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Superconductivity at low density near a ferroelectric quantum critical point: Doped SrTiO3
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Recent experiments on electron- or hole-doped SrTiO3 have revealed a hitherto unknown form of superconduc-
tivity in which the Fermi energy of the paired electrons is much lower than the energies of the bosonic excitations
thought to be responsible for the attractive interaction. We show that this situation requires a fresh look at the
problem, calling for (i) a systematic modeling of the dynamical screening of the Coulomb interaction by ionic
and electronic charges, (ii) a transverse optical phonon mediated pair interaction, and (iii) a determination of the
energy range over which the pairing takes place. We argue that the latter is essentially given by the limiting energy
beyond which quasiparticles cease to be well-defined. The model allows us to find the transition temperature as
a function of both the doping concentration and the dielectric properties of the host system, in good agreement
with experimental data. The additional interaction mediated by the transverse optical soft phonon is shown to be
essential in explaining the observed anomalous isotope effect. The model allows us to capture the effect of the
incipient (or real) ferroelectric phase in pure or oxygen isotope substituted SrTiO3.
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I. INTRODUCTION

The question of the nature of the superconducting state in
SrTiO3 (STO) has recently been brought sharply into focus.
There are at least two main issues driving the current debate
about superconductivity in STO. One is the observation of
the superconducting state at extremely low dopings, well
below those of any other known superconductors. Recent
observations of superconductivity in STO, at such low dop-
ing levels [1,2] that the Fermi energy is much less than
the relevant phonon energies, have illustrated the need for
a fresh look at the theory of superconductivity, even in a
so-called weakly correlated material. Another issue that is
clearly present is the interplay between superconductivity and
the ferroelectric quantum critical point in STO. STO is a
“quantum paraelectric” close to the quantum phase transition
into the ferroelectric state [3], and it may be tuned into the
ordered phase, e.g., by isotope substitution of 16O by 18O
[4] or by substituting Ca for Sr [5]. It becomes a metal by
substituting, e.g., Sr with La or Ti with Nb, or by removing
O. These two questions—electron-electron interactions and
the ferroelectric quantum critical point (QCP)—are often
intermingled in current discussions, yet they represent very
different physics that might ultimately be connected but does
not have to be. Hence we start by discussing pairing due to
dynamically screened electron-electron interaction, which is
only weakly dependent on the proximate ferroelectric quan-
tum criticality. It is, however, strongly modified by the large
static dielectric constant. We will thus focus first on the role
of screening and pairing at low doping levels in STO. Then
we advocate the importance of an additional interaction that
is sensitive to the ferroelectric fluctuations and gives rise to a
strong isotope effect.

Superconductivity in STO metal at low temperatures was
observed long ago [6], with the transition temperature as a

function of doping peaking at a maximum of Tc ≈ 0.4 K at
a carrier density of n ≈ 1020 cm−3 [7–9]. According to the
conventional view of superconductivity, the main question
is to identify the “glue” binding conduction electrons into
a Cooper pair. An attractive interaction component may be
obtained from suitable boson exchange processes: phonons,
spin fluctuations, plasmons, etc. The remaining Coulomb
repulsion is often neglected on the grounds that it is sub-
stantially reduced in magnitude if downfolded into the low-
energy regime where the exchange bosons live. While this
line of argument works reasonably well for superconduc-
tors with well-separated energy scales, such that the Fermi
energy εF � ωboson (a typical boson energy), it breaks down
when the energy scales are no longer separated. It is then
necessary to treat dynamical screening by ionic charges and
by conduction electrons on the same footing. Early theories
of superconductivity of STO, e.g., Koonce et al. [7] and
Appel [10], and even recent theories [11] did not address this
problem properly, and they are therefore not suitable in the
low doping domain n < 1020 cm−3. A later theory by Takada
[12] focuses on the interplay of ionic and electronic screening,
starting from a pair interaction given by the screened Coulomb
interaction (see below) and using the pairing theory in terms of
the dynamical dielectric constant [13]. Takada uses additional
approximations such as a plasmon pole approximation and
a frequency cutoff of the order of the Fermi energy without
justification (for a discussion of the proper cutoff, see below
and Appendix A 1), so that his results are questionable. A
similar starting point has been chosen recently by Ruhman and
Lee [14], who again use additional approximations (treatment
of the Coulomb interaction at high frequency, and energy
cutoff at the Fermi energy) without sufficient justification. The
latter authors identify at least two problems with this more
conventional approach: (i) by employing the Fermi energy
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as an energy cutoff, the relevant interaction regime in energy
space is found to shrink much too fast for decreasing density,
leading to tiny transition temperatures; (ii) even at higher
densities the Tc values come out too low, so the authors
propose that the extremely high dielectric constant found in
the undoped system is substantially reduced by doping, which
helps to increase the screened Coulomb interaction and thus
Tc. Experimentally there is no indication that the very large
dielectric constant is substantially reduced by doping at the
low levels in question here. Both problems are resolved below
by applying the proper cutoff and by taking into account an
additional attractive pair interaction mediated by transverse
optical (TO) phonons.

A careful treatment of the frequency cutoff ωc is all-
important in this problem, since here the cutoff frequency
enters the result for the transition temperature in an essential
way. We argue below that the processes limiting the pairing
to a low-energy regime when the Fermi energy is less than
the typical phonon energy are given by the self-energy en-
tering the anomalous Green’s function in the gap equation.
While in our present solution of the gap equation we do
not fully include the self-energy, we approximate its effect
by introducing an energy cutoff at the energy beyond which
quasiparticles are no longer well defined. In Appendix A 1
we estimate this cutoff in three separate density regimes, with
different dependencies on density in each regime. At the low-
est densities, electron-phonon interaction causes a vanishing
of the cutoff with falling density n, ωc ∝ n1/3, while at the
highest densities Fermi liquid theory provides ωc ∝ n2/3. The
surprising result of the study of the quasiparticle relaxation
rate (see Appendix A 1) is that at intermediate densities where
εF � ωLO (the longitudinal optical phonon energy), the cutoff
is found to have a reversed trend, ωc ∝ n−1/6, leading to a
nonmonotonic dependence of ωc(n).

In the conventional theory of superconductivity, the small
parameter ωphon/εF allows us to show that higher-order cor-
rection terms (vertex corrections, crossed diagrams, etc.) are
small and may be safely neglected (Migdal’s theorem). In
the case of STO, the presence of different small parameters
again allows us to neglect higher-order corrections: the ratio
of the transverse-optical (TO, soft mode) and the longitudinal-
optical (LO) phonon frequencies squared, (ωTO/ωLO)2, which
is of order 10−3 at wave vectors q = κ (the screening wave
vector), and the weak coupling of electrons to TO phonons.
The dimensionless Coulomb interaction NF VC is of order
10−2 in the relevant energy and wave-vector domain, rather
than of order unity as in conventional metals (here NF is
the density of states at the Fermi level). As a consequence,
vertex corrections are small, as estimated in Appendix A 1.
Moreover, the nominally small density of carriers might sug-
gest that the electron system is in the low-density, strong
interaction regime. The opposite is true: the effective Bohr
radius a∗

B is a factor of ε0(m/m1) ≈ 104 larger than in usual
metals, such that the parameter r∗

s = (3n/4π )−1/3/a∗
B ≈ 0.01,

which puts the system into the effectively high-density weakly
coupled regime. The additional interaction mediated by
TO-phonon exchange is on the one hand small due to the
generally small coupling of transverse phonons to electronic
quasiparticles, but is on the other hand boosted by the unusual
screening properties arising with the soft TO-phonon mode,

leading to large dynamical effective charges. Nonetheless,
the vertex corrections induced by the TO-phonon mediated
interaction are again small, as estimated in Appendix A 3.

The role of ferroelectric fluctuations is prominent in the
observed gigantic isotope effect, occurring when the usual
oxygen isotope O16 is replaced by the heavier O18. In con-
ventional BCS-theory this substitution should reduce the tran-
sition temperature Tc by a few percent. What is observed is,
however, a drastic increase of Tc by as much as 50% for
an O18 concentration of x = 0.35 [15]. As mentioned above,
the isotope substitution moves STO toward the ferroelectric
phase, as signaled by the divergence of the paraelectric sus-
ceptibility and the concomitant vanishing of the TO-phonon
soft mode frequency ωTO (q = 0). The latter is expected
to boost the contribution of the TO-phonon mediated pair
interaction, as is indeed found (see below). The fundamental
effect of the critical ferroelectric fluctuations on the supercon-
ductivity in STO was proposed early on by [16,17]. Those
authors employed a model of quantum criticality featuring a
soft mode, which may be identified as the TO-phonon mode.
In a phenomenological model, they estimated the effect of a
pairing interaction mediated by exchange of the soft mode on
the transition temperature and found a significant effect, as
found later in experiment [15].

What is the interaction between two conduction electrons
in a metal? On the one hand, it is given by the dynamically
screened Coulomb interaction VC , including any process con-
tributing to the screening, phonons, plasmons, or any other
coherent or incoherent type of excitation. This fully screened
interaction between two charges in the solid has to be repul-
sive in the static limit for reasons of stability. As will be shown
below, in Matsubara frequency space the interaction is always
positive, VC (q, iωn) > 0, where q,ωn is the momentum and
energy transferred in the interaction process. The second type
of interaction is of exchange character and is thought to
provide the pairing “glue” for many unconventional super-
conductors such as the cuprates, the pnictides, and the heavy
fermion compounds, often by exchange of spin fluctuations.
We will show below that in the present case of a soft transverse
phonon mode, exchange of these excitations may make a
substantial contribution to the pairing interaction.

II. PAIR INTERACTION

The pair interaction thus consists of two parts,

Vpair(q, iωn) = VC (q, iωn) + Vsoft(q, iωn). (1)

Here the dynamically screened Coulomb interaction is
given by

VC (q, iωn) = 4πe∗2

ε(q, iωn)q2
, (2)

with the dielectric function capturing the screening by elec-
tronic and ionic charges

ε(q, iωn) =
[

1 + 4πe∗2

q2
χel(q, iωn)

]
(iωn)2 − ω2

LO(q, iωn)

(iωn)2 − ω2
TO(q)

.

(3)
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The dielectric function vanishes at iωn = ωLO(q, iωn), defin-
ing the longitudinal optical phonon frequency, and diverges
at the transverse optical phonon frequency, iωn = ωTO(q).
The electronic screening effect is embodied in the irreducible
electronic charge susceptibility χel. In the undoped limit,
χel → 0. The effect of higher-lying excitations is lumped into
the optical dielectric constant ε∞, renormalizing the electron
charge as e∗ = e/

√
ε∞. We employ a single-mode model, rec-

ognizing the fact that the TO-phonon mode that is becoming
soft in the nearly ferroelectric SrTiO3 and its longitudinal
partner are the dominant modes. If necessary the model may
be generalized to include further phonon modes. For sim-
plicity, we consider a fully isotropic model, approximating
the ellipsoidal Fermi surfaces [18] by spheres. The phonon
properties are actually very anisotropic (see Appendix A 2),
but we will approximate the phonon dispersion by an angular
average as well.

We may then parametrize the phonon frequencies as (for
details, see Appendix A 2)

ω2
TO(q) = ω2

D (τ + λq2),

ω2
LO(q, iωn) = ω2

TO(q) + 4πω2
Dq2

q2 + 4πe∗2χel(q, iωn)
(4)

in the interval 0 < q < qc. The parameter τ is closely related
to the dielectric constants of the host, ε0 = ε∞(1 + 4π/τ ).
The static dielectric constant at q = 0 is very large, ε0 ≈
2 × 104 at low temperatures [19], and the optical dielectric
constant is ε∞ ≈ 5.2 [20,21]. Substituting these values, we
find τ ≈ 3.27 × 10−3. We note that τ acts as a control pa-
rameter of the quantum phase transition to the ferroelectric
phase, tending to zero at the transition τ (x) = τ (1 − x/xc ) →
0 at x = xc, where x is the concentration of O18 in the case
of isotope substitution. The analysis of Raman scattering
data [22] and of inelastic neutron scattering data [23] on
the zone-center soft-mode transverse optical phonon allows
us to extract the following values of the above parameters:
ωTO(q → 0) ≈ 1.9 meV (22 K), which, using τ , gives a
characteristic phonon energy ωD ≈ 33 meV (380 K). The
parameter λ averaged over the direction of q is found to be

λ ≈ 4.38 Å
2

(see Appendix A 2).
With five atoms in the unit cell, SrTiO3 has 15 phonon

modes in total. The three acoustic modes are less relevant
for the pairing and will be discarded. Of the remaining four
triplets of optical phonon modes, one is not infrared-active,
i.e., it does not couple well to electrons, and it may be omit-
ted. The most relevant triplet consists of the two degenerate
TO soft modes, which are surprisingly correlated with the
highest-lying longitudinal mode (usually called LO4) [24].
This is the set of phonon excitations that is well described
by a phenomenological Ginzburg-Landau-Wilson model of
the dynamic electric polarization of the system as shown
in Appendix A 2. We neglect the remaining two triplets of
modes. The experimental observation of a relatively strong
e-ph coupling of the highest LO-phonon mode [25,26] seen
in tunneling experiments is compatible with our model, con-
sidering that real rather than virtual phonon excitations are
involved.

We approximate χel by its noninteracting limit for an
isotropic system, given by

χ
(0)
el (q, iωn) = 2

∫
ddk

(2π )d
n(εk+q) − n(εk )

iωn − εk+q + εk
, (5)

where εk = k2

2m1
, with m1 ≈ 1.8m a Fermi surface average

of the effective mass of the lowest band (assuming εk � W ,
bandwidth), and n(εk ) = [1 + e(εk−μ)/T ]−1 is the Fermi func-
tion (we use units for which Planck’s constant h̄ and Boltz-
mann’s constant kB are equal to unity). The chemical po-
tential μ at doping density n will be determined in the
low-temperature limit as μ = εF = k2

F /2m1, where kF =
(3π2n)1/3, considering that for the low doping levels in ques-
tion here only states near the bottom of the lowest band are of
interest. It will be seen later that the temperatures of interest
satisfy kBT � μ. In the case of several occupied electronic
bands and effective-mass renormalizations, the expression for
χel may be generalized correspondingly. The above assumes
a rigid band model, i.e., the effect of doping is simply to
populate the unoccupied conduction bands of SrTiO3 (Ti
derived d-bands).

The TO-phonon mediated interaction takes the form

Vsoft(q, iωn) = −2
∣∣MTO

q (k)
∣∣2 2ωTO(q )

ω2
n + ω2

TO(q )
(6)

and adds an attractive contribution to Vpair (the factor of
2 accounts for the two nearly degenerate soft TO modes).
Here MTO

q (k) is the electron-phonon coupling function, the
transition amplitude for scattering of a conduction electron
from momentum state k to state k + q by emission of a TO
phonon (we consider only the one mode going soft at the
QCP; we also neglect umklapp processes). In the deformation
potential approximation, it is given by

MTO
q (k) = −i

√
h̄N/V

2mionωTO

∑
α

(q · eTO,α )Uq,α

1 + (κ/qtyp)2
Bq(k), (7)

where mion is an effective ion mass and Uq,α are the
Fourier components of the Coulomb potential of ion α inside
a unit cell, Uq,α = ∫

uc d3r eiq·rUα (r). The soft TO-phonon
mode is essentially a vibration of oxygen against the tita-
nium ion. We therefore single out these two ions and as-
sume the displacement vectors to be equal and opposite,
eTO,Ti = −eTO,O = eTO. This leads to a total deformation po-

tential of Uq = Uq,Ti − Uq,O ≈ ∫
uc d3r eiq·r( e∗2Z∗

Ti
|r−RTi| − e∗2Z∗

O
|r−RO| ).

The effective charges Z∗
α have been determined from a first-

principles calculation [24] and are found to be unusually
large in perovskite compounds such as SrTiO3, Z∗

Ti = 7.1, and
Z∗

O = −5.7. The reason is that the corresponding Ti-O ionic
bond is on the verge of being covalent, leading to large charge
transfers. We thus see that Uq comes out to be an order of
magnitude larger than the usual deformation potentials. We
account for the effect of electron screening of the electron-ion
potential by a factor 1/[1 + (κ/qtyp)2], with κ the screening
wave number and qtyp ≈ 1/a a typical wave number inside
the first Brillouin zone (a ≈ 3.9 Å is the lattice constant). This
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screening factor causes a suppression of Vsoft with increasing
electron density.

The momentum dependence of the matrix element of
Bloch wave functions uk(r) (of a single band, for simplic-
ity), integrated over a unit cell of volume Vuc, Bq(k) =
V −1

uc

∫
d3r u∗

k+q(r)uk(r), plays an important role here as it
describes the symmetry components of the coupling to the
electron system. Separating out the average over the Brillouin
zone, we define the anisotropic part �Bq(k) of Bq(k) as
�Bq(k) = Bq(k) − 〈Bq(k)〉av, where the average is over all
k in the first Brillouin zone. The coupling provided by the
averaged B is to density excitations of the electron system,
which are strongly screened, as seen above. As a consequence,
the frequencies of TO-phonon modes coupled to density ex-
citations are shifted up to the LO-phonon frequencies and are
no longer soft. In contrast, the anisotropic coupling mediated
by �Bq(k) does not couple the TO-phonon mode to density
modes, leaving the phonon frequency unchanged, i.e., soft.
A microscopic calculation of �Bq(k) requires an electronic
band-structure calculation, which should take into account the
substantial charge transfers in the unit cell. The latter may
be expected to give a strong anisotropic component of Bq(k).
We will assume �Bq(k) of order unity in the following and
approximate (�Bq(k))2 by its average.

A crucial factor in Eq. (7) is the inner product [q · eTO(q)]
of the wave vector and the polarization direction of the phonon
mode. Along the principal directions q, the polarization is
perpendicular to the propagation direction and the inner
product vanishes. In between these special directions, q and
eTO(q) are not exactly orthogonal. The angular average of
the e-ph coupling function is therefore nonzero, if small. In
Appendix A 2 the angular average s = 〈[̂q·eTO(q)]2〉, where
q̂ = q/|q|, is calculated as s ≈ 0.1, independent of q. Some
evidence for a coupling of electrons to the soft mode of SrTiO3

has been found from transport experiments [27].
The dimensionless TO-phonon mediated interaction is then

given by

NF Vsoft(q, iωn) = −η
kF

qR

q2

q2
R

ω2
D

ω2
n + ω2

T (q )
, (8)

where

η = 2s

π2
(qRa)3

(
U

ωD

)2
m1

mion

〈
�B2

q (k)
〉
av. (9)

Using the values a = 3.9 Å, qR ≈ 0.124 Å
−1

, ωD ≈ 380 K,
U ≈ 35 eV, mion/m1 = 16 320 (taking the atomic mass of
O16), and 〈�B2〉 ≈ 1, we estimate η ≈ 0.1. The above can
provide only a rough estimate of the coupling strength η. A
more accurate determination requires a microscopic calcu-
lation, which is beyond the scope of this work. We take a
somewhat larger value, η = 0.18, in the numerical evaluation,
giving rise to the observed magnitude of the isotope effect.

III. GAP EQUATION

Given the pair potential, the equation determining the
gap function �(k, iωn) in the spin singlet channel is given

by [28]

�(k,iωn) = −T
∑
ωl

∑
p∈BZ

Vpair(k − p,iωn − iωl )

× �(p,iωl )

[ωl − �(p,iωl )]2 + ξ 2
p + |�(p,iωl )|2 , (10)

where ωl = (2l + 1)πT is a fermionic Matsubara frequency,
and ξp = εp − μ. Here �(p, iωl ) is the normal self-energy,
which is negligible at low ωl , but it will provide a cutoff at
|ωl| = ωc as discussed below. The cutoff is determined by the
condition Im�(kF , ωc − i0) = ωc; at frequencies |ω| > ωc,
quasiparticles are no longer well-defined and the electron
spectral function drops rapidly to zero with growing ω.

For small Vsoft, Vpair(q,iωn) is a positive-definite function
[on the real frequency axis, ReVC (q,ω − i0) does have nega-
tive parts]. The solutions �(k,iωl ) must therefore necessarily
have negative components. This is well known from the exam-
ples of spin fluctuation mediated d-wave superconductivity,
or of p-wave superfluidity of He3, where the gap parameter
has nodes on the Fermi surface. We see here that it may also
hold for s-wave superconducting states. There the negative
components must arise in the frequency dependence. A neg-
ative part of � at high frequency was actually calculated by
Morel and Anderson [29], and even before by Bogoliubov
[30]. To find such solutions, we must solve the gap equation
as an integral equation in frequency. For larger Vsoft (such as
for η = 0.18, used below) the pair interaction has sufficiently
attractive (negative) character that a solution without sign
change in frequency becomes possible.

We restrict our considerations to the linear gap equation,
which allows us to determine the transition temperature. It
is expected that the e-ph interaction gives rise to dominant
s-wave pairing. Subdominant anisotropic pairing, induced by
the lattice anisotropy and the general momentum dependence
of the pair interaction, will not be considered here.

A. Transition temperature

Assuming a momentum-independent gap function, the
transition temperature Tc follows from the linearized gap
equation

�(iωn) = −Tc

∑
ωl

K (ωn; ωl )�(iωl ). (11)

The kernel of the gap equation may be expressed as

K (ωn; ωl ) =
∫ qc

0

dqq2

2π2
Vpair(q, iωn − iωl )F (q, iωl ),

F (q, iωl ) = 1

2

∫ 1

−1

d cos θ

ω2
l + (

ξkF
+ q2+2qkF cos θ

2m1

)2 , (12)

taking proper account of the cutoff induced by the self-
energy. At small ωl the function F (q, iωl ) ∝ 1/ωl , leading
to the well-known logarithmic divergence of the kernel of
the gap equation. At large ωl the self-energy is dominant
and |ωl − �(p,iωl )| → �(p,iωl ) ∝ (ωl )β , where β = 2 or 3,
depending on density (see Appendix A 1), thus providing
the frequency cutoff at ωc. The momentum integral may
be done numerically or even analytically, employing further
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approximations, with a cutoff qc of the order of π/a, the
extension of the first Brillouin zone. In view of the expected
smallness of Tc � ωphon, the frequency summation extends
over thousands of terms, allowing us to replace the summation
by an integral with a lower cutoff at the smallest fermionic
frequency, ω1 = πT . It is useful to consider even- and odd-
frequency solutions separately by introducing the correspond-
ing kernels Ke,o. We define the eigenfunctions ψe,o

ν (ω) and
eigenvalues αe,o

ν (Tc ) of the kernels Ke,o on the imaginary
frequency axis as

αe,o
n (Tc )ψe,o

n (ω) =
∫ ωc

πTc

dω′

2π
Ke,o(ω; ω′)ψe,o

n (ω′),

Ke,o(ω; ω′) = K (ω; ω′) ± K (ω; −ω′), (13)

where the cutoff ωc is found from an estimate of the imaginary
part of �(ω + i0) presented in the Appendix. We adopt the
interpolation expression

ωc = ωD[
c1

(
kF

qR

)−1/2 + c2
(

kF

qR

)2]−1 + c3
(

kF

qR

)−1 (14)

with parameters c1, c2, c3 (and where we defined q2
R/2m =

ωD). As shown in Appendix A 1, one may distinguish three
density regimes with different dominant quasiparticle re-
laxation processes: (i) a high-density Fermi liquid regime
with ωc ≈ εF , (ii) an intermediate regime with dominant
electron-electron scattering and anomalous density depen-
dence ωc ≈ ωD ( kF

qR
)−1/2, and (iii) a low-density regime where

electron-phonon scattering dominates, providing a cutoff
ωc ≈ 30ωD ( kF

qR
) � εF . For typical parameter values, ωc is a

nonmonotonic function of density, increasing at low density,
passing through a maximum at around n ≈ 5 × 1017 cm−3

and through a minimum around n ≈ 2 × 1019 cm−3 and in-
creasing for higher densities.

The solution ψe,o
ν (ω) with the highest transition tempera-

ture may be obtained by finding the largest negative eigen-
value

max
{n}

[ − αe,o
n (Tc )

] = −αe,o
n0

(Tc ) = 1, (15)

and the gap function is given by �(iω) = ψe,o
n0

(ω). It is
found that the highest transition temperature appears in the
even-frequency class for an eigenfunction ψe(ω) with a single
zero on the positive semiaxis (small Vsoft ) or without zero
(sufficiently strong, but still small Vsoft).

In Fig. 1 we show the transition temperature Tc as a func-
tion of doping density n. For a reasonable choice of the pa-
rameters of the cutoff ωc, c1 ≈ 1.1, c2 = 0.6, and c3 ≈ 0.036,
the Tc values compare well with the experimental data. For
higher densities, the higher electronic bands are successively
populated (gaps to the second band 4 meV and third band
30 meV, and population of the second band starting at n =
3 × 1018 cm−3). Their contribution is expected to increase Tc.

B. Isotope effect

As already mentioned, a further spectacular finding about
the superconducting phase of doped SrTiO3 is the observed
isotope effect [15]. One finds that substitution of O16 by
a concentration xc = 0.35 of O18 enhances Tc by as much
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FIG. 1. Transition temperature Tc in Kelvin vs logarithm of
electron density in cm−3. Theory: solid line; experiment: crosses [6];
filled circles: Nb-doped; + symbols: O-reduced [2].

as 50%. In conventional superconductors, substitution by a
heavier isotope leads to a reduction of Tc by a few percent,
as caused by a slight decrease of the prefactor in the BCS
expression for Tc. The isotope substitution moves the system
closer to the ferroelectric quantum critical point (or even
beyond it, into the ordered phase). This leads to a major
change in the pair interaction, through its dependence on
the TO-phonon frequency ωTO(q = 0), which vanishes at
the QCP. Correspondingly, the pair attraction is boosted by
isotope substitution. We have calculated this effect by setting
ωTO(q = 0; x) = (1 − x/xc )ωTO(q = 0; x = 0). As shown in
Fig. 2, we find that for the parameter specifying the strength
of Vsoft, η = 0.18, and keeping the cutoff frequency ωc as
presented above, Tc is indeed increased by a factor ≈1.5 at
densities n ≈ 1018 cm−3, with somewhat smaller enhance-
ment at higher densities. We point out that this approach is
different from the proposals by Edge et al. [16,17], where
the ferroelectric soft mode was discussed without taking into
account the Coulomb interactions. Also shown in Fig. 2 is the

x x

x

16 17 18 19 20 21
0.0

0.1

0.2

0.3

0.4

0.5

Tc 

Log10n

FIG. 2. Transition temperature Tc in Kelvin vs logarithm of elec-
tron density in cm−3. Theory: solid red line, isotope concentration
x = 0; solid blue line, x = 0.34; solid green line, only Coulomb
interaction (η = 0) and x = 0. Experiment: crosses, x = 0; filled
circles, x = 0.34 [15].
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result obtained without the TO-phonon mediated interaction
(η = 0). Surprisingly, the Tc curve is shifted to lower densi-
ties. However, it is actually somewhat higher than the result
obtained with both interaction components (η = 0.18). This
clearly shows that the two interaction components superpose
in a more complex manner than one may have thought, due to
their very different frequency dependence.

IV. CONCLUSION

Our results show that superconductivity in doped SrTiO3

may be interpreted as induced by two relevant interaction
components, namely the dynamically screened Coulomb in-
teraction and an interaction mediated by transverse optical
phonons. Screening by ionic charges, in particular through the
optical phonon modes responsible for the incipient ferroelec-
tric transition, and screening by electronic charges are both
important. At higher densities, electronic screening leads to a
suppression of pairing. On the low-density side it is found that
the rapid decay of quasiparticles for energies beyond ωc ∝
n1/3, caused by e-ph scattering, confines the domain of quasi-
particle pairing to ever lower energies as density decreases,
again leading to a suppression of Tc. An all-important feature
of our theory is the careful consideration of the relevant
frequency domain. We find that the cutoff frequency at low
density is much larger than the Fermi energy, and even varies
with density in a nonmonotonic fashion. Previous studies on,
e.g., plasmon exchange mediated superconductivity [31] have
found a strong effect of higher-order contributions, substan-
tially reducing the tendency for superconductivity [32]. In
the present case, higher-order corrections are small because
both the screened Coulomb interaction and the soft-phonon-
induced interaction are weak. The observation of a large
and unusual isotope effect may be explained easily within
the present model: isotope substitution can move the system
closer to the ferroelectric transition and thereby softens the
TO-phonon frequency. This leads to a substantial enhance-
ment of the pairing interaction.

The inclusion of higher phonon modes is not expected to
lead to major changes, as it will only affect the high-frequency
part of the pairing interaction. In contrast, taking into account
the two higher electronic bands, which begin to be populated
at higher dopings, is expected to increase the pairing tendency
sizeably.
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APPENDIX A

1. Electronic self-energy

The purpose of this Appendix is to show that the quasi-
particle relaxation rate � exceeds the energy ω for |ω| > ωc,
signaling that quasiparticles are no longer well-defined and
that the electron spectral function falls off faster than ω−2.
Consequently, the contribution of processes from the energy
domain |ω| > ωc to the gap equation is strongly suppressed,
even though the screened Coulomb interaction is perfectly
finite for such energies.

a. Coulomb interaction

We first estimate the contribution to �(kF , ω) =
Im�(kF , ω − i0) from electron-electron interaction, �el,
as approximately given by

�el(kF , ω) = π
∑
k2,k3

|V (|kF − k3|, ω − εk3 )|2

× (1 − nk3 )(1 − nk4 )nk2δε, (A1)

where k4 = kF + k2 − k3 and δε = δ(ω + εk2 − εk3 − εk4 ).
Let us first look at energy ω ≈ εF at the border of the Fermi

liquid regime, when we have

�el(kF , εF ) ≈ ω2

εF

|N0VC (|kF |, εF )|2. (A2)

In the limit of high densities, where εF � ωLO(q = 0), we
have

N0VC (|kF |, εF ) ≈ κ2

k2
F + κ2

≈ 1 (A3)

so that the cutoff frequency is given by ωc1 ≈ εF .
At lower densities εF � ωLO(q = 0) the screening pro-

vided by the ionic charges strongly weakens the Coulomb
interaction. We have approximately

N0VC (|kF |, εF ) ≈ κ2

k2
F

ω2
LO,0(q=0)

ε2
F +ω2

TO(q=0)
+ κ2

≈ κ2

k2
F

ε2
F + ω2

TO(q = 0)

ω2
LO,0(q = 0)

. (A4)

At a density of n = 1018 cm−3, putting in numbers kF ≈
0.03 Å

−1
, κ2 ≈ 0.012 Å

−2
, and ω2

TO(q = 0)/ω2
LO,0(q = 0) ≈

10−3, it is apparent that γ = |N0VC (|kF |, εF )|2 ≈ 10−4 � 1.
Therefore, the resulting cutoff frequency will be ωc � εF .

For large ω � εF , energy conservation requires the quasi-
particle energies ε3,4 to be large such that nk3 , nk4 � 1. The
momentum integrations may be expressed in terms of integra-
tions over the energies εk2 , εk3 and over angles, in particular
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over cos θ = (kF · k3)/kF k3,

�el(kF , ω) ≈ π

∫ kF

0

dk2k
2
2

2π2

∫
d�k2

4π

∫ π/a

0

dk3k
2
3

2π2

×
∫

d cos θdφ

4π
|VC (|kF − k3|, ω − ε3)|2δ�.

(A5)

Here δ� = δ� (ω + ε2 − ε3 − ε4) is a delta function of finite
width �, allowing for the fact that � may be as large as the en-
ergy itself. The integral over cos θ may be done with the help
of the δ function, using ε4 ≈ v|k4| = v(�ε − 2kF k3 cos θ )1/2,
for k4 inside the first Brillouin zone. We expect ε4 to be
large, beyond the regime where the quadratic dependence
on k4 holds. We therefore use a rough approximation of the
electronic energy dispersion for higher energies, replacing so
to speak the − cos k function of a tight-binding dispersion by
a straight line. The result is

�el(kF , ω) ∝
∫ kF

0

dk2k
2
2

2π2

∫ ∞

0

dk3k
2
3

2π2

× ω

kF k3v2
|VC (|k3|, ω − εk3 )|2, (A6)

where we used εk2 � εk3 and averaged over the remaining
angles. What is the screened Coulomb interaction in the range
ωTO(qtyp), εF � ω � ωLO(qtyp, ω) and for typical values of
momentum qtyp ≈ ω/v? Because of the large difference of the
transverse and the longitudinal optical phonon frequencies in
a polar material, there is a frequency regime where VC ∝ ω2,
reflecting the huge difference in polarization at low and high
frequencies. We may approximate the Coulomb potential by

VC (q, ω) = 4πe∗2

q2 ω2−ω2
LO,0(k3 )

ω2−ω2
TO(k3 )

+ κ2
≈ 4πe∗2

k2
3 + κ2

ω

ω2

ω2
D

, (A7)

where κ2
ω = κ2ω2/ω2

D . Within the above approximations,
one finds

�el(kF , ω) ∝ 4k2
F e∗4

π2v2

ω5

ω4
D

∫ ∞

κω

dk3
1

k3
3

≈ ω

(
ω

ωc2

)2

,

ωc2 ≈ πωD

(mv2)1/2

(e∗2qR )1/2
(qR/kF )1/2. (A8)

Using that v ≈ D/(π/a), (π/a)2/m ≈ D, and e∗2/a ≈ D,
where D is the half-bandwidth, it is seen that the ratio
(mv2)1/2/(e∗2/a)1/2 = O(1). The cutoff frequency is
seen to decrease weakly with increasing kF in the
intermediate-density regime.

b. Electron-phonon scattering

At small densities the contribution from phonon scattering
to � dominates. We consider scattering by acoustical phonons,
approximating the dispersion by ωq = cq and taking into
account that the polarization vector eλ is parallel to q along the
principal directions. The scattering rate may be estimated as

�ph(kF , ω) ≈ π
∑

q

|M (q)|2(1 − nk+q)δ� (ω − εk+q − ωq).

(A9)

We approximate the electronic dispersion by εk ≈ v(|k|−kF ).
Using nk+q = �(ωq − ω), the angular integral yields

�ph(kF , ω) ≈
∫

dq q2

2π2
〈|M (q)|2〉�(ω − ωq )

ω − ωq

kF qv2

×��

[
2kF q −

∣∣∣∣(ω

v

)2
− q2

∣∣∣∣], (A10)

where �� (x) is a step function of width �. Here the e-ph
matrix element squared is approximated by

〈|M (q)|2〉 ≈ q2

ρωq

(
4πe∗2

a3(q2 + κ2)

)2

, (A11)

where ρ = miona
−3 is the ionic mass density and a is the

lattice spacing. Here we are allowed to drop the ionic
part of the screening, considering the fact that the relevant
momentum transfer qtyp ≈ ωD/v and hence ωTO(qtyp) ≈
ωLO(qtyp, ωD ). We have vq � ωq, so that we may drop ωq
from the argument of the second step function, and k2

F � q2

may be neglected. The q integral is then confined to a region
of width 2kF around qω = ω/v . As a result, we get at ω < vκ

�ph(kF , ω) ≈ ω3 1

π2mionca

(
4πe∗2

av2κ2

)2

= ω

(
ω

ωc3

)2

. (A12)

Estimating v ≈ π/(m1a), c2/v2 ≈ m1/mion, and using
4πe∗2/κ2 = π2/m1kF , one finds

ωc3 ≈ ωD

(
mv2

π2ωD

)1/2(
mion

m1

)1/4(
kF

qR

)
. (A13)

The two prefactors may be estimated as ( mv2

ωD
)1/2 ≈ 5 and

( mion
m1

)1/4 ≈ 13 (using the ionic mass of O16), yielding
an estimate of the parameter c3 introduced in Eq. (14),
c3 ≈ 0.05, which compares well with the value used in the
numerical evaluation.

c. Cutoff energy

Combining the above results for the cutoff energies in-
duced by Coulomb interaction at high and low densities,
ωc1, ωc2, and by the electron-phonon interaction, ωc3, into a
single expression, we may define

ωc = ωD[
c1

(
kF

qR

)−1/2 + c2
(

kF

qR

)2]−1 + c3
(

kF

qR

)−1 . (A14)

For the values of the parameters c1, c2, c3 used in the nu-
merical evaluation, the cutoff energy is found to be a non-
monotonic function of kF , which may be traced to ωc2 ∝
k

−1/2
F , decreasing with increasing density, mainly because

� ∝ n/κ4 ∝ kF . This nonmonotonic behavior appears to be
necessary for obtaining the observed Tc versus density values.

2. Phenomenological model of optical phonons of SrTiO3

a. Optical phonons in a dynamical model of electric polarization

The soft-mode properties of SrTiO3 may be discussed in
the framework of a Ginzburg-Landau-Wilson action for the
electric polarization P(r, t ), varying in space and imaginary
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time. The general form of the action (dropping nonlinear
terms) is

S = 1

2

∫
dt

∫
dr

⎡⎣ 1

ω2
D

(
∂P
∂t

)2

+ τP2+
∑
i,j,k,l

λijkl

∂Pi

∂xj

∂Pk

∂xl

⎤⎦.

(A15)

The fourth-rank tensor λijkl in a cubic lattice (we neglect
the tetragonal distortion for simplicity) has three independent
elements λj , j = 1, 2, 3,

λijkl = λ1δikδklδij + λ2δklδij (1 − δik ) + λ3δikδjl (1 − δij ).

(A16)

Stability requires λ1 > λ2 > 0 and λ3 > 0. The electric field
E generated by P is obtained as

E(r, t ) = δS

δP(r, t )
= χ · P, (A17)

where χ is the tensor of electric susceptibility, the elements of
which are defined in Fourier space as

χik (q, iωn) =
(

ω2
n

ω2
D

+ τ

)
δik + q2Aik, (A18)

where we defined a tensor

Aik = [
λ3

(
1 − n2

i

) + λ1n
2
i

]
δik + λ2nink (1 − δik ), (A19)

and q̂ = (n1, n2, n3) is the unit vector in the direction of q.
To determine the Fourier components of the potential

ϕion(r, t ) of a point charge screened by ionic charges, we need
to solve the equations

iq · (E+4πP) = 4πe, E= − iqϕion = χ · P

with the result

ϕion(q,iωn) = 4πe

q2 + 4πq · χ−1·q = 4πe

εion(q, iωn)q2
. (A20)

The projection of the inverse susceptibility along q is approx-
imately given by

q · χ−1·q ≈ q2

ω2
n

ω2
D

+ τ + λ1q2 + 2K (−λ1 + λ3 + λ2)q2
,

(A21)

where K (̂q) = n2
xn

2
y + n2

yn
2
z + n2

zn
2
x . Equation (A21) is exact

for q along the axes, face diagonals, or space diagonals. It
follows that

εion(q, iωn) ≈ ε∞
ω2

n + ω2
LO,0(q)

ω2
n + ω2

TO(q)
, (A22)

where we defined the average frequencies of the soft TO
phonon and the accompanying (bare) LO phonon by

ω2
TO(q)

ω2
D

= τ + λ1q
2 + 2K (−λ1 + λ3 + λ2)q2, (A23)

ω2
LO,0(q) ≈ ω2

TO(q) + 4πω2
D. (A24)

The exact TO-phonon frequencies are obtained from the zeros
of the eigenvalues of the tensor χ (see below).

b. Dielectric function of doped SrTiO3

At finite doping, the potential ϕ of a test charge is addition-
ally screened by the conduction electron system

eϕ(q, iωn) = eϕion

1 + eϕionχel
= 4πe2

ε(q, iωn)q2
. (A25)

Here the dielectric function is given by

ε(q, iωn) = ε∞

[
1 + 4πq · χ (q, ωn)−1·q

q2

+ 4πe2

ε∞q2
χel(q, iωn)

]
, (A26)

where χel is the irreducible electric polarization of the con-
duction electrons. The potential of a fully screened test charge
is equivalent to the screened Coulomb interaction VC (q, iωn)
between two conduction electrons, which may be reexpressed
as

VC (q, iωn) = 4πe∗2

q2 + κ2(q, iωn)

ω2
n + ω2

TO(q)

ω2
n + ω2

LO(q, iωn)
, (A27)

where κ2(q, iωn) = 4πe∗2χel(q, iωn), and ωLO(q, iωn) is the
LO-phonon frequency renormalized by electronic screening
effects,

ω2
LO(q, iωn) = ω2

TO(q) + 4πq2

q2 + κ2(q, iωn)
ω2

D. (A28)

To make contact with the usual representation of the phonon-
mediated interaction, we note that VC may be expressed as the
sum of an electronically screened Coulomb interaction and a
phonon-induced interaction,

VC (q, iωn) = 4πe∗2

q2 + κ2(q, iωn)
− 4πe∗2q2

[q2 + κ2(q, iωn)]2

× 4πω2
D

ω2
n + ω2

LO(q, iωn)
. (A29)

c. Transverse optical phonon eigenstates

We define the eigenstates of the tensor Ajk by∑
k

Ajke
(m)
k = a(m)e

(m)
j . (A30)

The transverse optical phonon frequencies and polarization
vectors are found to be solutions of E(q, ωn) = χ (q, ωn) ·
P(q, ωn) = 0 at finite P and for transverse polarization. Con-
sequently, we are looking for eigenstates of the tensor χ with
zero eigenvalue, such that

(iωn)2

ω2
D

= τ + q2a(m) (A31)

and eigenvectors e
(m)
j . We have calculated the eigenvalues

and eigenstates of χ in their dependence on the direction
q̂, and hence the TO soft phonon frequency and eigenvector
(identified as the lowest eigenvalue). For orientations q̂ =
(1, 0, 0) and ê(1) = (0, 1, 0) we find a(1) = λ3, which, com-

pared with INS data [23], yields a value λ3 ≈ 2.0 Å
2
. For

the only other experimental configuration of q̂ = 1√
2
(1, 1, 0)
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and ê(1) = 1√
2
(1,−1, 0) we get a(1) = 1

2 (λ1 − λ2 + λ3),

compared with the experimental value [23] a(1) ≈ 4.5 Å
2
.

Assuming a value of λ2 ≈ 1.0 Å
2

one then obtains λ1 ≈
8.0 Å

2
.

Using these values, we have determined the eigenstates of
the matrix Ajk numerically. The angular average of the scalar
product of the unit vector along q and an eigenvector e(TO)

squared is found as

〈(̂q · e(TO))2〉 ≈ 0.1. (A32)

3. Vertex corrections

Here we provide a rough estimate of the vertex correction
in first order of the interaction. It is given by

�(k, p) =
∑

q

G(k − q )G(p − q )V (q ), (A33)

where G(k) = G(k, iωn) = (iωn − ξk )−1, omitting the self-
energy correction, and ξk = εk − μ. We first consider the
screened Coulomb interaction using the approximation

VC (q, iωn) ≈ 4πe∗2

q2 + κ2
0

ω2
TO(κ0)

2πω2
D

. (A34)

Here κ2
0 = κ2(0, 0) = 4πe∗2NF , which at a density of n =

1018 cm−3 amounts to κ2
0 ≈ 0.026 Å

−2
. It follows that

the frequency ratio is small, ρ = ω2
TO(κ0)/2πω2

D = (τ +
λκ2

0 )/2π ≈ 0.018, so that the dimensionless interaction
strength NF VC ≈ 10−2 in the relevant regime of momenta and
frequencies. The vertex corrections are approximately given
by [using ξq = vF (q − kF ), where vF = kF /m1 is the Fermi
velocity, and neglecting k, p compared to q]

�C (k, p) ≈ N−1
F ρT

∑
ωl

∫
dqq2

2π2

κ2
0

q2 + κ2
0

1

(iωl − ξq)2
≈ ρ,

(A35)

where the frequency summation has been done approximately
as

T
∑
ωl

1

(iωl − εq )2
≈

{∫ ∞

πT

+
∫ −πT

−∞

}
dω

2π

1

(iω − ξq)2

≈ T

(πT )2 + ξ 2
q

(A36)

and we used T � εF and κ2
0 + q2 ≈ κ2

0 , since q ≈ kF � κ0 .
The TO-phonon mediated interaction gives rise to the

following vertex correction:

�soft(k, p) ≈ η

NF

kF

qR

T
∑
ωl

∫
dqq2

2π2

q2

q2
R

ω2
D

ω2
T (q )

1

(iωl − ξq)2

≈ η

NF

kF

qR

∫
dqq2

2π2

q2

q2
R

ω2
D

ω2
T (q )

T

(πT )2 + ξ 2
q
,

(A37)

where the frequency summation has been done as described
above. The momentum integral is again dominated by the
sharp peak at εq = 0, i.e., at q = kF , and it may be approx-
imately done as

�soft(k, p) ≈ η

(
kF

qR

)3 1

τ + λk2
F

. (A38)

At a density of n = 1018 cm−3 we may estimate

kF ≈ 0.03 Å
−1

, therefore η(kF /qR )3 ≈ 2 × 10−3 (we recall

qR ≈ 0.124 Å
−1

). Taking (τ + λk2
F )−1 ≈ 100 we then find

�soft ≈ 0.2.
These rough estimates demonstrate that vertex corrections

are negligible due to the unusually strong screening by ionic
charges in this electrically highly polarizable material and due
to the weak coupling of electrons to TO phonons.
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