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A general perturbation theory for the description of weak damping of linear spin-wave modes in magnetic
nanostructures is developed. This perturbative approach allows one to account for the usual uniform Gilbert
damping, as well as for the spatially nonuniform (coordinate-dependent) and nonlocal (magnetization-texture-
dependent) Gilbert-like dissipation mechanisms. Using the derived general expression, it is possible to calculate
the damping rate of a particular spin-wave mode if the frequency and the spatial profile of this mode, along with
the relevant parameters of a magnetic material, are known. The examples demonstrating the applications of the
developed general formalism include (i) generalization of the damping rate of a spin-wave mode propagating in
a magnetic sample for the case of a nonuniform static magnetization or/and bias magnetic field, (ii) calculation
of a damping rate of a gyrotropic mode in a vortex-state magnetic nanodot, (iii) evaluation of the spin diffusion
influence on the damping rate of spin-wave modes in a conducting ferromagnet, and (iv) calculation of damping
rates of spin-wave modes in a ferromagnetic film in the presence of a spin pumping into an adjacent nonmagnetic
metal layer. The developed formalism is especially useful in micromagnetic simulations, as it allows one to
calculate damping rates of spin-wave modes based on the numerical solution of a conservative eigenmode
problem.
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I. INTRODUCTION

Understanding the mechanisms of magnetic damp-
ing and ability to calculate damping rates for magnetic
eigenexcitations—spin-wave (SW) modes—is critically im-
portant for the applications of magnetic materials in data
storage, information processing, and microwave technologies.
In particular, the SW damping rate determines such important
characteristics as the time of the magnetization reversal of a
magnetic memory element (in precessional regime) [1], the
linewidth of a ferromagnetic resonance [2], the threshold cur-
rent in spin-torque devices [3], etc. A rigorous consideration
of a magnetic damping, even in bulk ferromagnetics, is very
complicated, since there are many different mechanisms of
energy dissipation, such as magnon-electron and magnon-
phonon scattering. Also multimagnon processes could con-
tribute to the damping rate of some SW modes [2,4].

Instead of a rigorous consideration, magnetic damping
is, usually, taken into account phenomenologically using the
Gilbert model [5], within which the dissipative torque, acting
on magnetization, is proportional to the time derivative of
magnetization and the Gilbert damping parameter αG. The
damping rate of a SW mode is then given by �ν = αGενων ,
where ων is the mode frequency and the coefficient εν de-
scribes the effect of the magnetization precession ellipticity.
Analytical expressions for εν were derived in many important
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particular cases, e.g., for spin waves propagating in a uni-
formly magnetized ferromagnetic film [6], for the gyrotropic
mode of magnetic vortex [7], etc. The Gilbert model describes
the magnetic damping in bulk ferromagnetic samples reason-
ably well within several limitations, in particular, when the
damping rate is relatively small, and the magnitude of the
dynamic magnetization is also not large. Recently, the Gilbert
model of magnetic dissipation was also generalized to the case
of a substantially nonlinear magnetization dynamics [8].

In thin ferromagnetic films and magnetic nanostructures,
in addition to the bulk uniform damping, other damping
mechanisms, such as spatially nonuniform (coordinate depen-
dent) or nonlocal (dependent on the magnetization texture)
damping could be present. These additional damping mech-
anisms include the spin pumping from a ferromagnetic layer
into an adjacent normal metal layer [9,10], longitudinal and
transverse spin diffusion [11–13], chiral damping [14], and
spin-wave scattering on technological imperfections [15,16]
(edge damage). In many cases, these coordinate-dependent
and magnetization-texture-dependent damping mechanisms
could be of the same order of magnitude or stronger than
the traditional uniform Gilbert damping, and, also, could
create different contribution to the SW modes having different
spatial profiles [17–19]. Naturally, these mechanisms cannot
be taken into account by a simple renormalization of a Gilbert
damping constant αG, same for all the SW modes.

In several particular cases, the influence of the interlayer
spin pumping and transverse spin diffusion on the damping
rate of SW modes with different spatial profiles has been

2469-9950/2018/98(10)/104408(10) 104408-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.104408&domain=pdf&date_stamp=2018-09-06
https://doi.org/10.1103/PhysRevB.98.104408


ROMAN VERBA, VASIL TIBERKEVICH, AND ANDREI SLAVIN PHYSICAL REVIEW B 98, 104408 (2018)

already discussed [18–26]. In this paper, we present a general
formalism, which allows one to calculate the SW mode damp-
ing rate in the presence of the uniform Gilbert damping, as
well as the coordinate-dependent and magnetization-texture-
dependent damping mechanisms. As shown below, when the
damping rate is relatively small, it can be calculated, provided
one knows the SW mode frequency and spatial profile, ob-
tained in the conservative approach. It is especially important
since for many practically important cases the problem of
calculation of the SW mode profile has been already solved. In
many cases, the SW mode profile can be obtained numerically
using various powerful and general micromagnetic codes
[27,28]. In contrast, accurate micromagnetic simulations of
dissipative processes require much more simulation time.
Also, common micromagnetic codes, typically, can take into
account only the standard uniform Gilbert damping, while
accounting for the additional dissipation mechanisms requires
a substantial modification and a subsequent verification of the
micromagnetic code.

The paper has the following structure. In Sec. II, following
Refs. [29–31], we review the elements of the general theory of
linear SW excitation in magnetic structures. Using this theory,
a general expression for the SW mode damping rate under the
influence of a linear magnetic damping is derived in Sec. III.
Then, we present examples of application of the developed
formalism, showing how its results are related to the previous
results obtained in several known particular cases, as well
as demonstrating some new results. In Sec. IV, we consider
the SW damping caused by a uniform Gilbert damping in
magnetic samples with nonuniform static magnetization, in
particular, in vortex-state magnetic dots. The effects of ad-
ditional dissipation mechanisms, such as spin diffusion and
interlayer spin pumping, are considered in Secs. V and VI,
respectively. Finally, conclusions are given in Sec. VII.

II. PRINCIPAL EQUATIONS

Let us consider the magnetization dynamics of a finite-size
ferromagnetic sample, e.g., film, nanodot, etc. The conserva-
tive dynamics of a magnetization vector M = M(r, t ) in such
a case is described by the Landau-Lifshitz equation

∂ M(r, t )

∂t
= γ (Beff × M (r, t )) , (2.1)

where γ is the modulus of the gyromagnetic ratio and
Beff = Be − μ0Ĝ ∗ M is the effective magnetic field. Here,
Be is an external magnetic field and the self-adjoint tensor
operator Ĝ describes the magnetic self-interaction: nonuni-
form exchange, magnetodipolar interaction, and magnetic
anisotropy (explicit expression for Ĝ could be found, e.g., in
Refs. [29,31]).

Considering linear dynamical processes one can represent
the magnetization vector as M(r, t ) = Ms[μ(r ) + m(r, t )],
where Ms is the saturation magnetization, the unit vector μ de-
scribes the static magnetic configuration of the ferromagnetic
sample, and the dimensionless vector m describes the small
deviation from the static configuration. Using this representa-
tion in Eq. (2.1) one can, finally, obtain the following equation
for frequencies ων and profiles mν of the SW eigenmodes of

a ferromagnetic body:

−iωνmν = μ × �̂ ∗ mν , (2.2)

where �̂ is the Hamiltonian operator defined by the expression
�̂ = γB Î + γμ0Ms Ĝ, B is the modulus of the static effec-
tive field, and Î is the identity matrix. In the same manner,
one can, also, consider the propagating spin waves (e.g., in
a ferromagnetic film), which are characterized by their wave
vector k. The only change in this case appears in the definition
of the Hamiltonian operator, which should be defined as �̂k =
γB Î + γμ0Mse

−ik·r (Ĝ ∗ eik·r ). Naturally, the Hamiltonian
operators �̂ and �̂k are also self-adjoint. Using this property,
one can show that different SW modes of a ferromagnetic
body satisfy the following orthogonality relation:

〈m∗
ν ′ · μ × mν〉 = −iAνδν,ν ′ , (2.3)

where index ν is used to enumerate the SW modes, symbols
〈. . . 〉 denote averaging over all the volume of the ferromag-
netic material, and Aν is a real normalization constant of an
SW eigenmode.

The influence of various small effects on the magnetization
dynamics can be effectively considered in the framework
of a perturbation theory. In a general case, accounting for
a perturbation leads to the change of the effective field in
Eq. (2.1) as Beff → Beff + b, where b(r ) is an effective
perturbation field, which could depend on time or/and on the
magnetization M. Considering only the processes that are
linear in SW mode amplitudes, one can represent the dynamic
magnetization as an infinite series in SW eigenmodes. Using
this representation in the perturbed Landau-Lifshitz equation,
one can obtain the following dynamical equation for the SW
eigenmode amplitudes cν (t ):

dcν

dt
= −iωνcν + iγ bν − iγ

∑
ν ′

(Sν,ν ′cν ′ + S̃ν,ν ′c∗
ν ′ ) . (2.4)

Here, the summation goes only over modes with positive
norms, Aν ′ > 0 (see details in Ref. [30]) and the coefficients
are equal to

bν = 1

Aν

〈m∗
ν · b〉, (2.5a)

Sν,ν ′ = 1

Aν

〈(m∗
ν · mν ′ )(μ · b)〉, (2.5b)

S̃ν,ν ′ = 1

Aν

〈(m∗
ν · m∗

ν ′ )(μ · b)〉 . (2.5c)

The above derived equations allow one to effectively de-
scribe the excitation of SW modes by an external microwave
field, parametric processes under the parallel pumping, ther-
mal fluctuations, etc., and, as it will be shown below, also
describe the damping of the SW eigenmodes.

III. GENERAL PERTURBATION FORMALISM
FOR THE LINEAR SPIN-WAVE DAMPING

In the framework of a Gilbert model, magnetic damping
is taken into account phenomenologically by an additional
term in the right-hand side of the Landau-Lifshitz equation
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Eq. (2.1):

TG = αG

Ms

(
M × ∂ M

∂t

)
. (3.1)

Many other dissipation mechanisms could be introduced by a
similar, Gilbert-like term,

T ad = 1

Ms

(
M ×

(
D̂ad ∗ ∂ M

∂t

))
. (3.2)

Here, D̂ad is, in general, a tensor operator which could depend
both on the spatial coordinate r and on the magnetization
M, but for the most common linear damping mechanisms it
should not depend on the time derivative of the magnetization
∂ M/∂t , since ∂ M/∂t is proportional to the SW amplitude.
Note that for the dynamics of a constant-length magnetization
vector M, |M| = Ms , only the component of the torque T ad

that is parallel to the vector (M × ∂ M/∂t ) corresponds to the
change of a magnetic energy, and, therefore, is responsible
for the magnetic dissipation [4,8]. The other torque compo-
nent, which is parallel to (∂ M/∂t ), affects the conservative
magnetization dynamics, i.e., makes a contribution to the SW
mode eigenfrequencies. Thus the effects that are described by
Eq. (3.2), in general, could lead both to a change of the SW
mode damping rate and to the change of its eigenfrequency.

Using the additional torque term in the form (3.2) one
can take into account various dissipation mechanisms. In
general, Eq. (3.2) could describe any mechanism of the
intrinsic magnetic energy dissipation of a “liquid friction”
type, which are, typically, the most important linear intrinsic
damping mechanisms in bulk ferromagnets and ferromagnetic
nanostructures. Below we consider in detail the influence of
the spin diffusion and interlayer spin pumping (see Secs. V
and VI) on the resultant dissipation rate of an SW mode.
Also, using the formalism, presented below, one can easily
consider additional damping in ferromagnets and their struc-
tures having large Rashba spin-orbit coupling. In this case,
the dissipative torque has exactly the structure (3.2) with
the damping tensor dependent on the static magnetization
configuration (see explicit expression in Ref. [32]). Another
important dissipation mechanism is the dynamic feedback in
the ferromagnet–spin-Hall-metal heterostructures [33]. The
corresponding dissipative torque in this case has linear and
nonlinear terms; the last one, naturally, is important only
for large-amplitude dynamics. The linear term can be also
derived in the form of Eq. (3.2) with the damping tensor
D̂fb = αfbez′ ⊗ ez′ , where ⊗ denotes dyadic product of vec-
tors, axis z′ is directed perpendicularly to the ferromagnetic-
normal metal interface and the coefficient αfb determines the
efficiency of the dynamic feedback (see explicit expression in
Ref. [33]).

The extrinsic mechanisms of energy pumping or dissipa-
tion, like a spin-torque produced by an external spin-polarized
current (or a pure spin current) are described by a different
term in the equation of motion [3,34,35]. This term is not
proportional to the derivative ∂ M/∂t , but, it could also be
taken into account by a formalism similar to the one presented
below.

Thus, as it follows from Eqs. (3.1) and (3.2), the effects
of the common Gilbert damping and additional Gilbert-like

damping mechanisms are described by the following effective
field:

b = 1

γMs

D̂ ∗ ∂ M
∂t

, (3.3)

where D̂ = αG Î + D̂ad . If the damping is relatively weak
(i.e., if the damping rate of an SW mode is much smaller
than the mode eigenfrequency), it can be considered using a
perturbation theory.

In the above presented expression, we can use the zero-
order approximation for the time derivative in the form

∂ M/∂t = Ms

∑
ν

[−iωνcνmν + c.c.] , (3.4)

which allows us to calculate explicitly the coefficients (2.5).
The terms Sνν ′cν ′ and S̃νν ′c∗

ν ′ in Eq. (2.4) correspond to three-
magnon nonlinear interaction processes. These terms are of
the second order of magnitude with respect to the SW ampli-
tudes cν , and, thus, can be safely ignored in the consideration
of the linear (small-amplitude) spin-wave dynamics. Finally,
one gets the following equation describing the dynamics of
the SW modes:

dcν

dt
= −iωνcν −

∑
ν ′

(�ν,ν ′cν ′ + �̃ν,ν ′c∗
ν ′ ) , (3.5)

where the coefficients are equal to

�ν,ν ′ = ων ′

Aν

〈m∗
ν · D̂ ∗ mν ′ 〉 , �̃ν,ν ′ = −ων ′

Aν

〈m∗
ν · D̂ ∗ m∗

ν ′ 〉 .

(3.6)

It is clear, that the accounting for the magnetic dissi-
pation leads to an additional dissipative coupling between
the different SW modes, which results in a variation of the
damping rates, mode profiles, and, to a smaller degree, the
eigenfrequencies of the coupled modes in comparison with
the case of zero intermode coupling. However, typically, the
mode damping rates are small compared to the frequency
difference between the neighboring SW eigenfrequencies, and
one can safely ignore this damping-related coupling. In such a
case, one obtains a standard equation for a damped oscillator,
dcν/dt = −iωνcν − �νcν , where the damping rate is defined
as

�ν ≡ �ν,ν = ων

Aν

〈m∗
ν · D̂ ∗ mν〉 . (3.7)

The damping-related coupling of the SW eigenmodes should
be explicitly taken into account only near the points of SW
mode degeneracy.

It follows from Eq. (3.7), that the common Gilbert damping
in a ferromagnetic material could be described by the follow-
ing expression for the SW mode damping rate:

�ν = αGενων , (3.8)

where

εν = 〈|mν |2〉
Aν

. (3.9)

The properties of the “ellipticity” coefficient εν are discussed
below. If one assumes that the Gilbert dissipation parameter
is coordinate-dependent, αG = αG(r ), the SW mode damping
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rate is defined as �ν = ων〈αG|mν |2〉/Aν . Such dependence
takes place, for instance, near the boundaries of magnetic
elements due to the technological imperfections [16,18]. Nat-
urally, in such a case, the imperfections strongly affect the
dissipation of the SW modes, which have greater oscillation
power |mν |2 in the spatial regions where the effective damping
constant αG is increased.

Representing the total damping rate of an SW mode,
caused by different mechanisms, as

�ν = (αG + �αG,ν )ενων , (3.10)

we arrive to the following expression for the effective en-
hancement of the Gilbert damping parameter, caused by ad-
ditional dissipation mechanisms:

�αG,ν = 〈m∗
ν · D̂ad ∗ mν〉
〈|mν |2〉 . (3.11)

Obviously, the enhanced damping parameter affects differ-
ently the SW modes having a different spatial profiles, but
this enhanced parameter does not depend directly on the SW
mode eigenfrequency.

IV. EVALUATION OF A GILBERT DAMPING
FOR SPIN-WAVE MODES

A. Relation of a Gilbert damping rate to the precession
ellipticity and parameters of the spin-wave dispersion

As we have already pointed out, the damping rate of an
SW mode, caused by common Gilbert damping, is determined
by the mode structure via the coefficient εν [Eq. (3.8)]. In
the case of a spatially uniform magnetization precession, this
coefficient can be directly related to the precession ellipticity:

ε = 1 + E2

2(1 − E )
, (4.1)

where E = 1 − mmin/mmax is the commonly used definition
for the precession ellipticity [2]. It is clear that for circularly
polarized magnetization precession, when E = 0, the coef-
ficient ε = 1. When the magnetization precession becomes
elliptically polarized, the value ε increases, and the damping
rate becomes larger than αGων . This property of the SW mode
damping is well-known in literature (see, e.g., Ref. [2]).

The value of the coefficient εν can be, also, related to
the dispersion relation of a particular SW mode. As it was
shown by D. Stancil [6], in the case of SWs, propagating in
a ferromagnetic film having uniform static magnetization at
an arbitrary angle to the film plane, the coefficient εν can be
expressed as

εν = ∂ων

∂ωH

, (4.2)

where ων is the SW mode dispersion relation, and ωH = γB,
where B is the static internal magnetic field. The relation of
the damping rate to the derivative ∂ων/∂ωH becomes clear if
one notes that for a uniform static magnetization, accounting
of the Gilbert damping leads to only one modification in
the linearized equation of motion, ωH → ωH + iαGω (see
Eq. (1.68) in Ref. [2]). For the cases of the in-plane or
perpendicular static magnetization of a film, expression (4.2)

is simplified since ∂ων/∂ωH = γ −1∂ων/∂Be, where Be is
the external magnetic field. This derivative can be easily
calculated form the experimental data, and, therefore, can
be used for the characterization of the SW modes and their
damping rates.

Here we show that a relation similar to Eq. (4.2) can be
derived in a general case when the static magnetization and
the internal bias magnetic field of a magnetic sample can be
coordinate-dependent. For this purpose, we take a variational
derivative of both sides of Eq. (2.2) over some variable ξ . A
straightforward calculation results in the following equation:

−(iων + μ × �̂) ∗ δmν

δξ

=
(

i
δων

δξ
+ μ × δ�̂

δξ
+ δμ

δξ
× �̂

)
∗ m . (4.3)

Then, multiplying the above equation by (m∗
ν · μ×), aver-

aging the resulting equation over the volume of a magnetic
sample, and taking into account the self-adjoint property of
the operator �̂, one can derive the following relation:

Aν

δων

δξ
= −

〈
m∗

ν · μ ×
(

μ × δ�̂

δξ
+ δμ

δξ
× �̂

)
∗ mν

〉
.

(4.4)

Then, assuming that the static magnetization configuration of
the sample is fixed, choosing the variable ξ as ξ = ωH (r ) =
γB(r ), and using the equality δ�̂/δωH = Î , we get the final
expression for the “ellipticity” coefficient in the form

εν = 〈|mν |2〉
Aν

= δων

δωH

. (4.5)

This expression is a generalization of Eq. (4.2) to the case of
a nonuniform static magnetization and/or nonuniform static
internal field in a magnetic sample. In the case when the static
internal field is uniform, ωH /∈ f (r ), Eq. (4.5) is reduced to
Eq. (4.2), since the variational derivative is reduced to a simple
partial derivative. The derived expression (4.4) is analogous to
a well-known expression for a derivative of eigenvalues of a
matrix [36], in which the vector (m∗

ν × μ) has the meaning of
a left-hand-side eigenvector.

B. Example: damping rate of gyrotropic mode
of magnetic vortex

As an example of application of the above presented for-
malism, below we consider the damping of a gyrotropic mode
in a vortex-state magnetic dot. The magnetization ground
state in the form of a vortex is one of the simplest spatially
nonuniform and topologically nontrivial magnetization con-
figurations of a magnetic nanodot. It is characterized by a
curling in-plane magnetization with a small out-of-plane core
in the dot center (see inset in Fig. 1). The static magnetization
distribution of a circular magnetic nanodot in a vortex state is
given by

μ(r ) = p cos θ (r )ez + χ sin θ (r )eφ , (4.6)

where p and χ are the vortex polarity and chirality, respec-
tively. Here, we use the polar coordinate system (r, φ, z) both
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FIG. 1. Normalized damping rate of the gyrotropic mode in a
vortex-state circular magnetic dot as a function of the dot radius:
�G is the Gilbert damping contribution, �‖ is the contribution from
the longitudinal spin diffusion, and �tot is the total damping rate.
The dot material parameters (permalloy) are the exchange length
λex = 5.5 nm, αG = 0.01, and the constant of longitudinal spin
diffusion [42] η‖ = 0.5 nm2. The dot thickness is L = 10 nm, and
the dependence of the vortex core radius on the dot radius and thick-
ness is calculated according to Ref. [44]. (Inset) Circular magnetic
nanodot in the vortex state. The spike in the dot center is the vortex
core with the polarity p = 1, and the in-plane curling magnetization
distribution is marked by different colors (vortex chirality χ = 1).

for the description of vectors and coordinate positions inside
the dot (the z axis is directed out of the dot’s plane, see Fig. 1).
In the case of a dot made from a soft ferromagnetic material
(like permalloy) the function θ (r ) can be approximated by the
Usov-Peschany ansatz [37]: θ (r ) = 2 arctan[r/b] for r � b

and θ (r ) = π/2 for r > b. Here, b is the radius of the vortex
core, which is determined by the competition between the
exchange and magnetostatic interactions in the dot [38,39],
and is of the order of several exchange lengths of the dot’s
material.

The spectrum of excitations of a vortex-state dot consists
of one gyrotropic mode and a set of magnetostatic modes. The
gyrotropic, or translational, mode describes the rotation of the
vortex core around its equilibrium position (the dot center in
the case of a zero bias magnetic field). This mode is the most
interesting for our calculation, since in the out-of-core area
the magnetization does not precess, but, instead, is oscillating
along the linear trajectory in the er direction. Therefore,
locally, the precession ellipticity is maximal E = 1, leading to
a high averaged precession ellipticity of the SW mode, which
should lead to a substantial increase of the damping rate of the
gyrotropic mode. In the simplest “rigid vortex” model [39],
the profile of the gyrotropic mode can be expressed as [40]

mG = R

(
∂μ(r, X )

∂X
+ i

∂μ(r, X )

∂Y

)∣∣∣∣
X=0

, (4.7)

where X = (X, Y ) is the two-dimensional vector character-
izing the position of the vortex core inside the dot, and R is
the dot radius. In terms of the magnetization components in a
polar coordinate system, the spatial profile of the gyrotropic

mode is given by the expression

mG = Re−iφ

(
− i

r
sin θ,

dθ

dr
cos θ,−dθ

dr
sin θ

)
. (4.8)

Using the explicit expression for the gyrotropic mode profile
and Eq. (2.3), one can easily calculate the mode’s normaliza-
tion constant to get A = 4πR2. The averaged mode power
can also be easily calculated to give 〈|mG|2〉 = 2πR2(2 +
ln[R/b]). Thus, according to Eq. (3.9), the effective “ellip-
ticity” coefficient for the gyrotropic mode can be evaluated as

εG = 1 + 1

2
ln

R

b
. (4.9)

This expression has been previously derived in Ref. [7]. One
can see, that the above presented general formalism allows
one to easily reproduce this result, although the magnetiza-
tion state of the considered magnetic sample is substantially
nonuniform. The dependence of the gyrotropic mode damping
rate on the dot radius is shown in Fig. 1 for a permalloy dot.
It is clear that for a dot with a radius above 100–200 nm,
this damping rate is substantially (2–3 times) larger than the
value αGω (result ignoring the mode ellipticity), which is
a consequence of the increase of the averaged precession
ellipticity of a gyrotropic mode taking place with the increase
of a dot radius.

V. SPIN-WAVE DAMPING IN THE PRESENCE
OF SPIN DIFFUSION

An important additional mechanism which affects the
magnetization dynamics in conducting ferromagnets is the
spin diffusion. The time variation of the magnetization in a
conducting ferromagnet generates a flow of conduction elec-
trons. The scattering of these electrons on the crystal lattice
of a magnetic material contributes to the common Gilbert
damping, which is described by the constant αG. However, if
the magnetization dynamics is spatially nonuniform, the flows
of conduction electrons generated in different locations inside
the ferromagnet become different, leading to the formation
of a spin current. This spin current transfers the angular
momentum from one point of a ferromagnet to another, thus,
influencing the magnetization dynamics. It has been shown
recently that this action of the spin current results in an
additional damping torque acting on the dynamics of the
magnetization [13,41,42].

A. Longitudinal spin diffusion

The spin diffusion is commonly considered to be com-
posed of the longitudinal spin diffusion and the transverse
spin diffusion, depending on which component of the spin
angular momentum (parallel or perpendicular to the static
magnetization, respectively) is transferred by the spin current.

The longitudinal spin diffusion is important for linear mag-
netization dynamics only in ferromagnets with a nonuniform
spatial distribution of the static magnetization. Indeed, in the
case of a uniformly magnetized ferromagnet, the excitation
of an SW mode produces only a small (of the second order
of smallness relative to the mode amplitude) variation of the
longitudinal component of magnetization, and, therefore, the
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effects of the longitudinal spin diffusion in this case are rather
small. The influence of the longitudinal spin diffusion can be
described by the term (3.2), where the tensor D̂ad is given by
the expression [42]

D̂ad = η‖
∑

i=x,y,z

(
μ × ∂μ

∂xi

)
⊗

(
μ × ∂μ

∂xi

)
. (5.1)

Here, μ = M(r )/Ms , as defined above, is the distribution of
the dimensionless static magnetization, the symbol ⊗ denotes
the dyadic product of vectors, and the efficiency of the longi-
tudinal spin diffusion is given by the coefficient

η‖ = γ σ‖
Ms

, σ‖ = h̄2G0

4e2
, (5.2)

where σ‖ is the longitudinal spin conductivity and G0 is the
common electric conductivity of a ferromagnetic metal.

Using Eq. (5.1) in Eq. (3.11), one can easily calculate the
enhancement of the damping constant of a SW mode produced
by the longitudinal spin diffusion. A typical value of the
coefficient η‖, for instance, for permalloy, is η‖ ∼ 0.5 nm2.
Noting that the common uniform Gilbert damping constant
in permalloy is about αG ≈ 0.01, it becomes clear that the
longitudinal spin diffusion can become an important damping
mechanism only if the characteristic length of the considered
magnetization texture is less than 10–20 nm. However, the
exact value of the enhanced Gilbert constant �αG could
substantially vary for different SW modes, even for the same
magnetization texture, and the difference in the magnitude
of �αG in the case of different magnetization textures with
similar characteristic lengths could also be significant. That
becomes clear if one looks at the complex structure of the
tensor D̂ad , Eq. (5.1) (see also the example presented below).

B. Transverse spin diffusion

In a uniformly magnetized ferromagnet, instead of the
longitudinal spin diffusion, the transverse spin diffusion could
play an important role in the damping of the linear magneti-
zation dynamics. Naturally, a transverse spin transfer appears
only in the case of a spatially nonuniform dynamic magneti-
zation texture, i.e., when the spatially nonuniform SW modes
are excited. The influence of the transverse spin diffusion on
the magnetization dynamics is described by the term (3.2),
where the tensor is defined by the expression [11]

D̂⊥ = −η⊥∇2 Î , η⊥ = γ σ⊥
Ms

. (5.3)

Here, σ⊥ is the transverse spin conductivity, which, in a
general case, could differ significantly from σ‖, and is not
directly related to the electric conductivity of a ferromagnetic
metal (see Ref. [11] for details).

Using Eq. (5.3), we arrive to the following expression for
the enhanced Gilbert damping constant:

�αG = −η⊥
〈m∗ · ∇2m〉
〈m∗ · m〉 . (5.4)

For SW modes in a bulk ferromagnet, the transverse spin
diffusion leads to the additional k2-dependent damping term,
αG,tot = αG + η‖k2. Similarly, for volume SW modes of a
magnetic nanoelement, the transverse spin diffusion leads to

the damping increase αG,tot = αG + η‖κ2, where κ ∼ n/w is
the effective wave number of an SW mode, n is the quan-
tization number of a mode, and w is the characteristic size
of a nanoelement (i.e., radius, width, height, etc., depending
on the mode structure). As a result, the damping rate of the
spatially nonuniform higher-order SW modes is larger than for
a quasiuniform one. This, in particular, leads to a suppression
of the higher-order SW modes in the ferromagnetic resonance
studies [21,24].

It is also clear that the damping increase for bulk SW
modes is more pronounced in the case of smaller magnetic na-
noelements. For an edge mode, however, as it has been shown
in Ref. [18], the dependence �αG(w) could be opposite, due
to the increase in the edge mode localization length with the
decrease of the nanoelement size. Since the localization length
of the edge mode can be, also, controlled by an external mag-
netic field, the measurement of the edge mode damping as a
function of the external magnetic field could be used to probe
the transverse spin conductance and to determine the addi-
tional mode damping caused by the transverse spin diffusion.

In bulk ferromagnetic metals, the transverse spin conduc-
tance is, typically, smaller than the longitudinal one [11,42].
In thin ferromagnetic films (10 nm thickness) the indirectly
measured value of σ⊥ was found to be similar to the value of
the longitudinal spin conductance [18]. Therefore the effect
of the transverse spin diffusion on the SW damping will be
pronounced only for the sufficiently short-wavelength SW
modes, having wavelengths of the order of several tens of
nanometers (for permalloy). Note that the transverse spin
diffusion takes place, also, in the case of a nonuniform static
magnetization distribution inside a ferromagnet. However,
to the best of our knowledge, now it is unclear how the
corresponding torque term in the Landau-Lifshitz equation
should be derived in such a general case. Typically, when the
characteristic lengths of the static and dynamic magnetization
textures are similar, only the longitudinal spin diffusion is
taken into account [42,43].

C. Example: additional damping of spin-wave excitations
of a vortex state magnetic nanodot

As another example, we consider the additional damping
caused by the longitudinal spin diffusion for an SW mode of
a magnetic dot existing in a vortex state. As it was pointed out
earlier, the vortex state is highly spatially nonuniform, and the
characteristic length of its nonuniformity (the radius of the
vortex core) is of the order of several exchange lengths of the
dot magnetic material. Therefore one may expect a significant
influence of the longitudinal spin diffusion on the damping of
the SW modes in this case.

Using the expression for the magnetization distribution
(4.6) and the definition of a damping tensor, Eq. (5.1), one
can directly calculate the components of the damping tensor
in the case of a vortex-state magnetic dot:

D̂‖ = 1

r2

⎛
⎝(rdθ/dr )2 0 0

0 sin2 θ cos2 θ − cos θ sin3 θ

0 − cos θ sin3 θ sin4 θ

⎞
⎠ .

(5.5)
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Here, D̂‖ is derived in the polar components (i.e., its compo-
nents are Drr , Drφ , Drz, etc.), and the values of the vortex
polarity p = 1 and chirality χ = 1 are used below for defi-
niteness. Using this expression and the analytical expression
for the profile of gyrotropic SW mode, Eq. (4.8), one finds
that (m∗

G · D̂‖ · mG) = 2R2(dθ/dr )2 sin2 θ/r2. After averag-
ing, the additional damping rate of a gyrotropic mode caused
by the spin diffusion is expressed as

�‖ = 7

3

η‖
b2

ω . (5.6)

The effective increase of the Gilbert damping constant in this
case is, then, equal to

�αG = 14

3

η‖
b2(2 + ln[R/b])

. (5.7)

This expression has been previously derived in a more com-
plex way, starting from the Landau-Lifshitz equation, in
Ref. [22].

The radius of the vortex core is almost independent of
the dot radius, and increases with the increase of the dot
thickness L as b ≈ λex(2.08 + 0.25(L/λex)0.85), where λex is
the material exchange length (≈5.5 nm for permalloy) [44].
Noting this dependence, it becomes clear that the damping
enhancement for a gyrotropic mode is more pronounced in
thinner magnetic dots. Also, due to the increase of the Gilbert
damping rate, the relative effect of the spin-diffusion contri-
bution to the total damping becomes smaller with an increase
of the dot radius. As shown in Fig. 1, for a 10-nm-thick
permalloy dots of radius R = 100–200 nm, the contribution of
the spin diffusion to the gyrotropic mode damping rate reaches
20%–25%, which, of course, should be taken into account
for the proper description of the vortex core dynamics. Spin
diffusion is also important for a nonlinear vortex motion, as it
has been pointed out in Ref. [43].

In contrast to the gyrotropic mode, all the other excita-
tions of the vortex ground state—magnetostatic modes—are
located outside the core region (see modes profiles, e.g., in
Refs. [39,45]). Although outside the vortex core, the damping
tensor is nonzero due to a curling in-plane magnetization
[D(zz)

‖ �= 0, see Eq. (5.5)], our calculations have shown that
the longitudinal spin diffusion leads to a negligible damping
enhancement, �αG < 10−3 even for a 50-nm dot radius. A
rough estimation of the impact of the transverse spin diffusion
using Eq. (5.4) (which, as pointed out above, is not rigorously
applicable to the case of a nonuniform static magnetization
distribution) has shown that this impact for the lowest mag-
netostatic modes is also negligible. Only if the characteristic
wavelength of a magnetostatic mode becomes smaller than
10–20 nm (for permalloy) the transverse spin diffusion starts
to be an important channel of the SW mode energy dissipa-
tion. Such a case may take place in thicker nanodots (above
40–50 nm in thickness), where the higher-order gyrotropic
modes [46], and specific “curled” magnetostaic modes [47]
appear, both having spatially nonuniform profiles along the
dot thickness. The consideration of this case, however, lies
beyond the scope of our current work.

VI. INFLUENCE OF THE INTERLAYER SPIN-PUMPING
ON THE DAMPING RATE OF SPIN-WAVE MODES

In the previous section, we considered the case when the
spin current, generated by magnetization dynamics, transfers
the angular momentum within the ferromagnetic material.
However, if a ferromagnet is in contact with another conduct-
ing material, the spin current can flow outside of the ferromag-
net, or it can be generated in a ferromagnetic-nonmagnetic
metal interface, if the ferromagnet is nonconducting. This
transfer of angular momentum from a ferromagnet into an ad-
jacent material is called the interlayer spin pumping [48,49].

The spin pumping plays an important role in the magneti-
zation dynamics of ferromagnetic multilayers and heterostruc-
tures. In particular, in the case of several conducting ferromag-
netic layers separated by ultrathin nonmagnetic spacers, the
spin pumping leads to an additional coupling between the fer-
romagnetic layers [48,50]. If a ferromagnet is in contact with
a nonmagnetic metal layer of a sufficient thickness (larger
than the spin diffusion length), the spin current generated by
time-varying magnetization in a ferromagnetic layer is simply
absorbed in the nonmagnetic metal. Naturally, this leakage of
the angular momentum plays a role of an additional damping
channel for the magnetization dynamics in the ferromagnet
[9,10].

The influence of the interlayer spin pumping on the mag-
netization dynamics is described by the term (3.2) with the
damping tensor given by [19]

D̂ = ηs Îδ(s(r )) , ηs = γ h̄2

2e2Ms

g⊥ . (6.1)

Here, g⊥ is the transverse “spin-mixing” conductance per
unit area of ferromagnetic-nonmagnetic metal (FM-NM) in-
terface, δ(s) is the Dirac delta function and the function s(r )
determines the position of the FM-NM interface. Thus, the
expression δ(s(r )) in the equation above means that the inter-
layer spin pumping affects the magnetization dynamics only
at the FM-NM interface. Note that the interlayer spin pump-
ing takes place both in the case of conducting ferromagnets
[9,10] and in the case of ferromagnetic insulators [17,19,20].
Equation (6.1) is applicable in both cases if the thickness of
the NM layer is larger than the spin diffusion length (which
varies from several nanometers up to hundreds of nanometers,
depending on the material), and if the conductance of the
NM layer is larger than the conductance of the ferromagnetic
material.

In the opposite case, which is rather uncommon, one
should take into account the effect of the spin accumulation
and the back flow of the spin current into the ferromagnetic
layer [48]. This, however, cannot be done by a simple modifi-
cation of Eq. (6.1).

Using the general expression (3.11), we obtain that the en-
hancement of the damping constant produced by the interlayer
spin pumping is equal to

�αG = ηs

S

V

〈|m(r )|2〉S
〈|m(r )|2〉V , (6.2)

where symbols 〈. . . 〉V and 〈. . . 〉S denote the averaging over
the volume V of the ferromagnet and over the FM-NM inter-
face, respectively, while S is the area of FM-NM interface. As
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FIG. 2. Spin-pumping-related enhancement of the damping of
spin wave modes in an obliquely magnetized magnetic film: (a)
sketch of a ferromagnetic film (FM) having the static magnetization
M0 and thickness L contacting with a layer of a normal metal; (b)
used coordinate system; (c) dependence of the additional damping
caused by the interlayer spin pumping on the magnetization angle
θ . Calculation parameters: YIG film of thickness 200 nm in contact
with gold (Au) and external bias field Be = 0.2 T. Calculations of the
thickness profiles of the SW modes were made according to Ref. [51]
in the long-wave limit.

one could expect, the enhancement of the damping constant
is proportional to the ratio of the oscillation power |m|2 of an
SW mode at the interface to the total mode power.

As an example, let us now consider the damping of SW
modes in a ferromagnetic film of thickness L, covered at one
side by a nonmagnetic metal layer [see Fig. 2(a)]. SW modes
propagating in a ferromagnetic film are plane waves with the
in-plane wave vector k, and a transverse profile along the film
thickness described by mν (ξ ). In this case, Eq. (6.2) for the
damping rate enhancement is reduced to

�αG = ηs

L

|m(ξ = L/2)|2
〈|m(ξ )|2〉ξ , (6.3)

where in the denominator the averaging goes only over the
film thickness. The above presented equation is general,
and using this equation one can calculate numerically �αG,
provided the spatial profiles of the SW modes are known.
In several particular cases, the mode profiles m(ξ ) could
be derived explicitly, which allows one to obtain analytical
expressions for the enhanced damping parameters.

In particular, in the case of a negligible surface mag-
netic anisotropy Ks → 0, which results in the “free” bound-
ary conditions for the dynamic magnetization at the film
boundaries, in the long-wave limit (kL � 1) the profiles of
SW modes are given by simple harmonic functions [51]:

m(ξ ) = mn cos[πn(ξ + L/2)], n ∈ Z. Noting that the aver-
aged value 〈|m(ξ )|2〉 = |m0|2 for the uniform mode (n = 0)
and 〈|m(ξ )|2〉 = |mn|2/2 for all the other modes, one obtains
the following expressions for the mode damping enhance-
ments:

�αG = ηs

L
for n = 0 , �αG = 2

ηs

L
for n �= 0 . (6.4)

In a more complex way this result has been obtained previ-
ously in Ref. [19].

In the case of a nonzero surface anisotropy, the amplitude
of the volume SW modes at the film boundary becomes
smaller and, naturally, in that case the spin-pumping into
the adjacent metallic layer leads to a smaller enhancement
of the damping rate. The only exception from this rule is
the surface mode, which exists if the pinning parameters
are negative (for a perpendicularly magnetized film such
a case is realized if Ks < 0, which means an easy-plane
surface anisotropy). Since the surface mode is strongly local-
ized at the surfaces, the interlayer spin-pumping has a much
stronger effect on this surface mode. In the case of a relatively
strong surface pinning, the profile of the surface mode can be
approximated as m ∼ exp[Q(ξ − L/2)] (mode is localized at
the ξ = L/2 surface), which leads to a thickness-independent
enhanced of the mode damping rate:

�αG = 2ηs

|Ks |
A

, (6.5)

where Q = |Ks |/A is the inverse localization length of the
surface mode. Naturally, the other surface mode, localized
at the opposite surface of the film [ξ = −L/2 in Fig. 2(a)],
where the nonmagnetic metal layer is absent, experiences a
negligible damping enhancement.

The above developed method allows one, also, to analyze
a more general case of a nonuniform pinning of dynamical
magnetization at the film surfaces, which is realized when
the film is magnetized at an arbitrary angle θ to its normal.
For instance, we calculated the damping enhancement for SW
modes having different thickness profiles and propagating in
an yttrium-iron-garnet (YIG) film contacting at one side with
a layer of gold (Au). The calculation parameters were the satu-
ration magnetization μ0Ms = 0.175 T, the exchange stiffness
A = 3.5 × 10−12 J/m, the easy-axis surface anisotropy con-
stant Ks = 5 × 10−5 J/m, and the transverse spin-“mixing”
conductance hg⊥/e2 = 1.2 × 1018 m−2 [52].

The thickness profiles of the SW modes propagating in
a magnetic film depend significantly on the magnetization
angle. In particular, in the considered case of an easy-axis
surface anisotropy, which was assumed to be the same at both
interfaces of a ferromagnetic film, in the case of perpendicular
magnetization (θ = 0) all the SW modes are volume modes
having sinusoidal thickness profiles. However, when the static
magnetization tilts toward the in-plane direction (θ > 0), the
two lowest thickness SW modes are transformed into surface
modes (in general, the number of the surface modes depends
on the strength of the surface anisotropy at the film interfaces,
and could be zero, one, or two [51]). This transformation is
clearly seen in the dependencies of the damping parameter
enhancement �αG on the magnetization angle, which are
shown in Fig. 2(c).
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For the second, third, and all the higher thickness SW
modes, which remain volume modes at all values of the
magnetization angle, the dependencies are nonmonotonic,
having the maximum at θ ≈ 50◦–60◦. The appearance of this
maximum is related to the angular dependence of the pin-
ning parameters for both dynamic magnetization components,
dx ∼ cos 2θ , dy ∼ cos2 θ , [51] which, finally, results in the al-
most unpinned mode profiles at the considered magnetization
angles. The maximum value of the damping enhancement is
close to �αG ∼ 2ηs/L, which was obtained above for the case
of “free” (unpinned) boundary conditions.

In contrast, the angular dependence of the damping en-
hancement �αG(θ ) for the lowest (fundamental, F) mode
and the first thickness modes shows a monotonous increase
with the magnetization angle θ , which is a direct conse-
quence of the angular-dependent transformation of the mode
“volume” to “surface,” and the consequent increase of the
influence of the interlayer spin pumping on the SW mode
damping.

Taking into account the fact that the natural Gilbert damp-
ing in a YIG film is αG ≈ (2–3) × 10−4, it becomes clear that
for the films of thickness L ∼ 200 nm and less, the interlayer
spin pumping could become an important, or even a dominant,
source of the energy dissipation of the SW modes in YIG
films.

In comparison, for the other widely used magnetic ma-
terial, permalloy, the spin-mixing conductance is of the or-
der of hg⊥/e2 = 1019 m−2 (for Py-Cu [10] and Py-Ta [18]
interfaces), but due to the higher saturation magnetization
of the permalloy [ηs ∼ 1/Ms , see Eq. (6.1)] and the higher
intrinsic Gilbert damping (αG ∼ 0.005–0.01), the influence of
the interlayer spin pumping becomes significant only for very
thin films, having thicknesses less than 10 nm, or for a surface
SW mode having a similar localization depth.

Finally, we would like to note that the dependencies
�αG(θ ) shown in Fig. 2(c) with the maxima at θ ≈ 50◦–60o

for all the SW modes except the one or two surface modes [51]
provide a clear signature of the fact that the additional SW
damping is caused by the interlayer spin pumping. Therefore
such dependencies could be used to experimentally identify
the cases when spin pumping provides an important additional
damping channel for SW modes.

VII. CONCLUSIONS

In this work, we developed a general theoretical approach
to describe the damping of spin-wave modes of ferromagnetic
samples and nanostructures in the presence of different linear
damping mechanisms, which could be spatially nonuniform
or dependent on the magnetization texture (nonlocal). In
the case of a relatively small magnetic damping, i.e., if the
damping rate of an SW mode is significantly smaller than

the mode eigenfrequency, the SW damping rates could be
successfully calculated in the framework of a perturbation
theory. Using this perturbative approach, we derive a simple
expression for the damping rate of an SW mode having an
arbitrary spatial profile.

Using the developed formalism, we have shown that the
SW damping rate due to the common Gilbert damping is
directly related to the SW dispersion relation, namely, is
determined by the variational derivative of the dispersion
relation by the internal static magnetic field. In other words,
it could be stated that the SW mode damping rate is related
to the averaged precession ellipticity, and it increases when
the ellipticity becomes larger. For this reason, for example,
the gyrotropic mode of a vortex-state magnetic dot has a sig-
nificantly larger damping rate than a fundamental SW mode
in a uniformly magnetized magnetic film αGω, because the
gyrotropic mode has an almost linear polarization (maximum
ellipticity) away from the area of the vortex core.

To illustrate the power of the developed theoretical ap-
proach, we considered the influence of spin diffusion and
interlayer spin-pumping on the damping rate of SW modes.
In particular, it was shown that the longitudinal spin diffusion
can substantially increase the damping rate of the gyrotropic
mode of the vortex-state magnetic nanodot. In contrast, the
magnetostatic modes of a vortex-state nanodot are practi-
cally unaffected by these dissipation mechanisms, as long as
their characteristic wavelength is larger than 10–20 nm (for
permalloy).

In the case of the interlayer spin pumping, the enhancement
of the SW mode damping rate is proportional to the ratio of the
SW mode oscillation power |m|2 at the interface to the total
power of the SW mode, and, naturally, the surface modes are
the modes that are strongly affected by the spin pumping.

In a ferromagnetic film placed in contact with a layer of a
normal metal, the dependence of the effective pinning parame-
ters and, consequently, the SW mode thickness profiles, on the
magnetization angle θ leads to a complex dependence of the
damping constant enhancement on the magnetization angle θ .
The characteristic features of the dependence �αG(θ )—the
existence of a local maximum at θ ≈ 50◦–60o for all the
SW modes except one or two surface modes—could be used
to experimentally detect the situations when the interlayer
spin pumping has a significant influence on the magnetization
dynamics.
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