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How vortex bound states affect the Hall conductivity of a chiral p ± i p superconductor
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The physics of a planar chiral p ± ip superconductor is studied for various vortex configurations. The
occurrence of vortex quasiparticle bound states is exposed together with their ensuing collective properties,
such as subgap bands induced by intervortex tunneling. A general method to diagonalize the Hamiltonian of a
superconductor in the presence of a vortex lattice is developed that employs only smooth gauge transformations.
It renders the Hamiltonian to be periodic (thus allowing the use of the Bloch theorem) and enables the treatment of
systems with vortices of finite radii. The pertinent anomalous charge response cxy is calculated (using the Streda
formula) and reveals that it contains a quantized contribution. This is attributed to the response to the nucleation
of vortices from which we deduce the system’s quantum phase.
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I. INTRODUCTION

Measurement of the polar Kerr effect (PKE) in the su-
perconducting state of Sr2RuO4 indicates the presence of
time-reversal symmetry breaking [1,2]. However, so far no
quantitative agreement has been established between theoreti-
cal and experimental values of the Kerr angle [3–8]. The latter
is proportional to the Hall conductivity, which in turn is propor-
tional to the anomalous charge response cxy [9]. The quantity
cxy is finite only in a chiral superconductor [10,11], so the
measurement of the PKE provided some of the first evidence
for the p ± ip nature of the order parameter of Sr2RuO4.

In this paper, we calculate cxy at zero magnetic field and
zero vorticity using a modified Streda formula and show that
cxy is a sum of two contributions, one which is nonuniversal,
and the other equals κ/8π , where κ is the Chern number of
the superconductor, as depicted in Fig. 1. An important insight
gained thereby is that an accurate evaluation of cxy requires
the knowledge of the charge response to the application of a
weak magnetic field and a compensating vortex pair as dictated
by imposing periodic boundary conditions (PBCs). This is
equivalent to elucidation of the charge response following
a chirality flip of the superconductor. Eventually, however,
the effect of vortices characteristics (such as their positions
as well as their detailed structures) on cxy is minor, and our
main results appear to be universal. Once cxy is elucidated, the
Hall conductivity at a zero magnetic field and vorticity can be
extracted from cxy using a standard procedure [9,11], and that
has bearing on the experimentally measured PKE.

In order to substantiate our main result, we need to consider
the response of the superconductor to the insertion of a single
Dirac flux quanta (� = h/e) and compensating pair of vor-
tices. Due to the PBCs imposed on the system when employing
the Streda formula, it is natural to solve an equivalent problem
for a system composed of many copies of the (originally finite)
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system, which maps onto an infinite superconductor in the
presence of a periodic vortex lattice. The vortices are assumed
to have finite radii, thus enabling us to explore the possible
dependence of cxy on the presence of vortex bound states.

A natural framework for studying the physics of a periodic
vortex lattice is to employ Bloch’s theorem. However, this
procedure is hindered by the fact that the vector potential
and the phase of the order parameter are not independently
periodic over the magnetic unit cell (MUC). One may try
to apply a gauge transformation to combine the two into
a single field which is proportional to the supercurrent. As
the latter is periodic in the lattice, Bloch theorem can be
employed. However, since the gauge transformation is singular
in the presence of vortices, this procedure introduces spurious
magnetic fields in the center of the vortices. These spurious
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FIG. 1. Average anomalous charge response cxy vs chemical po-
tential μ for a planar p-wave superconductor. The result of a modified
Streda formula (Numerical) is compared with the prediction of the
effective low-energy theory of a p-wave superconductor (Analytical).
Here t = |�| = 1 and ξ = 2.5. In addition, the magnetic unit cell
contains 40 × 41 sites and two vortices that are pinned on its diagonal,
partitioning it in a ratio of 1:2:1.
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fields either break particle-hole symmetry or introduce branch
cuts, originating from the vortex centers, that lead to numerous
technical obstacles [12–16].

To circumvent these obstacles, we develop an algorithm to
perform an efficient exact diagonalization of the Bogoliubov–
de Gennes (BdG) Hamiltonian for an infinite two-dimensional
(2D) vortex lattice in a general tight-binding model, that
completely avoids the use of singular gauge transformations.
Instead, a smooth gauge transformation is employed, that
renders both the order parameter and the hopping amplitudes
to be independently periodic on the lattice sites.

II. GENERALITIES

It is our perception that the algorithm developed here for
the diagonalization of the Hamiltonian is not just a numerical
trick, but rather, it meticulously exploits the pertinent physical
concepts. Thus, it is worthwhile to illuminate its construction
step by step right at the onset. First, we derive an exact
expression for the phase of the order parameter by summation
over vortices in an ordered array in a superconductor. Second,
we transform to another gauge that allows for simultaneously
taking the superconducting phase function and the Peierls
phases to be periodic functions (mod 2π ) without sacrificing
any of their properties. Third, we introduce a new gauge for
the vector potential, which we dub the “almost antisymmetric
gauge (AAG),” which allows accessing, in a system with
PBCs, the highest resolution for its magnetic-field dependence.
Fourth, we diagonalize the Hamiltonian in a single unit cell
under varying boundary conditions per the Bloch theorem,
i.e., for different values of the lattice momentum. Thus we
extract both the full spectrum of the Hamiltonian and its wave
functions.

III. HAMILTONIAN AND ORDER PARAMETER

For spin-1/2 fermions (spin projection s =↑,↓), the BdG
Hamiltonian in its tight-binding form (taking h̄ = c = e = 1)
consists of three terms Ĥ = T̂ + �̂ − (μ − 4t )N̂ . The hop-
ping term reads

T̂ = −t
∑
r,s,i

exp

(
i

∫ r+ai

r
A · d�

)
ψ

†
r+ai ,s

ψr,s + H.c. (1)

The pairing term for an s-wave superconductor is as follows:

�̂s-wave =
∑

r

�(r)ψ†
r↑ψ

†
r↓ + H.c., (2)

where �(r ) = �0(r ) exp(i�(r )) with �0(r ), �(r ) as real
scalar fields and ai = ai τ̂ i (with i = 1, 2) are the lattice
vectors. For spinless fermions, we omit one spin component
from the hopping term and take the lowest angular momentum
p-wave pairing,

�̂p-wave =
∑
r,i

�p±ip(r, ai )ψ
†
r↓ψ

†
r+ai↓ + H.c., (3)

where �p±ip(r, a)=�0(r ) exp(±i Arg(a)) exp(i�(r )) exp
( i

2

∫ r+a
r ∇� · d�) and Arg(r ) = Arg(x + iy). The super-

conducting order parameter is defined in such a way that the
U(1) gauge invariance is respected [13].

We recall that vortices are encoded as nodes of the order
parameter, characterized by a finite quantized winding number
of the phase �(r ) [17]. In order to form a vortex lattice we tile
the plane with a MUC. The MUC is chosen to enclose an
even number of vortices. Thus, each vortex within the MUC
constitutes a sublattice. The superconducting phase �(r ) can
be written as a sum over contributions of such vortex (or
antivortex) sublattices �(r ) = ∑Nv

i=1 siθ (r − r i ), where si =
+ (si = −) for vortices (antivortices) and r i is the position
of the ith sublattice with respect to the origin. Within each
sublattice, the phase θ (r ) can be expressed by summing the
contributions of all vortices in the sublattice,

θ (r ) = lim
M→∞

[
2M∑

m,n=−2M

Arg(r − mτ 1 − nτ 2) mod 2π

]
,

(4)

where τ i = qiai τ̂ i are the vectors spanning the MUC, com-
posed of q1 × q2 atomic sites. Using complex variables
z = x + iy, we have

θ (z) = Im

{
Log

[
iϑ1

(
z

τ2
,−τ1

τ2

)]
− 2iz2

τ1τ2
arctan

(
iτ1

τ2

)}
,

(5)

where τi is the complex representation of the vector τ i .
It is important to note that, although the resulting function

θ (r ) admits the correct windings at the positions of the vortices,
it is generally nonperiodic on the MUC. Therefore, using this
summation for taking PBCs for a single MUC (a torus) is
unsafe.

IV. LATTICE PERIODIC GAUGE

We proceed by taking a gauge transformation
that renders the order parameter and the hopping
amplitudes periodic in the MUC A → A + 1

2∇rχ, � →
� exp(iχ ), ψrs → exp(iχ/2)ψrs . We note that the
supercurrent J ∝ 1

2∇r� − A is periodic in the two

magnetic lattice vectors τ i and thus
∫ r+τ i

r J · d�

is similarly doubly periodic. Therefore, we can always
choose χ (r ) so that the fields �′(r ) = �(r ) + χ (r ) and∫ r+τ i

r (A + 1
2∇rχ ) · d� are periodic (mod 2π ) on the lattice

sites rm,n = (m/q1)τ 1 + (n/q2)τ 2. We now show that there
exists a gauge that fulfills the conditions above for a MUC
composed of q × (q + 1) atomic sites for which q2 − q1 = 1.
For a general vortex lattice, using the same notation as for
�(r ) above, we write χ (r ) = ∑Nv

i=1 siφ(r, r i ) where φ(r, r i )
is written in terms of complex variables as

φ(z, zi ) = 2 Re

[
(z − zi )2

τ1τ2
arctan

(
iτ1

τ2

)]
+ qπ Re

(
z2

τ1τ2

)

− (q + 1)π
Im2(z/τ2) Re(τ1/τ2)

Im2(τ1/τ2)

− qπ
Im2(z/τ1) Re(τ2/τ1)

Im2(τ2/τ1)
+ π

Im(z/τ1)

Im(τ2/τ1)

+
[

2π Re

(
zi

τ2

)
− π

]
Im(z/τ2)

Im(τ1/τ2)
. (6)
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The resulting phase function �′ is now doubly periodic
as required. Furthermore, integrating the supercurrent J(r )
around the MUC reveals that

0 =
∮

MUC
J · d� ∝ Nw�0 −

∮
MUC

A · d�, (7)

where �0 = h/(2e) = π is the superconducting magnetic flux
quantum and Nw = ∑Nv

i=1 si is the total winding for the vortices
in the MUC. Due to the Dirac quantization condition [19],
requiring that � = n(h/e) with n ∈ Z when taking PBCs on
A, Nw must be an even number.

V. THE ALMOST ANTISYMMETRIC GAUGE

Our next step is to find a complementary vector field. Due
to the periodicity of the supercurrent, the vector potential is
required to fulfill the condition,

A(r + τ i ) = A(r ) + 1

2
∇[�′(r + τ i ) − �′(r )]. (8)

We now introduce the AAG that is designed to generate a
homogeneous magnetic field and obey Eq. (8) and is given
by

A= 2�0p

a1a2 sin2(α1 − α2)

[
(r × τ̂ 1) × τ̂ 2

q + 1
+ (r × τ̂ 2) × τ̂ 1

q

]
,

(9)

where αi = Arg τi and p ∈ Z mod q(q + 1).
The AAG is also useful in other contexts. For example,

if one is interested in solving the Hofstadter problem [20]
with high-flux resolution, it is obtained by considering a
rectangular lattice of size q × (q + 1) and choosing an AAG
A(r ) = 2�0p( y

q+1 , x
q

) with p = 1, 2, . . . , q(q + 1). The flux

per unit cell is then 2�0p

q(q+1) , and thus the flux through the
entire 2D system is 2�0p. In the standard procedure using
the Landau gauge, the flux through the entire 2D area can
only take values from a narrow and sparse range 2�0pq with
p = 1, 2, . . . , q + 1.

VI. ELECTRONIC BAND STRUCTURE OF A
VORTEX LATTICE

We now elucidate the quasiparticle energy dispersion for
the pertinent BdG Hamiltonian, which is depicted in Fig. 2.
Consider a vortex lattice made of N1 × N2 MUCs with q1 × q2

atomic sites in each cell, so in total, the system consists of
L1 × L2 sites (Li = Niqi). The Hamiltonian of the vortex
lattice in the BdG representation is written as Ĥ = �†HBdG�,
where HBdG is the Hamiltonian density. For s-wave supercon-
ductors, � ≡ (ψ↓, ψ

†
↑)T where ψs with s ∈ {↑,↓} is an L1L2

component spinor of spin s fermion annihilation operators. For
p-wave superconductors, the index s indicates particle and hole
subspaces.

Next, we introduce the discrete translation operators along
the two lattice directions i = 1, 2,

Ti : ψr,s −→ ψ(r+τ i )mod Niτ i ,s , (10)

which satisfy [T1, T2] = 0 and [HBdG, Ti] = 0. Clearly, the
eigenvalues of Ti are exp (i2πni/Ni ) with ni = 1, 2, . . . , Ni .
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FIG. 2. (Top) Quasiparticle bands as a function of coherence
length ξ for a pinned vortex lattice in a p-wave superconductor.
The magnetic unit cell contains 10 × 11 sites and two vortices that
are pinned on its diagonal, partitioning it in a ratio of 1:2:1. We
take t = |�| = μ = 1. (Bottom) The quasiparticle band structure for
ξ = 2.5. We observe Landau levels at high energies and Caroli–de
Gennes–Matricon states below the gap, including the band generated
from zero-mode tunneling [18].

The Bloch theorem is employed by introducing q1 × q2 sub-
lattice wave functions,

ϕk,s (r ) = 1√
N1N2

∑
R

exp(ik · R)|R + r, s〉, (11)

where R ≡ Rm1,m2 = m1τ 1 + m2τ 2 denotes the positions of
the MUCs and k ≡ kn1,n2 = 2πn1

N1|τ 1| τ̂ 1 + 2πn2
N2|τ 2| τ̂ 2. The Hamil-

tonian within a given sublattice is defined as

Hk(r, s; r ′, s ′) = 〈ϕk,s (r )|HBdG|ϕk,s ′ (r ′)〉. (12)

In this notation, the particle-hole symmetry of each block takes
the form �1H

∗
−k�1 = −Hk with �1 = σ1 ⊗ Iq1q2 . The block

Hk=0 corresponds to a single MUC with PBCs. Technically, Hk

is obtained from H0 just by varying the boundary conditions
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FIG. 3. Average anomalous charge response cxy vs chemical
potential μ for different coherence lengths ξ . The p-wave super-
conductor has a magnetic unit cell of 40 × 41 sites t = |�| = 1. In
addition, we pinned two vortices on the magnetic unit cell diagonal,
partitioning it in a ratio of 1:2:1.

as follows:

H0(r, s; r + τ i , s
′) → H0(r, s; r + τ i , s

′) exp (−ik · τ i ),

(13)

for any r on the boundary of the MUC.

VII. THE ANOMALOUS CHARGE RESPONSE
FUNCTION cx y

In previous studies of bulk p-wave superconductors, it was
noted that cxy is not quantized [13,21,22]. We now calculate cxy

in the presence of finite-size vortices and discover, remarkably,
that cxy contains a universal quantized contribution.

The anomalous charge response is exposed in the effective
action of a p-wave superconductor through the appearance of
a partial Chern-Simons (pCS) term [4,9],

SpCS = ±cxy

∫
d r dt at (∇ × a)z, (14)

where aμ = Aμ − ∂μ�/2, μ ∈ {t, x, y}, and the sign corre-
sponds to the superconductor chirality px ± ipy . Thus, in

analogy with the Streda formula [23], the following relation
holds [13]:

cxy (r ) = ±∂ρ(r )

∂Bz

∣∣∣∣
Bz=0

, (15)

where ρ(r ) = δSeff/δat (r ) = 〈gs| ∑s ψ
†
r,sψr,s |gs〉, |gs〉 is the

superconducting ground state and Bz = (∇ × a)z is homo-
geneous at the lattice sites. This formula relates the density
response to an infinitesimal external magnetic field. However,
any variation of the magnetic field imposes a change in the
superconducting phase in order to maintain periodicity of
the supercurrents. Thus, as we now explain, the physical
scenario here requires a modification of the Streda formula.
The minimal variation of the magnetic field is a single flux
quantum (over the entire system), leading to the nucleation
of two vortices. Similarly, when an opposite magnetic field is
applied, two antivortices are nucleated. Therefore, the deriva-
tive operation in the Streda formula for calculating density
response implies a simultaneous flip of magnetic field as well
as vortex chiralities. This is equivalent to a chirality flip of
the order parameter (from px ± ipy to px ∓ ipy). The above
procedure is also necessary as two opposite chirality states
admit roughly the same spectrum so that the density response
can be considered as a small perturbation.

With this insight in mind, it is now possible to use Eq. (15)
and numerically calculate the spatial average of cxy (r ) as
a function of μ as shown in Fig. 3. The results are then
compared with the analytical expression of cxy from the
effective action governing the low-energy dynamics of the
p-wave superconductor [13,21,22].

It is found that the two predictions overlap in the trivial
phases except that the numerics predict a slight dependence
on ξ but not on |�| as shown in Fig. 4. Moreover, in all
phases, cxy does not depend on the number of MUCs that
form the vortex lattice. Hence, cxy can be calculated from a
single MUC corresponding to k = 0. Another property of cxy

is that its average value within the MUC depends only slightly
on its dimensions (as long as the vortices are well separated).
Thus, one may expect to obtain cxy for Bz = 0 by probing the
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FIG. 4. Average anomalous charge response cxy vs chemical potential μ and order parameter |�| for a p-wave superconductor with a
magnetic unit cell of 40 × 41 sites t = 1 and ξ = 2.5. The modified Streda formula (Numerical) is compared with the prediction of the
effective low-energy theory of the p-wave superconductor (Analytical). In addition, we pinned two vortices on the magnetic unit-cell diagonal,
partitioning it in a ratio of 1:2:1.
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FIG. 5. Average anomalous charge response cxy vs chemical
potential μ for a planar p-wave superconductor. The magnetic unit-
cell average of cxy is crudely separated into contributions from the
vortices and contributions from the bulk. For comparison, we also
present the field-theory prediction of cxy . Here t = |�| = 1 and
ξ = 2.5. In addition, the magnetic unit cell contains 40 × 41 sites
and two vortices that are pinned on its diagonal, partitioning it in a
ratio of 1:2:1.

density response of a small piece of the superconductor with
PBCs for the application of minimal magnetic flux � = h/e

and a compensating vortex pair (placed arbitrarily within the
superconductor). This is indeed what we observe, and the result
matches extremely well with the field-theoretical prediction
in the trivial phase. Remarkably, in the topological phases
(0 < μ < 8) there is a sizable discrepancy between our predic-
tions and those based on field theory. Since the charge accumu-
lated at the vortex core (referred to as vortex charging) depends
on the angular momentum of the Cooper pairs, it is determined
by an interplay among the superconductor chirality, the vor-
ticity, and the quantum phase [24]. We now show that this
discrepancy can indeed be traced to a universal vortex charging
effect.

To decipher the origin of cxy , we perform two kinds of
spatial and spectral cuts. First, we crudely separate the vortex
cores at distances r � ξ from the bulk and average cxy in each
region independently to find their respective contributions; in
the bulk, both theories yield similar results, whereas at the
cores, the numerical results expose steps of ± 1

8π
as shown

in Fig. 5. Second, we separate the charge in the vortices into
contributions of each Bogoliubov quasiparticle and take into
account those within the energy gap �Qcore = ∫∫

core d r �ρ̃r

with ρ̃r = 1
2

∑
0<ε<Egap

(|vr,ε |2 − |ur,ε |2). We then find that
the most significant contribution to cxy arises from the

Caroli–de Gennes–Matricon states [25]. This demonstrates
that the universal contribution to cxy arises from the vortex
core and, specifically, from vortex bound states. On the other
hand, within the field-theory formalism, the vortices are treated
as point singularities, which may explain the discrepancy.
Although it was observed in Ref. [24] that vortices with
opposite vorticities accumulate different charges, here we show
that the relative accumulated charge for opposite vorticities
is a universal quantity, which appears to be proportional to
the Chern number of the superconductor. For consistency, we
checked that s-wave and dx2−y2 -wave superconductors have
vanishing anomalous charge responses.

VIII. SUMMARY

In this paper, the nature of the PKE and the order param-
eter in the p ± ip superconductor Sr2RuO4 is analyzed. A
smooth gauge is introduced, that can be used in conjunction
with Bloch’s theorem to diagonalize BdG Hamiltonians for
infinite superconductors in various periodic vortex states. The
dispersion of quasiparticle energies for such vortex states with a
finite vortex core size is calculated beyond previous numerical
studies, and the occurrence of midgap states is demonstrated
as the size of the core is increased.

Employing the same diagonalization algorithm, and modi-
fying the Streda formula, the anomalous charge response cxy

is calculated in the absence of vortices. The structure of cxy

is then used to identify the quantum phases of the pertinent
systems. Our results indicate that in p-wave superconductors
subjected to PBCs, cxy is calculable by their response to an
applied weak magnetic field and the nucleation of a vortex pair.
On the other hand, the average value of cxy within the bulk is
only weakly affected by the size of the vortices’ cores or their
positions in the MUC. It is then reasonable to perceive that the
discrepancy with results based on the field-theory approach to
p-wave superconductors is attributed to vortex charging, which
occurs only in vortices with finite core radii.

Finally, it is worth expressing our hope that the AAG
introduced here and the ensuing diagonalization algorithm
will serve as useful tools in the study of similar systems, such
as the Hofstadter butterfly in the presence of disorder [20].
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