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We use the density matrix renormalization group method to compute the frequency and momentum-resolved
spin-spin correlation functions of a dimerized spin-1/2 chain under a magnetic field at finite temperature.
The spectral features strongly depend on the regime of the magnetic field. For increasing magnetic fields, the
transitions from a gapped spin liquid phase to a Tomonaga-Luttinger liquid, and then to a totally polarized
phase, can be identified in the spectra. Compared to the zero-temperature case, the finite-temperature excitations
give rise to additional spectral features that we compute numerically and identify analytically as transitions
from thermally excited states. We compute quantitatively the broadening of the dispersion of a single spin-flip
excitation due to the temperature and find a strong asymmetric broadening. We discuss the consequences of these
findings for neutron experiments on dimerized one-dimensional quantum chains.
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I. INTRODUCTION

Quantum magnets have proven to be extremely rich physi-
cal systems with a large variety of physical behaviors, ranging
from quantum solids, for which the system is magnetically or-
dered, to quantum liquids for which the spin-spin correlation
functions decay rapidly [1]. In addition to the large number
of models that can be studied analytically or numerically,
depending on the dimensions and on the nature of the spin
or the lattice, some experimental realizations are nowadays
available, allowing for a fruitful exchange between theory and
experiments.

One of the important characteristics of quantum magnets is
that usually the microscopic Hamiltonian describing such sys-
tems is quite well known [2,3]. This is at variance with their
itinerant counterpart, for which the difficult problem of the
screening of the Coulomb interaction leads to Hamiltonians,
which are difficult to be determined quantitatively. In these
cases caricatural descriptions with models such as the Hub-
bard model must be made. For quantum magnets the excellent
knowledge of the Hamiltonians as well as the various precise
probes such as neutron scattering experiments [4], NMR [5,6],
etc., giving direct access to the spin-spin correlations of the
system, open the possibility to make very precise compar-
isons between the theoretical description, if available, and
experiments. It also allows in principle to use such systems
as quantum simulators for itinerant bosonic systems [7].

However, in order to do such comparisons it is important
to have powerful methods that allow us to obtain the physical

observables directly from the Hamiltonian without having to
use uncontrolled approximations. This is especially true if one
looks at systems with moderately large magnetic exchange
constants such that they can be manipulated by experimen-
tally achievable magnetic fields. In that case temperature and
magnetic exchange are not as separated as in the usual norm
for magnetic systems, making methods such as a brute force
application of field theory less accurate. Implementing this
program is difficult, but in particular in one dimension it is
possible to use a combination of field theory methods as well
as numerical ones to make quantitative predictions.

One of the methods that has proven to be particularly useful
is the time-dependent density matrix renormalization group
(DMRG) [8–10], which has allowed us to obtain the frequency
and momentum resolved spin-spin correlation functions for
several one-dimensional systems [11]. Compared to other
methods such as quantum Monte Carlo (QMC) it has the
advantage to give direct access to the real-time dynamics and
to avoid the very delicate problem of the analytic continu-
ation from imaginary time. However, due to the numerical
costliness, these predictions were limited to zero tempera-
ture, and only finite-temperature calculations of the thermo-
dynamics were accessible [12–14]. Recently, full dynamical
calculations at finite temperature [15,16], in the framework of
time-dependent matrix product states reformulation of DMRG
[17], have been performed in simple cases, opening the path
to the study of thermal effects on spectral functions. Such
studies were, for example, performed for the nuclear magnetic
resonance relaxation in quantum spin-1/2 chains [18,19] or
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for the quantum critical point corresponding to magnetization
saturation [20,21].

In this paper we use such methods to make an analysis of
the properties of a dimerized system under magnetic field.
Dimerized systems have, in the absence of magnetic field, a
ground state that is a spin liquid with a finite spin gap and
interesting features as multiparticle continua. Bound states
have been found in their spectra at zero temperature [22–32].
Application of the magnetic field closes the gap and trans-
forms the system into a Tomonaga-Luttinger liquid (TLL)
[2] in a similar way as for ladder systems [33]. At low
energies, and if the dimerization is small compared to the
main exchange, such systems can be very well described by
a sine-Gordon theory [2] and the closure of the gap by the
magnetic field is in the universality class of commensurate-
incommensurate (or Pokrovsky-Talapov [34]) universality
class. Although the sine-Gordon theory or the mapping to the
TLL allows us to take partly the effects of the temperature on
the correlation functions into account, this is clearly limited
to energies or temperatures much smaller than the average
exchange. In order to go beyond this limitation the direct
numerical approach becomes necessary.

One quantity that is particularly difficult to estimate an-
alytically is the thermal broadening of the modes appearing
in the correlation functions. For ladders, estimations based
on bond-operators description have been performed [35] in
the gapped regime. Similar analyses are in principle directly
applicable to the dimerized systems as well. However, these
approximations mostly find a shift of an otherwise perfectly
sharp spectrum. Semiclassical treatments [36] were used to
compute the thermal broadening for antiferromagnetic gapped
Heisenberg chains. More recently for dimerized systems, ex-
act diagonalization for small systems [37] and form factors
expansions [38] showed an asymmetric non-Gaussian broad-
ening at zero magnetic field. Such asymmetric broadening was
also observed experimentally in gapped three-dimensional
(3D) antiferromagnets [39] and in dimerized chains in the
material [Cu(NO3)2 · 2.5D2O] [40] but full determinations of
the thermal effects remains elusive.

We will thus here use a finite-temperature DMRG method
to investigate the various spin-spin correlations in such dimer-
ized systems and in particular compute the detailed thermal
broadening of their most prominent modes. We indeed find
an asymmetric broadening of these modes and determine its
temperature dependence in an essentially exact way from the
numerical data.

The plan of the paper is as follows. In Sec. II we summarize
the main features of the model by discussing the Hamilto-
nian and its corresponding phase diagram. Section III briefly
presents the algorithm adopted for the numerical computation.
In Sec. IV we describe in detail the correlations that we com-
pute, how, and its relation with neutron scattering measure-
ments. We then move in Sec. V to the results for dynamical
correlations for the different values of temperature and field
considered, and we give an interpretation of the different
structures seen. In addition, we show how temperature affects
the characteristics of the spectra. Section VI presents conclu-
sions and perspectives. In the Appendix we start by showing
some convergence checks for the numerics (Appendix A),
then in Appendixes B and C we give details about some

J-δJ J-δ+J JδJ

j-1,2 j,1 j,2 j+1,1

Lattice spacing ''a''

FIG. 1. Dimerized chain: to each spin-1/2 corresponds a black
square, the coupling (nearest-neighbor only) is alternated with strong
bonds Js = J + δJ and weak bonds Jw = J − δJ . Each spin has
two indexes: the first indicating the strong bond in which it is located,
the second indicating the position in the strong bond (1 for left, 2 for
right). We define the lattice spacing a as the distance between two
unit cells, i.e., between next-nearest-neighbor sites.

calculations made to interpret some of the structures seen in
the intensity plots for correlations.

II. MODEL

In this work we consider the dimerized Heisenberg
chain subjected to a magnetic field. It is described by the
Hamiltonian

H =
∑

j

(J + (−1)j δJ )Sj · Sj+1 − h
∑

j

Sz
j . (1)

Sj = σj is the spin (vector) at site j represented by the Pauli
matrices σj . In the following the spin operators are chosen
as dimensionless and the g factor, the Bohr magneton and
h̄ have been absorbed into the amplitudes of the magnetic
field h, the isotropic coupling J and the anisotropic coupling
δJ , which have the dimension of an energy. A schematic
representation of this model is given in Fig. 1. A finite value
of the anisotropic coupling leads to a dimerization of the spin
coupling in the chain and we use Js = J + δJ for the strong
bonds and Jw = J − δJ for the weaker bonds. Since the unit
cell has two sites we introduce the labeling of the unit cells
and the two sites by the tuples (j, r ), where j is the position of
the unit cell and r = 1, 2 denotes the site within the unit cell.
This labeling is represented in Fig. 1. L is the total number of
sites in the chain and a is the size of the unit cell.

For h = 0 the ground state is a nontrivial spin 0 state
and there is a gap to the first excited state, which is a band
of one-triplon excitations [2]. Both the ground state and the
excitations can be understood in the limit of strong dimeriza-
tion. In this limit one has antiferromagnetically coupled spin
dimers characterized by a strong exchange coupling Js , which
are themselves weakly coupled by Jw. The lowest-energy
excitations are given by a single dimer excited from spin 0
(singlet) to spin 1 (triplet “+”,“0”, or “-”) and delocalized
along the chain (see Fig. 2). If one progressively increases
the magnetic field along z, the gap to those excitations gets
smaller and smaller up to the critical value of the field h = hc1

where it closes. Once this point is reached, a further increase
of h progressively polarizes the spins of the chain up to full
polarization, occurring at hc2. The system for hc1 < h < hc2

is in a gapless phase (Tomonaga-Luttinger liquid), for h > hc2

the phase is again gapped. For more details on dimerized
chains see, for instance, Ref. [2] or Ref. [33].

In this work, we concentrate on the coupling pa-
rameters pertinent for the strongly dimerized copper ni-
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FIG. 2. Sketch of the excitation spectrum for the dimerized chain
under a magnetic field h. In the strong dimerization limit, i.e., Jw �
Js , the physics of the model can be essentially restricted to that of
two spins-1/2 on a strong bond. At h = 0 there is a gap between
the singlet |s〉 = 1√

2
(|↑↓〉 − |↓↑〉), and the three triplets |t+〉 = |↑↑〉,

|t0〉 = 1√
2
(|↑↓〉 + |↑↓〉), and |t−〉 = |↓↓〉. The field removes the

degeneracy in energy of the triplets bringing down the energy of
|t+〉 (upper part) and closing the gap. Due to the weak coupling
between strong bonds, a triplet can be delocalized, which results in
a dispersion in energy (dotted lines). When the field is high enough
such that the lowest triplon excitation crosses the singlet excitation
(h > hc1), the triplon band begins to fill leading to a massless phase,
the Tomonaga-Luttinger liquid, up to the point hc2 where the band
is totally filled and the system again forms a gap. After Fig. 2 in
Ref. [11].

trate [Cu(NO3)2 · 2.5D2O] experimentally investigated in
Ref. [41]. For this compound the coupling parameters have
been determined to be J ≈ 3.377 kBK and δJ ≈ 1.903 kBK

[42,43]. This compound shows a relatively strong dimeriza-
tion of Js/Jw ≈ 3.58.

III. MPS METHOD

In this paper we are interested in the computation of
dynamic finite-temperature correlation functions of the form

〈B̂(t )Â〉T = Tr(ρ̂βB̂(t )Â). (2)

Here ρ̂β is the finite-temperature density matrix, i.e., ρ̂β =
e−βH /Zβ and β = 1/(kBT ) the inverse temperature. B̂(t ) =
eiHt B̂e−iH t is the time-evolved operator, where H is the
Hamiltonian of the system. We are interested in the case where
B̂ and Â are spin operators (S+, S−, Sz) with the property
Â = B̂†.

The density matrix is encoded within a matrix product state
(MPS) formalism by a pure state in an enlarged Hilbert space
(real part plus auxiliary part):

ρ̂β −→ |ρβ〉 ∈ H ⊗ Haux, (3)

so that

Traux |ρβ〉〈ρβ | = ρ̂β . (4)

The pure state representation of the density matrix |ρβ〉 can
be determined in an MPS form by an imaginary-time evolu-
tion, starting from the initial infinite-temperature state, which
corresponds in the pure state representation to the maximally
entangled state of the form |ρ0〉 ∝ ∑

σ |σ 〉 ⊗ |σ̄ 〉aux. Here the
entanglement is chosen between σ and its opposite σ̄ in order
to be able to use the magnetization as a good quantum number,
which lightens the numerical cost of the approach.

To obtain the correlation defined in (2), we make use of
the computational scheme adopted in Ref. [18], proposed
originally in Ref. [15] and analyzed in detail in Ref. [16]. The
scheme can be summarized by the following expression:

〈B̂(t )Â〉T = 1

Zβ

Tr([e−βH/2]B̂[e−iH t Âe−βH/2eiHt ]). (5)

Square brackets indicate which parts of this expression are
approximated by an MPS. Bracketed operators are calculated
with very good approximation using imaginary and/or real-
time evolution. Finally, the application of the local operator B̂

has to be performed.
Typical values for bond dimensions used here range from

500 for the lowest temperatures, up to 2000 states for the
highest ones. The minimal truncation has been chosen of the
order of 10−20 for imaginary-time evolution and 10−10 for
real-time evolution, together with a maximal truncated weight
of 10−6 (10−5 for the highest temperatures). The convergence
is assured for this set of parameters (see also Appendix A).
Results shown in this paper are obtained for a chain of size
L = 130, which is chosen in a way such that the perturbation
created by the operator Â does not reach the boundary of the
system for times up to tmax at all temperatures. The resulting
finite-size effects are small and therefore neglected.

IV. DYNAMIC CORRELATION FUNCTIONS

We are interested in dynamical spin-spin correlation func-
tions at finite temperature in frequency and momentum. The
described time-dependent MPS method gives access to corre-
lations in time and space:

〈
Sλ

j2,r2
(tn)Sμ

j1,r1
(0)

〉
T

=: Sλμ
r2r1

(d = j2 − j1, tn), (6)

where (λ,μ) can be (±,∓) or (z, z). We label the sites by
the unit cell index ji and the index within the unit cell ri

(cf. Fig. 1). For each couple (λ,μ) there are four different
correlations, which we will name 11, 12, 21, and 22 following
the choice for r2, r1 indices. In this work we focus on the 11
correlations, since they are representative of the physics of the
model and of the phases considered. The other correlations
can be computed in the same way. The time tn = δt · n is
the time at which the second spin operator is applied. In the
numerical calculation the time is discretized with a time step
δt and n being an integer. T is the temperature at which the
correlations are evaluated. In the numerical calculations we
use a finite system and consider the correlations at j1 = 0
and j2 varying from − L̃−1

2 to L̃−1
2 , where L̃ = L/2. Given the

type of correlation we are computing, translational invariance
guarantees that S

λμ
r2r1 (d, t ) = S

λμ
r2r1 (−d, t ). In the (z, z) case we

subtract m2 (m is the magnetization per site).
In order to obtain the correlations in the frequency do-

main and momentum space, two Fourier transformations are
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applied. In order to minimize oscillations, which arise as
numerical artifacts, due to finite system length and finite time
tmax reached by simulations, we overlay a Gaussian filter to
the time-position/space correlations before the application of
the Fourier transformation following Ref. [11]:

S
λμ
11 (d, tn) −→ S

λμ
11 (d, tn) · f (d, tn), (7)

f (d, tn) = e−(4d/L̃)2 · e−(2tn/tmax )2
. (8)

For the double Fourier transform we use the same conven-
tions as adopted in Ref. [11]:

S
λμ
11 (qk, ωm) ≈ δt

Nt∑
n=−Nt+1

L̃−1
2∑

d=− L̃−1
2

ei(ωmtn−qkd )S
λμ
11 (d, tn). (9)

Nt is the total number of time steps made for the evolution
for that specific case, ωm = πm

Nt δt
for m integer ranging from

−Nt + 1 to Nt , and qk = 2πk

L̃
for k = 0, 1, . . . , L̃ − 1. Note

that the momentum is connected to unit cells containing two
sites. The negative time correlation functions are determined
using the symmetries of the lattice and properties of spin
operators by means of the following relation:

S
λμ
11 (d,−t ) = [

S
λμ
11 (d, t )

]∗
. (10)

In the following, we show the real part of these filtered corre-
lations, �(Sλμ

11 (q, ω)), which contains important information.
Our results for correlations can be directly connected to

inelastic neutron scattering (INS) measurements as explained
for instance in Ref. [4]. Zero-temperature dynamical corre-
lations allowed already successful comparisons with experi-
mental results at low temperature [11,44]. For the dimerized
system, neutron scattering data has been obtained in Refs. [41]
and [45] and with the neutron-resonance spin echo (NRSE)
technique [40]. By incorporating the specific details of the
material (position of atoms, etc.) and summing over polar-
izations (since most experiments are done with unpolarized
neutrons) our data can be related to the neutron absorption for
a given material. These extra elements, although important
if one wants to make comparison with a specific material,
complicate in general the understanding. In this paper we thus
directly focus on the spin-spin correlations themselves for
each polarization, to analyze the effects of finite temperature.

V. RESULTS

We present in this section our results for dynamical spin-
spin correlation functions at finite temperature obtained by the
time-dependent MPS method. We consider the correlations
S+−

11 , S−+
11 , and Szz

11. From S±∓ correlations one can easily
access Sxx and Syy . Since we are interested in the physics of
the various phases of the system (see Fig. 2) we consider the
following magnetic fields.

(i) h = 0. At zero magnetic field, the system is gapped.
Since the system is isotropic only the Szz

11 correlation is shown.
(ii) h = 2.868Jw � hc1, with hc1 ∼ 2.976Jw. This field

lies still in the gapped regime. However, the gap is already
very small since the field is very close to the critical field.

(iii) h = 3.716Jw. This magnetic field puts the system
well inside the massless phase. In this regime the low-
energy part of the spectrum is expected to be described by
a Tomonaga-Luttinger liquid.

(iv) h = 4.674Jw > hc2, with hc1 ∼ 4.566Jw. In this case
we are in the fully polarized regime and the system is again
gapped (at zero temperature).

For each one of these regimes we examine the physics
encoded in the spectra and we consider different tempera-
tures. We choose in particular T = 0.082Jw, T = 0.339Jw,
and T = 1.356Jw, for which the system is still fully in the
quantum regime, but temperature effects are already evident.

As we will see in detail, temperature can have different
effects on the spectrum. One of the main effects of the
temperature is to change, i.e., shift and smear, the dispersion
relations of the excitations. We will see from the data that this
broadening can be very large and in general asymmetric with
respect to the zero-temperature dispersion. Additionally, new
excitation branches can occur due to the admixture of excited
states in the finite-temperature state.

On the technical side, because of the increasing complexity
of the simulations for higher temperatures and for magnetic
fields inside or very close to the critical region, the maximum
time reached by the real-time evolution is sometimes reduced,
causing a worse resolution in frequency. Nevertheless, our
resolution is still sufficient to see interesting effects on the
structure of the correlations.

A. Isotropic gapped system h = 0

In the absence of magnetic field the dimerized system is
gapped and perfectly isotropic in the three directions x, y, z.
Thus, we focus for h = 0 only on the correlations along
z direction, i.e., 〈SzSz〉. In the limit of large gap and low
temperature, the application of the first operator Sz

0,1 creates
a single triplet excitation t0 on top of a background of singlets
located on each strong bond. Its energy is given by ∼Js .
The created triplet can delocalize with time by magnetic
exchange from strong bond to strong bond. The spectrum
can be well approximated by the one of an isolated particle
(the triplet) moving on the background of an empty lattice
(the singlets) with a tight-binding Hamiltonian with a hopping
matrix element −Jw/4 = −(J − δJ )/4. More details about
this result can be found in Appendix B. One thus expects
for the spectral function a narrow cosine shape of amplitude
∼Jw/2. We show the 〈SzSz〉 correlations at T = 0.339Jw in
Fig. 3 and at T = 1.356Jw in Fig. 4.

The cosine shape is well observed with an amplitude,
which is reasonably compatible with the value Jw/2. Only
small modifications can be seen. The broadening in energy
at each momentum value is very small at low temperature. An
increase in temperature (cf. Figs. 3 and 4) leads to mainly two
different effects: additional intensity appears at low energies
and a significant increase of the frequency broadening of the
cosine band, connected with an important reduction of inten-
sity. These effects had already been observed in Refs. [37,38],
and stem from the fact that the initial finite-temperature state
is not anymore a collection of singlets on each strong bond,
but can contain a sizable fraction of higher excitations (triplets
“0”, “+”, or “−”), which can have finite momentum qi . The
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FIG. 3. Case T = 0.339Jw , h = 0, 〈SzSz〉 correlations. A cosine
shaped band at finite energy shows the gapped nature of the system
in this case. The blue curve represents the cosine, which one gets
by approximating the spectrum of the system with the one of a single
triplet in a sea of singlets, hopping from one strong bond to the neigh-
boring one with a tight-binding Hamiltonian and a corresponding
amplitude Jw/2. Green dotted lines indicate the regions where cuts
have been performed to study temperature effects on the cosine band
represented in Fig. 5.

possible transitions (see Appendix B) can take place at an
energy close to zero or close to the original cosine-shaped
excitation band around Js . By imposing conservation of en-
ergy, and taking into account the cosine dispersion, which
characterizes the energy E(q ), we find, as detailed in the
Appendix C, that the weak intensity dome observed at low
energy in Fig. 4 is described by the relation

ω

Jw

= sin
(
qi · a + q · a

2

)
sin

(q · a

2

)
, (11)

for all possible choices of qi and for each fixed value of q · a,
being a the lattice spacing. This means that (weak) intensity

FIG. 4. Case T = 1.356Jw , h = 0. 〈SzSz〉 correlations. The co-
sine band at finite energy is still there but with a reduction in intensity
and a stronger broadening especially at q close to 0 and 2π/a. New
structures appear at low energy (localized below the purple dashed
curve, see text and Appendix C). Green dotted lines indicate the
regions where cuts have been performed to study temperature effects
on the cosine band represented in Fig. 5.

should be present below the purple dashed line in Fig. 4,
which is indeed what is observed.

Let us now examine in detail how the temperature can
affect the cosine dispersion of triplet excitations. In order
to highlight the thermal effects found in our numerics, we
make cuts at fixed values of momenta q · a = 0, π/2, π on the
intensity plots of 〈SzSz〉 correlations, around the cosine band,
at various temperatures, ranging from T = 0.082Jw up to T =
6.78Jw. These cuts correspond for example to the green dotted
lines in Figs. 3 and 4. We report our results in Fig. 5, which
is organized in two parts. On the left, for each of the three
values of momentum, we plot the positions of the maxima
in intensity of the cosine band at different temperatures. The

FIG. 5. Position of intensity maxima at q = 0, π

2 , π as a function of kBT /Jw for 〈SzSz〉 correlations in the case h = 0 (left plot). On
the right, cuts at fixed momentum as a function of energy, as obtained, i.e., from Fig. 3 or Fig. 4. All intensities have been renormalized
in order to have 1 as a maximum. A different color corresponds to a different temperature with black ↔ 0.082Jw , purple ↔ 0.204Jw , light
blue ↔ 0.339Jw , blue ↔ 0.543Jw , red ↔ 1.356Jw , green ↔ 2.712Jw , yellow ↔ 3.39Jw , orange ↔ 6.78Jw . Curves from T = 0.082Jw to
T = 0.543Jw are all on top of each other (see blue curve).
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FIG. 6. Case T = 0.339Jw , h = 2.868Jw . 〈S−S+〉 (left), 〈S+S−〉 (center), and 〈SzSz〉 (right) correlations. The gap of the system is almost
closed by the magnetic field. Cosine bands displace depending on the correlation considered and temperature effects (broadening, lower-energy
structures) can be already seen. Green dotted lines indicate the regions where cuts have been performed to study temperature effects on the
cosine band.

error bars are given by the available resolution in energy
(which is related to the tmax reached in the simulations). In
the three plots on the right we report the cuts made for
the three values of momenta, respectively, as a function of
energy for different temperatures. The intensities have all been
renormalized to one in order to emphasize the broadening. As
the temperature increases a strong asymmetric broadening of
the spectra appears and due to this asymmetric broadening the
maxima of the curves shift slightly in energy.

The broadening is caused by the presence of different
triplet excitations in the thermal state. Due to this, more
transitions at slightly different energies are possible, which
leads to the broadening of the spectrum. The asymmetry in
the broadening is coming from the energy-momentum con-
straints. Compared to the results in Ref. [38] the main findings
of an asymmetric broadening are similar. A direct comparison
is difficult due to the different choice of parameters. This
asymmetric broadening has been investigated also in Refs.
[46–48] using a diagrammatic method, and shown to be a
universal feature in many quantum magnets.

B. Gapped regime at finite h

At h = 2.868Jw < hc1 the gap between the ground state
and the first excitation band is almost closed and the isotropy

present at h = 0 is lifted. Thus, the three correlations zz,
+−, and −+ behave differently as shown in Fig. 6 and
Fig. 7 for the two different temperatures. In particular, the
cosine-shaped spectrum is shifted strongly in energy between
the three correlations. This can be qualitatively understood
in the single strong dimer picture. The application of S+ to
the first site of the dimer induces a transition |s〉 → |t+〉. The
excitation energy of the |t+〉 triplet was brought down by the
magnetic field and is already very small for the considered
magnetic field. This explains why the cosine band for 〈S−S+〉
correlations drops to almost zero energy in the left plot of
Fig. 6. The weight within the cosine band has already changed
and maximal weight is found around q ≈ 0 and q ≈ aπ . This
is a precursor of the Tomonaga-Luttinger liquid spectrum
occurring above hc1, where gapless modes are present at
q = 0 with a significant weight and the remaining weight of
the spectrum decreases. At finite temperature a broadening
mainly around these points of high intensity can be observed.
Additionally, one could expect a band arising at the energy of
the |t−〉 excitation, which, however, at the shown temperatures
has a negligible weight. Following the same line of reasoning,
the application of S− to the first site of the dimer induces a
transition |s〉 → |t−〉 at energy E−, which rises as h grows.
This explains why the cosine band for 〈S+S−〉 now climbs
to higher energy in the central plot of Fig. 6. At a finite initial

FIG. 7. Case T = 1.356Jw , h = 2.868Jw . 〈S−S+〉 (left), 〈S+S−〉 (center), and 〈SzSz〉 (right) correlations. Temperature effects are
enhanced, low-energy features look more pronounced. For 〈S−S+〉 correlations the cosine band is substantially lost especially close to q = 0
and q = 2π/a. Green dotted lines indicate the regions where cuts have been performed to study temperature effects on the cosine band.
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FIG. 8. Position of intensity maxima at q = 0, π

2 , π as a function of kBT /Jw for 〈S−S+〉 correlations in the case h = 2.868Jw (left plot).
The squeezing of the cosine band is clearly seen and a nontrivial behavior is observed at low T. On the right, cuts at fixed momentum as a
function of energy, as obtained, i.e., from Fig. 6 or Fig. 7. All intensities have been renormalized in order to have 1 as a maximum. A different
color corresponds to a different temperature as in Fig. 5.

temperature, a sizable fraction of triplet states |t+〉 is admixed,
which can be transformed to a superposition of |s〉 and |t0〉,
which leads to the additional feature at energies around E0 ∝
Js . Finally, the application of Sz to the first site of the dimer
induces a transition |s〉 → |t0〉, which is not sensitive in terms
of energy to the application of h. This explains why the cosine
band for 〈SzSz〉 remains at the same energy ≈ E0 ∝ Js in the
right plot of Fig. 6. In this correlation, the admixture of the
triplet states in the finite-temperature state leads to an energy
band arising close to zero energy, to which the transitions of
|t+〉 → |t+〉 and |t0〉 → |s〉 can contribute.

The effect of the finite temperature not only shows up in
the additionally allowed excitations, but it also has an effect
on the form of the excitation bands, which initially are cosine
shaped. Already at T = 0.339Jw some temperature effects
are clearly seen in the broadening of the cosine bands. At a
higher temperature (Fig. 7) these effects are enhanced, and

the maxima of intensity of the signal are much lower and
redistributed.

In order to analyze in more detail the change of the dom-
inant cosine-shaped dispersion we make cuts at fixed values
of momenta (see green dotted lines in Figs. 6 and 7). Results
are shown in Figs. 8–10. Again, the error bars on the left plot
are given by the available resolution in frequency/energy. The
intensities have all been renormalized to one in order to em-
phasize the features of the broadening effect. The asymmetric
broadening is clearly visible in particular around q = 0. By
this asymmetric broadening the maximum of the weight shifts
to different frequencies (as seen in the left plot).

Note that, surprisingly, this is the case even when the
temperature is relatively small compared to the energy of the
corresponding excitation. This is, for example, clear in Fig. 10
in which a relatively moderate temperature T = 1.356Jw is
not only modifying very seriously parts of the spectra at

FIG. 9. Position of intensity maxima at q = 0, π

2 , π as a function of kBT /Jw for 〈S+S−〉 correlations in the case h = 2.868Jw (left plot).
The squeezing of the cosine band is clearly seen and a nontrivial behavior is observed at low T. On the right, cuts at fixed momentum as a
function of energy, as obtained, i.e., from Fig. 6 or Fig. 7. All intensities have been renormalized in order to have 1 as a maximum. A different
color corresponds to a different temperature as in Fig. 5.
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FIG. 10. Position of intensity maxima at q = 0, π

2 , π as a function of kBT /Jw for 〈SzSz〉 correlations in the case h = 2.868Jw (left plot).
The squeezing of the cosine band is clearly seen and a nontrivial behavior is observed at low T. On the right, cuts at fixed momentum as a
function of energy, as obtained, i.e., from Fig. 6 or Fig. 7. All intensities have been renormalized in order to have 1 as a maximum. A different
color corresponds to a different temperature as in Fig. 5.

energies of the order of ω = 4Jw (the green curves in the right
plots of Fig. 10) but is also able to produce quite significant
broadening of the order of 3.5Jw. One should thus take scep-
tically the standard qualitative estimate that the effects of the
temperature are negligible when the energy of the excitation
E is such that E � T .

C. Tomonaga-Luttinger liquid regime

At h = 3.716Jw, deep in the TLL region and at finite
magnetization, structures become much more complex. At
low temperature and very low energy the structures can be
understood if we consider a mapping to an homogeneous
spin chain (single strong dimer ↔ spin). We know from
Refs. [2,33] that at finite magnetization and at low enough
temperature, for a homogeneous spin-1/2 chain, 〈SzSz〉 cor-
relations have low-energy modes at q = 0, 2π and at q =
π (1 ± 2m), while XY correlations develop incommensurabil-
ity at q = 2πm and q = 2π (1 − m), while the q = π point
stays commensurate. Here with m we indicate the magnetiza-
tion per site of the homogeneous chain. Taking into account

the proper mapping between the dimerized chain and the
homogeneous one, and keeping in mind that we are computing
correlations of “11” species (see above), we find in our
framework that for all the three correlations 〈S−S+〉, 〈S+S−〉,
and 〈SzSz〉 zero-energy points should sit on momenta q · a =
0, 4πmd, 2π (1 − 2md ), 2π . Here md is the magnetization
per site of the dimerized chain. The theoretical expectation are
in very good agreement with the numerical results as shown
in Fig. 11. In Fig. 12 we see how the thermal effects affect
these structures. The signal becomes more diffuse and the
intensity is redistributed. Whereas for the gapped phase only
slight temperature effects were seen for T = 0.339Jw, in the
TLL already drastic changes are seen for this temperature.

D. High field gapped phase

At h = 4.674Jw, the system becomes gapped and fully
polarized, i.e., only |t+〉 triplets are present in the ground state.
Therefore, we expect 〈S−S+〉 and 〈SzSz〉 correlations to have
zero weight at low temperature as seen in Fig. 13. However, at
finite temperature also singlets or other triplets can be present

FIG. 11. Case T = 0.082Jw , h = 3.716Jw . 〈S−S+〉 (left), 〈S+S−〉 (center) and 〈SzSz〉 (right) correlations. Green arrows indicate the
positions of the zero-energy points according to the low-energy approximated description (mapping to an homogeneous spin chain). The
agreement between the numerical results and the theoretical expectations is excellent.
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FIG. 12. Case T = 0.339Jw , h = 3.716Jw . 〈S−S+〉 (left), 〈S+S−〉 (center), and 〈SzSz〉 (right) correlations. The temperature starts to play
a big role with respect to the previous picture, deforming the structures and redistributing the intensities.

in the thermal state and we expect excitations at low energy
to be possible, e.g., by the transitions Sz|s〉 → |t0〉 at energies
ω ≈ Js , or Sz|t0〉 → |s〉 and S+|s〉 → |t+〉 both at energies
ω ≈ 0. As seen in Fig. 14 these arise and have already a
considerable weight at low temperatures. This is because the
gap at this specific value of the field is pretty small and allows
excitations already at low temperatures.

In contrast in the correlations 〈S+S−〉 already at zero
temperature a pronounced signal is expected, which can again
be understood qualitatively in the single strong dimer picture:
at zero temperature the system is made by a collection of |t+〉
on each strong bond, the application of S− on a site induces
a transition on that strong bond to a state, which is a com-
bination of a singlet |s〉 and of a triplet |t0〉. Approximately,
cosine-shaped bands are representative of these excitations:
the lower one for the singlet, which shows a very small gap
compatible with the value h − hc2, the upper one for the |t0〉.
More details on this result can be found in Appendix B. At
finite temperature, thermal excitations can be generated in the
initial state. The applications of S− to one of these excitations
(for example a singlet) can create a high-energy |t−〉, which
propagates on the chain and generates the observed faint
structure at high energy.

VI. CONCLUSION AND OUTLOOK

In this paper we have used time-dependent matrix product
state techniques to compute the correlation functions of a
dimerized system of spins-1/2 as a function of frequency,
momentum and temperature. We have analyzed the magnetic
field and temperature effects on such correlations. Our system
at small magnetic field is in a gapped regime, it becomes a
Tomonaga-Luttinger liquid when h exceeds the first critical
value hc1, and then it becomes again gapped for h > hc2 (fully
polarized regime). For each of these cases we offered a qual-
itative interpretation of most structures seen using the strong
coupling picture. We have investigated how the temperature
broadens the spectrum and redistributes intensity among the
excitations. In addition we have studied the effects of the
temperature on the dispersion of a single triplet excitation in
the gapped regime. We could compute quantitatively such a
broadening and showed that contrarily to the results of some
approximate techniques such as a bond operator technique,
a strong asymmetric broadening exists at finite temperature.
This effect is largely dominant over other effects such as band
narrowing. In addition to the new structures, this broadening
is the main temperature effect and makes it impossible to rep-

FIG. 13. Case T = 0.339Jw , h = 4.674Jw . 〈S−S+〉 (left), 〈S+S−〉 (center), and 〈SzSz〉 (right) correlations. At relatively low temperature
〈S−S+〉 correlations are zero because all spins are up. In the central plot two cosines both with amplitude Jw/2 are superposed to the structures
we associate to the |s〉 (lower cosine) and to the |t0〉 (upper cosine) excitations, according to the single strong dimer treatment.
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FIG. 14. Case T = 1.356Jw , h = 4.674Jw . 〈S−S+〉 (left), 〈S+S−〉 (center), and 〈SzSz〉 (right) correlations. Some signal is now present in
〈S−S+〉 correlations at low energy and q ∼ 0 or 2π/a because thermal fluctuations can make some spin flips in the system. The other two
correlations get broadened and there is a different redistribution of relative intensity.

resent excitations as well-defined δ function excitations even
at moderate temperatures compared with the spin exchange.

Our study has been carried out for a Hamiltonian, which
explicitly breaks translational invariance, but similar dimer-
izations can occur also in models such as the J1-J2 model
(with a next-nearest-neighbor interaction) above a certain
threshold. There are, however, important differences at the
level of the excitations. Indeed for the dimerized model the
excitation is a triplet on the rung, while for spontaneously
dimerized system the excitation can be a spin-1/2 followed
by a shift by one lattice spacing of the dimerized bonds. In the
bosonization language the operator appearing in the Hamilto-
nian of our model is a sin(2φ) operator (see, e.g., Ref. [2]),
while for the J1-J2 model this would be a cos(4φ). The
corresponding topological excitation thus carries a spin S = 1
for the dimerized model and S = 1/2 for the spontaneously
dimerized one. So although the two models share common
elements (presence of a gap, ground state made of dimers,
etc.) they also show important differences in their excitations.
It would be therefore interesting to analyze the temperature
effects on the J1-J2 model for the future.

Our calculations are potentially directly relevant to neutron
scattering experiments that have been done on compounds
such as the copper nitrate [Cu(NO3)2 · 2.5D2O] investigated
in Refs. [41] and [45]. In order to go from the results of the
present paper to a comparison with the experimental results
several additional ingredients must be taken into account. The
various correlations are mixed due to the use of unpolarized
neutrons and the Fourier transform for the neutrons should be
made properly, taking into account the positions of the spins
in the real material (carried on Cu sites that are not simply
arranged in a straight line). None of these complications is,
however, a major one and we expect most of the effects de-
tected here directly on the individual correlations, such as the
broadening by temperature, to survive. A direct comparison
would thus be very interesting.

On a more general level it proves that accessing the thermal
effects for realistic parameters and models that go beyond
the simple case of a spin chain is now possible. The accuracy
of the numerical calculation is, such as for the case of zero
temperature [11], sufficient for an excellent description of

neutron spectra with the usual typical resolution of the order
of the meV. Thus for systems such as [Cu(NO3)2 · 2.5D2O] or
the spin ladders for which several neutron studies are already
present in the literature, a direct comparison between the
experiments and our computed spectra should be possible.
This will not be the case for compounds in which the
interchain or interladder coupling is stronger and the system
is not in the pure one-dimensional limit anymore. For such
systems new methods to deal with the interchain coupling
must be developed.
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APPENDIX A: CONVERGENCE CHECKS

In this section we show two examples of the convergence
checks that we preformed in order to guarantee the validity
of our results. We choose the 〈S−S+〉(d, t ) correlations and
we plot them as a function of time t for d = 0 (on-site
correlations) and d = 5, and for two different magnetic fields
h = 0 (gapped regime), see Figs. 15 and 16, and h = 3.016Jw

(gapless regime) just above hc1, see Figs. 17 and 18. The
chosen temperature is T = 0.339Jw. For both values of the
magnetic field we consider a larger and a smaller number for
the cutoff of the retained states and the minimal truncation
error, with respect to the choice of parameters that led us to
the results shown in the core of the paper. In all cases we plot
as a function of time the correlations themselves (plots on the
left) and the absolute difference between the two new choices
of parameter (plots on the right). In all cases the correlations
plotted in a given figure are substantially indistinguishable and
the absolute difference is maximally of the order of 10−4 such
that it is negligible compared to the discretization errors and
the error introduced by the finite evolution time considered.
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FIG. 15. Convergence checks for h = 0 (gapped regime) at T = 0.339Jw . 〈S−S+〉(d = 0, t ) correlations (left) and the corresponding
differences to the chosen value (right) plotted as a function of time, for three different values of retained states (top) and minimal truncation
(bottom).

APPENDIX B: DYNAMICS OF A SINGLE EXCITATION IN
THE STRONG DIMERIZATION LIMIT

In the strong dimerization limit, a lot of insight is gained
considering a single strong bond weakly coupled to the
remaining system. The four-dimensional Hilbert space on a
single strong bond is spanned by the four states |s〉, |t+〉, |t0〉,
and |t−〉. If we put ourselves in a gapped regime, which means

h = 0 or h > hc2, the ground state of the system within this
picture presents a singlet or a triplet “+”, respectively, on each
strong bond. The application of a spin operator (S+, S−, or
Sz) can induce a transition on that specific strong bond to
an excited state with a certain energy as detailed below. This
excitation can then propagate along the chain since the strong
bonds are not totally disconnected from each other (Jw finite).

FIG. 16. Convergence checks for h = 0 (gapped regime) at T = 0.339Jw . 〈S−S+〉(d = 5, t ) correlations plotted as a function of time
(left), for three different values of retained states (top) and minimal truncation (bottom). On the right, plot of the absolute difference between
the selected value for that specific parameter.
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FIG. 17. Case h = 3.016Jw (gapless regime) at T = 0.339Jw . 〈S−S+〉(d = 0, t ) correlations (left) and the corresponding differences to
the chosen value (right) plotted as a function of time, for three different values of retained states (top) and minimal truncation (bottom).

In the following we will detail which transitions are possible
and what happens for the two cases (h = 0 or h > hc2).

1. Application of the spin operators on a single bond

The application of the first spin operator of the correlator
can excite the system to a higher-energy state. These tran-
sitions can be used to obtain a crude understanding of the
different excitation bands in the correlations. In the following

we are giving a table indicating to which states an initial spin
state on a bond is transformed by the operation. Taking into
account that we always act on the first site of a strong bond
we get:

S+
1 |s〉 −→ |t+〉,
Sz

1|s〉 −→ |t0〉, (B1)

S−
1 |s〉 −→ |t−〉,

FIG. 18. Case h = 3.016Jw (gapless regime) at T = 0.339Jw . 〈S−S+〉(d = 5, t ) correlations (left) and the corresponding differences
to the chosen value (right) plotted as a function of time (left), for three different values of retained states (top) and minimal truncation
(bottom).
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S+
1 |t+〉 −→ 0,

Sz
1|t+〉 −→ |t+〉, (B2)

S−
1 |t+〉 −→ |s〉 + |t0〉,

S+
1 |t0〉 −→ |t+〉,
Sz

1|t0〉 −→ |s〉, (B3)

S−
1 |t0〉 −→ |t−〉,

S+
1 |t−〉 −→ |s〉 + |t0〉,
Sz

1|t−〉 −→ |t−〉,
S−

1 |t−〉 −→ 0. (B4)

In the correlations we need to consider in which phase we
start in order to know which of the transitions take place and
at which energy. This is outlined in the main text and in the
sections below.

2. h = 0

In absence of a magnetic field the ground state of the
system in the strong dimerization limit is made of singlets on
each strong bond. This means that at low temperature mainly
the transitions Eq. (B1) take place. At zero magnetic field all
of them occur at the same energy approximately given by Js .
Let us try to see how one of these excitations can hop from one
strong bond to the next one. We start by |ϕα〉 = |tα〉|s 〉, being
α = +, 0, or −, and we apply Hw = JwSj,2Sj+1,1, where the
two spin operators act, respectively, on the second spin of the
first bond, and on the first spin of the second bond. What one
gets is

Hw|ϕ+〉 = −Jw

4
|s〉|t+〉 + Jw

4
|t+〉|t0〉 − Jw

4
|t0〉|t+〉,

Hw|ϕ0〉 = −Jw

4
|s〉|t0〉 + Jw

4
|t+〉|t−〉 − Jw

4
|t−〉|t+〉,

Hw|ϕ−〉 = −Jw

4
|s〉|t−〉 + Jw

4
|t0〉|t−〉 − Jw

4
|t−〉|t0〉. (B5)

The most important terms are the three highlighted in bold,
which express the hopping of the excitations from one strong
bond to the next one. The other terms represent higher-energy
processes and therefore will be suppressed. From these results

it can be seen that the spectrum of the system in all the three
cases can be approximated by the one of an isolated particle
(the triplet) moving with a tight-binding Hamiltonian with
hopping matrix element −Jw/4.

3. h > hc2, S+− correlations

At very high magnetic field the ground state of the system
in the strong dimerization limit is made of triplets “+” on each
strong bond. The application of S− induces a transition from
a triplet “+” to the state |↓↑〉, which is a linear combination
of |t0〉 and |s〉 on a strong bond. For these two excitations,
following the same line of reasoning adopted above, one gets
that

Hw|t+〉|s 〉 = −Jw

4
|s〉|t+〉 + Jw

4
|t+〉|t0〉 − Jw

4
|t0〉|t+〉,

Hw|t+〉|t0〉 = Jw

4
|t0〉|t+〉 + Jw

4
|s 〉|t+〉 + Jw

4
|t+〉|s 〉. (B6)

The most important resulting terms are again those high-
lighted in bold, expressing the hopping of the excitations,
while the other terms can be neglected since their energies
are too high. In this case the spectrum can be approximated
by the one of two isolated particles (the triplet “0” at high
energy, the singlet at low energy) moving with a tight binding
Hamiltonian with hopping matrix element respectively Jw/4
and −Jw/4.

APPENDIX C: h = 0, STRUCTURES AT LOW ENERGY AT
INTERMEDIATE TEMPERATURE

At intermediate temperatures the initial state of the system
can contain highly energetic excitations such as triplets “+” or
“-”, with fixed initial momentum qi . By invoking conservation
of energy, and remembering that E(q ) = − Jw

2 cos(q ) we get
that (h̄ = 1)

Ei (qi ) + ω = Ef (qf )

ω = Ef (qi + q ) − Ei (qi )

ω = −Jw

2
[cos(qi + q ) − cos(qi )]

ω = Jw sin
(
qi + q

2

)
sin

(q

2

)
. (C1)

This function has nonzero intensity in the entire region for
which 0 < ω/Jw < sin ( q

2 ), as it can be checked in Fig. 5.
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