6) since they arise from the same ker-
nel ϒ(k, 0) with different filters. The quasiparticle peak in ρG,

contributing most to ϒ(k, 0), is located along the Fermi surface
and gets broadened when warming up. The inset shows the cor-
responding squared vertexJ 2

α in the background and the Fermi
surfaces at the lowest and highest dopings. The B1g vertex
vanishes along the line kx = ky while the B2g vertices vanish
near {π, 0} and {0, π} points. In our calculation, both B1g and
B2g overlap well with the peak region of the spectral function,
whereas A1g and the resistivity do not. This results in the dif-
ference between the T dependence of them and the other two in
Fig. 1. It would be of considerable interest to study this pattern
of T dependences systematically in future Raman studies.

Although all ρ̄α increase when reducing doping δ approach-
ing the half-filling limit due to the suppression of quasiparti-
cles, their magnitudes at high temperature vary considerably
as a result of different vertices filtering the contribution from
ϒ(k, 0). We can understand this scale difference by evaluating
the average of vertices over the shaded region in Fig. 2. The
shaded region covers the Fermi surface for all chosen δ and
t ′, and therefore it contains the most significant contribution
to ρα .

At t ′ = −0.2, 〈J 2
xx〉s ≈ 2.41, 〈J 2

A1g
〉s ≈ 0.56, 〈J 2

B1g
〉s ≈

1.30, 〈J 2
B2g

〉s ≈ 0.20, where 〈〉s represents the k average over
the shaded region. They not only explain the relation ρ̄xx <

ρ̄B1g
< ρ̄A1g

< ρ̄B2g
, but they also capture the ratio among them

rather closely at high enough T . The structure at low T is more
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FIG. 6. Dynamical conductivities and (inset) susceptibilities for the electron-doped case with t ′ = 0.2, δ = 0.15 for various T ’s as marked.
Part (d) with B2g symmetry is comparable to the high-resolution experimental result in Fig. 2 of Ref. [10] at a comparable set of T ’s. The
theoretical curve reproduces well the quasielastic peaks and their T evolution.

subtle, and it carries information about the magnitude of t ′ that
cannot be captured by the above high-T argument.

Although all ρ̄α increase as δ decreases in general, their t ′

dependence can be rather different, as shown in Fig. 3. ρ̄xx and
ρ̄B1g

decrease monotonically in general as t ′ increases from
hole-doped (negative) to electron-doped (positive), while ρ̄A1g

and ρ̄B2g
decrease only as |t ′| increases and their monotonicity

with respect to t ′ changes upon sign change of t ′. An-
other interesting observation is that ρ̄α (t ′ = −0.2) > ρ̄α (t ′ =
0.2) and ρ̄α (t ′ = −0.4) > ρ̄α (t ′ = 0.4) are generally true for
α = xx, B1g and B2g , but for the A1g case, ρ̄α (t ′ = −0.2) <

ρ̄α (t ′ = 0.2) in general and ρ̄α (t ′ = −0.4) ≈ ρ̄α (t ′ = 0.4).
In Eq. (8), the resistivities depend on t ′ through ϒ(k, 0)

and J 2
α . To estimate their t ′ dependence, we can look at

their average over the shaded region 〈ϒ(k, 0)〉s and 〈J 2
α 〉s .

While 〈ϒ(k, 0)〉s rises monotonically as t ′ increases, 〈J 2
α 〉s

(α = xx,A1g, B2g) is a quadratic function of t ′ that behaves
differently at positive and negative t ′, as shown in Eq. (2).

In the simplest B1g case, J 2
B1g

is independent of t ′. Then t ′

only affects ρ̄B1g
through ϒ(k, 0) and therefore ρ̄B1g

increases
almost monotonically as t ′ decreases (the crossing between
t = 0.2 and 0.4 is due to the fact that the change in Fermi
surface geometry leads to a different filtering result when
coupling toJ 2

B1g
). In the charge-current case, the t ′ dependence

of ϒ(k, 0) still dominates since ρ̄xx behaves similarly to ρ̄B1g

and the contribution from J 2
xx mostly modifies the curvature

without affecting the relative scale.
The different behaviors in the other two cases indicate

the quadratic t ′ dependence in J 2
α (α = A1g, B2g) becomes

dominant. In the simpler B2g case, J 2
B2g

∝ t ′2 provides the
dominant t ′ dependence in ρ̄B2g

, explaining σ̄B2g
(t ′ = 0) = 0

and ρ̄B2g
(|t ′| = 0.2) > ρ̄B2g

(|t ′| = 0.4) regardless of the sign
of t ′. Similarly, due to the quadratic t ′ dependence of J 2

A1g
,

ρ̄A1g
(t ′ = 0) > ρ̄A1g

(|t ′| = 0.2) > ρ̄A1g
(|t ′| = 0.4).

Typically negative t ′ leads to stronger correlation and
suppresses the quasiparticle peak [29] and hence for a certain
|t ′|, ρ̄α (t ′ < 0) > ρ̄α (t ′ > 0) is generally true except for the
A1g case. In this exception, the negative linear t ′ term in J 2

A1g

shifts the stationary point away from t ′ = 0 and counters this
effect from ϒ(k, 0) for small |t ′| leading to ρ̄A1g

(t ′ = −0.2) <

ρ̄A1g
(t ′ = 0.2) and ρ̄A1g

(t ′ = −0.4) ≈ ρ̄A1g
(t ′ = 0.4).

Besides, ρ̄A1g
shows rather different T -dependent behaviors

between electron-doped t ′ � 0 and hole-doped t ′ < 0 cases. At
negative t ′, ρ̄A1g

increases almost linearly with temperature.
But at zero or positive t ′, ρ̄A1g

first increases sharply up
to a certain temperature scale depending on t ′ and then
crosses over to a region where the growth rate becomes much
smaller.
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FIG. 7. Optical conductivity σ̄xx (ω) and the Raman conductivities σ̄A1g
(ω), σ̄B1g

(ω), σ̄B2g
(ω) at t ′ = −0.2, δ = 0.15 and varying T , as

marked (same legend for all subfigures). The corresponding dimensionless susceptibility is plotted in the inset with the same x axis. References
[6,7,10] show data that correspond to these variables.

VI. FINITE ω RESULTS

Next we present the ω-dependent optical and Raman con-
ductivities defined in Eq. (7). In Figs. 4 and 5, the set of four
ω-dependent conductivities are displayed for the hole-doped
system at t ′ = −0.2 and the electron-doped system at t ′ = 0.2,
respectively, for a set of typical densities at low T . In the insets
we display the corresponding imaginary part of susceptibility,

related through Eq. (6). In most cases, the quasielastic peak gets
suppressed and shifts to higher frequency when reducing the
carrier concentration. The only exception is χ̄ ′′

A1g
at t ′ = 0.2.

Its quasielastic peaks are considerably smaller than other
geometries due to the fluctuation in the specific vertex, and
they get higher and broader as doping increases.

In Fig. 6 we focus on the electron-doped case of varying T

at t ′ = 0.2, δ = 0.15, where high-quality experimental results

FIG. 8. Optical conductivity σ̄xx (ω) and the Raman conductivities σ̄A1g
(ω), σ̄B1g

(ω), σ̄B2g
(ω) at δ = 0.15, T = 63 K, and varying t ′, as

marked (same legend for all subfigures). The corresponding dimensionless susceptibility is plotted in the inset with the same x axis. References
[6,7,10] show data that correspond to these variables.
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FIG. 9. Relaxation rates (half-widths at half-maximum) of σα (ω) in units of t , at t ′ = −0.2 at various marked δ. The optical rate shows less
convexity than the corresponding dc resistivity of Ref. [29]. The rates in (a,b) and (c,d) have similar orders of magnitude, for reasons discussed
in Fig. 1.

are available for the B2g Raman channel in Ref. [10]; see
particularly Fig. 2. We evaluate the susceptibility at T values
corresponding to those in this experiment. There is a fair
similarity between the theoretical curve [panel (d)] and the
experiment. In particular, the theoretical curve reproduces the
quasielastic peak and its T evolution. The other three panels
in Fig. 6 are our theoretical predictions, and they are equally
amenable to experimental verification.

In the xx, B1g, B2g geometries, the quasielastic peaks in
susceptibility get slightly higher and quite broader upon warm-
ing. The A1g case is different. Its quasielastic peaks are much
less obvious (too broad) except for the lowest temperature, and
the peak magnitude is rather sensitive to temperature increase.

We also vary T at hole doping t ′ = −0.2 in Fig. 7. Compar-
ing with the electron-doped case in Fig. 6, we note that the hole-
doped optical and Raman objects share a greater similarity
in shape dependence on T if we ignore the scale difference.
As T increases, the quasiparticle peaks get softened, and
hence it generally suppresses the conductivities as well as the
quasielastic peak in susceptibilities.

For completeness, the t ′ variation in σ̄α (ω) and χ̄ ′′
α (ω)

is plotted in Fig. 8, and it looks rather different among
various geometries. This can be understood as arising from
the competition among various factors. We have a quadratic
t ′ dependence in the squared vertices, and a monotonic t ′
dependence in the magnitude and geometry of ϒ(k, ω). The t ′
dependence of the shape of σ̄α has more commonality. Another
interesting observation is that, unlike the dc case when σ̄xx

and σ̄B1g
are similarly affected by t ′, at finite frequency their

behaviors depend on t ′ rather differently. This difference is
more obviously observed in terms of χ̄ ′′.

From the optical and Raman conductivities σ̄α we can ex-
tract a frequency scale �α , as the half-width at half-maximum,

in units of t . These are plotted against T in Fig. 9 for varying δ

and Fig. 10 for varying t ′. It is remarkable that despite a bare
bandwidth of ∼ 3.6 eV, these frequency scales appear close
to linear in T down to very low T . This is closely related to
the observation in Ref. [29] that the resistivity departs from
a T 2 behavior at extraordinarily low T ’s, i.e., the effective
Fermi temperatures are suppressed from the bare values by two
or more orders of magnitude. Although the magnitude of the
optical and Raman conductivities differs a lot, their relaxation
rates describing the shape turn out to be much closer, as a result
of a similarT -dependent line shape of the spectral function [29]
in the normal state.

VII. CONCLUSION AND DISCUSSION

We have presented calculations of the electrical and Raman
resistivities in the dc limit, the optical conductivity, the Raman
susceptibilities, and related objects based on the second-order
ECFL theory in Ref. [29]. We computed the susceptibilities
(using the leading-order approximation) with the shown re-
sults. Experiments on different geometries can test and put
some bound on this hypothesis of weak vertex corrections for
the Raman operators. This is clearly of theoretical importance,
since going beyond the bubble graphs brings in a formidable
level of complexity.

The ECFL theory leads to a very small quasiparticle weight
Z and a large background extending over the bandwidth, and
it has a very small effective Fermi temperature leading to an
interesting T dependence of the resistivity, as discussed in [29].
The line shape of the calculated Raman susceptibility is close
to that for the case of electron-doped NCCO [10] in terms of
the T and ω dependences, and therefore it is promising. Our
calculation also gives the Raman susceptibility in two other

FIG. 10. The half-width at half-maximum for optical conductivity and Raman conductivities at δ = 0.15 and varying t ′, as marked.
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geometries, and this prediction can be checked against future
experiments that are quite feasible. We note that the data [6]
from Sugai et al. for this quartet of variables in the case of
LSCO seem to be roughly consistent with our results, and a
more detailed comparison is planned.

The focus on the T dependence in the ω → 0 limit, i.e., on
resistivities, can be quite a fruitful goal for future experiments,
since this limit gets rid of all excitations and measures the “pure
background.” It is an important exercise since the different
geometries probe different combinations of t, t ′ as they occur in
the bare vertices [Eq. (2), as stressed above. We are predicting
that the Raman resistivity in each channel can be found from
the intensity at low T , and broadly speaking it is similar to
resistivity. In further detail, it is predicted to be (a) channel-
specific and (b) t ′/t-dependent. These clear-cut predictions can
be tested in future experiments.

Finally, although such a measurement is not commonly
done, a systematic measurement of the ratios of the scattering

cross sections in different geometries should be feasible.
This measurement, and a comparison between the quartet of
susceptibilities presented here, can be profitably compared
with recent theories of strongly correlated systems to yield
material parameters. Most importantly, it can yield physical
insights into the mechanism underlying the broad nonresonant
Raman signals that have remained quite mysterious so far.
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