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Solitonic thermal transport in a current-biased long Josephson junction

Claudio Guarcello,1,* Paolo Solinas,2 Alessandro Braggio,1 and Francesco Giazotto1

1NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
2SPIN-CNR, Via Dodecaneso 33, I-16146 Genova, Italy

(Received 15 May 2018; revised manuscript received 23 July 2018; published 4 September 2018)

We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel
junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate
that thermal transport through the junction can be controlled by the bias current, since it determines the
steady-state velocity of the drifting soliton. We study the effects on thermal transport of the damping affecting
the soliton dynamics. In fact, a soliton locally influences the power flowing through the junction and can cause
the variation of the temperature of the device. When the soliton speed increases approaching its limiting value,
i.e., the Swihart velocity, we demonstrate that the soliton-induced thermal effects significantly modify. Finally,
we discuss how the appropriate material selection of the superconductors forming the junction is essential, since
short quasiparticle relaxation times are required to observe fast thermal effects.
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I. INTRODUCTION

Long Josephson junctions (LJJs) are physical systems of-
ten used as a framework to explore nonlinear dynamics [1,2].
Nonetheless, coherent thermal transport in this context was
explored only recently [3–5]. In fact, as a temperature gradient
is imposed across the device, namely, as the electrodes form-
ing the junction reside at different temperatures, a heat current
depending on the configurations of Josephson vortices, i.e.,
solitons, flows through the device [4,5]. The phase-dependent
heat current was recently explored theoretically and exper-
imentally in both Josephson junctions (JJs) [6,7] and su-
perconducting quantum-interference devices (SQUIDs) [8,9].
This phenomenon is the core of the emerging field of phase-
coherent caloritronics [10–12], from which fascinating de-
vices, such as heat diodes [13], thermal transistors [14],
solid-state memories [15,16], microwave refrigerators [17],
thermal engines [18], thermal routers [4,19], and heat am-
plifier [20], were conceived. Recently, it was demonstrated
theoretically that a static soliton in a temperature-biased long
tunnel junction induces a localized warming in one of the
electrodes of the device, according to which the application as
a fast solitonic thermal router was suggested [4]. The scenario
changes if we consider a time-dependent external magnetic
field, since more solitons can be excited along the device and
the soliton configuration reflects on the temperature profile
of the junction, so that every magnetically excited soliton
induces a well-localized temperature peak [5].

In this paper we discuss how an electric bias current affects
thermal transport when a soliton is steadily drifting along the
system as driven by the bias current. We demonstrate that
the phase-dependent components of the heat current depend
on the soliton speed, the latter being also a function of the
bias current. Therefore, the dissipationless bias current can
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be used as a knob to locally modify thermal transport across
the device. Additionally, we study how the damping affecting
the soliton dynamics influences thermal transport. In fact, in
the case of a low value of the damping parameter [21], we
demonstrate that the energy and thermal transport profiles
along the junction induced by the soliton significantly change,
as the bias current increases.

In the following, we will make two realistic approxima-
tions, namely, we write the phase solution representing an
electrically driven soliton in a closed simplified form [22], and
we consider a soliton traveling at the steady drift velocity [23].

The paper is organized as follows. In Sec. II, we exam-
ine how an electric biasing current generally affects energy
transport in a temperature-biased JJ. In Sec. III, we focus
on a soliton moving under the influence of a bias current in
a LJJ. In Sec. IV, we discuss the behavior of heat currents
through the junction as a function of the bias current in the
adiabatic limit. In Sec. V, we discuss the adiabatic limit and its
implication on material selection in order to find appropriate
thermal response time scales. In Sec. VI, conclusions are
drawn.

II. ENERGY TRANSPORT

In a current-biased LJJ, see Fig. 1(a), the phase difference
ϕ(x, t ) along the junction in the presence of a soliton can be
approximatively expressed as the sum of a dynamic contribu-
tion φ(x, t ), and a static contribution sin−1 ib, that is [22]

ϕ(x, t ) � φ(x, t ) + sin−1 ib, (1)

where the phase shift induced by the bias current ib = Ibias/Ic

(with Ic being the critical current of the device) is simply
added to the soliton solution φ. This dissipationless current
can be directly delivered by a current source, or it can co-
incide with the current circulating in a magnetically driven
superconducting ring containing the junction.
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FIG. 1. (a) A superconductor-insulator-superconductor (SIS)
temperature-biased rectangular long Josephson junction (LJJ) driven
by an electrical bias current Ibias. The temperature Ti of the electrode
Si is also indicated. A soliton drifting due to the bias current is
shown. (b) Lorentz force due to a bias current on a soliton. Indeed,
a bias current flowing through the junction acts on the soliton with a
Lorentz force, FL ∝ Ibias × �0, with the direction of �0 depending
on the polarity of the soliton [see Eq. (10)].

In a washboardlike picture [21], the term sin−1 ib in Eq. (1)
represents the shift of the potential minimum, within which
the phase profile φ(x, t ) lies. This shift is induced by the
tilting of the potential imposed by the external bias current.

Energy transport in a temperature-biased JJ can be written
as [4,24–27]

Ptot(T1, T2, ϕ) = Pqp(T1, T2) − cos ϕPqp-pair(T1, T2, V )

+ sin ϕPpair(T1, T2, V ), (2)

where V (x, t ) = �0
2π

∂ϕ(x,t )
∂t

is the local voltage drop (�0 =
h/2e � 2 × 10−15 Wb is the magnetic flux quantum, with e

and h being the electron charge and the Planck constant,
respectively) and Ti is the temperature of the electrode Si .
In Eq. (2), Pqp, Pqp-pair, and Ppair represent the quasipar-
ticle and the “anomalous” contributions to thermal current
density flowing through the junction [10,24,26,28–30] (see
Appendix A). In fact, Pqp is the heat flux density carried by
quasiparticles and represents an incoherent flow of energy
through the junction from the hot to the cold electrode.
Instead, the “anomalous” terms Ppair and Pqp-pair determine the
phase-dependent part of the heat current originating from the
energy-carrying tunneling processes involving Cooper pairs
and recombination/destruction of Cooper pairs on both sides
of the junction. We remark that Ppair linearly depends on
the voltage drop (see Appendix A), so that Ppair → 0 when
V → 0 [26].

According to Eq. (1), the phase-dependent terms in Eq. (2)
become

cos ϕPqp-pair = cos(φ + sin−1 ib )Pqp-pair

= (√
1 − i2

b cos φ − ib sin φ
)
Pqp-pair, (3)

and

sin ϕPpair = sin(φ + sin−1 ib )Ppair

= (√
1 − i2

b sin φ + ib cos φ
)
Ppair. (4)

Accordingly, Ptot can be recast by defining two phase-
dependent terms,

Ptot(T1, T2, ϕ) = Pqp(T1, T2, ϕ) + P 0
φ (T1, T2) + P 1

φ (T1, T2),

(5)

which depends on the bias current according to

P 0
φ (T1, T2) = (− cos φPqp-pair + sin φPpair )

√
1 − i2

b , (6)

P 1
φ (T1, T2) = (sin φPqp-pair + cos φPpair )ib. (7)

Notably, for ib = 0 the usual energy transport across a
tunnel junction is recovered,

Ptot(T1, T2, ϕ) = Pqp(T1, T2, ϕ) − cos φPqp-pair(T1, T2, ϕ)

+ sin φPpair(T1, T2, ϕ), (8)

instead, in the limit of ib → 1, Eq. (2) becomes

Ptot(T1, T2, ϕ) → Pqp(T1, T2, ϕ) + sin φPqp-pair(T1, T2, ϕ)

+ cos φPpair(T1, T2, ϕ). (9)

Interestingly, by increasing the bias current the role of sin φ

and cos φ tends to swap. Moreover, we observe that by invert-
ing the flowing direction of the bias current only the sign of
P 1

φ changes [see Eq. (6)], whereas P 0
φ is invariant with respect

to changes of sign of the bias current.
The behavior of Ptot in the absence of solitons, namely,

φ = 0 in Eq. (1) so that ϕ = sin−1(ib ), as a function of the
normalized bias current ib is shown in Fig. 2, for T1 = 7 K
and T2 = 4.2 K. We observe that the bias current causes the
power Ptot to monotonically increase.

Finally, we note that in the time-independent case an equi-
librium dissipationless current does not generate any Joule
heating terms contributing to the energy exchange.

III. SOLITON DYNAMICS IN AN ELECTRICALLY
BIASED LJJ

Although LJJs were first measured more than 40 years
ago [31,32], they are still the subject of both theoretical
[33–41] and experimental [42–50] studies, also because they
are the ideal solid-state environment to investigate the prop-
erties of soliton [1,2]. These excitations give rise to step
structures in the I-V characteristic of LJJs, microwave radi-
ation emission, and they carry a quantum of magnetic flux
�0, induced by a supercurrent loop surrounding it, with the
local magnetic field perpendicularly oriented with respect
to the junction length [23]. For this reason, solitons in the
context of LJJs are usually referred to as fluxons or Joseph-

FIG. 2. Ptot [in units of �2
0/(e2R)] as a function of the normal-

ized bias current ib, in the absence of soliton, namely, φ = 0 in
Eq. (1) so that ϕ = sin−1(ib ), for T1 = 7 K and T2 = 4.2 K.
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son vortices. Solitons in LJJs can be easily generated by
an external magnetic field [4,5]. Alternatively, in an annular
geometry [51], i.e., a “closed” LJJ folded back into itself in
which solitons move with no interactions with edges, fluxons
can be excited at will [52,53], permitting highly controllable
soliton dynamics.

We consider a current-biased long Josephson tunnel junc-
tion, with normal-state resistance R and specific capacitance
Cs , connecting two superconducting leads, S1 and S2 residing
at temperatures T1 and T2 [see Fig. 1(a)]. We assume leads
made by the same superconductor, so that Tc1 = Tc2 = Tc

and �0 = 1.764kBTc is the zero-temperature superconducting
gap.

A bias current flowing through the junction acts on the soli-
ton with a Lorentz force, FL ∝ Ibias × �0 [with the direction
of �0 depending on the polarity of the soliton; see Eq. (10)];
see Fig. 1(b). So, in the presence of an external bias current a
soliton shifts along the junction.

The phase solution representing a soliton moving with
velocity u along a LJJ, in the presence of a bias current Ibias,
can be written approximatively as [22]

ϕs (x, t ) � 4 arctan{exp[σξ (x, t )]} + sin−1(ib ), (10)

where

ξ (x, t ) = x − x0 − ut

λJ

√
1 − (

u
c̄

)2
= x̃ − x̃0 − ũ̃t√

1 − ũ2
, (11)

and σ = ±1 is the polarity of the soliton. Here, we used the
normalized units x̃ = x/λJ , t̃ = ωpt , and ũ = u/c̄, with ωp =√

2π
�0

Jc

Cs
and λ

J
=

√
�0

2πμ0

1
td Jc

being the plasma frequency and

the Josephson penetration depth, respectively. Moreover, μ0 is
the vacuum permeability, td = λL,1 + λL,2 + d is the effective
magnetic thickness (where λL,i is the London penetration
depth of the ith superconductor and d is the insulating
thickness), and c̄ = ωpλJ is the Swihart velocity, namely,
the limiting soliton velocity in the junction [21]. The Swi-
hart velocity of typical high-quality superconductor-insulator-
superconductor (SIS) junctions is c̄ ∼ 106 − 107 m/s. The
velocity-dependent factor in Eq. (11) represents the relativistic
contraction of the soliton when its velocity approaches the
maximum speed, i.e., ũ → 1 [23]. This is the consequence of
Lorentz invariance of the unperturbed sine-Gordon equation
describing the electrodynamics of a LJJ [21]. The width of
the soliton is

Ws = λJ

√
1 −

(u

c̄

)2
, (12)

so that the faster the soliton, the narrower it is.
According to the perturbation approach [23], in the pres-

ence of an external bias current the steady-state drifting ve-
locity of the soliton, in units of c̄, reads [21,23]

ũd (ib ) = 1√
1 +

(
4α
πib

)2
, (13)

where α = 1/(ωpRCs ) is the damping parameter, namely, the
parameter quantifying the dissipation in the system [21]. This
is the velocity at which the power input from the bias current

is equal to the power loss due to damping affecting the soliton
dynamics [23].

A moving soliton locally induces a voltage drop,

V (x, t ) = h̄

2e

∂ϕs

∂t
= h̄

e

sech[ξ (x, t )]√
1 − ũ2

ũωp, (14)

and generates a magnetic field (in units of 2πμ0td
�0

),

Hin(x, t ) = ∂ϕs

∂x
= 2 sech[ξ (x, t )]

λJ

√
1 − ũ2

. (15)

From Eq. (13) one obtains ũd√
1−ũ2

d

= πib
4α

, so that Eq. (14)

for a steadily drifting soliton, i.e., with ũ = ũd , becomes

Vd (x, t ) = h̄

e
sech[ξ (x, t )]

πib

4α
ωp. (16)

In order to estimate the modifications to energy and ther-
mal transport, we analyze in the next sections the profile
of the exchanged power along the junction as a function
of various parameters. In particular, we will investigate the
steady dynamics of the soliton profile under a constant bias
current.

IV. THERMAL TRANSPORT

In this paragraph we wish to investigate the consequences
on energy and thermal transport across the junction in the
presence of a steadily drifting soliton under the effect of a
current biasing.

We expect that the energy flowing through the system will
produce evidences, such as a potential modification of the
temperature of the junction. Anyway, exploring the thermal
behavior of the junction one has to distinguish between dissi-
pative and reactive contributions in Eq. (2). In fact, with the
aim to determine the temperature profile, the total thermal
power density to take into account has to contain only the
dissipative contributions, namely,

P ∗
tot(T1, T2, ϕ) = Pqp(T1, T2) − cos ϕ Pqp-pair(T1, T2, V ),

(17)

since the term Ppair is purely reactive [26,27].
Furthermore, the time evolution of the temperatures can

be obtained by solving self-consistently both the sine-Gordon
equation for the phase dynamics [21] and the heat balance
equation for each electrode [5]. Conversely, in the following,
in the place of solving numerically these equations, we will
exploit the simple closed expressions of both the solitonic
phase solution and the stationary speed of a soliton [see
Eqs. (10) and (13)], respectively, to directly gain insight on
energy and thermal transport across the system in the adiabatic
regime (see Sec. V A). The solution obtained in this manner
well approximates the full solution, since the two equations
governing the evolution are weakly coupled. Finally, we ob-
serve that the characteristic time scales of thermal processes
may differ from the typical evolution time scale of solitons,
and strongly depend on the specific characteristics of the
junction (see Sec. V B).

The investigation of the direct effect on the temperature
profile is beyond the scope of this work, and we have moti-
vated reason to think that focusing on single-soliton effects
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is not the appropriate manner to observe experimentally the
reported phenomenology. Anyway, for didactic purposes we
discuss the single soliton case as the key element for more
complex dynamics.

So, in the next section, we are going to discuss the energy
and thermal transport profiles at fixed times as a function of
the bias current, in both high and low damping cases.

A. Results

In this section we discuss the impact of a bias current on the
power flowing through a temperature-biased LJJ, as a soliton
is set in. With the aim to only explore how energy and heat
transport is affected by ib, we assume to can work in the adia-
batic limit [26], and we use Eq. (2) to calculate the heat current
flowing through the junction. The range of validity of the
adiabatic limit approximation will be thoroughly discussed in
Sec. V A.

We consider a soliton defined by Eq. (10) which moves
with a steady velocity ũd (ib ), see Eq. (13), along a junction
with length (in units of λJ ) L = 40. Specifically, we inves-
tigate thermal transport in the presence of a soliton started
from the point x̃0 = L/4 and traveling along the junction for a
time t̃ = 30. Clearly, the higher the bias current, the faster the
soliton and then the farther it arrives in the time t̃ . We analyze
heat transport as a function of the position of the soliton
along the junction, for two values of the damping parameter,
namely, α = 3 and α = 0.3, at a few values of the bias current;
see Figs. 3 and 4, respectively. Hereafter, we set the values
ωp = 1 THz, T1 = 7 K, T2 = 4.2 K, and Tc = 9.2 K (i.e., a
Nb-based junction).

In the following, we will first discuss the high damping
case, since in this regime we can safely use the adiabatic
approximation [26] to study the transport across the JJ, and
then we make a comparison with the low damping case.

High damping case. In Fig. 3 we show the phase profile
[Fig. 3(a)], the voltage drop [Fig. 3(b)], the local magnetic
field [Fig. 3(c)], energy transport [Fig. 3(d)], and heat trans-
port [Fig. 3(e)] in the high damping case.

The solitonic phase evolutions, at different values of ib,
are shown in Fig. 3(a). By increasing the bias current, the
soliton, namely, the 2π step in the phase, moves faster, so
that at a fixed time t̃ it moves rightwards, and becomes
sharper. In Fig. 3(b), we show the corresponding voltage drop
distributions by varying ib. In the right vertical axes of this
panel the normalized voltage values eV/�0 are shown. The
voltage drop along the junction is peaked in the center of
the soliton; see Eq. (14). Furthermore, by increasing the bias
current, we observe the voltage peak to become higher and
narrower, since the soliton speeds up and shrinks. In Fig. 3(c)
we show the local magnetic field, Hin(x, t ) = ∂ϕ/∂x, which
instead keeps roughly the same amplitude in spite of the width
and is only slightly changed by increasing ib, since ũ � 1; see
Eq. (15).

Both energy and heat transport Ptot and P ∗
tot [see Eqs. (2)

and (17), respectively, for T1 = 7 K and T2 = 4.2 K] are
shown in Figs. 3(d) and 3(e). By increasing the bias current,
we expect the phase dependence of the energy exchanged
Ptot to change its profile shape. Specifically, for ib close to
zero one obtains V → 0 according to Eq. (16), so that the

term Ppair is vanishingly small [26]. In this case, the − cos φ

term dominates Ptot [see Eq. (8)], which is positive and
single peaked in correspondence of the soliton. We essentially
already investigate the temperature evolution in this regime
in Ref. [4]. Conversely, by increasing ib, both the Pqp-pair and
Ppair contributions are affected by the average phase shifting,
sin−1 (ib ), and by the generation of a voltage V . As a result,
the sine dependence of Ptot tends to emerge. Moreover, since
the reactive contribution Ppair is quite small in this case, we
observe that the heat power P ∗

tot does not differ too much
from Ptot [see Fig. 3(d)]. Finally, we speculate that, in the
high damping case [see Fig. 3(e) for α = 3], the deformation
of P ∗

tot may induce a local heating of the electrode S2 [and
concurrently a local cooling of S1; see Fig. 1(a)], which
depends on ib. We expect to see in this regime a temper-
ature profile different than that one in the case previously
reported [4].

Low damping case. The scenario changes by reducing
the damping parameter (see Fig. 4 for α = 0.3). In fact, by
decreasing α, the velocity of the soliton, for a given bias
current, increases, as well as the distance it covers in the time
t̃ . This is why the curves shown in Fig. 4 tend to overlap less
than those in Fig. 3. Moreover, the lower α, the higher the
maximum value of the voltage drop, according to Eq. (16)
[see Fig. 4(b)]. We observe also the substantial contraction
of the soliton by increasing ib [see Fig. 4(c)], which results
also in a stronger increase of the intensity in the magnetic
field peak. Concerning the energy exchange, we observe that
at high values of the voltage drop, the term Ppair in Eq. (2)
can become more effective with respect to the terms Pqp and
Pqp-pair, as it has been discussed in Ref. [26]. This behavior
becomes stronger for low α values, since in this case the
soliton speed, as well as the local voltage drop, is higher. In
fact, we observe that the total power Ptot flowing through the
system behaves quite differently by reducing α; see Fig. 4(d)
for α = 0.3. First, the profile of Ptot is single peaked for low
bias currents, but it is distorted when ib is increased. For such
a small α, if ib → 1 the voltage V significantly enhances and
Ppair becomes greater than Pqp-pair, so that the + cos φ term
in Eq. (9) dominates Ptot. In this case, we observe a negative
peak of Ptot [see Fig. 4(d)], so that the soliton could even
induce a localized change of sign in the total exchange of
energy between S1 and S2. Notably, the intensity of this peak
can be intensified by reducing the damping, since ũd → 1
only if α → 0. Unfortunately, this negative peak is mainly
due to the reactive contribution Ppair, so it affects less the
dissipative heat power P ∗

tot, which appears however highly
distorted when the bias current increases [see Fig. 4(e)].
Finally, we observe that the peaks shown in Figs. 4(d) and
4(e) stem from the alignment of the singularities of the BCS
DOSs in the superconductors [14,21,26,54,55].

Beyond these well-localized thermal effects induced by
the soliton, we observe that the background value of P ∗

tot,
namely, the heat current flowing far from the soliton, tends to
increase with ib [see Figs. 4(d) and 3(d)]. This means that the
mean temperature of the electrode will globally enhance by
increasing the bias current, according to what we discussed
in Fig. 2. This behavior can be understood by considering that
an increase of ib causes an overall slight increase of the phase;
see Figs. 3(a) and 4(a). This means that, by increasing ib, the
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FIG. 3. Phase evolution (a), voltage drop (b), space derivative of
the phase (c), energy transport (d), and heat transport (e) for a soliton
moving in a LJJ for α = 3, at a few values of the bias current ib. The
other parameters are L = 40, x̃0 = L/4, t̃ = 30, ωp = 1 THz, T1 =
7 K, and T2 = 4.2 K. The heat currents are in units of �2

0/(e2R).

contribution of the term cos ϕPqp-pair, which opposes Pqp in
Eq. (2), tends to reduce, resulting in an increase of P ∗

tot. So
the previously discussed modulation of the P ∗

tot profile can be
eventually detected as a temperature smaller than the average
temperature.

As discussed so far, the distortion of Ptot induced by
the bias current is stronger for low values of the damping
parameter [c.f., Figs. 3(d) and 4(d)], since this case gives faster
solitons, higher voltage drops, and therefore an increase of the
effectiveness of the Ppair term. Anyway, the reliability of our
argument is based on working in the adiabatic regime [26].
Therefore, the results discussed so far for high bias currents
and low damping should be taken with a grain of salt. In
the next section, we will discuss the range of validity of the
adiabatic limit as a function of the bias current.

FIG. 4. Phase evolution (a), voltage drop (b), space derivative of
the phase (c), energy transport (d), and heat transport (e) for a soliton
moving in a LJJ for α = 0.3, at a few values of the bias current ib. The
other parameters are L = 40, x̃0 = L/4, t̃ = 30, ωp = 1 THz, T1 =
7 K, and T2 = 4.2 K. The heat currents are in units of �2

0/(e2R).

V. VALIDITY REGIMES

In the previous section we have discussed how heat trans-
port is affected by a bias driven soliton. Those calculations are
based on the validity of the adiabatic approximation. Here-
after, we wish to discuss how in a real system this regime can
be safely realized. Finally, we will discuss how the thermal
relaxation time scales imply a careful material selection in
order to hopefully observe some consequence of the discussed
phenomenology.

A. The adiabatic regime

Here, we estimate the range of bias current values ac-
cording to which the adiabatic regime, and therefore the heat
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FIG. 5. (a) Quasiparticle relaxation time τε as a function of the temperature calculated for several superconductors, specifically, Al (Tc =
1.2 K and τ0 = 687 ns [56]), Ta (Tc = 4.43 K and τ0 = 49 ns [56]), Nb (Tc = 9.2 K and τ0 = 0.149 ns [57]), and NbN (Tc = 16.4 K and
τ0 = 0.5T [K]−1.6 ns [58]). (b) Time τd that a drifting soliton needs to span a length Ws as a function of the bias current, for α = 1 and
ωp = 1 THz. (Inset) τε as a function of the temperature for an NbN junction.

current formulation given by Golubev et al. [26], holds, in the
case of a soliton drifting in a LJJ.

The adiabatic regime persists for

eV � Min{kBT1, kBT2,�1(T1),�2(T2)}. (18)

Hereafter, for simplicity, we assume T1 ∼ T2 ∼ T and �1 ∼
�2 ∼ �, since we wish to only give a simple estimation. In
particular, we will compute the upper threshold bias current
ib,th, well below which the adiabaticity is safely satisfied, i.e.,
ib � ib,th. Indeed, we expect that increasing ib the soliton
moves faster, enhancing the voltage drop, bringing the system
out from the adiabatic condition Eq. (18). We take into ac-
count the maximum voltage Vmax along the junction, namely,
the voltage drop in the center of the soliton, xm = x0 + vt [see
Figs. 3(b) and 4(b)]. Since sech[ξ (xm, t )] = 1, for a drifting
soliton eVd,max reads

eVd,max = h̄
πib

4α
ωp. (19)

Therefore, in order to satisfy Eq. (18), for T � T ∗, with
T ∗ being the temperature at which kbT

∗ = �(T ∗), one can
estimate ib,th(T ) from the relation eVd,max = kBT , so that

ib,th(T ) = 4kBα

πh̄ωp

T = ηαT (for T � T ∗). (20)

Instead, for T > T ∗, ib,th(T ) goes to zero according to
eVd,max = �(T ).

For α = 1, ωp = 1 THz, and Tc1 = Tc2 = 9.2 K, namely
a Nb-based junction, we obtain T ∗ � 8.31 K and ηα �
0.17 K−1, so that, for instance, ib,th � 0.71 at T = 4.2 K.

In conclusion, at a given temperature, the adiabatic condi-
tion is satisfied if ib � ib,th(T ), in which case we can advis-
edly use the usual Golubev’s formulation [26] to calculate the
heat current flowing through the junction. We observe that,
at a fixed temperature, the range of ib values assuring the
adiabatic regime can be enlarged by increasing ηα , namely,
by increasing the damping parameter, since the soliton slows
down and the voltage accordingly reduces, and/or by decreas-

ing the plasma frequency, since the voltage reduces according
to Eq. (14).

B. Characteristics time scales

To eventually measure a localized heating induced by a
soliton moving along the junction, the system needs “enough”
time to locally adjust its temperature. In fact, although the
soliton locally affects the thermal flux, the superconductor
takes some time to thermally respond. Then, we can mini-
mally assume that, to effectively induce a local temperature
variation, the soliton dynamics should be slower than the time
scales dictated by the thermalization processes in the system.
The characteristic thermalization time can be estimated as the
quasiparticle relaxation time τε in the superconductor, which
is given by [57]

τ−1
ε = τ−1

s + τ−1
r . (21)

In the above equation τs and τr represent, respectively, the
scattering and recombination lifetimes, defined according
to the well-known model of quasiparticle energy relaxation
developed by Kaplan et al. [57]. The time τs concerns
scattering processes involving emission and absorption of
a phonon, whereas τr is related to the recombination of
two quasiparticles to form a pair, with the emission of a
phonon [57].

In Fig. 5(a), the quasiparticle relaxation time as a function
of the temperature for several superconductors, specifically,
Al (Tc = 1.2 K and τ0 = 687 ns [56]), Ta (Tc = 4.43 K and
τ0 = 49 ns [56]), Nb (Tc = 9.2 K and τ0 = 0.149 ns [57]),
and NbN (Tc = 16.4 K and τ0 = 0.5T [K]−1.6 ns [58]), is
shown. As expected, the quasiparticle relaxation time reduces
by increasing the temperature and strongly depends on the
material. Specifically, the higher the critical temperature, the
lower the τε values that can be achieved. Indeed, the thermal-
ization time of a NbN junction is of the order of picoseconds
at high temperatures.

Finally, in order to estimate the soliton visibility in a
temperature profile, we can assume that the temperature is
locally affected by a moving soliton, if the latter stays in the
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same place for a time long enough to permit the temperature of
the superconductor to locally adjust. Therefore, the reported
phenomenology could be appreciable in temperature if the
time τd that the drifting soliton needs to span the characteristic
soliton width Ws [see Eq. (12)] is higher than τε , namely,
τd � τε . The time τd can be estimated as

τd = Ws

ud

= λJ

c̄

√
1 − ũ2

d

ũd

= 1

ωp

4α

πib
. (22)

In Fig. 5(b), the behavior of τd as a function of the bias
current is shown, for α = 1 and ωp = 1 THz. We observe that
the condition τd � τε can be effectively fulfilled for a NbN
junction, in the limit of low bias currents and high temperature
regimes [see the inset of Fig. 5(b)]. Markedly, by using super-
conductors with a higher critical temperature, the thermaliza-
tion time τε further reduces. Moreover, the time τd linearly
grows with both α and the inverse of the plasma frequency
ω−1

p . In these cases, the localized temperature change induced
by a fast moving soliton could be potentially observed.

Finally, with the aim to effectively observe a soliton-
induced temperature variation, we suggest that it is conve-
nient to investigate the temperature of the hot electrode of
the junction, in order to increase the response time of the
superconductor according to Fig. 5.

VI. CONCLUSIONS

In summary, we have investigated theoretically the phase-
coherent heat current flowing through a long Josephson tunnel
junction in the presence of a soliton driven by a stationary bias
current. The latter acts as a force on the soliton, whose steady
drift velocity can be written in a closed simple form [23]. We
analyzed the distribution of heat currents along the junction by
varying the bias current and the damping parameter, as a tem-
perature gradient is imposed across the device. We observed
that the bias current significantly affects heat transport; this
effect depends on the value of the damping parameter α, since
the smaller α, the faster the soliton moves. In fact, although
in the case of a slow soliton a localized heating could be
observed in the cold electrode, the heat current profile through
the junction significantly modifies when the soliton moves
with a speed approaching its limit value, namely, the Swihart
velocity.

Furthermore, we discussed the range of values of bias
current well below which the adiabatic limit [26] is assured.
Here, we observed that for intermediate values of α the
discussed phenomenology could produce observable ther-
mal effects. Moreover, we compared the characteristic time
scales of thermalization processes for several superconductors
and solitonic dynamics, to establish the limiting regimes to
eventually appreciate temperature variations locally induced
by soliton-sustained thermal transport. Finally, we observe
that the adiabatic limit approximation [26], and therefore the
reliability of the approach developed in this work, could be
not so strictly valid in the limits of low damping and high bias
current, namely, as the soliton speed significantly grows.

We expect to see stronger effects of the discussed phe-
nomenology for JJs in the flux-flow regime, namely, when
solitons are continuously generated by an external magnetic
field and shifted by the current along the junction. In this
case, the competitive action between moving solitons, their
reflection at a border, and their superimposition will increase
additively the discussed effects. We reserve the detailed anal-
ysis for future research.
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APPENDIX A: THERMAL POWERS

In the adiabatic regime, the contributions to energy trans-
port in a temperature-biased JJ read [26]

Pqp(T1, T2, V ) = 1

e2R

∫ ∞

−∞
N1(ε − eV, T1)N2(ε, T2)(ε − eV )[f (ε − eV, T1) − f (ε, T2)]dε, (A1)

Pqp-pair(T1, T2, V ) = − 1

e2R

∫ ∞

−∞
N1(ε − eV, T1)N2(ε, T2)

�1(T1)�2(T2)

ε
[f (ε − eV, T1) − f (ε, T2)]dε, (A2)

Ppair(T1, T2, V ) = eV

2πe2R

∫∫ ∞

−∞
dε1dε2

�1(T1)�2(T2)

E2

[
1 − f (E1, T1) − f (E2, T2)

(E1 + E2)2 − e2V 2
+ f (E1, T1) − f (E2, T2)

(E1 − E2)2 − e2V 2

]
, (A3)

where Ej =
√

ε2
j + �j (Tj )2, f (E, T ) = 1/(1 + eE/kBT )

is the Fermi distribution function, Nj (ε, T ) =
|Re[ ε+iγj√

(ε+iγj )2−�j (T )2
]| is the reduced superconducting density

of state, with �j (Tj ) and γj being the BCS energy gap and
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the Dynes broadening parameter [59] of the j th electrode,
respectively.

These equations derive from processes involving both
Cooper pairs and quasiparticles in tunneling through a JJ
predicted by Maki and Griffin [28]. In fact, Pqp is the heat
power density carried by quasiparticle tunneling, namely, it is
an incoherent flow of energy through the junction from the hot
to the cold electrode [10,28]. Instead, the “anomalous” terms
Ppair and Pqp-pair determine the phase-dependent part of heat
transport originating from the energy-carrying tunneling pro-

cesses involving Cooper pairs and recombination/destruction
of Cooper pairs on both sides of the junction.

We note that Ppair, in the low current regime is vanishingly
small with respect to both Pqp and Pqp-pair contributions, and
it can be, in principle, neglected. In fact, since this term
depends linearly on the time derivative of the phase, it could
be effective only when the phase rapidly changes. Anyway, we
stress that Eq. (A3) is a purely reactive contribution [26,27],
so that in writing a thermal balance equation [5] we have to
properly neglect it.
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