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Quantum dynamics with stochastic reset
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We study nonequilibrium dynamics of integrable and nonintegrable closed quantum systems whose unitary
evolution is interrupted with stochastic resets, characterized by a reset rate r , that project the system to its initial
state. We show that the steady-state density matrix of a nonintegrable system, averaged over the reset distribution,
retains its off-diagonal elements for any finite r . Consequently a generic observable Ô, whose expectation value
receives a contribution from these off-diagonal elements, never thermalizes under such dynamics for any finite r .
We demonstrate this phenomenon by exact numerical studies of experimentally realizable models of ultracold
bosonic atoms in a tilted optical lattice. For integrable Dirac-like fermionic models driven periodically between
such resets, the reset-averaged steady state is found to be described by a family of generalized Gibbs ensembles
characterized by r . We also study the spread of particle density of a noninteracting one-dimensional fermionic
chain, starting from an initial state where all fermions occupy the left half of the sample, while the right half
is empty. When driven by resetting dynamics, the density profile approaches at long times to a nonequilibrium
stationary profile that we compute exactly. We suggest concrete experiments that can possibly test our theory.
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I. INTRODUCTION

Nonequilibrium dynamics of closed quantum systems has
been a subject of intense theoretical and experimental studies
in recent years [1–5]. The initial theoretical endeavor in this
direction focused on the study of ramps and quenches through
quantum critical points and surfaces [6–15]. The former class
of studies investigated the excitation density and residual
energies of a quantum system after a ramp. In the presence of
a quantum critical point or surface which is traversed during
the ramp, such quantities exhibit power-law variation with the
ramp rate with universal exponents [1,8–15]. The study of
long-time behavior of quantum systems after a sudden quench
and the nature of the resultant steady states (provided they
exist) have been some of the central issues addressed in the
latter class of studies [5–7,14].

It is well known that the nature of these steady states
depends on whether such systems are integrable. The dy-
namics of integrable systems is typically nonergodic due to
the presence of large number of quasilocal conserved quan-
tities Qi . The presence of such conserved quantities implies
that integrable systems, taken out of equilibrium, relax to
steady states whose precise form depends on Qi . The density
matrix describing such steady states may be expressed as
ρ ∼ exp[−∑

i λiQi], where the parameters λi are determined
from initial values of Qi [1,5]. Such a form of the steady-
state density matrix follows from entropy maximization in
the presence of the conserved quantities Qi . The correspond-
ing ensemble is termed as the generalized Gibbs ensemble
(GGE) [1].

In contrast, for nonintegrable systems, one typically
reaches a thermal distribution at late times where the system is
described by a diagonal density matrix with an effective tem-
perature [5,16,17]. In these thermal steady states, the expec-
tation value of any typical local observable Ô of the system

is expected to agree with that obtained by averaging over a
microcanonical ensemble. The above-mentioned feature can
be viewed as a consequence of the eigenstate thermalization
hypothesis (ETH). This hypothesis follows from the fact that
for a generic quench protocol, the postquench dynamics of
any state with fixed initial energy ε is governed by the final
Hamiltonian. Thus such dynamics preserves ε. The system
under such dynamics explores all eigenstates in the vicinity of
ε. Since such dynamics is ergodic over all eigenstates within
a narrow energy shell of ε and ε + δε, the time average of any
observable can be equated to the microcanonical ensemble
average over these states: 〈m|Ô|n〉 � Omc(ε̄)δmn. Here ε̄ =
(εm + εn)/2 and Omc = Tr[ρmc(ε̄)Ô] is the expectation value
of Ô as obtained from a microcanonical ensemble with energy
ε̄. ETH then states that the difference of 〈m|Ô|n〉 from Omc(ε̄)
must vanish in the thermodynamic limit [5,16–18].

More recently, the study of such long-time behavior for pe-
riodically driven systems has also been undertaken [1,19,20].
It is well known that for nonintegrable systems a periodic
drive heats up the system and takes it to an infinite temperature
fixed point. However, for integrable models this is not the
case, and periodically driven integrable systems may exhibit
different steady states [19]. The behavior of such systems in
the presence of a stochastic aperiodicity superposed over a
periodic drive has also been studied recently [20].

In a different classical context, a number of recent studies
have found that a classical system evolving under its own
natural dynamics, when interrupted stochastically at random
times following which the system is reset to its initial con-
dition, evolves at long times into a nontrivial nonequilibrium
stationary state [21–35]. This is most easily seen in the case
of a single diffusive particle on a line, starting at x = 0. The
position of a particle at time t , without any resetting, has
the standard probability density P (x, t ) = e−x2/4Dt/

√
4πDt
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at time t , where D is the diffusion constant. If the par-
ticle is now reset to x = 0 after a random exponentially
distributed time with rate r , the probability density at long
times becomes time independent [21,22] and is given by
Pstat (x) = (α0/2) exp[−α0 |x|], with α0 = √

r/D. This result
generalizes easily to higher dimensions [23]. The approach to
this stationary state was shown to have an unusual relaxation
dynamics, accompanied by a dynamical phase transition [26].
Such resetting dynamics also has important consequences for
search processes: instead of searching for a target by pure
diffusion, it is more efficient to reset the searcher at its initial
position at random times—a lot of recent studies have demon-
strated this in a number of classical systems by studying the
associated first-passage problems [36,37] in the presence of
resetting [21,22,38–47]. Functionals of Brownian motion with
resetting have also been studied recently [48–50]. Another
interesting observation is how resetting leads to different
stochastic thermodynamics and the associated fluctuation the-
orems in classical systems [51,52]. In addition, quantum sys-
tems with projective measurements have been studied in the
context of fluctuation theorems and statistics of energy trans-
fer between the system and the measurement apparatus [53].
Moreover, there have been several recent studies on quantum
first detection problems which involves interrupting unitary
evolution of a quantum system with projective measurements
[54,55]. However, the analog of a nonequilibrium stationary
state induced by random resettings is yet to be explored, to
the best of our knowledge, for closed quantum systems that
undergo unitary evolution in the absence of resetting.

In this work, we study the dynamics of integrable and
nonintegrable quantum systems whose unitary evolution is
interrupted by stochastic resets, characterized by a reset rate
r . We consider each reset to project the wave function of
the system to its initial value at t = 0. For a perfect reset
protocol, which is what we shall be mostly concerned with in
this work, this is done with unit probability. The main results
obtained from our study of dynamics with stochastic resets are
as follows.

First, for nonintegrable systems, we consider a generic
initial state which is not an eigenstate of the Hamiltonian
controlling its unitary evolution. We study the evolution of
this state in the presence of a stochastic reset characterized
by rate r . We demonstrate that such dynamics leads to a
reset averaged steady-state density matrix (provided such a
steady state exists for unitary evolution without reset) which
retains its off-diagonal elements. Thus such systems are not
described by a diagonal density matrix in their steady states.
Consequently, the expectation value of a typical observable
does not reduce to its thermal steady state value under such
dynamics. Our result reproduces the diagonal density matrix
for the steady state for r = 0 which coincides with known
results for standard unitary evolution of a quantum system
[5]. In addition, it also leads to the quantum Zeno effect for
r → ∞ [56]; in such a situation, the initial state does not
evolve and the density matrix of the system is same as the
initial density matrix at t = 0.

Second, for studying the reset dynamics of integrable
systems we consider two distinct models. The first of these
constitutes a system of free fermions occupying the left half of
a one-dimensional (1D) chain at t = 0. These fermions evolve

under a nearest-neighbor hopping Hamiltonian [57–59].
We show that interruption of the unitary evolution of these
fermions with stochastic reset leads to nontrivial modification
of their reset averaged density, nm(r ), where m is the site
index and r is the reset rate. We also find an exact scaling func-
tion for nm(r ) and show that it reproduces the known behavior
of nm for r = 0 and r → ∞. The second model involves a
periodically driven Dirac Hamiltonian in d dimensions whose
unitary evolution is interrupted by a reset after a random
integer number of periods. The unitary dynamics of such a
Hamiltonian is controlled by a periodic drive characterized
by a time period T . We show that the reset averaged steady
state of such driven systems corresponds to GGEs charac-
terized by a reset rate r . We demonstrate this by computing
nontrivial correlation functions of the model. We find that the
steady-state values of these correlation functions, averaged
over the reset probability, are smooth functions of r which
demonstrates the r dependence of the underlying GGEs.

Third, we carry out exact numerical studies of postquench
dynamics of experimentally realizable models of ultracold
bosonic atoms in a tilted optical lattice in the presence of re-
sets. The low-energy physics of these bosons can be described
in terms of dipoles (bound pair of bosons and holes) [60–62].
We show that the excitation density of these dipoles nd , the
dipole density-density correlation function C, and the half-
chain entanglement entropy S of the boson chain, averaged
over the reset probability distribution, interpolates continually
between their values of reset free dynamics (r = 0) and the
quantum Zeno limit (r → ∞). We discuss experiments in
context of this boson model which can test our theory.

The plan of the rest of the work is as follows. In Sec. II, we
present the general formalism for time evolution with reset for
generic nonintegrable quantum systems and demonstrate that
the resultant steady-state density matrix, averaged over reset
probability, retains its off-diagonal elements for any finite r .
This is followed by Sec. III where we discuss the dynamics of
integrable models, namely, the 1D fermion chain and the d-
dimensional Dirac fermions, under such reset. In Sec. IV, we
address the dynamics of the Bose-Hubbard model in a tilted
optical lattice in the presence of stochastic reset. Finally, we
chart out experiments which test our theory, discuss our main
results, and conclude in Sec. V. Some applications of quantum
dynamics with stochastic resets to single particle quantum-
mechanical systems are discussed in the Appendix A. Some
other details concerning the derivation of a scaling function
are provided in Appendix B.

II. GENERAL FORMALISM

In this section, we consider a generic nonintegrable quan-
tum system with unitary evolution interrupted by stochastic
resets. In what follows, we shall first consider the case when
the reset takes the system to its initial ground state with unit
probability. We shall briefly comment on the case of imperfect
resets (where the state of system may projected to some
other states with a small but nonzero probability) later in this
section.

The time evolution of our system is defined precisely as
follows. Consider a quantum system, with a given Hamilto-
nian H (t ) (which can in general be time dependent), prepared
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initially at t = 0 in the state |ψ (0)〉. Now, the state |ψ (t )〉
evolves from t to t + dt as follows:

|ψ (t + dt )〉 =
{

|ψ (0)〉, with prob. r dt

[1 − iH (t ) dt] |ψ (t )〉 with prob. 1 − r dt

where we have set h̄ = 1 for convenience. Here r � 0 denotes
the reset rate with which the system is projected back to the
initial state. Thus, in a small time interval dt , the system either
goes back to its initial state with probability r dt , or, with
the complementary probability (1 − r dt ), it evolves unitarily
with its Hamiltonian H (t ). The density matrix ρ̂(t ) of the
system at fixed time t , assuming it is in a pure state, is then
given by

ρ̂(t ) = |ψ (t )〉〈ψ (t )|. (1)

Note that for r = 0, we have a purely unitary evolution and
|ψ (t )〉 is given by

|ψ (t )〉r=0 = U (0, t ) |ψ (0)〉 (2)

where the unitary operator is U is given by

U (t1, t2) = Tt exp

[
−i

∫ t2

t1

H (t ′)dt ′
]
, (3)

with Tt denoting the time ordering. However for any r > 0,
the dynamics is a mixture of stochastic and deterministic
evolution and the density matrix in Eq. (1) is stochastic in the
sense that it varies from one realization of the reset process
to another. Hence, the observed density matrix at time t is
obtained by averaging over all possible reset histories

ρ(t ) = E[ρ̂(t )] (4)

where E denotes the classical expectation value over all
stochastic evolutions. Our goal is to investigate how a nonzero
r modifies the time evolution of the quantum state, or equiv-
alently the associated density matrix in Eq. (4). A possible
way to realize this mixture of deterministic and stochastic
dynamics in Eq. (1) in a realistic system will be discussed
later.

To compute the time evolution of the density matrix ρ(t ) in
Eq. (4) in the presence of a finite resetting rate r , we first make
the following observation. The resetting protocol essentially
induces a renewal process in the sense that after each reset,
the system again evolves unitarily from the same initial state
without having any memory of what happened before the last
reset. Hence, given the observation time t , what really matters
is how much time has elapsed since the last reset till time t .
Clearly, this time τ , since the last reset, is a random variable
τ ∈ [0, t], whose probability density p(τ |t ) (given a fixed
observation time t) can be estimated as follows. Imagine time
running backwards from t and consider the event that there
is no reset in the interval [t − τ, t] followed by a reset in the
small time interval dτ . Now, since the resetting is a Poisson
process with rate r , the probability that there is no reset in
[t − τ, t] is simply e−rτ . The probability of a reset in dτ is
just r dτ . Hence, taking the product, the probability of this
event is r e−rτ dτ . Hence we get

p(τ |t ) dτ = r e−rτ dτ, 0 � τ < t. (5)

Integrating, we get∫ t

0
p(τ |t )dτ = 1 − e−rt (6)

which shows that the pdf p(τ |t ) is not normalized to unity,
because the right-hand side of Eq. (6) is just the probability
that there is at least one reset in [0, t]. There is however the
possibility of having no reset in [0, t]: the probability for this
event is simply e−rt . Hence, the pdf normalized to unity, given
a fixed t , can be written as

p(τ |t ) = r e−r τ + e−r t δ(τ − t ) 0 � τ � t. (7)

It is easy to check that
∫ t

0 p(τ |t ) dτ = 1. The delta function
term in Eq. (7) effectively describes the probability of the
event of having no reset in [0, t]. Note that by making the ob-
servation time t large enough we can arbitrarily reduce the
probability of zero reset, and get rid of the last term in Eq. (7).

Now let us consider the unitary evolution of the system,
following the last reset till the observation time t . The density
matrix of the system at t , given that τ is the time elapsed since
the last reset, is simply

ρ̂(τ |t ) = U †(0, τ ) ρ0 U (0, τ ) (8)

where U is the unitary operator in Eq. (3) and ρ0 is the density
matrix immediately after the last reset. However, for perfect
reset, ρ0 = |ψ (0)〉〈ψ (0)| is just the initial density matrix
(since the system was projected to the initial state at the last
reset). Thus, using Eq. (7) one finds that the density matrix
ρ(t ) in Eq. (4) (upon averaging over the random variable τ

associated with the reset process) is given by

ρ(t ) =
∫ t

0
re−rτ ρ(τ |t ) dτ + e−rt U †(0, t ) ρ0 U (0, t ) (9)

where the last term corresponds to the event that there is
no reset within [0, t]. Now, at long times t , this last term
vanishes exponentially and the density matrix ρ(t ) approaches
a stationary value (as t → ∞)

ρstat =
∫ ∞

0
re−rτ U †(0, τ )ρ0U (0, τ )dτ (10)

where the subscript “stat” stands for stationary.
We note that there are two distinct ways one can interpret

Eq. (10). The first constitutes looking at ρstat as an ensemble
average. To see this, we consider a unitarily evolving system
without reset evolving from t = 0 with the initial density
matrix ρ0. Now, imagine N0 copies of the system along with
N0 observers. Each observer measures, for the first time, the
density matrix at a preferred time τ and records the outcome.
The time of measurement, τ , varies from one observer to
another and is distributed as pr (τ ) = re−rτ . An average of
the outcome of such single one-time measurement for all N0

observers for large N0 (which is the same as averaging over
τ ) yields ρstat . Note that in this interpretation, there is no reset
and the observers do not track the evolution of the system
after the measurement. Thus this procedure leads to ρstat via
ensemble averaging over N0 copies of the system in the limit
of large N0.

The second way to interpret Eq. (10) is as follows. We
consider a single copy of unitarily evolving system without
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reset. The observer makes the first measurement at a random
time τ [exponentially distributed with pr (τ )] and immediately
after the measurement resets it to the initial state. It is to be
noted that here measurement and reset constitute two separate
processes; the reset protocol is to be designed to project the
state of the system after the measurement to its initial state.
This processes is repeated for several times followed by an
average over all measurement data. This again leads to ρstat

via time averaging over measurements carried out on a single
copy of the systems. Thus the time and the ensemble averages
are clearly equivalent; both of them may be used to obtain
Eq. (10) provided τ is chosen from the same exponential
distribution. This equivalence owes its origin to the fact that
the time evolution of the system between any two reset
events is independent of any other such evolution; hence these
evolutions lead to a statistical ensemble.

To investigate further the consequence of a nonzero r in the
evolution of the density matrix, we consider the steady-state
density matrix of a generic nonintegrable system (reached
at long times and provided that such a steady state exists)
following a quench in the absence of resets (r = 0). It is
well known that such steady-state density matrices retain
only diagonal terms (in the eigenbasis of the Hamiltonian H

controlling the postquench evolution); all off-diagonal terms
vanish. To see this, let us consider an arbitrary initial quantum
state |ψ (0)〉 given by

|ψ (0)〉 =
∑

α

cα|α〉, H |α〉 = εα|α〉 (11)

where cα = 〈α|ψ〉 denotes the overlap of the wave function
with the eigenstate |α〉 and εα is the corresponding eigenvalue.
The elements of the density matrix at any time t in the energy
eigenbasis under such Hamiltonian evolution is thus given by

ραβ (t ) = c∗
αcβe−iωβαt (12)

and ωβα = (εβ − εα ). Now consider the fate of this matrix
element at long time by calculating a time average of ραβ

ραβ (t ) = lim
T →∞

1

T

∫ T

0
dtραβ (t ) = |cα|2δαβ. (13)

We note that only the diagonal terms survive at long times and
such a density matrix typically signifies that the system at long
times, in its steady state, is described by a diagonal density
matrix ρD = ρααδαβ . The evolution of a quantum statistical
system to such a steady state essentially signifies loss of phase
information of the initial state. Thus in the steady state, any
quantum operator Ô of the system has an expectation value
[Eq. (13)]

〈O〉 =
∑
αβ

Oαβρβα =
∑

α

|cα|2Oαα = OD. (14)

Next let us consider the fate of such a density matrix in the
presence of a stochastic reset with r > 0. Using Eqs. (12) and
(10), one finds that

ραβ =
∫ ∞

0
dτre−(r+iωβα )τ c∗

αcβ

= (ρ0)αβ

r

r + iωβα

for β �= α

= ρD = (ρ0)αα for α = β (15)

where the initial density matrix elements are given by
(ρ0)αβ = c∗

αcβ . Thus we find that the reset averaged steady-
state density matrix retains off-diagonal elements under time
evolution and is not diagonal in the energy basis. We there-
fore conclude that stochastic resets leads to steady state
density matrices which are qualitatively different from their
r = 0 counterparts. Note that for r → 0, which signifies, on
the average, a very long reset time, the off-diagonal terms
vanish and the density matrix recovers its diagonal form as
expected. In contrast, for r → ∞, ραβ → (ρ0)αβ . This is a
manifestation of the quantum Zeno effect signifying a total
freezing out of the system dynamics for successive projections
with very short intermediate unitary evolution.

Before closing this section we note that the presence of
such off-diagonal terms in the steady-state density matrix
of the system will show up in the expectation value of any
generic operator of such a quantum system. Using Eq. (14), it
is easy to see that

〈O〉 = OD +
∑
α �=β

c∗
αcβOβα

r

r + iωβα

. (16)

We note that all operator expectations deviate from their diag-
onal ensemble values signifying the presence of a steady state
characterized by a nondiagonal density matrix. Furthermore,
for operators which obey Oαβ = Oβα , Eq. (16) can be cast to
a slightly more suggestive form,

〈O〉 = OD +
∑
αβ

|cβ ||cα|Oαβ

r

r2 + ω2
αβ

× [r cos(θαβ ) + ωαβ sin(θαβ )], (17)

where cα = |cα| exp[iθα], and θαβ = θα − θβ . Thus for any
finite r , 〈O〉 �= Tr[ρDÔ] = OD and it receives contribution
from the off-diagonal elements of ρ. Thus a generic observ-
able does not thermalize under such dynamics.

For perfect resets that we have considered so far, the
overlap coefficient cα , for any α, is determined completely
by the initial wave function of the system. In contrast, if the
reset is imperfect, cα would be stochastic and one would need
to average over them with respect to some probability distri-
bution. In the extreme case when the reset projects the system
to a completely random state in the Hilbert space, such an
average leads to 〈O〉 = ∑

α Oαα〈|cα|2〉 since random-phase
fluctuations (fluctuations in θα) would cancel the contribution
of the off-diagonal terms to 〈O〉. In this case, one would
only get diagonal contributions. However, a generic imperfect
reset is not this extreme case. In a generic case, the system
is projected to a state that is not a fully random state, and the
distribution of cα is expected to peak around their initial values
with a finite width. In that case, an average over values of cα

will retain a finite off-diagonal contribution of 〈O〉. Thus we
expect the off-diagonal elements of ρ and their contributions
to 〈O〉 to be robust against moderate imperfection in the reset
protocol. For the rest of this work, we shall analyze the case
of perfect resets.

III. INTEGRABLE MODELS

In this section, we consider two integrable models. The
first one would constitute a chain of 1D fermions on a lattice
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while the second would be the free spinless fermions obeying
a Dirac-like equation in d dimensions.

A. Fermion chain in one dimension

The fermion chain model that we consider consists of free
spinless fermions with nearest-neighbor hopping such that
[59]

H = −(1/2)
∑
m

(c†mcm+1 + H.c.) (18)

where cm denotes the annihilation operator for a fermion on
the mth site and the hopping amplitude of fermions is set to
1/2. The initial state for these fermions is chosen to be a step
function: each negative site (and the origin 0) is occupied by
a fermion, while each positive site is empty, i.e., 〈c†mcn〉 =
δmnθ (−n), where θ denotes the Heaviside step function
[57–59]. Thus, initially, the density per site on average is
1/2 and the subsequent unitary evolution preserves the to-
tal number of particles. Using Fourier transform, c̃(k) =∑∞

m=−∞ cm ei k m, one can easily diagonalize the Hamiltonian
H . Also, using this Fourier basis, one can easily express the
fermion creation operator at any time t to be

cm(t ) = eiHtcm(0)e−iH t =
∑

n

in−mJn−m(t )cn(0), (19)

where Jk (t ) denotes the Bessel function. Thus the expected
density nm(t ) = 〈0|c†m(t ) cm(t )|0〉 of the fermions at site
m > 0 at any time t , under a Hamiltonian evolution, can be
expressed as [59]

nm(t ) =
∞∑

k=m

J 2
k (t ). (20)

For m < 0, the density is simply

nm(t ) = 1 − n1−m(t ) for m > 0. (21)

The average density profile nm(t ) evolves with time. As time
t → ∞, the average density nm(t ) → 1/2 for every m, i.e.,
the density profile becomes asymptotically flat with value 1/2
(since the evolution preserves the total number of particles).
However, at any finite time t , the density profile is rather
nontrivial. At any given time t , the density approaches asymp-
totically to 1 as m → −∞, while it vanishes asymptotically as
m → ∞. However, away from these two boundaries, inside
the bulk, the density is different from 1 or 0. This bulk region
spreads around m = 0 ballistically with time t . Indeed, for
large t and large |m|, but with the ratio m/t = v fixed, by
analyzing the asymptotics of Bessel functions in Eqs. (20) and
(21), the density profile nm(t ) converges to a scaling form

nm(t ) → S

(
m

t

)
(22)

where the scaling function S(v), describing the shape of the
bulk, has a nontrivial form [57]. For v > 0,

S(v) = 1

π
cos−1(v) for 0 < v < 1

= 0 for v � 1 (23)

2 1 0 1 2
v

0.0

0.2

0.4

0.6

0.8

1.0
S v

FIG. 1. The density profile at late times t converges to a scaling
function nm(t ) → S( m

t
). The figure shows a plot of S(v) vs. v.

while for v < 0,

S(v) = 1 − S(−v) for v < 0. (24)

A plot of this shape scaling function S(v) vs v is given in
Fig. 1. Thus, the density profile nm(t ) for late times t has a
nontrivial profile for −t < m < t , described by the scaling
function S(v). The width of this bulk region increases linearly
with t at late times t .

We now consider switching on the reset mechanism with
rate r , discussed in the previous section. This resetting pro-
tocol will drive the density to a nontrivial stationary state.
To see this, we compute the average density profile nm(r )
of this fermionic chain in the presence of a finite reset rate
r . The calculation is quite easy and straightforward, given
the general formalism in the previous section. We start from
the expression of the stationary density matrix operator ρstat

given in Eq. (10). The average stationary density profile, upon
choosing the resetting time distribution p(τ |t ) as in Eq. (7)
with t → ∞, is then given by

nm(r ) = 〈m|ρstat|m〉 = r

∫ ∞

0
dτ e−rτ nm(τ ) (25)

where nm(τ ) is the average density profile at time τ without
reset, and is given explicitly in Eqs. (20) and (21). Using this,
we obtain, for m > 0,

nm(r ) =
∞∑

k=m

Ck (r ) (26)

where Ck (r ) = r
∫ ∞

0 J 2
k (τ ) e−rτ dτ . For m � 0, we have

n1−m(r ) = 1 − nm(r ) (27)

which simply follows from Eq. (25) and the relation in
Eq. (21). The function Ck (r ) can be explicitly expressed as

Ck (r ) = 4m

π
�2(k + 1/2)r−(2k)

× 2F1

(
1

2
+ k,

1

2
+ k, 1 + 2k; − 4

r2

)
(28)

where � denotes the Gamma function and 2F1 is the regular-
ized hypergeometric function. To get a feeling how the spatial
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m

r

FIG. 2. Plot of nm(r ) as a function of r and m in the (m-r ) plane,
showing exponential decay of nm(r ) for large m and large r .

density profile looks, we provide, in Fig. 2, a color plot of
nm(r ) as a function of m and r in the (m-r ) plane. The figure
shows an exponential decay of nm(r ) for large m, as well
as for large r . We note that for large r , nm(r ) → 0 for all
m > 0 which is the Zeno result showing that nm → nm(t =
0) = θ (−m) in this limit. For r → 0, nm(r ) approaches the
value nm(t ) at large t (without reset), namely nm(r ) → 1/2.

Obtaining precisely the large m asymptotic behavior of
nm(r ), for any fixed r , from the exact summation formula
in Eqs. (26) and (28) turns out to be rather cumbersome.
However, in the limit of small r , the large m behavior can
be derived precisely as follows. For small r , the integral in
Eq. (25) is dominated by the large t behavior of nm(t ). Now,
for large m and large t , we can replace nm(t ) by its scaling
form, nm(t ) = S(m/t ), where S(v) is given in Eq. (23). This
gives, for large m and r → 0 (but fixed)

nm(r ) ≈ r

π

∫ ∞

m

dτ e−rτ cos−1

(
m

τ

)
. (29)

An integration by parts yields

nm(r ) = m

π

∫ ∞

m

dτ
e−rτ

τ
√

τ 2 − m2
. (30)

Next, we shift τ = m + x, expand the integrand for large m,
and carry out the integration over the first few terms of the
expansion. This yields

nm(r ) � e−rm

√
2πrm

[
1 − 5

8

1

rm
+ 128

129

1

(rm)2
+ · · ·

]
. (31)

Thus the leading behavior of the steady-state density profile at
large m is nm(r ) � e−mr/

√
2πrm. This agrees well with the

exponential decay observed in numerics for large m as long as
mr > 1, as can be seen in Fig. 3. Note that the steady state is
parametrized by the value of reset rate r .

The asymptotic result in Eq. (31) for large m and fixed
small r suggests that there is a scaling limit r → 0, m → ∞,
but with the product x = rm fixed such that the density profile

0 0.02 0.04 0.06 0.08r

0

0.1

0.2

0.3

FIG. 3. A comparison of plot of nm(r ) as a function of r with the
analytic scaling form at large m = 100. The red line corresponds to
exact numerics while the green line represents the scaling function.

has a scale invariant form

nm(r ) → F (r m). (32)

Indeed, we find that this is the case with the full scaling
function F (x) for all x, given explicitly by

F (x) = 1

π

∫ ∞

x

K0(|y|) dy. (33)

where K0(y) is the modified Bessel function of index 0. A
derivation of this result in given in Appendix B. Note that
F (x) satisfies the symmetry relation,

F (−x) = 1 − F (x). (34)

A plot of this function is given in Fig. 4. Using the known
asymptotics of K0(y), one can easily show that as x → ∞

F (x) → e−x

√
2πx

[
1 − 5

8

1

x
+ 128

129

1

x2
+ · · ·

]
, (35)

in full agreement with the tail in Eq. (31). When x → −∞,
one can use the symmetry relation in Eqs. (34) and (35)
to obtain the asymptotics. Clearly F (x) → 1 as x → −∞.
Furthermore, when x → 0, we get

F (0) = 1

π

∫ ∞

0
K0(y) dy = 1

2
. (36)

2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
F x

FIG. 4. The scaling function F (x ) vs x in Eq. (33). It satisfies the
symmetry property: F (x ) = 1 − F (−x ).
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This is also consistent with the fact that nm(r ) → 1/2 as
r → 0 (where 1/2 is the average uniform density attained in
the system at long times in the absence of reset).

B. Dirac fermions

In this subsection, we shall study a class of periodically
driven integrable models whose Hamiltonian can be repre-
sented by free Dirac fermions in d dimensions:

H (t ) =
∑

�k
ψ

†
�kH�k (t )ψ�k, (37)

where �k is the d-dimensional momentum, ψ�k = (c�k, c
†
−�k )T

is the two-component fermionic field, c�k are the annihilation
operators for the fermions, and H�k (t ) is given by

H�k = [g(t ) − b�k]τ z + (��kτ
+ + H.c.). (38)

Here g(t ) is a periodic function of time characterized by a
time period T , and ��k and b�k can be arbitrary functions of mo-
menta whose specific forms depend on the particular physical
system which the model [Eq. (37)] represents. We note here
that Eq. (37) may represent several integrable models such
as the Ising and XY models in d = 1 [63], the Kitaev model
in d = 2 [64], triplet and singlet superconductors in d > 1,
and Dirac fermions in graphene and atop topological insulator
surfaces [65,66]. In what follows, we shall first obtain general
results by analyzing fermionic systems given by Eq. (38). The
relevance of these results in the context of specific models will
be discussed later in the section.

To study the dynamics of these periodically driven inte-
grable models with resets, we choose the following protocol.
We draw a random integer n from a distribution Pr (n) of our
choice characterized by the reset rate r and let the system
evolve for n drive cycles starting from an initial state |ψ0〉.
After this, we measure correlation functions of the system.
This is followed by a reset to the initial state |ψ0〉. This
process is repeated for several times and correlation functions
are averaged over all measurements. The specific correlation
functions used in our study shall be discussed in detail later in
this section.

To analyze the behavior of the correlation function in such
dynamics, we first note that since these models are Gaussian,
we would need to study only the quadratic fermionic correla-
tors. The states of the system at t = 0 and for any given �k is
given by

|ψ�k〉 =
(

u�k
v�k

)
, |ψ〉 =

∏
�k>0

|ψ�k〉 (39)

where u�k[v�k] = {1 − [+][g(0) − b�k]/E�k}1/2/
√

2, and E�k =√
[g(0) − b�k]2 + �2

�k . For simplicity we shall start from an
initial state (u�k, v�k ) = (0, 1) and drive the system according
to some periodic protocol with time period T for n periods.
The quadratic fermionic correlators of the model are given by

C�k (nT ) = 〈ψ�k (nT )|c†�kc�k|ψ�k (nT )〉 = |vn�k|2,
F�k (nT ) = 〈ψ�k (nT )|c�kc−�k|ψ)�k(nT )〉 = v∗

n�k (t )un�k (40)

where |ψ�k (nT )〉 = (un�k, vn�k )T is the wave function of the
system at momentum �k and after n drive cycles.

Next we note that for any periodic drive, the time peri-
odicity of the Hamiltonian ensures that the unitary evolution
operator at the end a drive cycle can be written as U (0, T ) =
exp[−iHF T ] where HF is the Floquet Hamiltonian [67]. Con-
sequently, the correlation functions of such driven systems, at
the end of n drive periods, can also be expressed in terms of
eigenfunctions and eigenvectors of HF [67,68]. For the class
of integrable models that we treat here, one can show [68]

U�k =
(

cos(θ�k )eiα�k sin(θ�k )eiγ�k

− sin(θ�k )e−iγ�k cos(θ�k )e−iα�k

)
= e−iH�kF T (41)

where the parameters θ , α, and γ can be found in terms of
initial [(u0, v0) = (0, 1)] and final [(u�k, v�k )] wave functions
after one drive cycle as

sin(θ�k ) = |u�k|, α�k (γ�k ) = Arg[u�k (v�k )]. (42)

For a more general choice of the initial wave functions,
the expressions for θ , α, and γ can be found in Ref. [68].
Furthermore, since U�k is a SU(2) matrix, one gets [68]

U�k = e−i(�σ ·�n�k )φ�k , n�k = �ε�k
|�εF �k|

, φ�k = T |�εF �k| (43)

where

n�k1 = − sin(θ�k ) sin(γ�k ) sin(φ�k )/D�k,

n�k2 = − sin(θ�k ) cos(γ�k ) sin(φ�k )/D�k,

n�k3 = − cos(θ�k ) sin(α�k ) sin(φ�k )/D�k, (44)

D�k =
√

1 − cos2(θ�k ) cos2(α�k ),

|�εF �k| = arccos[cos(θ�k ) cos(α�k )]/T .

Here Sgn denotes the signum function. Note that at the edge
of the Brillouin zone, where the off-diagonal component of
Hk disappears, Uk becomes a diagonal matrix, which in turn
makes sin(θ�k ) = 0. This leads us to the result n�k1 = n�k2 = 0
and n�k3 = ±1 for such momentum values.

Using the fact |ψ�k (nT )〉 = Un
�k |ψ�k (0) and Eqs. (40)–(44),

after some algebra, we can write

δC�k (n) = f1(�k) cos(2nφ�k ),

δF�k (n) = [f2(�k) cos(2nφ�k ) + f3(�k) sin(2nφ�k )] (45)

where δC�k (n) = 〈c†�kc�k〉n − 〈c†�kc�k〉∞ and similarly for δF�k (n).

In Eq. (45), the quantities f1(�k), f2(�k), and f3(�k) are given in
terms of elements of the Floquet Hamiltonian HF as

f1(�k) = −(
1 − n2

�k3

)
, f2(�k) = −in̂�k3f3(�k),

f3(�k) = i(n�k1 + in�k2). (46)

Note that δC and δF vanishes by construction for n → ∞.
The contribution to these terms comes from the off-diagonal
terms of the density matrix in the Floquet basis as is evident
from the presence of cos(2nφ�k ) and sin(2nφ�k ) factors in
their expression [68]. For n → ∞, the system is described
by a generalized Gibbs ensemble (GGE) which is character-
ized by the values of the correlations C∞(�k) = 1 − n2

�k3
and
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FIG. 5. Plot of δC1 as a function of k and r for the pulse protocol
with g0 = 2, g1 = 0.5, and T = 1. All energies are scaled in units
of J .

F∞(�k) = −n�k3(n�k1 + in�k2). Any deviation of the value of
the fermionic correlators from C∞ or F∞ in the steady state
therefore constitutes a different GGE representing that state.
For this to happen, one clearly needs nonzero values of δC or
δF for such steady states.

Next, we look into the evolution of such a periodically
driven model in the presence of resets characterized by Pr (n)
as discussed earlier. We note here that the resets do not mix the
different �k modes and hence retain the underlying integrability
of the model. Thus we do not expect the steady-state density
matrix to be given by a Gibbs ensemble with a characteristics
temperature. The average value of δC�k and δF�k , under such a
reset protocol, is given by

δC�k (r ) =
∞∑

n=1

δC�k (n)Pr (n),

δF�k (r ) =
∞∑

n=1

δF�k (n)Pr (n). (47)

Note that a finite value of δC�k (r ) or δF�k (r ) for any k signifies
a GGE characterized by r which is different from the one at
r = 0. In what follows we shall focus on δC.

Below, we choose two different probability distributions
for Pr (n). The first one is given by Pr (n) = [Lir (1)]−11/nr

for r > 1 and r ∈ Z, where Lir [1] = ∑
n(1/nr ) is the Poly-

Log function. In the first case one obtains

δC1�k (r ) = f1(�k)Re[Lir (e2iεF �kT )]/Lir [1] (48)

where εF �k is the Floquet energy spectrum [Eq. (44)].
The second one is the more well-known Poisson distribu-

tion for which Pr (n) = rn exp[−r]/n!. For this, we find

δC2�k (r ) = f1(�k){ e−r[1−cos(2εF �kT )] cos[sin(2εF �kT )] − e−r}.
(49)

To check if δC1 [Eq. (48)] and δC2 [Eq. (49)] are fi-
nite functions of r and k, we consider the one-dimensional
Ising model in a transverse field. The Hamiltonian of this
model can be mapped to Eq. (37) with bk/J = cos(k) and
�k/J = sin(k), where J is the interaction strength between
neighboring Ising spins and g = h/J is the strength of the

FIG. 6. Plot of δC2 as a function of k and r . All parameters are
same as in Fig. 5.

transverse field. We plot δC1 and δC2 as a function of
k and r . We choose a periodic delta function pulse pro-
tocol g(t ) = g0 + g1

∑
n δ(t − nT ) with g0 = 2, g1 = 0.5,

and T = 1. For this protocol, εF �k = arccos[cos(E�kT ) + (1 −
n2

3�k ) sin(E�kT )]/T [68]. Substituting this in Eqs. (48), and
(49), one may obtain δC1(2)�k as a function of g0, g1, T , r , and
�k. The results, shown in Fig. 5 for 1/nr distribution and Fig. 6
for the Poisson distribution, clearly indicate that both δC1 and
δC2 are finite and functions of r for all k �= 0, π where these
correlations are identically zero (since f1,2 = 0 and f3 = 1 for
these momenta). This clearly shows that stochastic resets lead
to distinct family of GGEs characterized by a reset rate r for
periodically driven integrable quantum systems.

IV. BOSE-HUBBARD MODEL IN A TILTED
OPTICAL LATTICE

In this section, we consider the stochastic dynamics of a
Bose-Hubbard model in the presence of a tilt, or an effective
electric field. To see how such an electric field can be realized,
first let us consider a typical Bose-Hubbard model in a deep
one-dimensional (1D) optical lattice (with lattice spacing a)
so that the bosons are localized with n = n0 bosons occupying
each lattice site. The boson system is described by the well-
known Bose-Hubbard Hamiltonian given by

H = −J
∑
〈rr ′〉

(b†rbr ′ + H.c.)

+
∑

r

[−μnr + Unr (nr − 1)/2] (50)

where J is the nearest-neighbor hopping amplitude of the
bosons, U is the on-site interaction potential, and μ is the
chemical potential. Here br denotes the boson annihilation
operator at site r , nr = b

†
rbr is the boson number operator, and

〈. . .〉 denotes sum over nearest-neighboring sites of the lattice.
We choose J/U � 1 and μ = μ0 so that the ground state of
H represents a Mott localized state of bosons with n0 bosons
per site.

To generate a tilt for the bosons, the most experi-
mentally convenient way is to apply a Zeeman magnetic
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field which varies linearly in space: B(r ) = B0(r/a). The
Zeeman term for this bosons can be written as Hz =
−∑

r gμBB0(r/a)nr = ∑
r Ernr , where E = gμBB0/a is

the effective electric field seen by the bosons, B0 is the field
amplitude, and μB is the Bohr magneton. The Hamiltonian of
the system in the presence of the tilt is given by

H = −J
∑
〈rr ′〉

(b†rbr ′ + H.c.)

+
∑

r

[−(μ + Er )nr + Unr (nr − 1)/2]. (51)

The equilibrium and nonequilibrium properties of this Hamil-
tonian has been studied in several situations [60,69]. To
understand the property of such a system, it is first useful to
note that a system of noninteracting bosons (U = 0) in the
presence of a tilted optical lattice constitutes a Wannier-Stark
problem with exponentially localized wave functions. Thus,
contrary to the classical expectation, bosons do not move to
the last site to minimize their energy. Such a movement which
constitutes an electric breakdown involves the tunneling of the
bosons to higher single-particle bands. The time required for
such breakdown for ultracold boson systems turns out to be
larger than the system lifetime. Thus the parent boson state
is preserved within experimental time scales. This feature is
preserved, albeit with some difference, in the Mott regime
where U is large. The strategy for a theory of such a system
thus involves identifying the low-energy subspace around the
parent Mott state which, in the presence of the electric field,
is a metastable state with a very long lifetime [60].

It turns out that the low-energy theory of such a state can
be formulated in terms of dipoles [60]. The creation of a
dipole involves the hopping of a boson from a site of the
1D lattice to its next neighbor. This costs an energy U − E .
Thus in the parameter regime where U − E, J � U, E , the
low-energy effective Hamiltonian of the bosons in a tilted
lattice can be described in terms of dipole operators d

†
� =

b
†
j bi/

√
n0(n0 + 1), where � denotes the link between sites i

and j , as

Hd = −w
∑

�

(d� + d
†
� ) + (U − E )

∑
�

n�. (52)

Here n� = d
†
�d� is the dipole number operator and w =

J
√

n0(n0 + 1). The dipole model, so constructed, has two
constraints. First, there cannot be more than one dipole in a
given site (n� � 1) and second, there cannot be two dipoles
on adjacent links (n�n�+1 = 0) [60]. These constraints arise
as the states which do not obey them can be shown not to
be a part of the low-energy subspace with respect to the
parent Mott state. It has been shown that the dipole model
leads to two distinct ground states. The first is the dipole
vacuum which occurs at U > E ; in the boson language this
corresponds to the parent Mott state with n0 bosons per sites.
The second is the maximal dipole ground state occurring at
E � Ec = U + 1.31w which corresponds to a Z2 symmetry
broken state with a dipole on odd or even links (but not both
due to the second constraint mentioned above). In terms of
the original boson model this state corresponds to n0 + 1 and
n0 − 1 bosons on every alternate site. These two states are

separated by a quantum phase transition belonging to the Ising
universality class at E = Ec. The quantum dynamics of the
model by sudden, ramp, and periodic time variation of the
electric field has been studied in Ref. [69].

Below, we compute the steady-state expectation value of
the dipole density operator nd = ∑

� n�/N , where N is the
number of lattice sites in the chain and we have set the
lattice spacing to unity. We start from a dipole vacuum state
which is the ground state of the system for U > E and w =
0 and study its evolution under the dipole Hamiltonian Hd

with (U − Ef )/w = 0 and (U − Ef )/w = −10 using exact
diagonalization (ED). The former parameter corresponds to
the system being near the critical point while the latter corre-
sponds a maximal dipole ground state. The initial state of the
system is denoted by |ψ0〉 for which 〈nd〉 = 0. The state of the
system can be expressed at any instant t > 0 as

|ψ (t )〉 =
∑

α

cαe−iεα t |m〉,

H [Ef ]|α〉 = εα|α〉 cm = 〈m|ψ0〉 (53)

where εα and |α〉 can be obtained numerical diagonalization
of H [Ef ]. We note that since Hd can be represented by a real
symmetric matrix, cα can be chosen to be real. We shall use
this choice for the rest of the section. Using Eq. (53), one
obtains

nd (t ) = 1

N

∑
αβ

cαcβe−iωβαt 〈α|
∑

�

n�|β〉, (54)

where ωβα = (εβ − εα ). Note that nd (t = 0) = 0 since the
initial state corresponds to a dipole vacuum. In contrast, the
steady-state (diagonal ensemble) value is finite and is found
numerically to be nd (t → ∞) = nde

d = 0.2575 for U = E .
The corresponding value for (U − E )/w = −10 is nde

d =
0.0324. The reason for a smaller value of nde

d in the ordered
phase can be understood as follows [6,69]. First, we note that
deep in the ordered phase |ψ0〉 has substantial overlap with
only a few of the eigenstates of the Hamiltonian; these eigen-
states corresponds to 〈nd〉 � 0. Thus nde

d � ∑
α c2

α〈α|n̂d |α〉
remains small. In contrast, near the critical point, |ψ0〉 has
finite overlap with several eigenstates of the near-critical
Hamiltonian leading to a larger value of nde

d .
Next, we modify the unitary evolution following the

quench with stochastic reset of the system at a time τ

which is a random number with Pr (τ ) = r exp[−rτ ]. Our
numerical strategy for finding the effect of the reset is the
following. First, we let the system evolve up to a time τ

which is obtained using a random number generator and
measure nd (τj |t0) ≡ nd (τj ) at a fixed large t0. We repeat
this process for N0 = 10 000 and obtained average nd (r ) =∑N0

j=1 Pr (τj )nd (τj ) from the data. Finally we repeat the proce-
dure for several r . Note that since we can ignore the probabil-
ity of having zero reset by formally choosing a large measure-
ment time, the numerical procedure is expected to produce
identical result to those obtained via Eqs. (10) and (16). We
note that we have checked that for finite r , the system retains
finite off-diagonal matrix elements of the density matrix for
large N0: 〈m|ρ|n〉 �= 0 for m �= n in the steady state. Thus the
resultant deviation of nd or S from their r = 0 steady-state
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FIG. 7. Plot of the dipole density nd (r ) as a function of r for
(a) U = E and (b) (U − E)/w = −10. The inset shows the probabil-
ity distribution of nd at fixed r . The plots correspond to N0 = 10 000
and N = 12.

values cannot be interpreted as due to a steady state Gibb’s
distribution with r dependent temperature.

The results obtained from such a procedure are shown in
Figs. 7(a) and 7(b) for U = E and (U − E )/w = −10 respec-
tively. We find that in both cases the steady-state values of the
dipole density with a fixed reset rate, nd (r ), interpolates be-
tween nd (t = 0) = 0 (for r → ∞) and the diagonal ensemble
value nde

d (for r → 0). The r dependence of nd (r ) indicates
that the steady-state density matrix retains off-diagonal matrix
elements and thus does not correspond to a diagonal density
matrix for any finite r . We also note that the initial decrease of
nd (r ) from the diagonal ensemble value (r = 0) to the Zeno
(initial) value (r → ∞) is faster for U = E . This feature can
be qualitatively understood as follows. We note that the slope
of nd (r ) near r = 0 can be expressed using Eq. (17) as

R = dnd (r )

dr
=

∑
α>β

cαcβ〈α|nd |β〉 2ω2
βαr(

r2 + ω2
βα

)2 (55)

where we have used the fact 〈α|nd |β〉 = 〈β|nd |α〉. Note that
near the critical point a larger number of states have a finite
overlap with |ψ0〉 rendering a larger number cαs finite; this
leads to enhancement of R for small but finite r . For r = 0
and r → ∞, the slope vanishes. A plot of |R(r = 1)| for as a
function of (U − E )/w for a representative r = 1.2 is shown
in Fig. 8 confirming this expectation. Thus we find that |R| for
a typical finite r is sensitive to the presence of a critical point
in the system and is expected to peak around it; however, its
peak need not be at the precise location of the critical point.

-10 -5 0 5 10
(U-ε)/

0

0.02

0.04

|
 |

N=12
N=14
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FIG. 8. Plot of R as a function of (U − E )/w for N = 12,

14, and 16.
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FIG. 9. Left panel: Plot of the dipole density-density correlation
function C��′ (r ) for two representative values of |� − �′| as a function
of r . Right panel: Plot of the half chain entanglement S(r ) as a func-
tion of r . The inset shows S(t ) for a particular unitary time evolution
between two resets after the quench. The diagonal ensemble state
value of S = 2.18 as can be seen from the inset. Both the plots
correspond to N0 = 10 000, U − E/w = 0, and N = 12.

Next we compute the dipole correlation function C�,�′ (r ) =
〈〈nd (�)nd (�′)〉〉 where the expectations correspond to that with
respect to |ψ (τ )〉 and average over Pr (τ ). The result is shown
in Fig. 9(a) for � = 1 and �′ = 3 and �′ = 7. The diagonal
ensemble or the steady-state value of this correlation function
is shown via the dotted horizontal lines in Fig. 9(a). Once
again we find that the value of C��′ (r ) interpolates between
its diagonal ensemble value for r → 0 and the initial value
for r → ∞. In Fig. 9(b), we plot the half-chain entanglement

S(r ) =
∫ ∞

0
dtre−rtS(t ), S(t ) = −Tr[ρ(t ) ln ρ(t )] (56)

where the reduced density matrix ρ for N/2 sites in the chain
is computed numerically using ED. We note that S(r ) also in-
terpolates between the diagonal ensemble S(0) = Sd � 2.52
and the quantum Zeno (initial) S(∞) = Sinitial = 0 values.
This confirms our expectation that the reset averaged steady-
state density matrix retains off-diagonal matrix elements.

Before ending this section, we show that the reset indeed
leads to a steady state as discussed earlier. To this end, we
plot the average value of the dipole density nd (N0) over N0

measurements as a function of N0 in Fig. 10 for several
representative values of r . We find that nd (N0) indeed ap-
proaches a constant value as N0 increases for any r showing
that the system reaches a steady state for large N0. We have

0 1000 2000 3000 4000
N0

0.1

0.15

0.2

0.25

n d( N
0 )

r=0.1
r=0.5
r=1.0

FIG. 10. Plot of nd (N0) as a function of the number of measure-
ments N0 showing N0 independence of nd for large N0. The plots
correspond to U − E/w = 0, and N = 12. See text for details.
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checked that a similar steady-state behavior is displayed by
the correlation functions C��′ .

V. DISCUSSION

In this work, we have studied the unitary dynamics of
quantum integrable and nonintegrable systems interrupted by
stochastic resets characterized by a rate r . For nonintegrable
models, such dynamics leads to a nonthermal steady-state
density matrix. Our analysis shows that such a dynamics leads
to qualitatively different steady states for nonintegrable and
GGEs/stationary states for integrable quantum systems.

For nonintegrable systems, we find that the density ma-
trix, averaged over reset probability distribution, retains off-
diagonal elements in the eigenbasis of the Hamiltonian con-
trolling its unitary evolution. Thus such dynamics lead to
nondiagonal steady-state density matrices. This also indicates
that the expectation value of a generic observable, averaged
over the reset distribution, retains contribution from such off-
diagonal terms. Thus the steady-state value of the observable
is no longer given by its average over a diagonal steady-state
density matrix as is customary for evolution without reset.
We verify these results by explicit numerical calculation on
Bose-Hubbard model on a tilted optical lattice which has been
realized experimentally [61]. We compute the dipole density,
dipole density-density correlation and half-chain entangle-
ment entropy of the model as a function of r . For all computed
quantities, we find our results to agree with the diagonal
ensemble result at r = 0 and the quantum Zeno result for r →
∞. In between, these quantities are smooth functions of r

indicating the finite contribution of the off-diagonal elements
of the density matrix.

For the integrable model, we have studied two separate ex-
amples. The first involves a spinless fermionic chain described
by a hopping Hamiltonian with all the fermions occupying the
left half of the chain. We study the behavior of the fermionic
density nm(r ) as a function of the reset rate and derive a scal-
ing function which describes its stationary state behavior. Our
results predicts a decay of the fermionic density as a function
of the site index and reset rate as nm(r ) ∼ exp[−mr]/

√
2πmr

for mr � 1. The second example involves periodically driven
Dirac fermions in the presence of resets. Here we have
adapted a protocol where the system is allowed to evolve
under a periodic drive for n cycles where n is a random integer
chosen from a predetermined distribution Pr (n). After this
evolution, the correlation functions of the system is computed
and its state is reset to its initial value. This process is repeated
and the average correlation is obtained summing over all
measured values weighted by Pr (n). This yields the steady-
state correlation function values for a finite r . We demonstrate
that these values depend on r indicating that the system is
described by GGEs characterized by r .

Experimental verification of our results involves imple-
menting the reset protocol. We note that such resets can be
implemented by suitable projections of the quantum state to
its initial value in ultracold atom systems by suitable laser
pulses. For examples, such experiments have already been
carried out leading to observation of the quantum Zeno effect.
Such observations constituted experimental implementation
of resets with r � 1 [70]. We also note that a finite chain of

bosons in a tilted lattice have been experimentally realized
[61]. In such experiments, the dipole density computed in
our work can be directly measured via parity of occupation
measurement [61,62]. For experimental purposes, we would
like to suggest measurement of bosonic dipole density as a
function of r . For this, one would need to reset the system
to the dipole vacuum state with a finite rate. This can in
principle be done by changing the value of the electric field to
a small value and letting the system equilibrate to the ground
state of the resultant Hamiltonian [61]. We predict that the
reset averaged value of the dipole density would be a smooth
decaying function of r and would be qualitatively similar to
that shown in Fig. 7.

To conclude, we have studied the dynamics of quantum
systems in the presence of stochastic resets and have shown
that the steady-state density matrices, averaged over reset
probability distribution, retains off-diagonal terms. We also
show that such dynamics for integrable models leads to a
family of GGEs/stationary states characterized by a reset
probability r . We have discussed experiments using ultracold
bosons which can test our theory.

We note that after our work was completed, Ref. [71],
which studies the spectral properties of quantum systems
under random resets using a different approach, appeared on
the arXiv.
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APPENDIX A: APPLICATION TO SINGLE PARTICLE
QUANTUM MECHANICS

In this Appendix, we are going to chart out the effect
of reset on two simple single-particle quantum-mechanical
systems. The first constitutes the evolution of a Gaussian wave
packet under reset while the second involves that of a coherent
state of a simple harmonic oscillator.

For the first case, we consider a 1D Gaussian wave packet
whose normalized wave function at t = 0 is given by

ψ (x, 0) = exp[−x2/(2σ 2)]/
√

2πσ

=
√

σ

2π

∫
dkeikxe−k2σ 2/2 (A1)

where σ quantifies the spread of the wave packet in real space.
For a free particle with H = k2/(2m), the wave function at
any time t is given by

ψ (x, t ) =
√

σ√
2π (σ 2 + it/m)

e−x2/2(σ 2+it/m). (A2)

Note that this indicates a ballistic spread of the wave packet
as is customary in quantum mechanics. Now consider an evo-
lution with reset characterized by the reset time distribution
p(τ |t0) given in Eq. (7), with the measurement time t0 → ∞.
Then the stationary probability density, characterized by the
square of the absolute value of wave function averaged over
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the reset time distribution, is given by

P (x; r ) =
∫ ∞

0
dτre−rτ |ψ (x, τ )|2. (A3)

For large x, the integral in Eq. (A3) can be evalu-
ated by the saddle-point method and yields P (x; r ) �
exp[−c(|x|2/r )1/3], where c is a constant independent of r .
This stretched exponential behavior of the tail of the proba-
bility distribution is to be contrasted with its counterpart for
a diffusive classical system for which P ∼ exp[−c′|x2/r|1/2]
where c′ is a constant [21]. The difference in these two
behaviors originates from the ballistic nature of the spread of
the wave packet in the quantum case.

For the second case, we consider a coherent state for a
simple harmonic oscillator given by

|α(t )〉 = e−|α|2/2
∑

n

αn

√
n!

e−iωnt |n〉 (A4)

where ωn = En = ω0(n + 1/2) denotes frequencies corre-
sponding to harmonic oscillator energy levels, and ω0 is the
natural oscillator frequency.

Now consider a typical element of the density matrix
constructed out of this coherent-state wave function. This is
given by

ρmn = e−|α|2 [αn(α∗)m]√
m!n!

ei(m−n)ω0t . (A5)

In the absence of any reset, the long-time average of any
off-diagonal terms vanishes. This leads to the diagonal ensem-
ble. However, if we now introduce the Stochastic reset with
P (r ) = re−rt we find finite off-diagonal elements

〈ρmn〉 = e−|α|2 [αn(α∗)m]√
m!n!

r[r − iω0(n − m)]

r2 + (n − m)2ω2
0

. (A6)

The presence of such finite off-diagonal elements is man-
ifested in several physical quantities. For example, the
mean position of the wave packet, without reset, is given
by (assuming real α without loss of generality) X(t ) =√

2/ω0α cos(ω0t ). Note that the time average of X vanishes
signifying localization of the wave packet; thus the diagonal
ensemble result corresponds to X(t → ∞) = 0. In contrast,
the time average of X with the reset is

X(r ) =
∫ ∞

0
dtre−rtX(t ) =

√
2α2

ω0

r2

r2 + ω2
0

. (A7)

The result interpolates between Zeno (r → ∞) and diagonal
ensemble (r → 0) limits as expected. This demonstrates that

the mean position of the coherent state wave packet can be
controlled by the reset rate r .

APPENDIX B: DERIVATION OF THE SCALING
FUNCTION F(x) IN EQ. (33)

We start from the exact expression for nm(r ) in Eq. (26),
where

Ck (r ) = r

∫ ∞

0
J 2

k (τ ) e−rτ dτ. (B1)

Next we use the exact identity [72]∫ ∞

0
J 2

k (t ) e−rτ dτ = 1

4π

∫ π

−π

dθ
eikθ√

r2

4 + sin2
(

θ
2

) . (B2)

Making the change of variable kθ = q gives

Ck (r ) = r

4πk

∫ kπ

−kπ

dq
eiq√

r2

4 + sin2
(

q

2k

) . (B3)

We now take the scaling limit, r → 0, k → ∞, while keeping
the product y = rk fixed. Setting k = y/r with y fixed we get

Ck=y/r (r ) = r2

4π y

∫ π y/r

−π y/r

dq
eiq√

r2

4 + sin2
(

qr

2y

) . (B4)

In the limit r → 0 (with fixed y), we can send the limits of in-
tegrations to ±∞ and also expand the sine in the denominator
to leading order for small argument. This leads to

Ck=y/r (r ) ≈ r

2π

∫ ∞

−∞

dq eiq√
q2 + y2

. (B5)

The integral can be recognized as 2 K0(|y|). Hence, we get the
result in the scaling limit

Ck (r ) ≈ r

π
K0(r|k|). (B6)

Finally, from Eq. (26), we get in the scaling limit [where the
sum in Eq. (26) can be replaced by an integral as r → 0]

nm(r ) =
∞∑

k=m

Ck (r ) ≈
∞∑

k=m

r K0(r|k|)

≈ 1

π

∫ ∞

rm

K0(|y|) dy. (B7)

This gives the result in Eqs. (32) and (33).

[1] J. Dziarmaga, Adv. Phys. 59, 1063 (2010).
[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,

Rev. Mod. Phys. 83, 863 (2011).
[3] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran,

T. F. Rosenbaum, and D. Sen, Quantum Phase Transi-
tions in Transverse Field Spin Models: From Statistical
Physics to Quantum Information (Cambridge University Press,
Cambridge, 2015); S. Mondal, D. Sen, and K. Sengupta,
Quantum Quenching, Annealing and Computation, edited by

A. Das, A. Chandra, and B. K. Chakrabarti, Lecture Notes in
Physics, Vol. 802 (Springer, Berlin, Heidelberg, 2010), Chap. 2,
p. 21.

[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[5] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.
Phys. 65, 239 (2016).

[6] K. Sengupta, S. Powell, and S. Sachdev, Phys. Rev. A 69,
053616 (2004).

104309-12

https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevA.69.053616
https://doi.org/10.1103/PhysRevA.69.053616
https://doi.org/10.1103/PhysRevA.69.053616
https://doi.org/10.1103/PhysRevA.69.053616


QUANTUM DYNAMICS WITH STOCHASTIC RESET PHYSICAL REVIEW B 98, 104309 (2018)

[7] P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801 (2006);
J. Stat. Mech. (2007) P06008.

[8] T. W. B. Kibble, J. Phys. A: Math. Gen. 9, 1387 (1976); Phys.
Rep. 67, 183 (1980).

[9] W. H. Zurek, Nature (London) 317, 505 (1985); Phys. Rep. 276,
177 (1996); B. Damski, Phys. Rev. Lett. 95, 035701 (2005);
W. H. Zurek, U. Dorner, and P. Zoller, ibid. 95, 105701 (2005).

[10] A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005); R.
Barankov and A. Polkovnikov, Phys. Rev. Lett. 101, 076801
(2008); A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi,
Phys. Rev. B 86, 064304 (2012).

[11] K. Sengupta, D. Sen, and S. Mondal, Phys. Rev. Lett. 100,
077204 (2008); S. Mondal, D. Sen, and K. Sengupta, Phys. Rev.
B 78, 045101 (2008).

[12] D. Sen, K. Sengupta, and S. Mondal Phys. Rev. Lett. 101,
016806 (2008).

[13] J. D. Sau and K. Sengupta, Phys. Rev. B 90, 104306 (2014); U.
Divakaran and K. Sengupta, ibid. 90, 184303 (2014).

[14] C. De Grandi and A. Polkovnikov, in Quantum Quenching,
Annealing, and Computation, edited by A. K. Chandra, A.
Das, and B. K. Chakrabarti, Lecture Notes in Physics Vol. 802
(Springer, Heidelberg, 2010), p. 75.

[15] S. R. Das, D. A. Galante, and R. C. Myers, Phys. Rev. Lett. 112,
171601 (2014); J. High Energy Phys. (2016) 164; D. Das, S. R.
Das, D. A. Galante, R. C. Myers, and K. Sengupta, ibid. (2017)
157.

[16] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008).

[17] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[18] M. Srednicki, Phys. Rev. E 50, 888 (1994); J. Phys. A 32, 1163

(1999).
[19] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 112,

150401 (2014); Phys. Rev. E 90, 012110 (2014); P. Ponte, A.
Chandran, Z. Papic, and D. A. Abanin, Ann. Phys. (Amsterdam)
353, 196 (2014); L. D’Alessio and M. Rigol, Phys. Rev. X 4,
041048 (2014).

[20] S. Nandy, A. Sen, and D. Sen, Phys. Rev. X 7, 031034 (2017).
[21] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601

(2011).
[22] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 44,

435001 (2011).
[23] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 47,

455004 (2014).
[24] S. Gupta, S. N. Majumdar, and G. Schehr, Phys. Rev. Lett. 112,

220601 (2014).
[25] X. Durang, M. Henkel, and H. Park, J. Phys. A: Math. Theor.

47, 045002 (2014).
[26] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Phys. Rev. E

91, 052131 (2015).
[27] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Phys. Rev. E

92, 052126 (2015).
[28] A. Pal, Phys. Rev. E 91, 012113 (2015).
[29] S. Eule and J. J. Metzger, New J. Phys. 18, 033006

(2016).
[30] A. Nagar and S. Gupta, Phys. Rev. E 93, 060102 (2016).
[31] D. Boyer, M. R. Evans, and S. N. Majumdar, J. Stat. Mech.

(2017) P023208.
[32] A. Pal, A. Kundu, and M. R. Evans, J. Phys. A. Math. Theor.

49, 225001 (2016).

[33] A. Falcon-Cortes, D. Boyer, L. Giuggioli, and S. N. Majumdar,
Phys. Rev. Lett. 119, 140603 (2017).

[34] C. Maes and T. Thiery, J. Phys. A. Math. Theor. 50, 415001
(2017).

[35] E. Roldan and S. Gupta, Phys. Rev. E 96, 022130 (2017).
[36] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, UK, 2001).
[37] A. J. Bray, S. N. Majumdar, and G. Schehr, Adv. Phys. 62, 225

(2013).
[38] M. R. Evans, S. N. Majumdar, and K. Mallick, J. Phys. A: Math.

Theor. 46, 185001 (2013).
[39] J. Whitehouse, M. R. Evans, and S. N. Majumdar, Phys. Rev. E

87, 022118 (2013).
[40] M. Montero and J. Villarroel, Phys. Rev. E 87, 012116

(2013).
[41] L. Kusmierz, S. N. Majumdar, S. Sabhapandit, and G. Schehr,

Phys. Rev. Lett. 113, 220602 (2014).
[42] S. Reuveni, M. Urbach, and J. Klafter, Proc. Natl. Acad. Sci.

USA 111, 4391 (2014).
[43] C. Christou and A. Schadschneider, J. Phys. A: Math. Theor.

48, 285003 (2015).
[44] S. Reuveni, Phys. Rev. Lett. 116, 170601 (2016).
[45] U. Bhat, C. De Bacco, and S. Redner, J. Stat. Mech. (2016)

P083401.
[46] M. Montero, M. Maso-Puigdellosas, and J. Villarroel, Eur.

Phys. J. B 90, 176 (2017).
[47] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017).
[48] J. M. Meylahn, S. Sabhapandit, and H. Touchette, Phys. Rev. E

92, 062148 (2015).
[49] R. J. Harris and H. Touchette, J. Phys. A: Math. Theor. 50,

10LT01 (2017).
[50] F. den Hollander, S. N. Majumdar, J. M. Meylahn, and H.

Touchette, arXiv:1801.09909.
[51] J. Fuchs, S. Goldt, and U. Seifert, Europhys. Lett. 113, 60009

(2016).
[52] A. Pal and S. Rahav, Phys. Rev. E 96, 062135 (2017).
[53] T. Albash, D. A. Lidar, M. Marvian, and P. Zanardi, Phys. Rev.

E 88, 032146 (2013); A. E. Rastegin, J. Stat. Mech. (2013)
P06016; D. Kafri and S. Deffner, Phys. Rev. A 86, 044302
(2012); M. Campisi, J. Pekola, and R. Fazio, New J. Phys. 19,
053027 (2017); S. Gherardini, L. Buffoni, M. M. Muller, F.
Caruso, M. Campisi, A. Trombettoni, and S. Ruffo, Phys. Rev.
E 98, 032108 (2018).

[54] S. Dhar, S. Dasgupta, A. Dhar, and D. Sen, Phys. Rev. A 91,
062115 (2015).

[55] F. Thiel. E. Barkai, and D. A. Kessler, Phys. Rev. Lett. 120,
040502 (2018); H. Friedman, D. A. Kessler, and E. Barkai,
Phys. Rev. E 95, 032141 (2017).

[56] C. B. Chiu, E. C. G. Sudershan, and B. Misra, Phys. Rev. D
16, 520 (1977); W. M. Itano, D. J. Heinzen, J. J. Bollinger, and
D. J. Wineland, Phys. Rev. A 41, 2295 (1990); D. Home and
M. A. B. Whittaker, Ann. Phys. 258, 237 (1997).

[57] T. Antal, Z. Racz, A. Rakos, and G. M. Schutz, Phys. Rev. E 59,
4912 (1999).

[58] T. Antal, P. L. Krapivsky, and A. Rákos, Phys. Rev. E 78,
061115 (2008).

[59] V. Eisler and Z. Racz, Phys. Rev. Lett. 110, 060602 (2013);
V. Hunyadi, Z. Racz, and L. Sasvari, Phys. Rev. E 69, 066103
(2004).

104309-13

https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/317505a0
https://doi.org/10.1016/S0370-1573(96)00009-9
https://doi.org/10.1016/S0370-1573(96)00009-9
https://doi.org/10.1016/S0370-1573(96)00009-9
https://doi.org/10.1016/S0370-1573(96)00009-9
https://doi.org/10.1103/PhysRevLett.95.035701
https://doi.org/10.1103/PhysRevLett.95.035701
https://doi.org/10.1103/PhysRevLett.95.035701
https://doi.org/10.1103/PhysRevLett.95.035701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevLett.101.076801
https://doi.org/10.1103/PhysRevLett.101.076801
https://doi.org/10.1103/PhysRevLett.101.076801
https://doi.org/10.1103/PhysRevLett.101.076801
https://doi.org/10.1103/PhysRevB.86.064304
https://doi.org/10.1103/PhysRevB.86.064304
https://doi.org/10.1103/PhysRevB.86.064304
https://doi.org/10.1103/PhysRevB.86.064304
https://doi.org/10.1103/PhysRevLett.100.077204
https://doi.org/10.1103/PhysRevLett.100.077204
https://doi.org/10.1103/PhysRevLett.100.077204
https://doi.org/10.1103/PhysRevLett.100.077204
https://doi.org/10.1103/PhysRevB.78.045101
https://doi.org/10.1103/PhysRevB.78.045101
https://doi.org/10.1103/PhysRevB.78.045101
https://doi.org/10.1103/PhysRevB.78.045101
https://doi.org/10.1103/PhysRevLett.101.016806
https://doi.org/10.1103/PhysRevLett.101.016806
https://doi.org/10.1103/PhysRevLett.101.016806
https://doi.org/10.1103/PhysRevLett.101.016806
https://doi.org/10.1103/PhysRevB.90.104306
https://doi.org/10.1103/PhysRevB.90.104306
https://doi.org/10.1103/PhysRevB.90.104306
https://doi.org/10.1103/PhysRevB.90.104306
https://doi.org/10.1103/PhysRevB.90.184303
https://doi.org/10.1103/PhysRevB.90.184303
https://doi.org/10.1103/PhysRevB.90.184303
https://doi.org/10.1103/PhysRevB.90.184303
https://doi.org/10.1103/PhysRevLett.112.171601
https://doi.org/10.1103/PhysRevLett.112.171601
https://doi.org/10.1103/PhysRevLett.112.171601
https://doi.org/10.1103/PhysRevLett.112.171601
https://doi.org/10.1007/JHEP02(2015)167
https://doi.org/10.1007/JHEP02(2015)167
https://doi.org/10.1007/JHEP02(2015)167
https://doi.org/10.1007/JHEP11(2017)157
https://doi.org/10.1007/JHEP11(2017)157
https://doi.org/10.1007/JHEP11(2017)157
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1103/PhysRevLett.112.150401
https://doi.org/10.1103/PhysRevLett.112.150401
https://doi.org/10.1103/PhysRevLett.112.150401
https://doi.org/10.1103/PhysRevLett.112.150401
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.7.031034
https://doi.org/10.1103/PhysRevX.7.031034
https://doi.org/10.1103/PhysRevX.7.031034
https://doi.org/10.1103/PhysRevX.7.031034
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.92.052126
https://doi.org/10.1103/PhysRevE.92.052126
https://doi.org/10.1103/PhysRevE.92.052126
https://doi.org/10.1103/PhysRevE.92.052126
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1088/1742-5468/aa58b6
https://doi.org/10.1088/1742-5468/aa58b6
https://doi.org/10.1088/1742-5468/aa58b6
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1088/1751-8121/aa85a7
https://doi.org/10.1088/1751-8121/aa85a7
https://doi.org/10.1088/1751-8121/aa85a7
https://doi.org/10.1088/1751-8121/aa85a7
https://doi.org/10.1103/PhysRevE.96.022130
https://doi.org/10.1103/PhysRevE.96.022130
https://doi.org/10.1103/PhysRevE.96.022130
https://doi.org/10.1103/PhysRevE.96.022130
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1103/PhysRevE.87.022118
https://doi.org/10.1103/PhysRevE.87.022118
https://doi.org/10.1103/PhysRevE.87.022118
https://doi.org/10.1103/PhysRevE.87.022118
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1088/1751-8121/aa5734
https://doi.org/10.1088/1751-8121/aa5734
https://doi.org/10.1088/1751-8121/aa5734
https://doi.org/10.1088/1751-8121/aa5734
http://arxiv.org/abs/arXiv:1801.09909
https://doi.org/10.1209/0295-5075/113/60009
https://doi.org/10.1209/0295-5075/113/60009
https://doi.org/10.1209/0295-5075/113/60009
https://doi.org/10.1209/0295-5075/113/60009
https://doi.org/10.1103/PhysRevE.96.062135
https://doi.org/10.1103/PhysRevE.96.062135
https://doi.org/10.1103/PhysRevE.96.062135
https://doi.org/10.1103/PhysRevE.96.062135
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1103/PhysRevE.88.032146
https://doi.org/10.1088/1742-5468/2013/06/P06016
https://doi.org/10.1088/1742-5468/2013/06/P06016
https://doi.org/10.1088/1742-5468/2013/06/P06016
https://doi.org/10.1103/PhysRevA.86.044302
https://doi.org/10.1103/PhysRevA.86.044302
https://doi.org/10.1103/PhysRevA.86.044302
https://doi.org/10.1103/PhysRevA.86.044302
https://doi.org/10.1088/1367-2630/aa6acb
https://doi.org/10.1088/1367-2630/aa6acb
https://doi.org/10.1088/1367-2630/aa6acb
https://doi.org/10.1088/1367-2630/aa6acb
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevA.91.062115
https://doi.org/10.1103/PhysRevA.91.062115
https://doi.org/10.1103/PhysRevA.91.062115
https://doi.org/10.1103/PhysRevA.91.062115
https://doi.org/10.1103/PhysRevLett.120.040502
https://doi.org/10.1103/PhysRevLett.120.040502
https://doi.org/10.1103/PhysRevLett.120.040502
https://doi.org/10.1103/PhysRevLett.120.040502
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1006/aphy.1997.5699
https://doi.org/10.1006/aphy.1997.5699
https://doi.org/10.1006/aphy.1997.5699
https://doi.org/10.1006/aphy.1997.5699
https://doi.org/10.1103/PhysRevE.59.4912
https://doi.org/10.1103/PhysRevE.59.4912
https://doi.org/10.1103/PhysRevE.59.4912
https://doi.org/10.1103/PhysRevE.59.4912
https://doi.org/10.1103/PhysRevE.78.061115
https://doi.org/10.1103/PhysRevE.78.061115
https://doi.org/10.1103/PhysRevE.78.061115
https://doi.org/10.1103/PhysRevE.78.061115
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevE.69.066103
https://doi.org/10.1103/PhysRevE.69.066103
https://doi.org/10.1103/PhysRevE.69.066103
https://doi.org/10.1103/PhysRevE.69.066103


B. MUKHERJEE, K. SENGUPTA, AND SATYA N. MAJUMDAR PHYSICAL REVIEW B 98, 104309 (2018)

[60] S. Sachdev, K. Sengupta, and S. M. Girvin, Phys. Rev. B
66, 075128 (2002); S. Pielawa, T. Kitagawa, E. Berg, and S.
Sachdev, ibid. 83, 205135 (2011); C. P. Rubbo, S. R. Manmana,
B. M. Peden, M. J. Holland, and A. M. Rey, Phys. Rev. A 84,
033638 (2011).

[61] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. I. Gillen, and S. Follen,
Science 329, 547 (2010).

[62] J. Simon, W. Bakr, R. Ma, M. E. Tai, P. Preiss, and M. Greiner,
Nature (London) 472, 307 (2011).

[63] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, UK, 1999).

[64] A. Kitaev, Ann. Phys. (NY) 321, 2 (2006).
[65] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[66] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[67] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[68] A. Sen, S. Nandy, and K. Sengupta, Phys. Rev. B 94, 214301

(2016).
[69] M. Kolodrubetz, D. Pekker, B. K. Clark, and K. Sengupta,

Phys. Rev. B 85, 100505(R) (2012); R. Ghosh, A. Sen, and K.
Sengupta, ibid. 97, 014309 (2018).

[70] Y. S. Patil, S. Chakram, and M. Vengalattore, Phys.
Rev. Lett. 115, 140402 (2015); Phys. Rev. A 90, 033422
(2014).

[71] D. C. Rose, H. Touchette, I. Lesanovsky, and J. P. Garrahan,
Phys. Rev. E 98, 022129 (2018).

[72] P. A. Martin, J. Phys. A. Math. Theor. 41, 015207 (2008).

104309-14

https://doi.org/10.1103/PhysRevB.66.075128
https://doi.org/10.1103/PhysRevB.66.075128
https://doi.org/10.1103/PhysRevB.66.075128
https://doi.org/10.1103/PhysRevB.66.075128
https://doi.org/10.1103/PhysRevB.83.205135
https://doi.org/10.1103/PhysRevB.83.205135
https://doi.org/10.1103/PhysRevB.83.205135
https://doi.org/10.1103/PhysRevB.83.205135
https://doi.org/10.1103/PhysRevA.84.033638
https://doi.org/10.1103/PhysRevA.84.033638
https://doi.org/10.1103/PhysRevA.84.033638
https://doi.org/10.1103/PhysRevA.84.033638
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature09994
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevB.94.214301
https://doi.org/10.1103/PhysRevB.94.214301
https://doi.org/10.1103/PhysRevB.94.214301
https://doi.org/10.1103/PhysRevB.94.214301
https://doi.org/10.1103/PhysRevB.85.100505
https://doi.org/10.1103/PhysRevB.85.100505
https://doi.org/10.1103/PhysRevB.85.100505
https://doi.org/10.1103/PhysRevB.85.100505
https://doi.org/10.1103/PhysRevB.97.014309
https://doi.org/10.1103/PhysRevB.97.014309
https://doi.org/10.1103/PhysRevB.97.014309
https://doi.org/10.1103/PhysRevB.97.014309
https://doi.org/10.1103/PhysRevLett.115.140402
https://doi.org/10.1103/PhysRevLett.115.140402
https://doi.org/10.1103/PhysRevLett.115.140402
https://doi.org/10.1103/PhysRevLett.115.140402
https://doi.org/10.1103/PhysRevA.90.033422
https://doi.org/10.1103/PhysRevA.90.033422
https://doi.org/10.1103/PhysRevA.90.033422
https://doi.org/10.1103/PhysRevA.90.033422
https://doi.org/10.1103/PhysRevE.98.022129
https://doi.org/10.1103/PhysRevE.98.022129
https://doi.org/10.1103/PhysRevE.98.022129
https://doi.org/10.1103/PhysRevE.98.022129
https://doi.org/10.1088/1751-8113/41/1/015207
https://doi.org/10.1088/1751-8113/41/1/015207
https://doi.org/10.1088/1751-8113/41/1/015207
https://doi.org/10.1088/1751-8113/41/1/015207



