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Nonlinear relaxation between magnons and phonons in insulating ferromagnets
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Nonlinear relaxation between spin waves (magnons) and the crystal lattice (phonons) in an insulating
ferromagnet is investigated theoretically. Magnons and phonons are described by equilibrium Bose-Einstein
distributions with different temperatures, Ts > Tl . The magnon temperature is assumed to be much lower than the
Debye temperature Ts � �D , which is justified at low temperatures. The nonlinear heat current from magnons to
phonons is calculated microscopically in terms of the Cherenkov radiation of phonons by magnons. The results
are discussed in comparison with the well-known theoretical results on nonlinear electron-phonon relaxation in
metals [M. Kaganov, I. M. Lifshitz, and I. V. Tanatarov, J. Exp. Theor. Phys. 31, 232 (1956) ]. The elaborated
theoretical description is relevant for spin-pumping experiments and thermoelectric devices in which the magnon
temperature is essentially higher than the phonon one. The derived expression for the heat current can be used
for calculation of the nonlinear heat boundary resistance in spin-caloritronic heterostructures.
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I. INTRODUCTION

In recent years, spin caloritronics, which is concerned with
the interplay between spin and heat currents in magnetic
materials, has attracted great attention [1–3]. This attention
is, in particular, motivated by recent discoveries related to
thermal spin injection via the spin Seebeck effect [4–6], which
can produce spin current densities that are two orders of
magnitude larger than those produced via electronic or res-
onant excitation approaches. For instance, within the context
of energy conversion applications, thermal spin transport pro-
vides conceptually new mechanisms for solid-state thermal-
to-electrical energy conversion that may be used for waste
heat recovery and temperature control [3]. Furthermore, the
field of magnon spintronics has emerged [7], concerned with
structures, devices and circuits that use spin currents carried
by magnons, the quanta of spin waves. Analogous to conven-
tional electric currents, magnon-based currents can be used to
carry, transport and process information as an alternative to
charge-current-driven spintronic devices [8,9]. Recently, pure
magnonic spin currents in insulating ferromagnets featuring
the absence of Joule heating and reduced spin-wave damping
have been suggested for the implementation of efficient logic
devices [10]. At the same time, spin waves can transport heat
in the same manner that lattice excitations (phonons) transport
heat through perturbations of the atom positions [11,12]. Heat
transport by magnons and their relaxation on phonons become
especially important in such insulating magnetic materials
as, e.g., Y3Fe5O12 [13], in contradistinction to metallic fer-
romagnets, whose thermal conductivity is dominated by the
conduction electrons.

While the electron-phonon and magnon-phonon relax-
ation has been investigated in a series of theoretical works
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[11,14–20], the nonlinear relaxation of magnons on
phonons—the subject of this work—has not been addressed
theoretically so far. In this regard, the most closely related
available theoretical work, which is similar in both the prob-
lem statement and the solution scheme, is the problem of
nonlinear relaxation of electrons on phonons considered by
Kaganov, Lifschitz, and Tanatarov (KLT) back in 1956 [15].
In that work, which is still the main model for analyzing
experiments on the energy relaxation of excited electrons
in metals [21–25], the nonlinear heat current Q from hot
electrons at temperature Te to cold phonons at temperature
Tp in metals was calculated within the framework of the two-
temperature model, with Te and Tp being lower than the Debye
temperature �D . A nonlinear expression was obtained for
the heat current Q = A(T 5

e − T 5
p ) from electrons to phonons,

where A is a constant expressed via the conductivity and the
lattice parameters of the metal [15]. In particular, the KLT
results have allowed for analyzing various aspects of the time-
dependent dynamics of hot electrons in metallic thin films
at low temperatures (T � �D ) [18,20]. At the same time,
while there have been phenomenological descriptions of spin
relaxation beyond the linear regime relying upon the Fokker-
Planck equation [26,27], so far the problem of relaxation
between magnons and phonons in insulating ferromagnets
has only been considered microscopically [28] in the linear
regime Q ∼ (Ts − Tl ), where Ts is the magnon temperature
and Tl is the phonon temperature. At the same time, in exper-
iments at low temperatures [29–31] and/or at high-power spin
pumping [32], Ts can be essentially higher than Tl . Especially,
this is justified in the case of strong spin currents; the devel-
opment of approaches to their generation is currently a major
direction in spintronics [33–35] and spin caloritronics [1–3].
In particular, while spin Seebeck measurements are usually
carried out on bilayers (e.g., YIG and Pt), the large difference
between Ts and Tl has an important implication for the heat
current through their interface. Namely, the nonlinearity of the
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FIG. 1. Formulation of the problem: The nonlinear relaxation
between magnons and phonons (denoted as red and blue spheres,
respectively) is considered in an insulating ferromagnet. �D , Debye
temperature; �C , Curie temperature. Magnons are characterized by
the temperature Ts , which is essentially higher than the phonon
temperature Tl but much lower than the Debye temperature �D .
The magnon subsystem is considered in the quasiequilibrium regime.
The searched-for quantity is the nonlinear heat current Q from hot
magnons to cold phonons.

thermal boundary (Kapitza) resistance [18,36] becomes most
pronounced at low temperatures and it is expected to modify
the linear-response calculation of the phonon, electron, and
magnon temperature profiles applicable at room tempera-
ture [2]. Specifically, in the linear approximation T follows
the Newton relation for the heat current Q ≈ (R−1)�T ,
where �T = Ts − Tl and R(T ) is an analog of the Kapitza re-
sistance which evolves as �1/T 3. Obviously, R(T ) increases
by three orders of magnitude as the temperature decreases
from 300 to 30 K, while its increase reaches a factor of 106 in
a low-temperature experiment at 3 K. It is therefore clear that
even a not-too-large difference between Ts and Tl will strongly
affect Q at low temperatures, thus necessitating a theoretical
account for the nonlinear regime.

Here, we bridge this gap by considering the case of
nonlinear relaxation between magnons and phonons when
Ts > Tl and derive expressions for the nonlinear heat current
from magnons to phonons in an insulating ferromagnet. The
problem is considered under the assumption that magnons
are characterized by the temperature Ts , which is essentially
higher than the phonon temperature Tl , but it is much lower
than the Debye temperature �D , which is justified at low
temperatures [29–31].

II. MAIN RESULTS

Specifically, we consider the following problem. The non-
linear relaxation between spin waves (magnons) and the
crystal lattice (phonons) is considered in an insulating ferro-
magnet (Fig. 1). In the ferromagnet, magnons are character-

ized by the temperature Ts , which is essentially higher than
the phonon temperature Tl , i.e., Ts > Tl . The equilibration
time for magnons in the ferromagnet is much smaller than
the equilibration time between magnons and the crystal lattice
[28,37,38]. This condition is justified at temperatures above
1 K [37]. Accordingly, the magnon subsystem is considered
in the quasiequilibrium regime described by the conven-
tional Bose-Einstein distribution n(εk/Ts ) = [exp(εk/Ts ) −
1]−1, where εk = �C (ak)2 is the dispersion law for magnons
in the long-wavelength limit ka � 1, with �C being the Curie
temperature, a the lattice constant, and k = |k| the magnon
wave vector. The theoretical task is to derive microscopically
the nonlinear heat current Q from hot magnons at temperature
Ts to cold phonons at temperature Tl .

To accomplish this, we calculate the change in the number
of phonons with the given wave vector q per unit of time
(Ṅq)s via the phonon-magnon collision integral Lls{N, n}
[37] describing the absorption or emission of phonons by
magnons, (Ṅq)s = Lls{N, n}. Given the momentum conser-
vation, Lls{N, n} can be expressed as

Lls{N, n}
= 2π

h̄

∑
k

|ψsl (q, k|k + q)|2{(Nq + 1)(nk + 1)nk+q

−Nqnk(nk+q + 1)} × δ(h̄ωq + εk − εk+q). (1)

Here, |ψsl (q, k|k + q)|2 is the squared matrix element of the
transition probability. It reads [37]

|ψsl (q, k|k + q)|2 = �C
2

N

(
h̄

ρa3ωq

)
a4k2(k + q)2q2, (2)

where ρ = M/a3, M is the mass of the magnetic ion, a is
the lattice constant, �C is the Curie temperature, N is the
number of atoms, ωq = sq is the frequency of phonons with
the wavevector q, s is the average speed of sound, and δ is the
Dirac delta function.

In Eq. (1), Nq and nk are the equilibrium Bose-Einstein
distributions for phonons at temperature Tl and magnons at
temperature Ts , namely,

Nq = 1

exp[(h̄ωq/Tl ) − 1]
, nk = 1

exp[(εk/Ts ) − 1]
, (3)

where εk = �C (ak)2 is the dispersion law for magnons in the
long-wavelength limit ka � 1. In the limiting case Tl = Ts ,
from Eq. (1) it follows that Lls{N, n} = 0.

With the calculation steps detailed in the Appendix, the
searched-for change in the number of phonons reads

Ṅq = D(Ts )[n(εq/Ts ) − n(εq/Tl )]
∞∑

p=1

(1 − e−px )

×
∫ ∞

y0

dy(yx + y2)e−py. (4)

Here, D(Ts ) = (�C�D/8πh̄�p )(Ts/�C )3, �D = h̄s/a,
�p = Ms2, x ≡ εq/Tl = h̄ωq/Tl , and y0 = �2

D/4Ts�C ,
which plays the role of an effective inverse temperature. In the
integral over the dimensionless magnon energy y = εk/Ts ,
the lower integration limit y0 reflects the Cherenkov character
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FIG. 2. The integral K (p) calculated by Eq. (6) as a function
of the magnon “overheating” parameter γ = Ts/Tl and the effective
inverse magnon temperature y0 = �2

D/4Ts�C , normalized to its
value Kmax at γ = 2 and y0 = 0.1.

of the emission of phonons by magnons. Namely, only
magnons whose energy is higher than �2

D/4�C can emit
phonons.

With the passage from summation over k to integration and
after the introduction of the magnon “overheating” parameter
γ = Ts/Tl , the heat current Q = ∑

q(h̄ωq)Ṅq from magnons
to phonons acquires the form

Q = (N/8π3)
(
�2

D�C/2h̄�p

)
(Ts/�C )3

× [(Ts/�D )4 − (Tl/�D )4]K (p), (5)

where

K (p) =
∫ ∞

0

u3du

eu − 1
[JD (Ts, x = u, y0)

− JD (Ts, x = u/γ, y0)] (6)

and

JD (T ) =
∞∑

p=1

(1 − e−px )e−py0

[
x

(
y0

p
+ 1

p2

)

+
(

y2
0

p
+ 2y0

p2
+ 2

p3

)]
. (7)

The dependence of the integral K (p) on the parameter
γ = Ts/Tl and the effective inverse magnon temperature y0 =
�2

D/4Ts�C is illustrated in Fig. 2. One sees that when the
magnon and phonon temperatures are equal, i.e., when γ = 1,
K (p) = 0 as expected. In the limiting case of large y0, which
corresponds to the limit of low temperatures, K (p) becomes
exponentially small due to the factor ∼e−y0 in Eq. (7). The
value of K (p) increases with an increase in the magnon “over-
heating” parameter γ and a decrease in the inverse magnon
temperature y0. Accordingly, the nonlinear heat current Q,
which is proportional to K (p) and the factor [γ 4 − 1], also
increases with an increase in γ and a decrease in y0, as illus-
trated in Fig. 3. Namely, Q increases with an increase in the
difference between the magnon and the phonon temperatures,

FIG. 3. The nonlinear heat current Q calculated by Eq. (5) as a
function of the magnon “overheating” parameter γ = Ts/Tl and the
effective inverse magnon temperature y0 = �2

D/4Ts�C , normalized
to its value Qmax at γ = 2 and y0 = 0.1.

as well as with an increase in the magnon temperature Ts , as
expected.

While Eqs. (5)–(7) are valid at any arbitrary temper-
ature Tl when Ts � �D , the condition Ts � �D allows
us to essentially simplify Eq. (7) in the low-temperature
limit. Namely, we can limit ourselves to p = 1 when
y0(Ts ) = �2

D/4Ts�C � 1, since JD (Ts ) ∼ e−2y0 � 1 for
p = 2. Namely, at Ts � �D

K (p = 1) = ϕ1�(5)[1 + μ[ζ (5, 1 + μ) − ζ (5)]]

+ϕ2�(4)[1 + μ[ζ (4, 1 + μ) − ζ (4)]], (8)

where �(n) is the gamma function, ζ (n,m) is the general-
ized zeta function, μ = 1/γ = Tl/Ts , ϕ1 = e−y0 (y0 + 1), and
ϕ2 = e−y0 (y2

0 + 2y0 + 2). The final result for Q(p = 1) is
obtained by substituting Eq. (8) into Eq. (5).

Finally, in addition to Ts � �D we consider the limit-
ing case γ → 1 where the difference between the magnon
and the phonon temperatures is small, that is, (Ts − Tl ) �
Ts . Accordingly, for Q ≡ AB = A(Ts/�C )3[(Ts/�D )4 −
(Tl/�D )4]K (p = 1) with A = (N/8π3)(�2

D�C/2h̄�p ) we
obtain B ≈ 4T 6

s (Ts − Tl )/(�3
C�4

D ). In this way, the linear
regime Q ∝ (Ts − Tl ) is recovered from Eq. (5) in the lim-
iting case Ts � �D and (Ts − Tl ) � Ts . This linear regime
corresponds to γ → 1 and y0 → ∞ and it is therefore beyond
the y0 range in Fig. 3.

III. DISCUSSION

Proceeding to a discussion of the obtained results, first we
recall that Eqs. (5)–(7) describe the nonlinear heat current
between magnons and phonons in an insulating ferromagnet
in the case where the states of the magnon and phonon
subsystems are described by the equilibrium Bose-Einstein
distributions with different temperatures Ts and Tl , respec-
tively. Experimentally, the condition Ts > Tl can be realized
as a consequence of, e.g., parametric pumping of spin waves
in insulating ferromagnets [37]. Theoretically, the formulation
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of the considered problem is conceptually similar to the
two-temperature KLT problem [15] of nonlinear relaxation
between electrons and phonons in a metallic sample. Since the
KLT model is widely used for analyzing experiments on the
energy relaxation of excited electrons in metals [2,22–25], in
what follows it is instructive to briefly outline the main results
of the KLT work with the aid of emphasizing its similarities to
and differences from the magnon-phonon nonlinear relaxation
problem considered here.

Specifically, the KLT work relies upon a quadratic and
isotropic dispersion of the electron energy in a metal εp =
p2/2m, where m is the effective mass. It is assumed that
phonons have only a longitudinal acoustic mode with the
linear dispersion ωq = sq, where s is the speed of longitudinal
sound and q = |q| is the phonon wave vector. KLT use a
deformation potential approximation for the electron-phonon
interaction (EPI) [15]. Namely, the probability of the electron
transition from the state with momentum p to the state with
momentum p′ per unit of time is expressed by the function
w(q ), which is proportional to the squared EPI matrix element

w(q ) = πμ2ωq

ρf s2
, (9)

where μ is the constant of the deformation potential of the
order of the Fermi energy μ ∼ εF = p2

F /2m and ρf is the
film density. In the KLT work, electrons and phonons are
considered at quasiequilibrium and they are characterized by
the temperatures Te and Tp, respectively.

For derivation of the dynamic equations for the electron
and phonon temperatures, KLT derived the specific power Pep

of the heat current from hot electrons to cold phonons, which
is expressed via the electron-phonon collision integral

Pep =
∫

d3q

(2π )3
h̄ωq Ipe(Nq, fp). (10)

With the Bose-Einstein distribution Nq = nq ≡
[exp(h̄ωq/kB Tp ) − 1]−1 for phonons and the Fermi
distribution fp = f0(εp ) ≡ {exp[(εp − εF )/kB Te] + 1}−1

for electrons, KLT obtained the following expression for Pep,
which is valid at arbitrary temperatures [15]:

Pep(Te, Tp ) = m2μ2(kB�D )5

4π3h̄7ρf s4
[F (Te ) − F (Tp )], (11)

where the function F (T ) is determined by

F (T ) =
( T

�D

)5
∫ �D/T

0

x4 dx

ex − 1
. (12)

From Eqs. (11) and (12) it follows that at high
temperatures (with respect to �D) Pep = α(Te − Tp ),
while at low temperatures Pep = A(T 5

e − T 5
p ). The

constants α = (m2μ2k5
B�4

D )/(16π3h̄7ρf s4) and A =
(D5m

2μ2k5
B )/(4π3h̄7ρf s4) do not depend on the electron

and phonon temperatures and determine the strength of
the EPI at high and low temperatures, respectively. In
the last equality, D5 ≈ 24.9 is the integration result of
Dk = ∫ ∞

0 xk−1(ex − 1)−1 dx at k = 5. On the basis of the
KLT work [15] one can write the system of the nonlinear
dynamic equations for the electron and phonon temperatures

[21,22]. In the spatially homogeneous case, which is typical
for thin films, this system of equations reads

ce(Te )
d Te

d t
= −Pep(Te, Tp ) + W (t ), (13)

cp(Tp )
d Tp

d t
= Pep(Te, Tp ), (14)

where ce and cp are the electron and magnon specific heats,
respectively, and W (t ) is the specific power of heat sources
heating the electrons.

Turning back to our magnon-phonon problem, in the spa-
tially homogeneous case of an insulating ferromagnetic thin
film with d < s/νls , where d is the film thickness and νls is the
collision frequency of phonons with magnons, we can write a
system of the nonlinear dynamic equations for the magnon
and phonon temperatures,

cs (Ts )
d Ts

d t
= −Q(Ts, Tl ) + Ws (t ), (15)

cl (Tl )
d Tl

d t
= Q(Ts, Tl ), (16)

where cs and cl are the magnon and phonon specific heats,
respectively, and Ws (t ) is the specific power of heat sources
heating the magnons.

Now, we are in a position to emphasize the similarities
and the differences in the results obtained on the problems
of nonlinear magnon-phonon relaxation, in our work, and
nonlinear electron-phonon relaxation, in the KLT work. First,
the general scheme for calculation of the heat flows in both
problems is formally similar, relying upon the formulas

Q =
∑

q

h̄ωqṄq(Ts, Tl ), (17)

Pep =
∑

q

h̄ωqṄq(Te, Tp ), (18)

where Ṅq is the change in the number of phonons with the
wave vector q per unit of time. This change in the number of
phonons is caused by the emission or absorption of phonons
by magnons [Eq. (17)] or electrons [Eq. (18)], and it is de-
termined by collision integrals (1) and (10) for phonons with
the respective quasiparticles. Both these collision integrals
are equal to the product of the frequency ν of the colli-
sions of phonons with magnons or electrons and the differ-
ence in the equilibrium Bose-Einstein distributions n(εq/T ),
namely,

Lls = νls[n(εq/Ts ) − n(εq/Tl )], (19)

Ipe = νpe[n(εq/Te ) − n(εq/Tp )], (20)

where εq = h̄ωq is the phonon energy.
Second, we note that while the integrals Lls and Ipe in

Eqs. (19) and (20) look formally similar, the collision inte-
gral for magnons and phonons Lls given by Eq. (1) for the
collision frequency νls has a more complex structure than
that for the collision frequency of phonons with electrons
νpe ∼ (s/ϑF )ωq given by Eq. (10).

Third, the presence of the finite integration limit y0 over the
dimensionless magnon energy y = εk/T in Eq. (4) is caused
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by the fact that the emission of phonons by magnons is only
possible for magnons whose energy is higher than �2

D/4�C .
It is this crucial point which underlines the Cherenkov char-
acter of emission of phonons by magnons in insulating ferro-
magnets. This is distinct from the EPI in metals, where any
electron at the Fermi surface can absorb and emit a phonon,
since the speed of sound in metals s is much smaller than the
electron Fermi velocity ϑF . Consequently, in contrast to the
frequency of the phonon-electron collision νpe, which only
depends on the absolute value of the phonon wave vector q,
the frequency of the phonon-magnon collisions in Eq. (4) also
depends on the magnon temperature Ts , that is,

νls (Ts, q ) = D(Ts )JD (Ts ). (21)

In addition, we note that the expression for Q in Eq. (5) is
only valid when Ts � �D , while for electrons in metals the
expression Pep(Te, Tp ) is valid at any arbitrary Te or Tp when
Te � εF . The same considerations hold for the nonlinear
dynamic equations for electrons [Eqs. (13) and (14)] and
magnons [Eqs. (15) and (16)].

Finally, we would like to emphasize the general impor-
tance of the obtained results. In the experimental work by
Schreier et al. [2] it has been pointed out that one of the
challenges in analyzing intertwinned charge, spin, and heat
currents in hybrid magnetic structures is a proper account of
temperature differences in the electron, magnon, and phonon
subsystems, caused by the different thermal properties and
boundary conditions for the respective quasiparticles. The
phonon, electron, and magnon temperature profiles in sub-
strate/ferromagnet/normal metal multilayers can exhibit dis-
continuities at the material interfaces due to interface prop-
erties such as the Kapitza resistance [36]. The temperature
profiles are not easily measurable for a nonequilibrium sit-
uation in which magnon, phonon, and electron temperatures
differ. In-depth analysis and interpretation of experimental
spin Seebeck effect data are, to date, possible only by mod-
eling the magnon, phonon, and electron temperature profiles
based on the relevant material parameters [2]. Especially for
magnetic insulators determination of the phonon temperature
profile is of central importance. In particular, linear-response
theories for the heat flow across an interface, relying upon
the Kapitza thermal boundary resistance [36], can be used for
interpreting experimental data acquired at room temperature
[2,39,40]. By contrast, in experiments at low temperatures
[29–31] and/or at high-microwave-power spin pumping [32],
the magnon temperature can be essentially higher than the
phonon temperature, thus necessitating the consideration of
the nonlinear heat current regime. At the same time, the
experimental condition of low temperatures, at which the
nonlinearity of the Kapitza resistance is most pronounced, jus-
tifies our assumption of the magnon temperature being much
lower than the Debye temperature, Ts � �D . Accordingly,
the elaborated theoretical account of the nonlinear heat current
from hot magnons to cold phonons in insulating ferromagnets
sets the foundation for a followup calculation of the nonlinear
thermal boundary resistance in multilayer spin caloritronic
structures and analysis of the magnon and phonon temperature
profiles in the nonlinear low-temperature regime.

IV. CONCLUSION

To conclude, we have theoretically investigated the non-
linear relaxation between magnons and phonons in an in-
sulating ferromagnet. Magnons and phonons were described
by equilibrium Bose-Einstein distributions with different
temperatures. The nonlinear heat current from magnons to
phonons has been calculated microscopically in terms of
the Cherenkov radiation of phonons by magnons. The main
messages and results of this work can be summarized as
follows: (i) For a large difference between the magnon and
the phonon temperatures the nonlinear magnon-phonon re-
laxation is important. (ii) The nonlinear relaxation regime
is realized experimentally at low temperatures. (iii) The
condition of low temperatures has allowed for treating the
nonlinear magnon-phonon relaxation under the assumption
that the magnon temperature is much lower than the Debye
temperature. (iv) The nonlinear heat current by Eq. (5) can be
used for calculation of the heat current [41] and the nonlinear
heat boundary resistance in spin-caloritronic heterostructures
at low temperatures. In all, the elaborated theoretical account
is relevant for low-temperature spin-pumping experiments
and thermoelectric devices in which the magnon temperature
is essentially higher than the phonon one.
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APPENDIX

This Appendix addresses the calculation of the collision
integral given by Eq. (1). To this end, the curly bracket in
Eq. (1) is denoted � and the new variables x ≡ εq/Tl =
h̄ωq/Tl and y ≡ εk/Ts are introduced. Then � acquires the
form

� =
(

1

ex − 1
− 1

exγ − 1

)[
ey

ey − 1
− ey+x

ey+x − 1

]
, (A1)

where γ = Ts/Tl > 1. Here, we have used the relations

1

(ey+x − 1)(ey − 1)
= 1

ex − 1

[
1

ey − 1
− ex

ey+x − 1

]
,

eγ x − ex

(eγx − 1)(ex − 1)
= 1

ex − 1
− 1

eγx−1
.

Condition (A1) for � can be rewritten in terms of the sum
of the geometric sequences with decreasing denominators e−y

and e−(x+y), namely,

� = [n(εk/Ts ) − n(εq/Tl )]
∞∑

p=1

e−py (1 − e−px ).
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When passing from the sum over k to integration in
Eq. (A1) in the long-wavelength limit ka � 1, we have used

∑
k

→ V

(2π )3

∫
dk = Na3

(2π )3

∫
k2dkdO,

where dO = 2π sin θdθ and θ is the polar angle of the vector
k with respect to the vector q. Given that

δ(h̄ωq + εk − εq+k ) = δ(f − cos θ )

�C (2a2qk)
,

where f = (1/2ak)((�D/�C ) − qa), one obtains Eq. (4):

Ṅq = D(Ts )[n(εq/Ts ) − n(εq/Tl )]
∞∑

p=1

(1 − e−px )

×
∫ ∞

y0

dy(yx + y2)e−py,

where D(T ) = (�C�D/8πh̄�p )(T/�C )3, y0 =
�2

D/4Ts�C , �D = h̄s/a, and �p = Ms2. For the calculation
of

JD (T ) =
∞∑

p=1

(1 − e−px )
∫ ∞

y0

dy(yx + y)e−py

one rewrites it as

JD (T ) =
∞∑

p=1

(1 − e−px )e−py0

[
x

(
y0

p
+ 1

p2

)

+
(

y2
0

p
+ 2y0

p2
+ 2

p3

)]
. (A2)

Noting that JD (Ts ) ∼ e−2y0 � 1 for p = 2 since y0(Ts ) =
�2

D/4Ts�C � 1 we can limit ourselves by p = 1, obtaining

JD (Ts, p = 1) ≈ (1 − e−x )e−y0
[
x(y0 + 1) + y2

0 + 2y0 + 2
]
.

The heat current from magnons to phonons is determined
by

Q = ∑
q(h̄ωq)Ṅq

= ∑
q(h̄ωq )D(Ts )JD (Ts, x, y0)[n(εq/Ts ) − n(εq/Tl )],

where JD (Ts, x, y0) is given by Eq. (23). By passing from
∑

q
to the integral one can show that

Q = (N/8π3)
(
�2

D�C/2h̄�p

)
(Ts/�C )3

× [(Ts/�D )4 − (Tl/�D )4]

×
∫ ∞

0

(
u3du

eu − 1

)
[JD (Ts, x = u, y0)

− JD (Ts, x = u/γ, y0)]. (A3)

Here, the calculation of Q at an arbitrary p is reduced to the
calculation of the integral

K (p) =
∫ ∞

0

u3du

eu − 1
[JD (Ts, x = u, y0)

− JD (Ts, x = u/γ, y0)].
Using relation 2.3.13.22 in Ref. [42] for p = 1 one can rewrite∫ ∞

0
(un−1e−udu)/(eu − 1) = �(n)[ζ (n, 2)],

where �(n) is the gamma function and ζ (n, 2) is the general-
ized zeta function. Then

K (p = 1) = ϕ1�(5)[1 + μ[ζ (5, 1 + μ) − ζ (5)]]

+ϕ2�(4)[1 + μ[ζ (4, 1 + μ) − ζ (4)]]. (A4)

Here, ϕ1 = e−y0 (y0 + 1), ϕ2 = e−y0 (y2
0 + 2y0 + 2), and μ =

1/γ = Tl/Ts . The final result for Q(p = 1) is obtained by the
substitution of Eq. (A4) into Eq. (A3).
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