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Anisotropic purity of entangled photons from Cooper pairs in heterostructures
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It was theoretically proposed that a forward-biased p-n junction with a superconducting layer (P-N-S) would
produce pure, polarization-entangled photons due to inherent spin-singlet pairing of electrons. However, any
heterostructure interface generically induces Rashba spin-orbit coupling, which in turn generates a mixed singlet-
triplet superconducting order parameter. Here we study the effect of triplet pairing on the purity of photons
produced through Cooper pair recombination. A unique directional dependence of the state purity is found for
a triplet superconductor with fixed d: pure, entangled photons are produced when the photon polarization axis
is parallel to d. Induced triplet pairing in a singlet superconductor is shown to degrade the state purity, while
induced singlet pairing in a triplet superconductor is shown to enhance the production of entangled pairs. These
considerations may aid the design of functional devices to produce entangled photons.
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I. INTRODUCTION

Entanglement is a uniquely quantum mechanical phe-
nomenon, which has found application in the rapidly growing
fields of quantum computing [1–4], cryptography [5–8], and
metrology [9,10]. Photons are a promising medium for encod-
ing entanglement [11] and may be suitable for transportation
of qubits [12,13] with application in quantum key distribution.
These applications require efficient sources of entangled pho-
ton pairs, and recent research has focused on mechanisms for
their generation.

Widespread techniques for generating entangled photon
pairs include parametric down-conversion in nonlinear crys-
tals [14–18], cascaded emission from biexcitons in semicon-
ductor quantum dots [19–21], and resonant hyperparamet-
ric scattering in semiconductors through a nonlinear optical
process [22–24]. In addition, hybrid devices incorporating
semiconductors and superconductors have been proposed,
including quantum dots wherein injected Cooper pairs simul-
taneously recombine [25–28].

Recently, there has been movement towards the use of two-
dimensional semiconductor structures, widely used in existing
optoelectronic devices, for generating entangled photons. An
advance towards this technology has been proposed [29,30]
in the form of a P-N-S heterostructure, shown in Fig. 1(a),
consisting of an ordinary p-n junction with superconductivity
induced in the n-type semiconductor through the proximity
effect. Such a device exhibits enhanced electronically driven
luminescence due to radiative Cooper pair recombination
[30–33]. In addition, it has been theoretically proposed [34]
that with a quantum well structure of the semiconductor lay-
ers, it may also produce pure, polarization-entangled photon
pairs. This phenomenon reflects the entanglement of electron
spins in singlet Cooper pairs.
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However, in such a heterostructure there is Rashba spin-
orbit coupling (SOC) [35–37] due to breaking of inversion
symmetry across the interface. It is known that the presence
of Rashba SOC generically leads to a mixed singlet-triplet
superconducting order parameter [38–41], which has not been
accounted for in previous studies [31,33,34].

Here we study the effect of both singlet and triplet Cooper
pairs on the purity of entangled photons produced in a P-N-S
heterostructure with Rashba SOC. Triplet pairing breaks the
rotational invariance of the Cooper pair spin state, which
results in a unique directional dependence of the photon state
purity. In a pure triplet superconductor with a fixed d vector,
pure, entangled photons are produced when the photon mo-
menta q are parallel to d, with weakened purity for other di-
rections. We also show that the induced triplet pairing in a sin-
glet superconductor hinders the production of pure, entangled
photons due to directional dependence of the d vector on k.
However, the induced singlet pairing in a triplet superconduc-
tor with a fixed d vector is shown to enhance the purity around
q ‖ d. These considerations may aid the design of compact
and efficient devices for producing entangled photons.

This paper is organized as follows. We first review the
P-N-S junction, interfacial Rashba SOC, and the induced
component of the superconducting order parameter in Sec. II.
We then calculate the two-photon density matrix for a pure
spin-triplet superconductor and a singlet-triplet mixture in
Sec. III. From the density matrix, we obtain the photon state
purity in Sec. IV and demonstrate a unique angular depen-
dence. Finally, discussion and material considerations are in
the last section. Details of the calculation can be found in the
Appendix.

II. REVIEW OF INDUCED TRIPLET
SUPERCONDUCTIVITY IN A P-N-S JUNCTION

We consider a P-N-S heterostructure, shown in Fig. 1(a),
which consists of a superconductor layer in electrical contact
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FIG. 1. (a) Schematic P-N-S heterostructure, consisting of a p-
type semiconductor and an n-type semiconductor in which pairing
is induced by the superconductor through the proximity effect.
The heterostructure normal direction is defined by n̂; the photon
polarization axis, by ẑ; and a particular d(k) vector direction, by
d̂ k. The angle between ẑ and d̂ k is taken to be θk. (b) Schematic
band structure of the semiconductors in the quantum well structure,
showing the splitting of heavy-hole and light-hole bands.

with the n-type semiconductor in an ordinary p-n junction.
A superconducting region is induced in the n-type semicon-
ductor through the proximity effect [42]. The semiconductors
are taken to be of the zinc-blende type, such as GaAs or
InP, which exhibit a direct band gap at the � point. In bulk,
the upper valence bands consist of heavy-hole (HH) and
light-hole (LH) bands, which become degenerate at the zone
center. The LH and HH bands have total spin-orbit-coupled
momentum projections Jz = ± 1

2 and Jz = ± 3
2 (h̄ ≡ 1), while

the conduction band (CB) has projection jz = ± 1
2 [43]. In a

quantum well structure, the degeneracy between the LH and
HH bands is lifted [44], as shown in Fig. 1(b). Splitting of
the LH-HH degeneracy has been shown [34] to be essential
for the generation of pure, entangled photons, as Cooper pair
recombination with the LH band degrades the state purity.
Before calculating the two-photon density matrix, we first
review the Rashba effect and the form of the induced pairing.

In a heterostructure with normal n̂, the surface-induced
asymmetry gives rise to Rashba spin-orbit coupling of the
form [35]

HRashba = λ
∑

k

(k × n̂) · σ . (1)

This leads to helicity-split bands with dispersion ξk,± = ξk ±
λ‖k‖, where k is understood to be a vector in the plane of
the heterostructure. With inversion symmetry in the plane,
the possible superconducting states can be classified based
on parity. Cooper pairs are in a spin-singlet state for even
orbital parity and a spin-triplet state for odd orbital parity [45].
Rashba SOC breaks inversion symmetry within the plane, and
generically, this will lead to a mixed singlet-triplet state of the
Cooper pairs.

Starting with a continuum model of the conduction band
in the n-type semiconductor, ξk = k2

2m
− μn, where μn is the

chemical potential, we focus on the limit that the energy
splitting due to Rashba SOC is small compared to the Fermi
energy

δ = mλ

kF

= λkF

2μn

� 1. (2)

This leads to a Fermi surface which is split as kF,± ≈
kF (1 ∓ δ). Assuming initial s-wave pairing of electrons near
the Fermi surface, it has been shown with the method of
Matsubara Green’s functions [39] that both helicity-split
bands acquire a superconducting gap at the Fermi surface,

Ek,± =
√

ξ 2
k,± + |�0|2, (3)

and that there is a spin-triplet admixture of Cooper pairs
described by

�̂
(m)
k = ψ (k)iσy + [d(k) · σ ]iσy, (4)

where ψ (k) = �0 and d(k) ∝ k̂. The constant of
proportionality is on the order of λ [39].

If one instead starts with a pure triplet superconductor,
then the Rashba spin-orbit coupling will induce a singlet
component in the order parameter. The magnitude of the
induced singlet component will also be on the order of λ.

Therefore, Cooper pairs in the P-N-S heterostructure exist
as an admixture of spin-singlet and spin-triplet states through
Rashba SOC. At each k, the spin state of a triplet Cooper pair
is described by the vector d(k), with wave function

|�k〉 ∝ d̂ (k) · [c†k,σ (σ iσy )σ,σ ′c
†
−k,σ ′] |0〉 , (5)

where c
†
k,σ is an electron creation operator and repeated

indices are summed over. It can be shown that [46]

d̂ (k) · S |�k〉 = 0, (6)

where S is the total spin operator. This means the d vector
is the direction on which the total spin of the pair has zero
projection.

III. TWO-PHOTON DENSITY MATRIX

In this section we calculate the two-photon density matrix
using second-order time-dependent perturbation theory for a
pure spin-triplet superconductor and a singlet-triplet admix-
ture appropriate for the heterostructure. To model the p-n
junction, we take the unperturbed Hamiltonian

H0 =
∑
q,σ

ωqa
†
q,σ aq,σ +

∑
k,J

εkh
†
k,J hk,J +

∑
k,j

ξkc
†
k,j ck,j ,

(7)
where a

†
q,σ , h

†
k,J , c

†
k,j are creation operators for photons,

holes, and electrons, respectively. The photon angular
momentum runs over σ = ±1 (h̄ ≡ 1), corresponding to
right/left (R/L) circular polarizations with respect to the
quantization axis ẑ, and we have neglected the zero-point
energy. We will consider only the contribution from the HH
band. As such, the ẑ projection of hole and electron angular
momenta runs over Jz = ± 3

2 and jz = ± 1
2 , respectively. Once

electron pairing is induced through the proximity effect, we
adopt the BCS mean-field theory to describe the supercon-
ducting state

Hns =
∑
k,j

Ekγ
†
k,j γk,j , (8)

where γ
†
k,j is the creation operator for a Bogoliubov quasipar-

ticle with energy Ek =
√
ξ 2

k + �2
k. The light-matter interaction
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responsible for the recombination process is

V =
∑

k,q,J,σ

Bk,qa
†
q,σ hq−k,−J ck,J+σ + H.c., (9)

within the dipole approximation, where the parametrization
has been chosen to conserve angular momentum along the
photon axis ẑ. Since we are considering only the HH band,
the allowed angular momenta in the above interaction are
(σ,−J, J + σ ) = (±1,± 3

2 ,∓ 1
2 ).

The initial state of the system is taken to be

|�0〉 = |0〉 ⊗ |FS〉 ⊗ |BCS〉 , (10)

where |0〉 is the photon vacuum, |FS〉 is the Fermi sea of holes
in the HH band, and |BCS〉 is the BCS state of electrons in the
CB. In the interaction picture, the second-order contribution
to the time-evolved state of the system is (t0 → −∞)

|�t 〉 =
∫ t

−∞
dt1

∫ t1

−∞
dt2 V (t1)V (t2) |�0〉 , (11)

where V (t ) = eiH0tVe−iH0t . To describe the state of the emit-
ted photon pairs, we calculate the color-specific two-photon
density matrix, with entries

ραβγ δ (qA, qB ) := 〈�t |a†
qA,αa

†
qB,βaqA,γ aqB,δ|�t 〉 , (12)

where α, β, γ, δ ∈ {±1}. As discussed by Hayat et al. [34],
there are one-photon emission processes in addition to the
second-order two-photon emission processes from Cooper
pair recombination. While the one-photon process produces
photons with energy on the order of the band gap, ωq =
EBG, the only constraint on photons emitted through the
second-order process is that ωqA

+ ωqB
= 2EBG. Therefore,

the single-photon emissions can be distinguished from the
two-photon emissions through spectral filtering; photons with
energy differing from EBG by more than the thermal broad-
ening kT must originate from Cooper pair recombination.
This is the purpose of tracking the color dependence in the
two-photon density matrix.

To understand the effect of Cooper pairs, the general-
ized Bogoliubov transformation for unitary pairing is em-
ployed [47]:

ck,j (t ) = e−iμnt
∑
j ′

[ûkjj ′e−iEk t γk,j ′ + v̂kjj ′e+iEk t γ
†
−k,j ′ ],

(13)
where

ûk =
√

1

2

(
1 + ξk

Ek

)
1σ ,

v̂k = − �̂k√
2Ek(Ek + ξk )

. (14)

Using the time-evolved operators, it is straightforward to
calculate the expectation values appearing in Eq. (12) us-
ing Wick’s theorem. The contribution from a Cooper pair
recombination process enters through terms of the form
〈BCS|c†c†|BCS〉 〈BCS|cc|BCS〉.

Once the matrix elements have been computed, the time
integrals appearing in the time-evolved state (11) must be
performed, which is done by adiabatically turning on the
interaction V (t ) from t0 → −∞. This gives us the emission
probability as a function of t , which we use to compute

the emission rate [48]. Details of this integration can be
found in the Appendix. To distinguish the emission rate from
probability, we will write ρ instead of ρ.

To proceed, we focus on three cases of interest. First, we
review the density matrix in the case of pure singlet pairing.
Next, we consider intrinsic spin-triplet pairing and no singlet
component in the order parameter. Finally, we consider the
relevant case of a singlet-triplet mixture enabled through the
heterostructure.

A. Pure singlet pairing

A pure singlet superconductor has order parameter �̂
(s)
k =

ψ (k)iσy , with gap �
(s)
k = |ψ (k)|. In this case the matrix

v̂k appearing in the Bogoliubov transformation equation (14)
takes the simple form

v̂
(s)
k = −v

(s)
k

(
0 −1

+1 0

)
, (15)

where v
(s)
k =

√
1
2 (1 − ξk/E

(s)
k ). After calculating the electron

expectations and performing the time integrals, we arrive at
the density matrix

ρ (s)(qA, qB ) =
∑

k

F
(
k, qA, qB,�

(s)
k

)1

2

⎛
⎜⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎠,

(16)

where F (k, qA, qB,�k ) is defined through Eq. (A15) in the
Appendix. The density matrix is written in the polarization
basis {|RR〉 , |RL〉 , |LR〉 , |LL〉} and corresponds to a pure,
polarization-entangled state 1√

2
(|RL〉 + |LR〉).

B. Intrinsic triplet pairing

In the case of an intrinsic spin-triplet superconductor, the
order parameter is �̂

(t )
k = [d(k) · σ ]iσy with gap �

(t )
k =

‖d(k)‖. The direction of d(k) with respect to the photon
polarization axis ẑ can be specified through the angles (θk, ϕk )

d(k)

‖d(k)‖ = (sin θk cos ϕk, sin θk sin ϕk, cos θk ). (17)

It is important to note that due to the odd-orbital pairing,
d(−k) = −d(k), the angles invert according to (θk, ϕk ) �→
(π − θk, π + ϕk ), so that both cos θk and sin θke

±iϕk change
sign under inversion. The matrix v̂k can be rewritten as

v̂
(t )
k = −v

(t )
k

�̂k

‖d(k)‖ = v
(t )
k

(+ sin θke
−iϕk − cos θk

− cos θk − sin θke
+iϕk

)
,

(18)

where v
(t )
k =

√
1
2 (1 − ξk/E

(t )
k ). This yields the density matrix

ρ (t )(qA, qB ) =
∑

k

F
(
k, qA, qB,�

(t )
k

)

× 1

2

⎛
⎜⎜⎝

sin2 θk 0 0 0
0 cos2 θk cos2 θk 0
0 cos2 θk cos2 θk 0
0 0 0 sin2 θk

⎞
⎟⎟⎠,

(19)
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with the same definitions as in the singlet case and in the
same polarization basis. The most important difference be-
tween the triplet and singlet cases are nonzero |RR〉 〈RR|
and |LL〉 〈LL| components proportional to sin2 θk, vanishing
in the limit that d(k) points along the photon polarization
axis ẑ. This effect is due to the existence of Cooper pairs
with nonzero total spin projection on the ẑ axis, described
by dx ± idy in the order parameter. As we will see, these
components reduce the purity of the photon polarization state,
which acquires some directional dependence.

C. Mixed singlet-triplet pairing

In the P-N-S heterostructure, we generally have a mixed
singlet-triplet pairing of the form (4),

�̂
(m)
k = �̂

(s)
k + �̂

(t )
k = ψ (k)iσy + [d(k) · σ ]iσy,

with gap [47]

�
(m)
k =

√
1
2 Tr

[
�̂

(m)
k �̂

(m)†
k

] =
√

|ψ (k)|2 + ‖d(k)‖2. (20)

To account for the mixed pairing, it is useful to define quan-
tities that measure the “fraction” of paring within the singlet
and triplet channels,

sk = |ψ (k)|√
|ψ (k)|2 + ‖d(k)‖2

, tk = ‖d(k)‖√
|ψ (k)|2 + ‖d(k)‖2

,

(21)
which satisfy s2

k + t2
k = 1. Using these quantities, we can

decompose v̂k into singlet and triplet components,

v̂
(m)
k = −v

(m)
k

[
sk

(
0 −1

+1 0

)
+ tk

(− sin θke
−iϕk cos θk

cos θk + sin θke
+iϕk

)]
, (22)

where v
(m)
k =

√
1
2 (1 − ξk/E

(m)
k ). This leads to the density matrix

ρ (m)(qA, qB ) =
∑

k

F
(
k, qA, qB,�

(m)
k

)1

2

⎛
⎜⎜⎜⎝

t2
k sin2 θk 0 0 0

0 s2
k + t2

k cos2 θk s2
k + t2

k cos2 θk 0

0 s2
k + t2

k cos2 θk s2
k + t2

k cos2 θk 0

0 0 0 t2
k sin2 θk

⎞
⎟⎟⎟⎠, (23)

which is a k-dependent weighted sum of the pure singlet and
triplet density matrices. In the case of induced triplet pairing
in an s-wave superconductor, the superconducting gap on
each helicity-split Fermi surface is actually |�0| [39], so the
function F in Eq. (23) must be evaluated at �0, with an extra
factor ∣∣∣∣∣�

(m)
k

�0

∣∣∣∣∣
2

. (24)

The extra factor is simply due to the fact that the gap is |�0|
rather than �

(m)
k , as assumed above. This form of the density

matrix also holds in the case of induced singlet pairing in a
triplet superconductor, with unspecified ψ (k).

IV. STATE PURITY

We now turn our attention to the purity of the two-photon
polarization state derived in the previous section. The function
F (k, qA, qB,�k ) outside the matrix describes the rate of
production of photon pairs based on the occupation numbers,
as well as the energies of the initial, intermediate, and final
states in the second-order process. This is to be distinguished
from the matrix itself, which describes the polarization state of
the photons. As mentioned earlier, the polarization state of the
photons produced by spin-singlet Cooper pairs is described by

ρ (s) = 1

2

⎛
⎜⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎠, (25)

normalized such that Tr[ρ (s)] = 1. The state purity is easily
seen to be γ (s) = Tr[(ρ (s) )2] = 1 and is derived from the
polarization-entangled state

|�ph〉 = 1√
2

(|RL〉 + |LR〉). (26)

In the pure triplet case, we need to make a simplifying
assumption about the nature of the pairing to analyze the
state purity due to the possible k dependence of the d vector
direction. Assuming that the direction of d(k) is fixed (with
potentially varying magnitude), it makes a constant polar
angle θk = θ with a chosen photon polarization axis ẑ. In this
case, the polarization state of the photons is described by the
density matrix

ρ (t )(θ ) = 1

2

⎛
⎜⎜⎝

sin2 θ 0 0 0
0 cos2 θ cos2 θ 0
0 cos2 θ cos2 θ 0
0 0 0 sin2 θ

⎞
⎟⎟⎠, (27)

resulting in the following angular dependence of the purity:

γ (t )(θ ) = 1
2 (sin4 θ + 2 cos4 θ ). (28)

For a general angle θ , the photon polarization state is a mix-
ture of the entangled state 1√

2
(|RL〉 + |LR〉) with the product

states |RR〉 , |LL〉. This is due to nonzero dx,y components
describing Cooper pairs with nonzero ẑ projection of total
spin, which degrade the state purity. When d is parallel to the
photon polarization axis (θ = 0, π ), pure, entangled photon
pairs are produced. Conversely, when d is perpendicular to
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FIG. 2. (a) Calculated purity of photon pairs produced by spin-
triplet Cooper pairs as a function of the polar angle θ between the
photon polarization axis ẑ and the d vector and (b) full angular
dependence. (c) Purity of photon pairs for triplet fraction t = 0.77
as a function of the polar angle θ between the photon axis ẑ and the
d vector and (d) full angular dependence.

the photon axis (θ = π
2 ), only photons with product state

polarizations can be produced. The angular dependence of the
state purity is shown in Figs. 2(a) and 2(b).

Finally, we arrive at the present case of mixed singlet-
triplet pairing relevant to the P-N-S heterostructure. We first
consider the case of a d vector with fixed direction [49], and
an induced singlet component ψ (k) through Rashba SOC.
To simplify the analysis we assume that the induced singlet
component is s-wave, so that the “fraction” of pairing in the
singlet and triplet channels, Eq. (21), is independent of k:

s ≈ |�0|√
‖d‖2 + |�0|2

, t2 = 1 − s2. (29)

Since the induced singlet component has magnitude on the
order of λ, the ratio of t and s depends on the ratio between the
Rashba SOC strength and the superconducting gap ‖d‖. The
polarization state of the photons is described by the density
matrix

ρ (m)(θ )

= 1

2

⎛
⎜⎜⎜⎝

t2 sin2 θ 0 0 0
0 s2 + t2 cos2 θ s2 + t2 cos2 θ 0
0 s2 + t2 cos2 θ s2 + t2 cos2 θ 0

0 0 0 t2 sin2 θ

⎞
⎟⎟⎟⎠,

(30)

leading to a state purity with angular dependence

γ (m)(θ ) = 1
2 [t4 sin4 θ + 2(s2 + t2 cos2 θ )2]. (31)

This is one of the central results of this work. Note that in the
limit t → 0 we recover the singlet result, γ = 1, while in the
limit t → 1 we recover the pure triplet result. Distribution of
the purity for t = 0.77 is shown in Figs. 2(c) and 2(d). The
effect of the singlet component in the order parameter is to
enhance the production of entangled photons. As such, the

FIG. 3. Illustration of the induced d vector from s-wave pairing
due to Rashba SOC, shown as blue arrows on the Fermi surface in
red. When the photon axis lies in the plane of the heterostructure,
there are two parallel d vectors at ±k‖, and two perpendicular at
±k⊥. All Cooper pairs, except those with ±k‖, make a finite angle
θk with ẑ and thus degrade the state purity.

peak around θ = 0, π where γ � 1 is broadened, while the
purity around θ = π

2 is reduced.
We now consider the case of an s-wave superconductor,

with induced triplet component d(k) through Rashba SOC. As
we have seen, d(k) ∝ k̂, whose direction lies in the plane of
the heterostructure, as shown in Fig. 3. Due to the directional
dependence of d(k) on k, the angle θk it makes with a chosen
photon axis is not constant, which means that the density
matrix (23) can be obtained only by performing the sum
over k. Despite this, we can still talk about the purity of the
two-photon state. For simplicity, we consider ẑ in the plane of
the heterostructure, as shown in Fig. 3. There are two wave
vectors ±k‖ where d(k) is parallel to ẑ (θk = 0, π ), and those
Cooper pairs can recombine to produce entangled photons.
However, there are also wave vectors ±k⊥ where d(k) is
perpendicular to ẑ (θk = π

2 ), and those Cooper pairs can re-
combine to produce photons with product state polarizations.
In fact, all d(k) except those with ±k‖ make a finite angle θk

with ẑ, so the Cooper pairs have finite spin projection onto the
photon polarization axis. It is this finite spin projection which
degrades the purity of the photon state, and we conclude that
pure, entangled photons cannot be produced. More generally,
if d(k) changes direction with k, there is no choice of photon
axis ẑ which is parallel to all d(k), so pure, entangled photons
cannot be produced.

V. SUMMARY AND DISCUSSION

In summary, we studied the effect of spin-triplet Cooper
pairs on the state purity of photon pairs produced in a P-N-S
heterostructure. A unique directional dependence of the state
purity was found, which can be understood from recombina-
tion of a pure spin-triplet Cooper pair with a fixed d vector. If
the photon polarization axis ẑ is chosen parallel to d, then the
Cooper pair has zero total spin with respect to ẑ, as in Eq. (6).
The spin state of electrons in the Cooper pair is entangled in
the mz = 0 state, |↑↓〉z + |↓↑〉z, which translates into entan-
glement of the photon polarizations, Eq. (26), through the re-
combination process. If the photon polarization axis is not par-
allel to d, then the triplet Cooper pair has net spin projection
onto ẑ. This means the spin state of electrons in the Cooper
pair contains mz = ±1 components, |↑↑〉z, |↓↓〉z, which
generate product polarization states of the photons, |RR〉 ,

|LL〉. We find that pure, entangled photons are produced
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when ẑ ‖ d (θ = 0, π , where θ is the angle between ẑ and
d), which is diminished away from that direction.

A singlet-triplet mixture of Cooper pairs is generically
present in a P-N-S heterostructure, which is an effect due to
Rashba SOC. If one starts with an s-wave superconductor, the
induced triplet Cooper pairs are described by d(k) ∝ k̂, which
lies in the plane of the heterostructure. Due to the directional
dependence of d(k) on k, there is no choice of photon
polarization axis ẑ which is parallel to all d(k). As such, there
always exist Cooper pairs with finite spin projection onto a
chosen ẑ (θk �= 0, π ), and these nonvanishing mz = ±1 com-
ponents generate product state polarizations of the photons.
Therefore, pure, entangled photons cannot be produced. Since
the magnitude of the induced triplet component is on the order
of λ, this effect could be suppressed by selecting materials
with small Rashba SOC strength relative to the singlet gap
|�0|.

On the other hand, if one starts with a spin-triplet super-
conductor with fixed d, the induced singlet Cooper pairs from
Rashba SOC can only enhance the production of entangled
photons. This is due to the fact that a spin singlet is rota-
tionally invariant and has zero spin projection, mz = 0, on
any photon polarization axis. As we have seen, the singlet
component tends to broaden the peak of the purity around
θ = 0, π where γ � 1 and reduces the purity around θ = π

2 .
Since the magnitude of the induced singlet component is also
on the order of λ, small Rashba SOC relative to the underlying
triplet gap will lead to a tight angular distribution of pure,
entangled photons along d.

These considerations may aid in the design of functional
devices based on P-N-S junctions, as they offer a direction of
maximum purity of entangled photon sources inherent to the
heterostructure.
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APPENDIX

Starting with the second-order time-evolved state (11), the
leading-order expression for the density matrix (12) involves
four powers of the interaction Hamiltonian (9):

ραβγ δ (qA, qB )

=
∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t

−∞
dt3

∫ t3

−∞
dt4

×〈�0|V (t2)V (t1)a†
qA,αa

†
qB,βaqA,γ aqB,δV (t3)V (t4)|�0〉.

(A1)

The resulting function F (k, qA, qB,�k ) differs slightly from
the original work of Hayat et al. [34], which can be traced
back to incorrect operator ordering of the interaction Hamil-
tonian in the time-evolved bra above. Inserting the form of the
interaction, we can use the fact that the initial state |�0〉 =
|0〉 ⊗ |FS〉 ⊗ |BCS〉 is a product of photon, hole, and electron
sectors to compute the matrix elements separately.

Starting with the photon sector, the time dependence of the
operators contributes

e−iωq1 t1e−iωq2 t2e+iωq3 t3e+iωq3 t3 , (A2)

while there are four nonzero contractions

〈aq2,σ2
aq1,σ1

a†
qA,αa

†
qB,βaqA,γ aqB,δa

†
q3,σ3

a†
q4,σ4

〉
= δσ1,αδq1,qA

δσ2,βδq2,qB
δσ3,γ δq3,qA

δσ4,δδq4,qB

+ δσ1,αδq1,qA
δσ2,βδq2,qB

δσ3,δδq3,qB
δσ4,γ δq4,qA

+ δσ1,βδq1,qB
δσ2,αδq2,qA

δσ3,γ δq3,qA
δσ4,δδq4,qB

+ δσ1,βδq1,qB
δσ2,αδq2,qA

δσ3,δδq3,qB
δσ4,γ δq4,qA

, (A3)

where the label i ∈ {1, 2, 3, 4} labels the momentum and
angular momentum sum in V (ti ). From the hole sector we
have time dependence

e+iεq1−k1 t1e+iεq2−k2 t2e−iεq3−k3 t3e−iεq4−k4 t4 (A4)

and two nonzero contractions,〈
h
†
q2−k2,−J2

h
†
q1−k1,−J1

hq3−k3,−J3
hq4−k4,−J4

〉
= f

p

k1−q1
f

p

k2−q2
δJ1,J3δq1−k1,q3−k3δJ2,J4δq2−k2,q4−k4

− f
p

k1−q1
f

p

k2−q2
δJ1,J4δq1−k1,q4−k4δJ2,J3δq2−k2,q3−k3 , (A5)

where f h
k = f (εk ) is the Fermi-Dirac distribution of holes.

As mentioned earlier, the energy of the photons is on the
order of the semiconductor band gap. This is typically on the
order of electron volts, yielding photons with a wave vector
much smaller than the Fermi wave vector. Therefore, in the
calculation we make the approximation that the k-dependent
quantities vary slowly on the scale of q, and we replace
ki ± qA,B by ki .

In the electron sector we encounter expectations of the
form 〈c†k2,j2

c
†
k1,j1

ck3,j3
ck4,j4

〉, where ji = Ji + σi . The super-
conducting contribution to the density matrix is the contrac-
tion 〈c†k2,j2

c
†
k1,j1

〉 〈ck3,j3
ck4,j4

〉, which is nonvanishing in the
superconducting state when k1 = −k2 and k3 = −k4. These
terms describe a second-order process in which a Cooper pair
is destroyed. Focusing on the general case of a spin singlet-
triplet mixture, we use v̂

(m)
k in the Bogoliubov transformation

equation (13) to evaluate the matrix elements. Gathering the
results into matrix form, we find[〈c†k2,j2

(t2)c†k1,j1
(t1)〉]

= e+iμnt1e+iμnt2δk1,−k2uk2vk2

× [
e−iEk2 t1e+iEk2 t2f n

k2
− e+iEk2 t1e−iEk2 t2

(
1 − f n

k2

)]
×

(−tk2 sin θk2e
+iϕk2 tk2 cos θk2 + sk2

tk2 cos θk2 − sk2 +tk2 sin θk2e
−iϕk2

)
, (A6)[〈ck3,j3

(t3)ck4,j4
(t4)〉]

= e−iμnt3e−iμnt4δk3,−k4uk4vk4

× [
e−iEk4 t3e+iEk4 t4

(
1 − f n

k4

) − e+iEk4 t3e−iEk4 t4f n
k4

]
×

(−tk4 sin θk4e
−iϕk4 tk4 cos θk4 + sk4

tk4 cos θk4 − sk4 +tk4 sin θk4e
+iϕk4

)
, (A7)

where f n
k = f (Ek ) is the Fermi-Dirac distribution of Bo-

goliubov quasiparticles. The limits tk → 0 and sk → 0
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yield matrix elements for the pure singlet and triplet
cases, respectively. In calculating the density matrix ele-
ments, the above terms always appear in the combination
〈c†k,j1

c
†
−k,j2

〉 〈c−k,j2
ck,j1

〉, neglecting the small qA,B . So the
angle- and mixture-dependent quantities in the above matrices
appear in the combinations

(sk ± tk cos θk )(sk ± tk cos θk )∗ = s2
k + t2

k cos2 θk

±2sktk cos θk,

(tk sin θke
±iϕk )(tk sin θke

±iϕk )∗ = t2
k sin2 θk. (A8)

The cross term ±2sktk cos θk will vanish upon summation
over k because all other quantities are even under k �→ −k,
while cos θk flips sign due to the odd orbital part of the pairing.
This fact leads to the density matrix (23), which is a weighted
sum of the pure singlet and triplet density matrices at each k.

Once the matrix elements have been computed, we need
to perform the time integrals appearing in the second-order
perturbation theory, which are of the form∫ t

−∞
dt1

∫ t1

−∞
dt2e

−i�1t1e−i�2t2 , (A9)

multiplied by ∫ t

−∞
dt3

∫ t3

−∞
dt4e

+i�3t3e+i�4t4 , (A10)

where

�1 = Eq1,k1 + ϕEk1 , �3 = Eq3,k3 + ϕ′Ek3 ,

�2 = Eq2,k2 − ϕEk2 , �4 = Eq4,k4 − ϕ′Ek4 , (A11)

Eq,k := ωq − εk − μn, and ϕ, ϕ′ = ±1. We introduce a con-
vergence factor η through

�1,2 → �1,2 + iη, �3,4 → �3,4 − iη, (A12)

which serves to adiabatically turn on the interaction V (t ) from

t0 → −∞. The integrals evaluate to

1

(�2 + iη)(�4 − iη)

e4ηt

[(�1 + �2)2 + (2η)2]
, (A13)

having used conservation of energy �1 + �2 = �3 + �4.
The quantity computed is the pair production probability,
which we must differentiate to obtain the production rate [48].
Using the Lorentzian representation of the δ function, in the
limit η → 0+ the production rate becomes

2πδ
(
Eq1,k1 + Eq2,k2

)
(
Eq2,k2 − ϕEk2

)(
Eq4,k4 − ϕ′Ek4

) , (A14)

in which the δ function will always evaluate to δ(ωqA
+ ωqB

−
2εk − 2μn). Using the matrix elements and the form of the
time integrals, the function F (k, qA, qB,�k ) describing the
rate of pair production evaluates to

F (k, qA, qB,�k ) = 4π |Bk,qA
|2|Bk,qB

|2
∣∣∣∣ �k

2Ek

∣∣∣∣
2(

f h
k

)2
δ(ωqA

+ ωqB
− 2εk − 2μn)

[
f n

k f n
k

(Ek − EqA,k )2
+

(
1 − f n

k

)(
1 − f n

k

)
(Ek + EqA,k )2

+ 2
f n

k

(
1 − f n

k

)
(Ek − EqA,k )(Ek + EqA,k )

+ f n
k f n

k

(Ek − EqA,k )(Ek − EqB,k )
+

(
1 − f n

k

)(
1 − f n

k

)
(Ek + EqA,k )(Ek + EqB,k )

+ f n
k

(
1 − f n

k

)
(Ek + EqA,k )(Ek − EqB,k )

+ f n
k

(
1 − f n

k

)
(Ek − EqA,k )(Ek + EqB,k )

+ (qA ↔ qB )

]
, (A15)

where (qA ↔ qB ) represents another seven terms with qA and qB exchanged.
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