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Polarization of the spontaneous magnetic field and magnetic fluctuations
in s + i s anisotropic multiband superconductors
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We show that multiband superconductors with broken time-reversal symmetry can produce spontaneous
currents and magnetic fields in response to the local variations of pairing constants. Considering the iron pnictide
superconductor Ba1−xKxFe2As2 as an example we demonstrate that both the point-group symmetric s + is state
and the C4-symmetry-breaking s + id states produce, in general, the same magnitudes of spontaneous magnetic
fields. In the s + is state these fields are polarized mainly on an ab crystal plane, whereas in the s + id state their
ab-plane and c-axis components are of the same order. The same is true for the random magnetic fields which
are produced by the order parameter fluctuations near the critical point of the time-reversal symmetry-breaking
phase transition. Our findings can be used as a direct test of the s + is/s + id dichotomy and the additional
discrete symmetry-breaking phase transitions with the help of muon spin-relaxation experiments.

DOI: 10.1103/PhysRevB.98.104504

I. INTRODUCTION

Superconducting states with spontaneously broken time-
reversal symmetry (BTRS) recently have been the focus of in-
terest. First, such states have been studied in connection with
the chiral p-wave order parameter in the superfluid 3He A

phase [1] and the Sr2RuO4 superconducting compound [2].
More recently, s + id and s + is states have been suggested
as the candidate order parameters in multiband iron pnictide
compounds [3–9]. A recent experiment [10] supports this hy-
pothesis demonstrating the presence of spontaneous currents
in the ion-irradiated samples of Ba1−xKxFe2As2 in the certain
doping level interval.

Spontaneous currents were predicted to exist near impu-
rities in s + id superconducting states which spontaneously
break the C4 crystalline symmetry of the parent com-
pound [3]. As for the s + is states, initially, it has been
claimed that a magnetic field can appear only in samples sub-
jected to strain [11]. However, this conclusion was made based
on the specific circularly symmetric model of the impurity.

A more general consideration has shown [12,13] that mag-
netic fields in the s + is state can be generated without strain
in the presence of the general-form inhomogeneities of the
order parameter. They can be induced, e.g., by the domain
wall between s + is and s − is states [14], attached to the
sample edge or by any external controllable perturbation, such
as the local heating.

Later the particular case of two-dimensional defects elon-
gated along the crystal c axis and forming square shapes on
the ab plane have been studied [15]. In such a system the
spontaneous magnetic field generated in the s + is state is
several orders of magnitude smaller than in the s + id one. As
we show below this difference is not generic, and under more
general conditions the magnetic-field amplitudes produced in
the two states are of the same order.

The purpose of the present paper is threefold. First, we
show that the spontaneous magnetic field is generated both
in the s + is and in the s + id states due to the general-form
inhomogeneities of the pairing interactions. Such a form of
disorder can exist in the sample even without the externally
generated defects just due to the spatially inhomogeneous
doping level. Second, we demonstrate that, in the general
case, when the system is inhomogeneous both on the ab

plane and in the c direction s + is and s + id states yield the
same magnitudes of spontaneous fields. However, as shown
schematically in Fig. 1 this regime is characterized by the
qualitatively different polarizations of the spontaneous field
in the s + id and s + is states. This prediction can be used
for resolving the s + id/s + is dichotomy in real materials
with the help of muon spin-relaxation experiments [10,16,17].
Third, we demonstrate that the order parameter fluctuations
near the BTRS phase transition generate random magnetic
fields with the critical correlation radius. Thus, the discrete
symmetry-breaking phase transition can be revealed through
the magnetic-field fluctuations.

II. GENERAL FIELD STRUCTURE

Here we develop general treatment of spontaneous mag-
netic fields in BTRS states further considering inhomo-
geneities created by the spatial variation of pairing constants
in the minimal three-band microscopic model [6,18,19] with
three distinct superconducting gaps �1–3 residing in different
bands. The pairing which leads to the BTRS state is domi-
nated by the competition of two interband repulsion channels
η1,2 > 0 described by the following coupling matrix:

�̂ = −ν0

⎛
⎜⎝

0 η1 η2

η1 0 η2

η2 η2 0

⎞
⎟⎠ . (1)
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(a) s+is (b) s+id

FIG. 1. The arrows show the spontaneous magnetic fields gen-
erated by rotationally symmetric three-dimensional (3D) inhomo-
geneity of the interband phase difference θ13 = θ13(r ) as given by
Eq. (2). (a) The anisotropic s + is state with γ x

13 = γ
y

13 = 2γ z
13 and

(b) the s + id state with γ z
13 = 0 and γ x

13 = −γ
y

13. The scale of the
magnetic field is the same in (a) and (b). The field is plotted on the
spherical surface r = const. The crystal anisotropy axis is z. The field
is rotationally symmetric in the s + is state and changes sign under
the C4 rotation in the s + id state.

We assume for simplicity that the density of states ν0 is the
same in all superconducting bands. This model can be used
for both the s + is and the s + id states. In the former case
�1,2 corresponds to the gaps at the hole pockets, and �3 is the
gap at the electron pockets so that uhh = ν0η1 and ueh = ν0η2,
respectively, are the hole-hole and electron-hole interactions
[6,19]. The same model (1) can be used to describe the s + id

states, but there, �1 and �2 describe gaps in the (0,±π ) and
(±π, 0) electron pockets, respectively. In the hole pocket the
gap is �3 so that ueh = ν0η1 and uee = ν0η2 are electron-hole
and electron-electron interactions, respectively [13,20].

The inhomogeneities of pairing interactions in the
model (1) produce spatially varying gap amplitudes |�i | and
phases θi . Their gradients can generate spontaneous magnetic
fields according to the modified London expression in multi-
band superconductors [12],

B = −4π∇ × (
λ̂2

L j
) + 1

ẽN

∑
k>i

∇ × (γ̂ki∇θki ), (2)

where we use the units with h̄ = c = 1. The interband phase
differences are θki = θk − θi , N is the number of supercon-
ducting bands.

Here the London penetration depth is given by λ̂−2
L =∑

k λ̂−2
k and γ̂ki = λ̂2

L(λ̂−2
k − λ̂−2

i ), where λ̂k’s are, in general,
the tensor coefficients characterizing the contribution of each
band to the Meissner screening. In the clean limit they can be
expressed as follows:

λ̂−2
k = 8πρẽ2K̂k|�k|2, (3)

where K̂k = 〈vkvk〉 is the anisotropy tensor, vk is the Fermi
velocity in the kth band normalized to the certain band-
independent characteristic velocity v̄F . We normalize the gaps
by Tc/

√
ρ, where ρ = ∑

n πT 3
c ω−3

n ≈ 0.1, Tc is the critical
temperature, and the magnetic field is by B0 = Tc

√
ν0/ρ,

which is close to the thermodynamic critical field at zero

temperature [21]. The length is normalized by the Cooper pair
size ξ0 = v̄F /Tc, and we introduce the dimensionless Cooper
pair charge as ẽ = 2eξ 2

0 B0.
In contrast to the usual London electrodynamics, the mul-

ticomponent superconducting systems can generate sponta-
neous magnetic fields due to the second term in Eq. (2) acting
as a source according to the mechanisms described below.
First, the source term in Eq. (2) is nonzero if ∇θki �= 0, and
tensors γ̂ki are constant in space but anisotropic. This scenario
is generic for the s + id state when all three components
γ

x,y,z

ki are different. The s + is state is isotropic on the ab

plane, but there is anisotropy on the ca and cb planes γ x
ki =

γ
y

ki �= γ z
ki . In this case the ab-plane inhomogeneities are de-

coupled from the magnetic field [15] so that Bz = 0. However,
in general, the systems are inhomogeneous along the c-axis
direction as well, which yields the magnetic response Bx,y of
the same magnitude as the s + id state.

The general field structures produced by the 3D inhomo-
geneity in the s + is/s + id states can be found using Eq. (2).
In Fig. 1 we show the spontaneous field produced by the
interband phase difference modulation θ13(r ). In the s + is

case only Bx,y �= 0, whereas in the s + id state the field has
all components.

Second, the component Bz �= 0 can be generated even in
the s + is state [12–15]. According to Eq. (2), for that we
need simultaneously ∇x,yθki �= 0 and ∇x,yγ

x,y

ki �= 0 with the
additional requirement that these gradients are noncollinear to
each other. Therefore the Bz component in the s + is state
is significantly smaller than in the s + id state where only
∇x,yθki �= 0 is needed.

Therefore the largest spontaneous field in the s + is case
appears in the direction perpendicular to the anisotropy axis,
whereas in s + id all components are of the same order.
One can distinguish between these states by analyzing the
polarization of spontaneous magnetic fields with the help of
the muon spin-relaxation techniques [10,16,17]. Below we
illustrate these conclusions using more detailed calculations
close to Tc using the Ginzburg-Landau (GL) theory.

III. GINZBURG-LANDAU CALCULATION

To go beyond the local approximation we can calculate
spontaneous magnetic fields using GL theory derived for the
s + is/s + id states [13,20] corresponding to the model (1).

The general free-energy density, normalized to B2
0 , is given

by F = Fs + B2/8π where the GL free energy describing
both the s + is and the s + id states is given by

Fs =
2∑

j=1

(
(�̂ψj )∗k̂jj (�̂ψj ) + αj |ψj |2 + βj

2
|ψj |4

)

+ 2(�̂ψ1)∗k̂12�̂ψ2 + γ |ψ1|2|ψ2|2 + δψ∗2
1 ψ2

2 + c.c.,

(4)

where �̂ = ∇ − iẽA. This model is formulated in terms
of the two order parameters ψ1 and ψ2 which are re-
lated to the individual gap functions within separate bands
as (�1,�2,�3) = (ζψ2 − ψ1, ζψ2 + ψ1, ψ2), where ζ =
(η1 −

√
η2

1 + 8η2
2 )/4η2.
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The coefficients of the gradient terms in Eq. (4) are
combined from the anisotropy tensors characterizing each
superconducting band as follows:

k̂11 = ρ(K̂1 + K̂2), (5)

k̂22 = ρ[ζ 2(K̂1 + K̂2) + K̂3], (6)

k̂12 = ζρ(K̂2 − K̂1). (7)

The difference between s + is and s + id symmetries is deter-
mined by the structure of the mixed-gradient coefficients (7)
on the ab plane. That is, for the s + is state, Kx

i = K
y

i ≡ K
xy

i

so that kx
12 = k

y

12 ≡ k
xy

12 . For the s + id state, Kx
1,2 �= Kb

1,2, but
Kx

1 = K
y

2 so that kx
12 = −k

y

12 ≡ k
xy

12 . Despite having quite dif-
ferent properties on the ab plane both states are characterized
by the anisotropy on the ca and cb planes determined by the
coefficients Kz

i �= Kx
i ,K

y

i .
In the s + is state this anisotropy provides linear coupling

between magnetic field and pairing constant inhomogeneities.
For that at least two bands should have different anisotropies,
otherwise the problem can be rescaled to the fully isotropic
one when only the nonlinear coupling is possible yielding
much smaller spontaneous currents.

The other coefficients in GL expansion (4) are expressed in
terms of the pairing constants (1) as

α1 = −2(G0 − G1 + τ ), (8)

α2 = −(1 + 2ζ 2)(G0 − G2 + τ ), (9)

β1 = 2, β2 = 1 + 2ζ 4, (10)

γ = 4ζ 2, δ = 2ζ 2, (11)

where τ = 1 − T/Tc, G1 = 1/η1, and G2 = (η1 +√
η2

1 + 8η2
2 )/4η2

2 are the positive eigenvalues of the matrix (1)
�̂−1 and G0 = min(G1,G2).

The Ginzburg-Landau model is valid in the vicinity of Tc

when both order parameters |ψ1| and |ψ2| are small. In this
regime the bulk BTRS state appears for the close values of
pairing constants due to the following reason. In the homo-
geneous state both order parameters appear simultaneously
when η1 = η2. In the case of the finite detuning, one of the
order parameters nucleates first. For example, when η1 > η2,
the ψ1 state nucleates at Tc since G0 = G1 < G2. Then the
bulk critical temperature of the BTRS transition, that is,
nucleation of ψ2 in this case can be found from the rela-
tion α2 = −2ζ 2|ψ1|2, which is equivalent to τ = G2 − G1 +
ζ 2|ψ1|2. The we have the restriction |G1 − G2| � τ so that
|1 − η1/η2| � τ . The inhomogeneous BTRS state however
occurs for much higher amplitudes of the pairing constant
variations because the additional order parameter nucleates
locally at the regions where η1 ≈ η2.

Below, we consider the spontaneous magnetic field pro-
duced by the superconducting currents generated by the inho-
mogeneities of the pairing constant η2 = η2(r ).

At first let us consider the two-dimensional inhomo-
geneities on the ab plane so that η1 = 1 and

η2(x, y) = 1 + 0.5 sin(x/2) sin(y/2). (12)

FIG. 2. (a) and (b) Order parameter modulation produced by
the ab-plane inhomogeneities of the form (12). The corresponding
spontaneous field Bz is shown for (c) the s + is state with K

xy

1 = 1,

K
xy

2 = 1.5, and K
xy

3 = 0.5, and (d) the s + id state with Kx
1 =

K
y

2 = 1, K
y

1 = Kx
2 = 1.5, and K

xy

3 = 0.5. The GL parameter is
ẽ = 1/4, τ = 0.2, and the field is normalized to τB0/ẽ.

This model allows for demonstrating differences between
the linear and the nonlinear mechanisms of the spontaneous
current generation where the former takes place for s + id and
the latter is s + is pairings. The magnetic field produced by
ab inhomogeneities has only the z component. The calculated
distributions of Bz = Bz(x, y) are shown in Figs. 2(c) and 2(d)
where the magnetic field is given in units of τB0/ẽ which has
an order of the upper critical field Hc2 at a given temperature.
One can see that, for one and the same set of parameters, the
s + is state yields the spontaneous magnetic-field response
about 102 times smaller than s + id, which is consistent with
the results obtained before [15].

Except for the special case of the ab-plane inhomo-
geneities, in general, the s + is and s + id states produce
the magnetic fields of comparable amplitudes. To demonstrate
this, we compare responses produced by the pairing constant
variation given by

η2 = 1 + 0.5e−(x2+y2 )/8, s + id state, (13)

η2 = 1 + 0.5e−(x2+z2 )/8, s + is state. (14)

The former inhomogeneity (13) corresponds to the ab-
plane defect, whereas the latter (14) is the ca-plane defect. To
obtain spontaneous fields produced by ca-plane defects in the
s + is case we assume that there is the ca-plane anisotropy set
by the choice of coefficient ratio in different bands K

xy

1 = 1,

K
xy

2 = 1.5, K
xy

3 = 0.5, Kz
1 = 2, Kz

2 = 3, Kz
3 = 1. Such a

system yields the magnetic-field component By (x, z) shown
in Fig. 3(a).

One can compare it with the qualitatively similar distribu-
tion of the Bz component produced by the Gaussian ab-plane
inhomogeneity (13) in the s + id state shown in Fig. 3(b).
Magnetic signatures of the ca defect in the s + id states
are qualitatively similar to that in s + is shown in Fig. 3(a).
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FIG. 3. (a) and (b) Spontaneous fields produced by the inhomo-
geneities of the pairing constant η2(r ) (13) and (14) and η1 = 1.
(a) The ca-plane defect in the s + is superconductor with anisotropy
parameters for s + is are K

xy

1 = 1, K
xy

2 = 1.5, K
xy

3 = 0.5,

Kz
1 = 2, Kz

2 = 3, Kz
3 = 0.5. (b) The ab-plane defects in the

s + id state characterized by Kx
1 = K

y

2 = 1, K
y

1 = Kx
2 = 1.5,

Kx
3 = K

y

3 = 0.5. The GL parameter ẽ = 1/4 for both cases τ = 0.2.
The field is normalized to τB0/ẽ. (c) A spontaneous magnetic field
on the ab plane produced by the critical fluctuations near the BTRS
transitions in the anisotropic s + is state. The field is measured in
(|kz

12 − k
xy

12 |/√k11k22)(Tc/EF )B0, where EF is the Fermi energy.
The field maximum at each value of η1/η2 corresponds to the BTRS
critical temperature. (d) The magnitude of the in-plane magnetic
field vs the effective mass anisotropy in the s + is superconductors.

On the ca plane the s + id state is described by structurally
identical GL equations as the s + is one with the interchange
K

xy

k → Kx
k .

The 122 iron pnictide compounds have been shown to
feature anisotropy which can vary, in rather wide limits,
from K

xy

i /Kz
i ≈ 1–3 [22] to K

xy

i /Kz
i ≈ 4–5 [23]. In Fig. 3(d)

we show the field amplitude dependence on the degree of
anisotropy Kz

1/K
xy

1 = Kz
2/K

xy

2 �= 1 and fixed Kz
3/K

xy

3 = 1.
The general analytical expression for the spontaneous field

in the case of the 3D inhomogeneity can be obtained using the
reduced GL theory in the vicinity of the BTRS transition. It
can be constructed assuming the main order parameter to be
ψ1 = |ψ1|eiϕ1 with |ψ1| = const and introducing the BTRS
order parameter � = −i(ψ2ψ

∗
1 )/|ψ1|. Then we represent the

GL free energy in terms of the gauge-invariant momentum
Q = A − ∇ϕ1/ẽ and, the real and imaginary parts of the
complex order parameter � = �r + i�im are as follows:

F (�, Q) = α̃r�
2
r + α̃im�2

im + β2

2
|�|4

+ |∇ × Q|2
8π

+ |ψ1|2ẽ2 Qk̂11 Q

+ 2|ψ1|ẽ Qk̂12(∇�r + ẽ Q�im)

+ (∇ + iẽ Q)�∗k̂22(∇ − iẽ Q)�. (15)

Here α̃r = α2 + |ψ1|2(δ − γ ) and α̃im = α2 + |ψ1|2(δ +
γ ). The equation α̃r (T ) = 0 gives the critical temperature of
the BTRS transition. In the vicinity of this transition only the

variation of �r is important as α̃im is positive and nonvanish-
ing. Therefore we can describe the time-reversal symmetry-
breaking phase transition in terms of the real-valued order
parameter �r ,

F (�r , Q) = ẽ2|ψ1|2 Qk̂11 Q + ẽ2�2
r Qk̂22 Q

+ |∇ × Q|2
8π

α̃r�
2
r + β2

2
�4

r + ∇�r k̂22∇�r

+ 2ẽ|ψ1| Qk̂12∇�r . (16)

Note that the real order parameter �r is still coupled to the
magnetic field because the superconducting current obtained
from functional (16) is given by

j = −2|ψ1|2ẽ2k̂11 Q − 2ẽ|ψ1|k̂12∇�r . (17)

For simplicity let us assume that the coefficients k̂ii

for i = 1, 2 are isotropic and the anisotropy is determined
by k̂12. Then, going to the Fourier-transform �r (r ) =
V

∫
eiqr�r (q )d3q/(2π )3 in the volume V we obtain the

magnetic field,

B(q ) = �r (q )
√

8π/k11(q × k̂12q )/[λ(q2 + λ−2)], (18)

where λ = 1/(
√

8πk11|ψ1|ẽ) is the London penetration
length. Equation (18) shows that gradients �r with necessity
produce the spontaneous magnetic field. They can be induced
by the inhomogeneous pairing constant through the spatially
varying coefficient αr = αr (r ) in Eq. (16). One can see that
in the wide range of parameters qλ � 1 the magnetic-field
amplitude is independent of the inhomogeneity scale.

The fields produced by the rotationally symmetric 3D
defect �r = �r (r ) have the same structure as shown in Fig. 1.
Based on the above analysis one can suggest the polarization-
sensitive test of the superconducting state symmetry. That is,
under general conditions, the spontaneous magnetic field in
the s + is state is directed mostly on the ab plane with the
typical ratio of components Bz/B⊥ ∼ 10−2 as one can see
comparing Figs. 2(c) and 3(a), where B⊥ = (Bx, By, 0). On
the other hand, the s + id state produces spontaneous fields
which have, in general, all components with the same order
Bz/B⊥ ∼ 1.

IV. CRITICAL MAGNETIC FLUCTUATIONS

The spontaneous magnetic field produced by the order
parameter inhomogeneities allows for the direct observation
of the critical phenomena and fluctuations near the BTRS
phase transition.

From (18) we get the variance of magnetic-field compo-
nents on the ab plane,

〈B2
⊥(q )〉 = 〈�2

r (q )〉 (kz
12 − k

xy

12 )2

k11

8πλ2q2
⊥q2

z

(λ2q2 + 1)2
, (19)

where q⊥ =
√

q2
x + q2

y .
For simplicity we consider the limiting case when the

cross-coupling gradient terms in the functional (16) are rather
small kz

12, k
xy

12 � √
k11k22 when the feedback of the magnetic-

field fluctuations can be neglected. Then, fluctuations of the
order parameter �r near the BTRS critical temperature can be
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calculated using the conventional expression [24] 〈�2
r (q )〉 =

T/[2B2
0V (k22q

2 + |α̃r |)].
Now, we can calculate the average value of the spontaneous

magnetic-field amplitude 〈B2
⊥〉 = V

∫
d3q〈B2

⊥(q )〉 using the
ultraviolet cutoff on the scale of ξ−1

0 . The dependence of
the average amplitude B̄⊥ =

√
〈B2

⊥〉 on system parameters
(T , η1/η2) for fixed η1 = 0.5 is shown in Fig. 3(c). Using
the typical value of Tc/EF = 10−3 one can see that the field
amplitude in Fig. 3(c) is about 10−5B0 which is of the same
order as produced by the s + is state with ab inhomogeneities
shown in Fig. 2(c).

The average amplitudes of magnetic-field components
B̄2

k = ∫
B2

k n(Bk )dBk can be derived from the magnetic-field
distribution function n(Bk ) which is a directly measurable
experimental quantity. It can be obtained as the Fourier trans-
form of the complex muon spin-polarization function in the
time domain [16]. In this way, comparing the signals from
muon beams polarized along the c axis and on the ab plane,
one can determine whether the system is in the s + is or in
the s + id state. Besides that one can distinguish the line of
the BTRS phase transition. As shown in Fig. 3(c) the BTRS
phase transitions correspond to the distinct maxima of the
fluctuating field amplitude.

These spontaneous fields provide therefore the direct ac-
cess to the previously hidden critical behavior near the dis-
crete symmetry-breaking phase transitions.

V. CONCLUSION

To summarize, we have shown that, in general, the s + id

and s + is phases in multiband superconductors can produce
spontaneous currents and magnetic fields in response to the
spatial inhomogeneities caused by either the fluctuations of
the pairing constants or the critical fluctuations of the order
parameter components. This is in contrast to the previous
predictions. However, the spontaneous field polarization is
found to be drastically different in the s + is and s + id

states making it possible to distinguish between them experi-
mentally using muon spin-relaxation measurements. The ran-
dom magnetic fields produced by the scalar order parameter
fluctuations can reveal the critical behavior near the BTRS
transition, and, in general, any additional discrete-symmetry-
breaking phase transition deep in the superconducting
state.
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