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A theoretical framework is proposed for the spin-current driven synchronized self-oscillations in ferromagnets
in the spin Hall geometry. The spin current generated by the spin Hall effect in a bottom nonmagnetic heavy metal
excites a self-oscillation of the magnetization in an attached ferromagnet through spin-transfer effect. The spin
current simultaneously creates spin accumulation inside the ferromagnet. Therefore, when the top surfaces of
two ferromagnets are connected by a nonmagnetic material having a long spin diffusion length, another spin
current flows according to the gradient of the spin accumulations between the ferromagnets. This additional
spin current excites an additional spin torque leading to a coupled motion of the magnetizations. This coupling
mechanism comes purely from spin degree of freedom in the system without using electric and/or magnetic
interactions. The additional spin torque acts as a repulsive force between the magnetizations, and prefers an
antiphase synchronization between the oscillators. The phase difference in a synchronized state is determined by
the competition between this additional spin torque and spin pumping. Eventually, either an in-phase or antiphase
synchronization is spontaneously excited in the individual ferromagnets, depending on the current magnitude.
These conclusions are obtained by deriving the theoretical formula of the additional spin torque from the diffusive
spin transport theory and solving the equation of motion of the magnetizations both numerically and analytically.
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I. INTRODUCTION

Current driven magnetization dynamics in ferromagnets
has been attracting much attention in the field of spintronics
[1–5]. In particular, an excitation of the coupled or forced
dynamics of the magnetizations, such as synchronization of
self-oscillations in spin torque oscillators (STOs), is currently
an exciting topic. This is because it has a possibility in enhanc-
ing emission power of practical devices, such as microwave
generator and magnetic sensors, and applicability to new
devices such as phased array and brain-inspired computing
[6–9]. The coupled dynamics is excited as a result of electric
and/or magnetic interaction between the ferromagnets. Sev-
eral mechanisms of coupling have been proposed theoretically
and/or demonstrated experimentally, such as spin wave prop-
agation [10–14], electric current injection and/or feedback
[15–20], microwave field [21], stochastic noise in current [22],
and dipole interaction [23,24]. Each coupling mechanism has
interesting characteristics. As an example, the dipole interac-
tion can excite spontaneous synchronization without adding
interconnections between STOs, while the number of STOs to
be synchronized is restricted due to the spatial decay of the
interaction. On the other hand, the electric current injection
can lead to a long-range coupling owing to the conservation
law of the current, but makes the circuit complicated. More-
over, every mechanism has the possibility leading to different
types of synchronizations, depending on the experimental
setup. For example, the electric coupling results in either in-
phase or antiphase synchronization, depending on the method
connecting the oscillators [25]. Therefore the investigation of
a new coupling mechanism between STOs and clarification of
its role on the synchronization provide rich physical insights
for both magnetism and nonlinear science.

An excitation of spin-current driven coupled motion of
magnetizations is a relatively new and interesting research
target. The coupled magnetization dynamics through spin
current has been investigated mainly in ferromagnetic res-
onances (FMR) [26–31]. However, a harmonic oscillation
excited by an oscillating force, as in the case of FMR, should
be distinguished by a self-oscillation excited by a direct
force [32]. A synchronization of the self-oscillation between
STOs through spin current has not been fully investigated
yet. The spin current decays within a characteristic length
scale called spin diffusion length. Thus the STOs should be
connected with each other within a distance shorter than the
spin diffusion length. It has been experimentally confirmed
that several nonmagnetic metals, such as Cu and Al, have
the spin diffusion length longer than one hundred nanometers
[33]. Connecting STOs by such materials within a distance
shorter than the spin diffusion length is expected. Therefore it
is of great interest to develop a model of coupling between fer-
romagnets through spin current and investigate synchronized
magnetization dynamics.

In this work, we propose a theoretical model embodying
spin-current driven synchronization between STOs in spin
Hall geometry. The coupling mechanism in this work comes
purely from spin degree of freedom in the system without
using electric and/or magnetic interactions. We consider two
STOs placed onto different nonmagnetic heavy metals. The
spin currents generated by the spin Hall effects in the bottom
electrodes excite the self-oscillations in the STOs through the
spin-transfer effect. At this stage, two STOs oscillate inde-
pendently. Here, the spin currents simultaneously create spin
accumulation in the ferromagnets. Next, the top surfaces of
the STOs are connected by another nonmagnetic metal having
a long spin diffusion length. Then, additional spin currents
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flow through the top connector according to the gradient of the
spin accumulation and due to the spin pumping mechanism.
These spin currents excite additional spin torques resulting
in a coupled motion of magnetizations. As a result, a phase
synchronization is then spontaneously excited between the
STOs. The phase difference between the STOs in the syn-
chronized state is determined according to the competition be-
tween two coupling mechanisms; one originates from the spin
current generated by the gradient of the spin accumulation
whereas the other comes from the spin pumping effect. We
find these results by developing the theoretical model of the
additional spin torque from the diffusive spin transport theory
and solving the equation of motion of the magnetizations both
numerically and analytically.

This paper is organized as follows. In Sec. II, we present
a description of the system in this study. We first derive
the distribution of the spin accumulation in a single STO in
the presence of the spin Hall effect. Secondly, we consider
connecting the top surfaces of two independent STOs, and
investigate the coupling due to spin current flowing caused
by the gradient of the spin accumulation and spin pumping in
the connector. In Sec. III, we study the coupled motion of the
magnetizations by solving the Landau-Lifshitz-Gilbert (LLG)
equation. In Sec. IV, the role of the spin current generated
by the gradient of the spin accumulation on the coupled
motion of the magnetization is studied both numerically and
analytically. Section V shows the conclusions of this work.

II. SPIN TORQUE FORMULA FROM SPIN
TRANSPORT THEORY

In this section, we derive the spin torque formula in the
spin Hall geometry from the diffusive spin transport theory.

A. System description

Let us first consider the injection of spin current into a
single ferromagnet by the spin Hall effect. The system we con-
sider is schematically shown in Fig. 1(a). The electric current
J0 = σNEx flowing in the nonmagnet N along the x direction
is converted to a spin current flowing into the z direction
by the spin Hall effect, where σN is the conductivity of the
nonmagnet N and Ex is the electric field. The spin current
creates the spin accumulation in the metallic ferromagnet F.
Here, we define the spin accumulation δμF in the ferromagnet
as δμF = [(μ̄F,↑ − μ̄F,↓)/2]m, where μ̄F,s (s = ↑,↓) is the
electrochemical potential of spin-s electrons, and m is the
unit vector pointing in the magnetization direction of the
ferromagnet. The spin accumulation in the ferromagnet obeys
the diffusion equation [34,35]

∂2

∂z2
δμF = δμF

λ2
F

, (1)

where λF is the spin diffusion length in the ferromagnet.
The solution of the spin accumulation is determined by

identifying the spin currents at the boundaries. Let us denote
that spin-current density at the F/N interface (z = 0) flowing
in the positive z direction, i.e., from the N to F layer, as JF/N

s .
In both the ferromagnet and the nonmagnet, the spin currents
are zero at the outer boundaries, z = −dN and z = dF, where
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FIG. 1. (a) Schematic view of a single STO. A ferromagnet F is
placed onto a nonmagnet N. The electric current density J0 flowing
in the nonmagnet is converted to a pure spin current injected into
the ferromagnet by the spin Hall effect. The spin current creates the
spin accumulation δμF in the ferromagnet. (b) Schematic view of
the system having two STOs. Another nonmagnet N′ is connected
to the top surface of the ferromagnets, F� (� = 1, 2). Spin currents
driven by the spin accumulations and spin pumping flow in the N′

layer.

dN and dF are the thicknesses of the bottom nonmagnet and
ferromagnet, respectively. Note that the spin currents in the
ferromagnet and nonmagnet are given by

Jsi,F = − h̄σF

2e2
∂iδμF − h̄βσF

2e2
∂iμ̄F, (2)

Jsiα,N = − h̄σN

2e2
∂iδμN,α − h̄ϑσN

2e2
εiαj ∂j μ̄N, (3)

where σF is the conductivity of the ferromagnet, and β is its
spin polarization. The spin Hall angle in the bottom nonmag-
net is ϑ . The suffixes i and j represent the spatial direction in
the real space, whereas α represents the direction of the spin
polarization. Note that the suffix α is not added to the spin
current in the ferromagnet because the spin polarization in the
ferromagnet is assumed to be parallel to the magnetization.
The Levi-Civita asymmetric tensor is εijk with ε123 = +1. The
electrochemical potential is denoted as μ̄ = (μ̄↑ + μ̄↓)/2.
Then, the solutions of the spin accumulation in the ferromag-
net and nonmagnet are given by

δμF = 2e2λF

h̄(1 − β2)σF sinh(dF/λF)
m · JF/N

s cosh

(
z − dF

λF

)
m,

(4)

δμN = 2e2λN

h̄σN sinh(dN/λN)

[
− h̄ϑσN

2e
Ex cosh

(
z

λN

)
ey

−
(

JF/N
s − h̄ϑσN

2e
Exey

)
cosh

(
z + dN

λN

)]
. (5)
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The spin current at the F/N boundary is given by the circuit
theory [36] as

JF/N
s = − 1

2πS

[(
1 − p2

g

)
g

2
m · (δμF − δμN)m

− grm × (δμN × m) − giδμN × m
]
, (6)

where S is the cross section area of the F/N boundary. The
interface conductance g with its spin polarization pg is related
to the interface resistance r via r = (h/e2)S/g. The real and
imaginary parts of the mixing conductance are denoted as gr

and gi, respectively. Substituting Eqs. (4) and (5) into Eq. (6),
we find that Eq. (6) can be rewritten as [37,38]

JF/N
s = h̄ϑσNg∗

2egN
myEx tanh

(
dN

2λN

)
m

+ h̄σN

2e
Ex[ϑRm × (ey × m) + ϑIey × m], (7)

where we introduce the following notations:

1

g∗ = 2(
1 − p2

g

)
g

+ 1

gF tanh(dF/λF)
+ 1

gN tanh(dN/λN)
,

(8)

gF

S
= h(1 − β2)σF

2e2λF
, (9)

gN

S
= hσN

2e2λN
, (10)

ϑR(I) = ϑ tanh

(
dN

2λN

)
Re(Im)

gr + igi

gN + (gr + igi ) coth(dN/λN)
.

(11)

For typical ferromagnetic/nonmagnetic metallic interface,
gr � |gi| [39]. Therefore, in the following, we neglect the
terms related to gi.

The absorption of the transverse spin current at the F/N
interface leads to an excitation of spin torque acting on the
magnetization in the ferromagnet. We denote the spin current
at the F/N interface flowing from the ferromagnet to the non-
magnet as JF→N

s = −JF/N
s . By using Eq. (7), the conventional

spin Hall torque generated from the spin current injected from
the bottom nonmagnet is given by

T(1) = γ

MdF
m × (

JF→N
s × m

)
= −γ h̄ϑRJ0

2eMdF
m × (ey × m). (12)

We note that the spin torque in Eq. (12) is expressed in terms
of the current density, J0. Throughout this paper, we use the
current density J0, and not the current which is a product
of J0 and the cross-section area of the nonmagnet in the yz

plane. This is, from the viewpoint of simplicity, preferable to
avoid including geometrical factor [40] related to the different
size between the ferromagnet and nonmagnet, although the
experimental results are often expressed in terms of current.

In the next section, we consider connecting the ferromag-
nets by adding another electrode on their top surfaces. In
this case, it is necessary to evaluate the spin accumulation at

the top surface of the ferromagnet to understand the role of
the connection on the magnetization dynamics. Substituting
Eq. (7) into Eq. (4), the solution of the spin accumulation in
the ferromagnet is given by

δμF = eϑ∗λFExmy cosh

(
z − dF

λF

)
m, (13)

where ϑ∗ is defined as

ϑ∗ = ϑ
σNg∗ tanh[dN/(2λN)]

(1 − β2)σFgN sinh(dF/λF)
. (14)

As schematically shown in Fig. 1(a) and described by
Eq. (13), the spin accumulation in the ferromagnet is maxi-
mized at the F/N interface, and decreases exponentially from
the interface. We note that the spin accumulation at the outer
boundary, z = dF, is finite. It should also be emphasized that
the magnitude and polarized-direction of the spin accumula-
tion depend on the magnetization direction through the term
mym in Eq. (13).

B. Spin current in nonmagnetic connector

Now let us consider two STOs and assume placing another
nonmagnet N′ onto the top surface of the ferromagnets, as
shown in Fig. 1(b). In the following, we add the suffix � =
1, 2 to the quantities related to the F� layer to distinguish
the ferromagnets. We assume for simplicity that the cross
section area of the ferromagnet in the xy plane and that of
the nonmagnetic connector in the xz plane are the same.

When two STOs are connected by the nonmagnet N′,
spin currents are driven in the nonmagnet N′ according to
the drop of the spin accumulation at the F�/N′ interface and
the gradient of the spin accumulation inside the connector.
The spin current at the interface is described by

JF�→N′
s = 1

2πS ′

[(
1 − p′ 2

g

)
g′

2
m� · (

δμF�
− δμN′

)
m�

− g′
rm� × (δμN′ × m�)

]
, (15)

where δμN′ is the spin accumulation in the connector N′. We
note that Eq. (15) is basically identical to Eq. (6) except for
the fact that Eq. (15) is defined at the F�/N′ interface whereas
Eq. (6) is defined at the F�/N interface. The sign difference
on the right-hand sides of Eqs. (6) and (15) is due to the
fact that the spin current defined by Eq. (6) flows from the
nonmagnet N to the ferromagnet F�, whereas that defined by
Eq. (15) flows from the ferromagnet F� to the nonmagnetic
connector N′. In Eq. (15), we add the prime symbols to the
quantities related to the F�/N′ interface to distinguish them
from those defined at the F�/N interface in Eq. (6). We assume
that the quantities related to the interface resistance at F1/N′
are identical to those at F2/N′ interface.

Using Eq. (13), Eq. (15) is rewritten as

JF�→N′
s = −1

2πS ′

[(
1−p′ 2

g

)
g′

2
(m� ·δμN′)m�+g′

rm�×(δμN′ ×m�)

]

+
(
1 − p′ 2

g

)
g′

4πS ′ eϑ∗λFExm�ym�. (16)
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We note that the emission of the spin current given by Eq. (16)
results in an additional spin torque acting on the magnetization
m�. The last term on the right-hand side of Eq. (16),

JSHE(�)
s =

(
1 − p′ 2

g

)
g′

4πS ′ eϑ∗λFExm�ym�, (17)

is a source term of this additional spin torque. There are
several approaches to derive the spin torque formula from
Eq. (16).

One is to solve the diffusion equation of δμN′ . The spin ac-
cumulation in the nonmagnetic connector obeys the diffusion
equation with the spin diffusion length λN′ and is given by

δμN′ = 2e2λN′

h̄σN′ sinh(L/λN′ )

[
JF1→N′

s cosh

(
y − L

λN′

)

+ JF2→N′
s cosh

(
y

λN′

)]
, (18)

where σN′ is the conductivity of the nonmagnetic connector.
We assume that F1 and F2 layers locate at y = 0 and y = L,
respectively. Substituting Eq. (18) into Eq. (16), the spin
current at the F�/N′ interface, JF�→N′

s , will be expressed as
a function of the source term. This approach has been used
in, for example, Refs. [31,37] for a situation, where a ferro-
magnet is an insulator, and therefore, g′ → 0. The coupling
spin torque derived by this approach will explicitly depend
on the length of the nonmagnetic connector L, similar to
Eq. (37).

Another approach is to assume a ballistic transport in
the nonmagnetic connector N′. In this case, the spin current
is conserved in the nonmagnetic connector, i.e., JF1→N′

s +
JF2→N′

s = 0. Then again, the spin current at the F�/N′ interface
will be expressed as a function of the source term. The spin
torque formula derived by this approach, however, does not
include the length of the nonmagnetic connector due to the
assumption of the conservation law of the spin current. The
derivations of the spin torque formulas based on this approach
were developed in, for example, Refs. [26,41], however, in
different systems compared with ours.

There are even many other methods deriving the spin
torque formula in the presence of the interface scattering
[1,42–45]. A spin torque formula including interface effect is
often complex, as can be seen in the references mentioned
above. In this work, we use the first approach mentioned
above to calculate the coupling spin torque because it provides
more accurate evaluation of the coupling spin torque. Before
further discussing the spin torque formula, however, let us
consider an approach to include the spin pumping in the
present formalism.

C. Spin pumping

The discussion in Sec. II B is valid when ṁ� = 0. On
the other hand, when the magnetization dynamics is excited
by the spin torque given by Eq. (12), the spin pumping
becomes another and unavoidable source of the spin current
flowing in the nonmagnetic connector. In this section, includ-
ing the effect of the spin pumping in the above formulas is
discussed.

The spin pumping is a phenomenon where a pure spin
current is emitted from a ferromagnet to an adjacent metal
as a result of the magnetization dynamics. The pumped spin-
current density at the F�/N′ is given by [46]

Jpump(�)
s = h̄

4πS ′ g
′
rm� × dm�

dt
. (19)

In the presence of the spin pumping, the total spin current at
the F�/N′ interface becomes JF�/N′

s = Jpump(�)
s + JF�→N′

s , i.e.,

JF�/N′
s = −1

2πS ′

[(
1−p′ 2

g

)
g′

2
(m� ·δμN′)m�+g′

rm�×(δμN′ ×m�)

]

+
(
1 − p′ 2

g

)
g′

4πS ′ eϑ∗λFExm�ym�

+ h̄

4πS ′ g
′
rm� × dm�

dt
. (20)

Accordingly, Eq. (18) is modified as

δμN′ = 2e2λN′

h̄σN′ sinh(L/λN′ )

[
JF1/N′

s cosh

(
y − L

λN′

)

+ JF2/N′
s cosh

(
y

λN′

)]
, (21)

i.e., JF�→N′
s in Eq. (18) is replaced by the total spin-current

density JF�/N′
s including the spin pumping effect. Substituting

Eq. (21) into Eq. (20), the spin current at the F�/N′ interface,
as well as the spin torque excited at the interface, can be
calculated (see Sec. II D).

Before ending this section, we note that the spin pumping
from the ferromagnet emits spin current not only to the non-
magnetic connector N′ but also to the bottom nonmagnet N.
The spin torque due to the spin pumping into the nonmagnetic
connector also excites a spin torque given by [47]

TSP
� = α′′m� × dm�

dt
, (22)

where α′′ is

α′′ = γ h̄

4πMSdF
gr

[
1 + gr

gN tanh(dN/λN)

]−1

. (23)

D. Definition of coupling spin torque

Substituting Eq. (21) into Eq. (20), we find that the spin
current at the F�/N′ interface is obtained by solving the
following equations:

(
D(1) N(1)

N(2) D(2)

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex · JF1/N′
s

ey · JF1/N′
s

ez · JF1/N′
s

ex · JF2/N′
s

ey · JF2/N′
s

ez · JF2/N′
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex · J(1)
s

ey · J(1)
s

ez · J(1)
s

ex · J(2)
s

ey · J(2)
s

ez · J(2)
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)
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where J(�)
s = JSHE(�)

s + Jpump(�)
s on the right-hand side is the

source term in Eq. (20), i.e.,

J(�)
s = (1 − p′ 2

g )g′

4πS ′ eϑ∗λFExm�ym� + h̄

4πS ′ g
′
rm� × dm�

dt
.

(25)

The (a, b) (a, b = x, y, z or 1,2,3) components of 3 × 3 ma-
trices, D(�) and N(�), in Eq. (24) are given by

D
(�)
ab = δab +

(
1 − p′2

g

)
g′

2gN′ tanh(L/λN′ )
m�am�b

+ g′
r

gN′ tanh(L/λN′ )
(δab − m�am�b ), (26)

N
(�)
ab = (1 − p′2

g )g′

2gN′ sinh(L/λN′ )
m�am�b

+ g′
r

gN′ sinh(L/λN′ )
(δab − m�am�b ), (27)

where gN′/S = hσN′/(2e2λN′ ). By solving Eq. (24), the total
spin-current density JF�/N′

s at the F�/N′ is obtained. The spin
torque excited at the F�/N′ interface is then calculated as

T(2)
� = γ

MdF
m� × (

JF�/N′
s × m�

)
. (28)

As implied from Eq. (24), the spin torque given by Eq. (28)
generally depends on the magnetizations of two STOs, m1

and m2. In other words, the spin torque given by Eq. (28)
acting on m� depends on the magnetization in the other STO,
m�′ (�, �′ = 1, 2 and �′ �= �). As a result, a coupled motion
of the magnetizations is excited in the STOs. In Sec. III,
we investigate such coupled dynamics by solving the LLG
equation with Eq. (28).

At the end of this section, let us give some comments on
Eq. (28). According to the existence of two source terms of the
spin current in the nonmagnetic connector shown in Eq. (25),
the torque given by Eq. (28) can be decomposed into two
contributions as

T(2)
� = T(2)SHE

� (m1, m2) + T(2)SP
� (m1, m2, ṁ1, ṁ2). (29)

Here, the first term, T(2)SHE
� , originates from the source term

given by Eq. (17), and depends on the magnetizations di-
rections m1 and m2. On the other hand, the second term,
T(2)SP

� , originates from the spin pumping given by Eq. (19).
We emphasize here that the torque T(2)SHE

� is newly found in
this work. On the other hand, the role of the spin pumping
on coupled STOs was studied in Ref. [48] for a current-
perpendicular-to-plane (CPP) structure. We should, however,
note that the formalism developed in Ref. [48] is slightly dif-
ferent from the present work because Ref. [48] uses the second
approach mentioned in Sec. II B to calculate the spin torque,
i.e., the conservation of the spin current in the nonmagnetic
connector is assumed.

It may be useful for readers to show the explicit form of
the coupling spin torque T(2)SHE

� to apprehend its physical
insight. The exact solution of T(2)SHE

� is, however, complex;
see Appendix A. Therefore, in the numerical simulation of
the LLG equation discussed in Sec. III, the coupling spin

torque T(2)SHE
� is calculated numerically. In Sec. IV, on the

other hand, we derive an approximated analytical expression
of T(2)SHE

� to clarify the role of the torque on the coupled
dynamics of the magnetization.

E. Relation to previous works

Before proceeding to further calculations, let us discuss the
relation between the present and previous works. In 2017,
Kudo and Morie proposed an array of STOs for practical
application of pattern recognition based on spintronics tech-
nology [8]. Each STO has a bottom electrode consisting
of a nonmagnetic heavy metal driving the spin Hall effect.
The system also has a common top electrode. Therefore the
structure is similar to the present model. They considered,
however, supplying electric power from the top electrode,
which injects electric currents into the STOs. There are two
kinds of spin torques excited in their geometry; one arises
from the spin Hall effect in the bottom nonmagnet, and the
other originates from the electric current directly injected
from the top electrode. The crucial point is that the total re-
sistance of the system between the top and bottom electrodes
depend on the magnetization directions of STOs due to the
tunnel magnetoresistance effect. Therefore the magnitude of
the electric current injected from the top electrode to one STO
depends on the magnetization directions of the other STOs. As
a result, the magnetization dynamics in STOs are coupled [8].
On the other hand, the present model demonstrates that a cou-
pling is spontaneously induced without applying the electric
current from the top electrode because spin currents naturally
flow according to the gradient of the spin accumulations in
the top electrode and due to the spin pumping. In this respect,
this work can be partially regarded as a theoretical study
elaborating the hidden mechanism of coupling in previously
proposed STO arrays.

The mutual and self-synchronization of the STOs with the
spin Hall effect have been demonstrated both experimentally
and theoretically. The coupling is driven by, for example,
the spin wave [14] or the feedback of the oscillating electric
current [20]. A mutual synchronization by the electric current
generated by the spin Hall magnetoresistance [37,49,50] was
also proposed in our previous work [51]. The coupling mecha-
nism in Ref. [51] is a long-range interaction due to the conser-
vation law of the electric current. The strength of the coupling
is, however, weak because it is proportional to the third
order of the spin Hall angle. On the other hand, the coupling
mechanism proposed here comes purely from the spin degree
of freedom, where the spin currents driven by the gradient
of the spin accumulation and spin pumping lead to the
synchronized dynamics of the magnetizations. The coupling
strength of T(2)SHE

� is proportional to the first order of the spin
Hall angle, and therefore, is relatively strong, although the
interaction length is restricted by the spin diffusion length.

The present system is suitable to study the role of the
coupling by spin current on the magnetization dynamics.
Since the ferromagnets are connected by a nonmagnet, we
can exclude a possibility of the coupling through spin wave
[10,11]. Also, since the dipole interaction decays according to
the inverse cube detection law, we expect that the dipole cou-
pling can be excluded by setting a sufficiently long distance,
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but shorter than the spin diffusion length, between STOs.
One might also consider a structure where two STOs are
placed onto a single nonmagnet, instead of the model shown in
Fig. 1(b). The same coupling mechanism appears even in such
geometry. At the same time, however, a different mechanism
of the coupling due to the spin Hall magnetoresistance [51]
will also appear when the STOs have a common bottom
nonmagnet. The purpose of this work is to clarify the role
of the coupling spin torque generated by spin current on the
magnetization dynamics, and the structure having two STOs
and one common bottom nonmagnet is therefore excluded.
We also note that, although we consider the spin Hall geom-
etry in this work as an example, a coupled dynamics of the
magnetizations driven by a spin current is expected even in a
CPP structure.

It might be currently difficult to connect STOs within a
short distance. An integration of STOs will be, however, an
inevitable topic in the field of spintronics. In the integrated
system, the STOs will be assembled in a distance shorter than
the spin diffusion length. The coupling mechanism proposed
in this work hence will be of great interest in such situation.

III. COUPLED MAGNETIZATION DYNAMICS

In this section, we study the magnetization dynamics in the
presence of the coupling torque by solving the LLG equation
numerically.

A. Equation of motion

The spin torques derived in Sec. II lead to the excitation
of the magnetization dynamics in the ferromagnets. It was
experimentally shown that the spin torque T(1)

� , given by
Eq. (12), originated from the spin current injected from the
bottom nonmagnet by the spin Hall effect can excite an
self-oscillation of an in-plane magnetized ferromagnet [52].
Therefore we assume that the magnetic field H� consists of
an in-plane anisotropy field HK and the demagnetization field
4πM in the perpendicular direction as

H� = HKm�yey − 4πMm�zez. (30)

In addition, in the present system, the spin current flowing in
the top electrode also provides the spin torque T(2)

� given by
Eq. (28). Therefore the LLG equation describing the magne-
tization dynamics in the F� layer is given by

dm�

dt
= −γ m� × H� + (α + α′′)m� × dm�

dt
+ T(1)

� + T(2)
� ,

(31)

where γ and α are the gyromagnetic ratio and the intrinsic
Gilbert damping constant, respectively, whereas α′′ is given
by Eq. (23). The intrinsic damping constant is the damping
constant in the absence of the spin pumping, and is on the
order of 10−3−10−2 [53]. As mentioned with regard to the
explanation of Eq. (29), the torque T(2)

� is decomposed into
two contributions. As a result, the LLG equation given by
Eq. (41) can be rewritten in the form of

L
(

ṁ1

ṁ2

)
=

(
−γ m1 × H1 + T(1)

1 + T(2)SHE
1

−γ m2 × H2 + T(1)
2 + T(2)SHE

2

)
, (32)

time (ns)
999.0 999.5 1000

0

1.0

-1.0

m
x

(a)

time (ns)
0001009

:F1
:F2

0

1.0

-1.0

m
x

(b)

950

:F1
:F2

FIG. 2. Time evolutions of m1x (red) and m2x (blue) for (a) J0 =
44 and (b) 48 MA/cm2. The intrinsic damping constant is α = 0.005.
Note that the time ranges of (a) and (b) are different.

where the effect of the torque T(2)SP
� due to the spin pumping

into the connector is included in a 6 × 6 matrix L. The explicit
forms of T(2)SHE

� and L and their values are summarized in
Appendix A. In the following sections, we will show the
solutions of m� by numerically calculating Eq. (32). The
material parameters used in the following discussion are
derived from recent experiments on the spin Hall magne-
toresistance in W/CoFeB metallic bilayer [54], where ρF =
1/σF = 1.6 k� nm, β = 0.72, λF = 1.0 nm, ρN = 1/σN =
1.25 k� nm, λN = 1.2 nm, and ϑ = 0.27, whereas dF = 2 nm
and dN = 3 nm. We assume that r = 0.25 k� nm2, pg = 0.50,
and gr/S = 25 nm−2. Also, we use M = 1500 emu/c.c. [54],
HK = 200 Oe, and γ = 1.764 × 107 rad/(Oe s). The value
of the intrinsic damping constant α is mentioned below. The
detail of the numerical methods to calculate the LLG equation
is summarized in Appendix B.

The magnetization initially stays near the stable state of
m� = +ey . We give different initial conditions to the magne-
tizations m1 and m2. Therefore, in the absence of the coupling
due to the spin currents in the connector, two magnetizations
oscillate independently with different phases. In the presence
of the coupling spin torque, on the other hand, the dynamics
of the magnetizations interact each other. As a result, the
phase difference between the magnetizations will be stabilized
and attains a certain value. The purpose of this section is to
investigate such phase synchronization.

B. Coupled dynamics in STOs

In this section, we study the coupled dynamics of the
magnetizations by solving Eq. (32) numerically.

First, let us assume that the damping constant α is relatively
small, α = 0.005. In this case, we find that the magnetizations
stay in the stable state m� = +ey near the initial state for
J0 � 44 MA/cm2 and switch their directions to the other
stable state m� = −ey for J0 � 60 MA/cm2. Therefore the
oscillations of the magnetizations are excited when 44 � J0 �
60 MA/cm2. Figure 2(a) shows the oscillations of m1x (red
solid line) and m2x (blue dashed line) in a steady state near
the critical point J0 = 44 MA/cm2. As shown, an in-phase
synchronization of the magnetizations is excited. However,
when the current magnitude is slightly increased to J0 	
48 MA/cm2, the in-phase synchronization disappears. In-
stead, an oscillation accompanying a long-period beat ap-
pears, as can be seen in Fig. 2(b), where we note that the time
range of Fig. 2(b) in the horizontal axis is different from that in
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FIG. 3. Time evolutions of m1x (red) and m2x (blue) for (a) J0 =
72 and (b) 82 MA/cm2. The intrinsic damping constant is α = 0.010.
Note that the time ranges of (a) and (b) are different.

Fig. 2(a). In this case, a steady sate depends on the initial state
of the magnetizations, and accordingly, the phase difference
in this region is not well-defined.

Next, let us consider a relatively large damping case, α =
0.010. In this case, we observe the oscillations of the magne-
tizations in the current range of 72 � J0 � 82 MA/cm2. Fig-
ure 3(a) shows the oscillations of m1x and m2x near the critical
point J0 = 72 MA/cm2. Similar to Fig. 2(b), the oscillation
accompanying beat having a long period appears. When the
current magnitude is increased to J0 	 82 MA/cm2, however,
the beat virtually disappears, and antiphase synchronization
between STOs is excited, as can be seen in Fig. 3(b).

The in-phase synchronization is useful to enhance the
emission power generated from an array of STOs, and thus,
is useful for practical applications. On the other hand, the
antiphase synchronization, or more generally an out-of-phase
synchronization, has been found in several physical system
such as Huygens pendulum clock [32,55], and therefore, is of
great interest from the viewpoint of fundamental physics. One
may consider that the antiphase synchronization is not prefer-
able for practical applications. This is because the oscillating
signals become totally zero or at least attenuate, and therefore,
is not beneficial in terms of the enhancement of emission
power from the devices. The out-of-phase synchronization,
however, becomes of interest not only from the perspec-
tive of nonlinear science but also from practical application
viewpoint such as a phased array [56] and brain-inspired
computing [8,57].

C. Summary of this section and question to be addressed

The numerical simulations shown in Figs. 2 and 3 indicate
that the steady state of the coupled magnetization dynamics
depends on the damping constant and current magnitude.
For small damping and small current region, the in-phase
synchronization is stabilized. On the other hand, for a large
damping case, the antiphase synchronization appears. In the
intermediate region, the oscillation with a long-period beat is
observed.

It has been revealed theoretically in a CPP structure that the
coupling between in-plane magnetized STO via spin pumping
results in an in-phase synchronization [48]. Therefore one
might consider that the in-phase synchronization shown in
Fig. 2(a) is caused by the spin pumping. However, the origin
of the antiphase synchronization in Fig. 3(b), as well as that
of the beat shown in Figs. 2(b) and 3(a), is unclear. We

emphasize that there are two origins of the spin currents
leading to the coupled motion of the magnetizations given by
Eqs. (17) and (19). Therefore, to fully understand the results
shown in Figs. 2 and 3, it is necessary to reveal the role of the
coupling spin torque T(2)SHE

� originated from the source term
of Eq. (17). This analysis is developed in the next section.

IV. ROLE OF COUPLING SPIN TORQUE

As shown in Sec. III, the STOs show several kinds of the
coupled dynamics, depending on the damping constant and
current density. The purpose of this section is to clarify the
physical insight of these results. Our recent work [48] already
revealed that the coupling due to the spin pumping results
in an in-phase synchronization between in-plane magnetized
STOs, where the effect of the spin pumping in this study
is described by the torque T(2)SP

� . On the other hand, the
coupling spin torque T(2)SHE

� is newly proposed in this study,
and therefore, its role on the magnetization dynamics is not
revealed yet. Therefore, in this section, we will concentrate
on the magnetization dynamics in the presence of T(2)SHE

� but
neglecting the spin pumping effect. This approach clarifies the
fact that the coupling spin torque T(2)SHE

� prefers the antiphase
synchronization between STOs, and provides a physical pic-
ture which is useful to understand the results shown in Figs. 2
and 3.

A. Approximated formula of coupling torque

We remind the readers that the explicit form of the cou-
pling spin torque T(2)SHE

� is given as Eq. (A2). However, the
formula is complex and is not useful in the following analysis.
Therefore let us first derive another expression of T(2)SHE

� .
Here, we use an approximation that the F�/N′ interface is
transparent. In this case, the spin accumulation is continuous
at the interface, contrary to the assumption used in Eq. (15),
where the spin accumulation at the interface is discontinuous.
When the interface is transparent, the solution of the spin
accumulation in the N′ layer is given by

δμN′ (y) = 1

sinh(L/λN′ )

[
δμF2

(z = dF) sinh

(
y

λN′

)

− δμF1
(z = dF) sinh

(
y − L

λN′

)]
. (33)

The spin current inside the N′ layer is given by

Js(N′ ) = − h̄σN′

2e2

∂δμN′

∂y
. (34)

When the spin diffusion length of the N′ layer is much longer
than its length, we notice that

∂δμN′

∂y
	 δμF2

(z = dF) − δμF1
(z = dF)

L
. (35)

Therefore, in the limit of L/λN′ 
 1, the spin-current density
flowing in the N′ layer, from the F� to F�′ layer [(�, �′) =
(1, 2) or (2,1)], can be approximated as

JF�→F�′
s 	 h̄σN′

2e2L

[
δμF�

(z = dF) − δμF�′ (z = dF)
]
. (36)
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The emission of the spin current at the top interface leads to
the spin torque given by

T̃(2)SHE
� = γ

MdF
m� × (

JF�→F�′
s × m�

)

= − γ h̄ϑ̃J0

2eMdF
m�′ym� × (m�′ × m�), (37)

where ϑ̃ is defined as

ϑ̃ = ϑ∗ σN′λF

σNL

= ϑ
σN′g∗λF tanh[dN/(2λN)]

(1 − β2)σFgNL sinh(dF/λF)
. (38)

The value of the coupling constant ϑ̃ is ϑ̃/ϑ 	 0.1 for the
present parameter. Equation (37) is the approximated formula
of T(2)SHE

� given by Eq. (A2). We emphasize that using
Eq. (37), instead of Eq. (A2), does not change the qualitative
picture of magnetization dynamics; see also Appendix A. It
should also be noted that Eq. (37) is useful to develop an
analytical theory of the phase synchronization because of its
simplified form; see Sec. IV D below.

B. Scaling currents

In the absence of the coupling spin torque, the spin Hall
effect excites the self-oscillation of the magnetization around
the in-plane easy (y) axis when the magnitude of the current
density is in the range of Jc < |J0| < J ∗, where

Jc = 2αeMdF

h̄ϑR
(HK + 2πM ), (39)

J ∗ = 4αeMdF

πh̄ϑR

√
4πM (HK + 4πM ). (40)

The current Jc, called critical current density [58], is the
minimum current necessary to destabilize the magnetization
staying near the easy axis and excites self-oscillation. On the
other hand, the current J ∗ is the switching current density to
reverse the magnetization direction between two stable states,
m� = ±ey . The magnetization oscillates around the positive
(negative) direction of the y axis when ϑRJ0 is positive
(negative). We note that the currents Jc and J ∗ determining
the oscillation region of the magnetization are slightly affected
by the coupling spin torque, as will be mentioned in the next
section.

C. Numerical simulation

In this section, we solve the LLG equation in the presence
of Eq. (37). Since the purpose of this section is to clarify the
role of Eq. (37), we have neglected the spin pumping effect in
this section. Therefore the LLG equation is given by

dm�

dt
= − γ m� × H� + αm� × dm�

dt
+ T(1)

� + T̃(2)SHE
� .

(41)

For the damping constant we use α = 0.005. The values of Jc

and J ∗ are 26 and 33 MA/cm2, respectively.
Figures 4(a), 4(b), and 4(c), respectively, show the ex-

amples of the oscillations of the x, y, and z components
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FIG. 4. The synchronized motions of the x, y, and z components
of m1 (red solid line) and m2 (blue dotted line) at J0 = 28 MA/cm2

are shown in (a), (b), and (c), respectively. The coupled and free-
running (uncoupled) oscillations of m1x at J0 = 28 MA/cm2 are
shown in (d) by the red solid and black dashed lines, respectively.

of m1 (red solid line) and m2 (blue dotted line) for J0 =
28 MA/cm2. The results indicate that an antiphase synchro-
nization of two magnetizations is excited by the coupling
torque given by Eq. (37). Notice that the oscillation trajectory
is suppressed along the z direction due to the large demagneti-
zation field. The oscillation trajectory is well described by the
elliptic functions, as discussed in Appendix C. We will revisit
this point in the next section to investigate the stable phase-
difference by an analytical calculation of the LLG equation.
Although the results shown in Figs. 4(a)–4(c) are examples
for one set of parameters and initial conditions, we confirmed
that the antiphase synchronization of two magnetizations is
achieved for a wide range of the coupling constant ϑ̃ , current
density J0, and initial conditions.

Figure 4(d) compares the oscillations of m1x for J0 =
28 MA/cm2 for the coupled and uncoupled (free-running)
STOs by the red solid and black dashed lines, respectively. We
notice that the oscillation frequency of the coupled oscillator,
2.4 GHz, is lower than the free-running frequency, 4.7 GHz.
Figure 5 summarizes the dependences of the oscillation fre-
quencies of the coupled and free-running STOs on a wide
range of J0. The frequency dependence on current shifts to
the low-current region due to the coupling. This result can be
explained as follows. The current range for the self-oscillation
is determined by two characteristic current densities Jc and J ∗
given by Eqs. (39) and (40), as mentioned earlier. We find that
Jc and J ∗ for coupled two identical STOs should instead be
substituted to (see also Appendix D)

Jc → Jc

1 + 2(ϑ̃/ϑR)
, (42)

J ∗ → J ∗

1 + (ϑ̃/ϑR)[4πM/(HK + 4πM )]
. (43)
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Since the factors 2(ϑ̃/ϑR) and (ϑ̃/ϑR)[4πM/(HK + 4πM )]
are positive, the values of Jc and J ∗ for two coupled STOs are
smaller than those without coupling. The values of Jc and J ∗
for two coupled STOs are 20 and 28 MA/cm2, respectively.
Therefore the curve that represents the relation between the
current density and frequency shifts to a low-current region
due to the coupling.

D. Analytical theory

The numerical simulation indicates that the coupling spin
torque given by Eq. (37) prefers antiphase coupling of
the magnetizations. This result implies that the coupling
torque in the present model acts as a repulsive force of the
phase in the oscillators. We notice that this conclusion can
also be explained analytically.

A standard approach in the field of nonlinear science
to clarify the stable phase difference between the coupled
oscillators is to reduce the equation of motion to the Kuramoto
model [32,59–61]. The Kuramoto model argues that the oscil-
lation properties of any kind of oscillator are characterized by
the phase ψ defined from the oscillation period. This is based
on the assumption that any kind of the oscillation trajectory
can be transformed into the trigonometric functions after a
proper transformation of the coordinate called phase reduction
[61]. The phase in the proper coordinate always satisfy the re-
lation ψ = 2πf t , where f is a constant oscillation frequency.
Solving the equation of motion of the phase difference near
the fixed points, the stability of the phase difference can be
investigated. Therefore we are naturally motivated to derive
the Kuramoto model in the present system.

On the other hand, in the experiments using STOs, the
word “phase” has often been used to describe the oscillation
of the electric power generated from the STO [19], which
directly reflects the magnetization oscillation in the real space.
When the oscillation of the magnetization is described by the
trigonometric functions with the frequency f , the phase φ

measured in the experiments is simply given by φ = 2πf t .
In general, however, the magnetization oscillation cannot be
described exactly by the trigonometric function. For example,
the trajectory of the self-oscillation for the in-plane magne-
tized STO is described by the elliptic function, as discussed in

the last section and Appendix C. The oscillation trajectories
in the other types of an STO are, except special cases [62],
also not described by the trigonometric function due to, for
example, symmetry breaking by an external magnetic field
[63] or angular dependence of spin torque [64]. Breaking a
symmetry is often necessary in STO devices for an electri-
cal detection of the oscillating signal because, in a highly
symmetrical system, no electrical signal is obtained through
giant magnetoresistance or tunnel magnetoresistance effect,
even if a self-oscillation of the magnetization is excited. In
these cases, the phase defined from the experiments is, strictly
speaking, different from the phase in the Kuramoto model. It
is difficult and/or complicated to apply the phase reduction
or similar approximations to the LLG equation analytically
[65–68]. Moreover, it has been shown that an extension of the
Kuramoto model to the nonlinear region is necessary to de-
scribe the self-oscillation in STOs [69], where the nonlinearity
means that the oscillation frequency, as well as the phase,
strongly couples to the oscillation amplitude.

We can, nevertheless, show that the coupling spin torque in
the present model acts as repulsive force between the STOs
by deriving the Kuramoto model from the LLG equation.
This approach will also be useful to discuss the frequency
locking in the next section. When the amplitude of the self-
oscillation is small, we can apply the linear approximation
to the LLG equation, where the oscillation trajectory is well
approximated by the trigonometric function. We note that a
fixed point for the in-plane magnetized STO is |m�| = ey .
In this case, it is convenient to introduce the zenith and
azimuth angles (θ�, ϕ�) in a spherical coordinate as m� =
(sin θ� sin ϕ�, cos θ�, sin ϑ� cos ϕ�), although this definition is
different from the conventional definitions of the zenith and
azimuth angles. The reason why we use this modified relation
between (θ�, ϕ�) and m� is as follows. The assumption of
the small amplitude oscillation means that |m�| 	 ey , and
therefore, θ� → 0, π . In this limit, the oscillation of the mag-
netization around the y axis is approximately described by the
trigonometric function, and ϕ� can be directly regarded as the
phase of the Kuramoto model; see Appendix C. As a result,
we can determine the stable phase difference between STOs
by using the Kuramoto model [60]. In the limit of θ� → 0, π ,
the LLG equation for ϕ� becomes

dϕ�

dt
	 ± γ (HK + 4πM cos2 ϕ�) + γHs2m�′y sin(ϕ� − ϕ�′ ),

(44)

where we introduce the notation

Hs2 = h̄ϑ̃J0

2eMdF
. (45)

The double sign ± means the upper for θ� → 0 and the lower
for θ� → π . We neglect the spin torque T(1)

� and the damping
torque because these torques cancel each other to sustain
the self-oscillation. We note that m�′y in Eq. (44) should be
replaced by +1(−1) when we focus on the small amplitude
self-oscillation around the positive (negative) y axis. As
mentioned earlier in this study, the positive (negative)
spin current ϑRJ0 excites the self-oscillation around the
positive (negative) direction of the y axis. In addition, the
parameter ϑ̃ has the same sign with ϑR. Therefore we
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can replace Hs2m�′y in Eq. (44) with |Hs2| in the present
approximation.

Let us define the phase difference between two STOs as
�ϕ = ϕ1 − ϕ2. According to Eq. (44), the phase difference
near the in-phase (�ϕ = 0) or antiphase (�ϕ = π ) state
obeys

d�ϕ

dt
= 2γ |Hs2| sin �ϕ. (46)

Let us imagine that the phase difference slightly shifts from a
fixed point corresponding to the in-phase state as �ϕ = 0 + ε

(|ε| 
 1). The shift ε obeys

dε

dt
= 2γ |Hs2|ε. (47)

The solution of this equation is given by ε = C1e
2γ |Hs2|t ,

where C1 is the integral constant. This solution means that the
shift from the in-phase state increases with time, indicating
that the in-phase state is an unstable fixed point. On the
other hand, a shift ε of the phase difference from the other
fixed point corresponding to the antiphase state, defined as
�ϕ = π + ε, obeys

dε

dt
= −2γ |Hs2|ε. (48)

The solution ε = C2e
−2γ |Hs2|t decreases with time, indicating

that the antiphase state is the stable fixed point. Therefore
the coupling spin torque given by Eq. (37) leads to the an-
tiphase synchronization of the magnetizations. As mentioned
above, the calculation in this section is valid only for a small
amplitude oscillation. The result of the numerical simulation,
however, indicates that the analysis explained so far can also
be applied to large amplitude oscillation.

E. Summary of this section and answer
to the question in the last section

The results shown in Secs. IV C and IV D indicate that the
coupling spin torque given by Eq. (37) results in the antiphase
synchronization between STOs. This conclusion explains the
results shown in Figs. 2 and 3 in Sec. III B as follows.

At first, we should remind the readers that the LLG equa-
tion used in Sec. III B includes two coupling mechanisms be-
tween STOs, where one originates from the spin accumulation
whereas the other comes from the spin pumping. As implied
in Eqs. (17) and (19), the strength of the coupling spin torque
T(2)SHE

� due to the spin accumulation is proportional to the
current density J0, whereas that of the spin pumping T(2)SP

� is
proportional to the oscillation frequency of the magnetization,
f ∼ |ṁ|/(2π ). In addition, the oscillation frequency of the
in-plane magnetized ferromagnet decreases with increasing
the current density, as shown in Fig. 5. These facts indicate
that the coupling due to the spin pumping is dominated in a
relatively low-current region, whereas that originated from the
spin accumulation becomes large in a relatively high current
region. As clarified in Ref. [48], the spin pumping prefers
the in-phase synchronization between the in-plane magnetized
STOs. Therefore the in-phase synchronization is found in
Fig. 2(a). When the current magnitude is increased, however,
the spin torque due to the spin accumulation becomes a

dominant contribution to the coupled motion of the mag-
netizations. Since this coupling torque prefers the antiphase
synchronization, as clarified in Secs. IV C and IV D, a beat
of the oscillations appears in the intermediate current region
shown in Figs. 2(b) and 3(a) as a result of the competition be-
tween two coupling mechanisms. When the current becomes
sufficiently large, the antiphase synchronization is stabilized
by the coupling torque originated from the spin accumulation,
as can be seen in Fig. 3(c).

F. Frequency locking

In the above sections, we assume that two STOs have
identical parameters. An interesting characteristic of synchro-
nization is, on the other hand, the frequency locking. A typical
value of the locking range of the frequency between STOs in
the previous works is on the order of 10–100 MHz [10,11,15].
At the end of this section, let us briefly study the possibility
of a frequency locking for two STOs having different free-
running frequencies by the coupling torque given by Eq. (37)
because it provides another viewpoint to catch the strength of
the coupling.

The range of the frequency locking is determined by the
strength of the coupling spin torque. Although it is difficult
to derive an exact analytical expression of the locking range,
Eq. (45) implies that the locking range is roughly given by

δflock ∼ 2γ |Hs2|
2π

= 1.67 × J0 Hz/(A/cm2). (49)

The value of Eq. (49) for the present system is about 40 MHz.
In addition, the nonlinearity is expected to increase the lock-
ing range [69].

In the following, the possibility of the frequency locking
is confirmed using numerical simulations. The value of HK in
the F2 layer is changed to 192 Oe to make the difference of the
oscillation frequencies of STOs to about 100 MHz, which is
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FIG. 6. (a) The oscillations of m�x (� = 1, 2) and (b) their
Fourier transformations, |m�x (f )|, in the absence of the coupling.
The red solid and blue dotted lines correspond to the F1 and F2

layers, respectively. (c) The oscillations of m�x and (d) their Fourier
transformations for the coupled STOs.
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FIG. 7. Dependencies of the oscillation frequencies (red square)
and phase difference (blue circle) of the coupled STOs on the current
density J0.

the maximum value of the locking range we obtained from the
numerical simulation. In Fig. 6(a), we show the free-running
oscillations of m1x and m2x by red solid and blue dotted lines,
respectively, where the coupling spin torque is set to zero. As
mentioned, the frequency difference between m1x and m2x is
about 100 MHz, as can be seen from their Fourier transfor-
mations in Fig. 6(b). On the other hand, in the presence of
the coupling spin torque, the frequency locking is observed,
as schematically shown in Figs. 6(c) and 6(d), where the
oscillations of m�x (� = 1, 2) and their Fourier transforma-
tions are shown. Figure 7 shows the current dependences of
the oscillation frequencies (red square) and phase difference
(blue circle) of the coupled STOs. The in-phase and antiphase
synchronizations correspond to the phase difference of 0
and 0.5, respectively (see also Appendix B). The frequency
locking occurs for the current of J0 � 26.0 MA/cm2. We note
that the locked frequency is different from the free-running
frequencies of the STOs or their average, and the phase
difference is different from the antiphase due to the frequency
difference, as expected for the nonlinear oscillator [69]. The
numerical simulation indicates that the phase difference in the
locked state is almost constant.

V. SUMMARY

In conclusion, a theoretical framework for the spin-current
driven synchronization in spin torque oscillators in the spin
Hall geometry was proposed. The spin current generated from
the spin Hall effect excites the self-oscillation of the mag-
netization and simultaneously creates the spin accumulation
in the oscillator. The magnitude and direction of the spin
accumulation in the ferromagnet depend on the magnetization
direction of the oscillator. Then, by connecting the top sur-
faces of the oscillators with a nonmagnet having a long spin
diffusion length, a spin current spontaneously flows between
the oscillators, according to the gradient of the spin accumula-
tion. The spin current excites an additional spin torque acting
on the magnetization. As a result, the self-oscillations in the
oscillators are naturally coupled. The coupling mechanism
comes purely from the spin degree of freedom, contrary to
the previous proposals based on the electric and/or magnetic
interactions. Both the numerical simulation and analytical
theory show that the coupling torque acts as a repulsive

force, and therefore, the antiphase synchronization of the self-
oscillation is preferred by this coupling mechanism. These
conclusions are obtained by deriving the theoretical formulas
of the coupling spin torque from the spin transport theory,
and by solving the equation of motion of the magnetiza-
tions with the coupling spin torque both numerically and
analytically. In the self-oscillations state, however, the spin
pumping becomes another source of the coupling because
the spin current generated by the spin pumping also flows
in the nonmagnetic connector. When the spin pumping is
taken into account, a competition between the coupling spin
torque and spin pumping appears because the spin pumping
prefers an in-phase synchronization. As a result, the in-phase
synchronization appears in a relatively low-current region,
whereas the antiphase synchronization appears in a relatively
high current region.
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APPENDIX A: EXPLICIT FORMS OF T(2)SHE
�

AND L AND VALIDITY OF T̃(2)SHE
�

In this Appendix, we show the explicit forms of T(2)SHE
�

and L in Eq. (32). The validity of the approximated formula
of T(2)SHE

� , T̃(2)SHE
� given by Eq. (37), is also discussed.

1. Definitions of T(2)SHE
� and L

To make the notation simple, we define a 6 × 6 matrix M
from Eq. (24) as

M =
(

D(1) N(1)

N(2) D(2)

)
. (A1)

The coupling spin torque, T(2)SHE
� , is defined as [see also

Eq. (37)]

T(2)SHE
� = γ

MdF
m� × [

JF�/N′
s(SHE) × m�

]
, (A2)

where the k (k = 1, 2, 3 or x, y, z) component of JF�/N′
s(SHE) is

given by

ek · JF1/N′
s(SHE) =

3∑
a=1

(
1 − p′2

g

)
g′

4πS ′ eϑ∗λFEx

(
M−1

k,am1ym1a

+ M−1
k,a+3m2ym2a

)
, (A3)

ek · JF2/N′
s(SHE) =

3∑
a=1

(
1 − p′2

g

)
g′

4πS ′ eϑ∗λFEx

(
M−1

k+3,am1ym1a

+ M−1
k+3,a+3m2ym2a

)
. (A4)
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On the other hand, the matrix L consists of two contribu-
tions as L = L0 + L′, where L0 is given by

L0 = Î + (α + α′)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 m1z −m1y 0 0 0

−m1z 0 m1x 0 0 0

m1y −m1x 0 0 0 0

0 0 0 0 m2z −m2y

0 0 0 −m2z 0 m2x

0 0 0 m2y −m2x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A5)

where Î is the 6 × 6 unit matrix. The parameter α′ is de-
fined by Eq. (A10). We emphasize that the spin pumping
from the ferromagnet emits pure spin current not only to the
nonmagnetic connector N′ but also to the bottom nonmagnet
N, although the discussion in Sec. II C mainly focuses on
the former effect only. The spin pumping to the bottom
nonmagnet results in an enhancement of the damping constant
[46]. Since the thickness of the bottom nonmagnet, dN = 3
nm, is larger than the spin diffusion length λN = 1.2 nm, we
neglect the backflow [47] from the bottom nonmagnet, for
simplicity. Then, the enhancement of the damping constant
due to the spin pumping into the bottom nonmagnet is given
by α′. This is the origin of α′ in Eq. (A5).

On the other hand, the components of a 6 × 6 matrix L′ are
given by

L′
i,j =−α′[(M−1

i,a m1b − M−1
i,b m1a

)
− m1xm1i

(
M−1

1,am1b − M−1
1,bm1a

)
− m1ym1i

(
M−1

2,am1b − M−1
2,bm1a

)
− m1zm1i

(
M−1

3,am1b − M−1
3,bm1a

)]
, (A6)

L′
i,j+3 = −α′[(M−1

i,a+3m2b − M−1
i,b+3m2a

)
−m1xm1i

(
M−1

1,a+3m2b − M−1
1,b+3m2a

)
−m1ym1i

(
M−1

2,a+3m2b − M−1
2,b+3m2a

)
− m1zm1i

(
M−1

3,a+3m2b − M−1
3,b+3m2a

)]
, (A7)

L′
i+3,j = −α′[(M−1

i+3,am1b − M−1
i+3,bm1a

)
−m2xm2i

(
M−1

4,am1b − M−1
4,bm1a

)
−m2ym2i

(
M−1

5,am1b − M−1
5,bm1a

)
− m2zm2i

(
M−1

6,am1b − M−1
6,bm1a

)]
, (A8)

L′
i+3,j+3 = −α′[(M−1

i+3,a+3m2b − M−1
i+3,b+3m2a

)
−m2xm2i

(
M−1

4,a+3m2b − M−1
4,b+3m2a

)
−m2ym2i

(
M−1

5,a+3m2b − M−1
5,b+3m2a

)
− m2zm2i

(
M−1

6,a+3m2b − M−1
6,b+3m2a

)]
, (A9)

where i, j = 1, 2, 3 or x, y, z, whereas (a, b) = (2, 3) for j =
1, (3,1) for j = 2, and (1,2) for j = 3. The parameter α′ is

time (ns)
999.0 999.5 1000

F1 F2

0

1.0

-1.0

m
x

(a)

time (ns)
999.0 999.5 1000

F1 F2

0

1.0

-1.0

m
x

(b)

FIG. 8. (a) Time evolutions of m1x and m2x in the presence
of the coupling torque given by Eq. (A2). The current density is
J0 = 28 MA/cm2. The spin pumping is neglected. (b) The time
evolutions of m1x and m2x in the presence of the spin pumping. The
current density is J0 = 45 MA/cm2. The coupling spin torque given
by Eq. (A2) is neglected.

given by

α′ = γ h̄g′
r

4πMS ′dF
. (A10)

For F�/N′ interface, we use the values of the parameters
used in Ref. [48], i.e., pg = 0.50, r ′ = 0.25 k� nm2, and
g′

r/S
′ = 15 nm−2. As a result, α′ becomes 0.0074. On the

other hand, α′′ in Eq. (23) is 0.0031. For the bulk parameter of
the nonmagnetic connector N′, we use 1/σN′ = 21 � nm and
λN′ = 500 nm, which is a typical value of the spin diffusion
length in Cu [33]. The off-diagonal components of L′, L′

i,j+3

and L′
i+3,j , lead to the coupled motion of the magnetizations.

We note that Eq. (A2) is a revised formula of Eq. (37),
where the interface effect is newly included. Figure 8(a) shows
an example of the magnetization dynamics in the presence
of the coupling torque given by Eq. (A2), where the spin
pumping is neglected by setting α′ = α′′ = 0 and the current
density is J0 = 28 MA/cm2. It should be emphasized that
the antiphase synchronization is excited between m1 and m2,
which is consistent with the results obtained by using Eq. (37)
[see Fig. 4(a)]. We note that the oscillation frequency of m�x

shown in Fig. 8(a) is slightly different from that shown in
Fig. 4(a), where the current density is identical. The difference
is considered as due to the fact that the strengths of the
coupling torque given by Eqs. (37) and (A2) are slightly
different because of the presence of the interface parameter
and the spin diffusion length of the connector in Eq. (A2).

On the other hand, Fig. 8(b) shows the coupled dynamics
of the magnetizations via spin pumping, where the coupling
spin torque given by Eq. (A2) is neglected. The current
magnitude, J0 = 45 MA/cm2, is large compared with that
used in Fig. 8(a). This is because the enhancement of the
damping constant due to the spin pumping leads to an increase
of the critical current density, as mentioned in the main text.
The result shown in Fig. 8(b) indicates that the spin pumping
prefers the in-phase synchronization between STOs, which is
consistent with the results shown in Ref. [48].

2. Validity of Eq. (37)

One may be interested in addressing whether Eq. (37) is
a well-approximated formula of Eq. (A2). To answer this
question, let us show another approach to calculate the spin
torque T(2)SHE

� given by Eq. (37). Substituting Eq. (21) into
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Eq. (20), we notice that the spin current at the F1/N′ interface
is determined by the following equation:

JF1/N′
s

ηS − ξ (1 − ηS )

ηS
(
m1 · JF1/N′

s

)
m1

+ JF2/N′
s

S − ξ

S
(
m1 · JF2/N′

s

)
m1 = J(1)

s , (A11)

where we introduce η = g′
r/[gN′ sinh(L/λN′ ) +

g′
r cosh(L/λN′ )], S = gN′ sinh(L/λN′ )/g′

r, and ξ =
1 − [(1 − p′ 2

g )g′]/(2g′
r )], according to Ref. [31]. We obtain

another equation similar to Eq. (A11) by focusing on the
F2/N′ interface and reversing the suffixes 1 and 2. Solving
these equations in parallel with respect to JF1/N′

s and JF2/N′
s ,

we find that

JF�/N′
s = ηS

1 − η2
J(�)

s − η2S
1 − η2

m� × [
J(�′ )

s × m�

]
+ C�m� × (m�′ × m�) + D�m�, (A12)

where (�, �′) = (1, 2) or (2,1). The coefficients C� and D� are
determined by the following equations:

− z̃

η
C� + 1 − ξ (1 − ηS )

η
D� + [1 − ξ (1 − z̃2)]C�′ − ξ z̃D�′

= ηS
1 − η2

[
ξ (1 − η2 − ηS )

η
m� · J(�)

s

− (1 − ξ )m� · J(�′ )
s + ξηz̃m�′ · J(�)

s

]
, (A13)

C�

η
− z̃C�′ + D�′ = − η2S

1 − η2
m�′ · J(�′ )

s , (A14)

where z̃ = m1 · m2. Although the general solutions of C�

and D� are complex, we note that Eq. (A12) repro-
duces the results in Ref. [31] in the limit of ξ → 1
and m� · J(�)

s = 0, where C� = −η3S{[m�′ · J(�)
s ] + ηz̃[m� ·

J(�′ )
s ]}/[(1 − η2)(1 − η2z̃2)] and D� = 0. The results imply

that the terms related to C� and D� are higher order terms of a
small parameter η (0 < η < 1).

Now let us consider the coupling spin torque originated
from the spin accumulation. In this respect, we neglect the
spin pumping effect from J(�)

s . Then, the first term on the right-
hand side of Eq. (A12) does not contribute to the coupling
torque because J(�)

s is parallel to m�. On the other hand, using

Eq. (17), the coupling spin torque [γ /(MdF)]m� × (JF�/N′
s ×

m�) which contributes from the second term of Eq. (A12)
becomes

−γ h̄ϑ̃ ′J0

2eMdF
m�′ym� × (m�′ × m�), (A15)

where ϑ̃ ′ is

ϑ̃ ′ = η2S

1 − η2

(
1 − p′ 2

g

)
g′e2λF

2πSh̄σN
ϑ∗. (A16)

Equation (A15) indicates that the exact solution of the cou-
pling spin torque, T(2)SHE

� , given by Eq. (A2), definitely
provides a torque having the same angular dependence and
sign with Eq. (37). The parameter ϑ̃ ′ given by Eq. (A16)

corresponds to Eq. (38), where the interface effect is included
in Eq. (A16).

APPENDIX B: CONDITIONS OF NUMERICAL
SIMULATIONS

We use the same method developed in Ref. [51] to evaluate
the phase difference of the synchronized oscillators, where the
phase difference is determined from the oscillation period,
as in the case of the Kuramoto model. Therefore the in-
phase and antiphase correspond to 0 and 0.5 of the vertical
axis in Fig. 7. We solve the LLG equation from t = 0 to
t = 1.0 μs with Nt = 108 time mesh, and gather Ni = 226 =
67108864 data of m� (� = 1, 2) from t = (Nt − Ni + 1)�t to
t = Nt�t = 1 μs, where �t = 1.0 μs/Nt = 10 fs. Therefore
the frequency step of the Fourier transformation becomes
1/(Ni�t ) = 1.5 MHz.

APPENDIX C: OSCILLATION TRAJECTORY OF
IN-PLANE MAGNETIZED FERROMAGNET

In principle, an analytical solution of the oscillation trajec-
tory of the magnetization can be obtained by solving Eq. (41).
However, the LLG equation is a nonlinear equation, and there-
fore, it is usually difficult to obtain an analytical solution. If
we focus on an self-oscillation state, an approximate solution
of the oscillation trajectory can nevertheless be obtained. The
self-oscillation state is excited when the dissipation due to the
damping torque balances the work done by the spin torque. In
this case, the magnetization can be approximated as moving
on a constant energy curve of E = −M

∫
dm · H. The os-

cillation trajectory on the constant energy curve is obtained
from the Landau-Lifshitz equation dm/dt = −γ m × H, and
is given by

mx =
√

1 + 2E

MHK
sn

[
4K(k)

τ (E)
t + ϕ0, k

]
, (C1)

my =
√

4πM − 2E/M

HK + 4πM
dn

[
4K(k)

τ (E)
t + ϕ0, k

]
, (C2)

mz =
√

HK + 2E/M

HK + 4πM
cn

[
4K(k)

τ (E)
t + ϕ0, k

]
, (C3)

where sn(u, k), dn(u, k), and cn(u, k) are the Jacobi elliptic
functions, whereas K(k) is the first kind of complete elliptic
integral. The modulus of the elliptic function and integral is

k =
√

4πM (HK + 2E/M )

HK(4πM − 2E/M )
. (C4)

The oscillation period τ (E) is related to the frequency of the
self-oscillation f (E) via f (E) = 1/τ (E), where

f (E) = γ
√

HK(4πM − 2E/M )

4K(k)
. (C5)

The Jacobi elliptic functions can be expanded as an in-
finite Fourier series [70]. Therefore the oscillation trajec-
tory in the real space cannot be described by trigonometric
functions with a single frequency, in general. In the small
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amplitude limit, however, mx and mz are well described by
sin(2πfFMRt + ϕ0) and cos(2πfFMRt + ϕ0) with the FMR fre-
quency fFMR = γ

√
HK(HK + 4πM )/(2π ), whereas my be-

comes almost constant. This conclusion can be confirmed by
notifying the fact that the small amplitude limit corresponds
to k → 0, and therefore, sn(u, k) → sin u, cn(u, k) → cos u,
and dn(u, k) → 1.

APPENDIX D: SCALING CURRENTS

In this Appendix, we show how the coupling torque T̃(2)SHE
�

between two oscillators affects the critical and switching
current densities.

1. Definition of critical and switching currents

First, let us briefly review the derivation of Eqs. (39) and
(40). The self-oscillation is excited when the dissipation due
to the damping torque balances the work done by the spin
torque. This condition is expressed as∮

dt
dE

dt
= 0, (D1)

where dE/dt = −MH� · (dm�/dt ). Note that dm�/dt is
given by the LLG equation. The integral of Eq. (D1) should
be performed on a constant energy curve. Let us denote the
current satisfying Eq. (D1) as J (E), which is a function of the
energy density E. The critical and switching current densities
given by Eqs. (39) and (40) can be defined as [71]

Jc = lim
E→Emin

J (E), (D2)

J ∗ = lim
E→Esaddle

J (E), (D3)

where Emin = −MHK/2 and Esaddle = 0 correspond to the
minimum and saddle point energies, respectively. The purpose
of this Appendix is to derive the explicit forms of Jc and J ∗
in the presence of the coupling.

2. A general guideline to calculate J (E)

According to Eq. (D1), the calculation of J (E) requires to
perform the following types of integral:∮

dtF (m�, m�′ ), (D4)

where F is an arbitrary function of m� and m�′ . Let us first
give a general direction to perform this kind of integral.

As mentioned above, the magnetization in the self-
oscillation state can be approximated as precessing on a
constant energy curve. The trajectory of the constant energy
curve is described by Eqs. (C1)–(C3) in Appendix C, where
the initial state is determined by the phase ϕ0. For convention,
in this section, we set ϕ0 of m� to be zero, whereas that of
m�′ as �ϕ. Here, �ϕ can be regarded as the phase difference
between m� and m�′ . In principle, the integral, Eq. (D4),
can be calculated by substituting the solutions of m� and
m�′ into Eq. (D4) and using the integral formulas of the
elliptic functions [70]. There is, however, another approach to
calculate the integral. Let us introduce new variable x as x =
sn(u, k), where u = 4K(k)t/τ (E). Then, we find that du =

dx/
√

(1 − x2)(1 − k2x2). Therefore the integral becomes∮
dt = 4

γ
√

HK(4πM − 2E/M )

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

.

(D5)

The numerical factor 4 appears because of the symmetry,
i.e., we perform the integral over the time range of 0 � t �
τ/4, and multiply the numerical factor 4. This simplification
is allowed due to the fact that the work done by the spin
torque and the dissipation due to the damping torque during
the time 0 � t � τ/4 is independent of the choice of the
initial conditions. We note that the other elliptic functions
can be expressed in terms of x as cn(u, k) = √

1 − x2 and
dn(u, k) = √

1 − k2x2. Therefore the integral, Eq. (D4), can
be rewritten as∫

dx√
(1 − x2)(1 − k2x2)

F (x)

=
∫

dxxa (1 − x2)b/2(1 − k2x2)c/2, (D6)

where a, b, and c are some numbers determined by the explicit
form of F (x). The examples of the integral will appear below.

3. Critical and switching current densities
of coupled two oscillators

In the present system, the left-hand side of Eq. (D1)
consists of three contributions; the works done by the spin
torques, T(1)

� and T̃(2)SHE
� , and the dissipation due to the

damping torque. The work done by the spin torque T(1)
� and

the dissipation due to the damping torque in the present case
are, respectively, given by

Ws1 =
∮

dtγMHs1[ey · H� − (m� · ey )(m� · H�)]

= πh̄ϑRJ0(HK + 2E/M )

edF
√

HK(HK + 4πM )
, (D7)

Wα = −
∮

dtαγM
[
H2

� − (m� · H�)2
]

= −4αM

√
4πM − 2E/M

HK

[
2E

M
K(k) + HKE(k)

]
,

(D8)

where E(k) is the second kind of complete elliptic integral,
whereas Hs1 = h̄ϑRJ0/(2eMdF).

The definition of the work done by the coupling torque
T̃(2)SHE

� is defined as

Ws2 =
∮

dtγMHs2m�′y[m�′ · H� − (m� · m�′ )(m� · H�)].

(D9)

It is difficult to calculate Ws2 for an arbitrary phase difference
�ϕ. The numerical simulation indicates that the antiphase
synchronization is stable for the coupled two STOs. Therefore
we focus on the case of the antiphase, �ϕ = 2K(k). Note that
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the elliptic functions satisfy sn[u + 2K(k), k] = −sn(u, k), cn[u + 2K(k), k] = −cn(u, k), and dn[u + 2K(k), k] = dn(u, k).
Then, we find that

Ws2(�ϕ = 2K(k)) = 2γMHs2

∮
dt

[
HK

(
m3

�y − m5
�y

) + 4πMm3
�ym

2
�z

]
. (D10)

The integrals on the right-hand side are calculated by using Eqs. (C1)–(C3) as

∮
dtm3

�y = 4

γ
√

HK(4πM − 2E/M )

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

(
4πM − 2E/M

HK + 4πM

)3/2

dn3(u, k)

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)3/2 ∫ 1

0
dx

1 − k2x2

√
1 − x2

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)3/2
[

k2x
√

1 − x2

2
+ 2 − k2

2
sin−1 x

]∣∣∣∣∣
1

0

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)3/2
π (2 − k2)

4
, (D11)

∮
dtm5

�y = 4

γ
√

HK(4πM − 2E/M )

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

(
4πM − 2E/M

HK + 4πM

)5/2

dn5(u, k)

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)5/2 ∫ 1

0
dx

(1 − k2x2)2

√
1 − x2

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)5/2
{

k2x
√

1 − x2[8 − 3k2(3 + 2x2)] + (8 − 8k2 + 3k4) sin−1 x

8

}∣∣∣∣∣
1

0

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)5/2
π (8 − 8k2 + 3k4)

16
, (D12)

∮
dtm3

�ym
2
�z = 4

γ
√

HK(4πM − 2E/M )

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

(
4πM − 2E/M

HK + 4πM

)3/2(
HK + 2E/M

HK + 4πM

)
dn3(u, k)cn2(u, k)

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)3/2(
HK + 2E/M

HK + 4πM

)∫ 1

0
dx

√
1 − x2(1 − k2x2)

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)3/2(
HK + 2E/M

HK + 4πM

)

×
{

x
√

1 − x2[4 + k2(1 − 2x2)] + (4 − k2) sin−1 x

8

}∣∣∣∣∣
1

0

= 4

γ
√

HK(4πM − 2E/M )

(
4πM − 2E/M

HK + 4πM

)3/2(
HK + 2E/M

HK + 4πM

)
π (4 − k2)

16
. (D13)

Summarizing these integrals, we find that

Ws2 = πh̄ϑ̃J0

edF
√

HK(HK + 4πM )

(HK + 2E/M )[4πM (HK − 2E/M ) − 2HK(2E/M )]

HK(HK + 4πM )
. (D14)

Equation (D1) can be expressed as Ws1(E) + Ws2(E) + Wα (E) = 0. The current density J (E) is defined as the current J0

satisfying this condition. Using Eqs. (D7), (D8), and (D14), the critical and switching current densities in the presence of the
coupling between two STOs are obtained as Eqs. (42) and (43), respectively.

4. Critical current density in Fig. 2(a)

It is clear from Eq. (D9) that the work done by the torque T̃(2)SHE
� is zero when the in-phase synchronization m1 = m2 is

excited. Therefore the critical current density in Fig. 2(a) is given by Eq. (39) by replacing α with α + α′′. In fact, the value of
Jc with the damping constant α + α′′ is 42 MA/cm2, which is consistent with the numerically calculated critical current density
of 44 MA/cm2.
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