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Nonequilibrium thermodynamics of phonon hydrodynamic model for nanoscale heat transport
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A phonon hydrodynamic equation has been recently derived from the kinetic theory of phonons for nanoscale
heat transport at ordinary temperatures. The classical irreversible thermodynamics is no longer valid due to the
failure of the local equilibrium hypothesis from temporal and spatial strong nonequilibrium effects. In the present
paper, we investigate the thermodynamic consistency of the phonon hydrodynamic equation for heat transport
based on the phonon kinetic theory. The macroscopic expressions of entropy density and entropy flux in the
bulk region as well as interfacial entropy generation in the boundary region are derived from their mesoscopic
definitions in terms of the nonequilibrium phonon distribution solution. The phonon hydrodynamic equation is
demonstrated to be consistent with the second law in the frame of extended irreversible thermodynamics. This
paper provides a solid mesoscopic theoretical foundation to the previous nonequilibrium thermodynamics of the
phonon hydrodynamic model for heat transport in nanosystems on a macroscopic basis.
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I. INTRODUCTION

Heat transport is an irreversible process which can be
described from mesoscopic as well as macroscopic levels of
theoretical descriptions. The mesoscopic theoretical descrip-
tion is mainly based on the Boltzmann transport equation as
the core of kinetic theory of microscopic particles (molecules,
phonons, electrons, etc.) [1,2]. In terms of the macroscopic
theoretical description, there are often two branches, namely,
the heat transport equation and nonequilibrium thermodynam-
ics. These two branches are intimately related, as the com-
patibility of the heat transport equation with the second law
of thermodynamics is the essential issue in the latter branch
[3,4]. The macroscopic theories are also deeply rooted in the
mesoscopic Boltzmann transport theory [5,6]. The classical
Fourier law of heat conduction assumes a linear dependence
of the heat flux on the temperature gradient and has been put
into the frame of classical irreversible thermodynamics (CIT)
for transport processes within the near-equilibrium regime [7].
On the other hand, both Fourier’s law and CIT have been
derived from Chapman-Enskog expansion to the Boltzmann
transport equation within first-order approximation [7].

In recent decades, with the rapid development of
nanoscience and nanotechnology, there have been extensive
studies on microscale and nanoscale heat transport [8—11].
The classical Fourier law fails as the characteristic size and
time of the nanosystems and ultrafast processes become
comparable to or even smaller than the mean free path and
relaxation time of heat carriers. For instance, the violation of
Fourier’s law has been clearly demonstrated by the length-

“yangyuhguo @ gmail.com
fdavid.jou@uab.cat
iCorresponding author: mrwang @tsinghua.edu.cn

2469-9950/2018/98(10)/104304(10)

104304-1

dependent thermal conductivity of silicon nanowires based
on nonequilibrium molecular dynamics simulation [12], and
the nondiffusive period-dependent decay rate in a recent tran-
sient thermal grating (TTG) experiment on nanofilms [13].
Therefore, several macroscopic non-Fourier models have been
proposed as substitutes, such as the Cattaneo-Vernotte model
[14,15], phonon hydrodynamic model [16,17], dual-phase-lag
model [18,19], and so on. The heat transport equations in
these models include additional relaxation and/or nonlocal
terms beyond Fourier’s law to capture the strong temporal
and/or spatial nonequilibrium effects in heat transport at
extreme states. Such heat transport equations are thus no
longer compatible with the second law of thermodynamics
in CIT [20-22]. In other words, CIT is no longer valid in
strong nonequilibrium situations due to the failure of the local
equilibrium hypothesis.

Among the existing macroscopic non-Fourier models, the
phonon hydrodynamic model is the most promising one
since it can be directly derived from mesoscopic Boltz-
mann transport theory [23]. When studying phonon hy-
drodynamic phenomena in dielectric crystals at extremely
low temperature, the Guyer-Krumhansl (G-K) heat transport
equation was derived from the phonon Boltzmann equation
based on the eigenstate analysis [16,24], which inspires the
kinetic-collective model emphasizing the collective features
of momentum-conserving phonon normal scattering [25,26].
The G-K heat transport equation was later adapted to the
modeling of effective thermal conductivity of nanostructures
at room temperature where phonon resistive scattering dom-
inates [17,27-29]. Thus there existed a theoretical gap be-
tween this phenomenological model [17] and the mesoscopic
Boltzmann transport theory [23,30]. In our recent study [31],
we have filled this theoretical gap by deriving a phonon
hydrodynamic equation from the phonon Boltzmann equation
for nanoscale heat transport at ordinary temperatures. On the
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other hand, there have been extensive investigations on the
thermodynamic consistency of phonon hydrodynamic models
based on the extended nonequilibrium thermodynamics be-
yond CIT, as will be summarized below.

The classical G-K heat transport equation was derived from
extended irreversible thermodynamics (EIT), which elevates
the dissipative variables (heat flux and the flux of heat flux)
into the state variable space [32]. A generalized Prigogine’s
principle of minimum entropy production based on EIT was
also proposed for the steady-state G-K heat transport equation
[33]. To remove the infinite speed of thermal perturbation,
a generalized G-K model was developed in the frame of
EIT when considering also the evolution equation of the flux
of heat flux [34,35]. In recent years, the G-K-like nonlocal
heat transport equations in the phenomenological phonon
hydrodynamic model have been verified to be compatible
with the second law in extended thermodynamics based on
dynamical nonequilibrium temperature [36—38]. The nonlocal
heat transport equations have also been derived through the
standard procedures in EIT with slightly different expressions
of generalized entropy flux in several studies [39—41]. For the
application in nanosystems, the heat flux boundary condition
for the nonlocal heat transport equation was derived through
an extension of the generalized Prigogine principle of mini-
mum entropy production in Ref. [33] by including the bound-
ary entropy production term [42]. In spite of the plentiful
studies on the nonequilibrium thermodynamics for the phonon
hydrodynamic model from a macroscopic perspective, the
corresponding mesoscopic theoretical foundation has not yet
been well established. Although the mesoscopic foundation
of EIT has been discussed from the gas kinetic theory [43],
a direct kinetic theoretical foundation for EIT of phonon heat
transport far from the equilibrium state is still lacking, to the
author’s best knowledge.

The aim of the present paper is to explore the nonequi-
librium thermodynamics of our recently developed phonon
hydrodynamic model for nanoscale heat transport [31] based
on the kinetic theory of phonons. We find that the heat
transport equation in our recent model is compatible with the
second law in the frame of EIT. In this way, we also provide
a solid mesoscopic theoretical foundation for EIT of phonon
hydrodynamic models. The remainder of the paper is orga-
nized as follows: the theoretical foundation of nonequilibrium
thermodynamics for phonon transport is given in Sec. II; in
Sec. III, the nonequilibrium thermodynamic framework for
the phonon hydrodynamic equation is established from the
solution of the phonon Boltzmann equation; in Sec. IV, we
discuss the interfacial entropy generation, the importance of
which will increase in nanosystems; the concluding remarks
are finally made in Sec. V.

II. THEORETICAL FOUNDATION

In this section, the entropy balance equation for phonon
transport in dielectric crystals will be first introduced from the
phonon Boltzmann equation in Sec. II A. The kinetic defini-
tions of entropy density, entropy flux, and entropy generation
are thus obtained. In Sec. II B, the basic tenets of CIT for
the classical Fourier law are then illustrated by deriving the

macroscopic expressions of entropy density and entropy flux
from their kinetic definitions.

A. Entropy balance equation for phonon transport

The quasiparticle picture is valid for phonon transport in
a dielectric solid when the characteristic size of the system
is much larger than the dominant phonon wavelength. In this
way, the transport behavior of phonons can be described by
the phonon Boltzmann equation (Peierls-Boltzmann equation)
[9,44]:
af

o TYe VS =CW), ey

where f = f(x,t,k) is the phonon occupation number or
phonon distribution function, with f(x, ¢, k)dxdk denoting
the probabilistic number of phonons found within the spatial
interval (x, X + dx) and wave-vector interval (k, k 4+ dk) at a
specific time 7. The phonon group velocity can be determined
from the dispersion relation: v, = Viw(k), with w(k) the
frequency of phonons with the wave vector k. The collision
term C( f) represents the alteration of the phonon distribution
function due to phonon scattering processes.

As a phonon is a kind of boson, the kinetic (or statistical
mechanical) definition of entropy density is given as [6,45,46]

s=—kB/[flnf—(1+f)ln(1+f)]dk, @

with kg being the Boltzmann constant. The temporal deriva-
tive of entropy density is computed from Eq. (2) as

a5 _ _kB/ {8(flnf) A+ Hn(d +f)]}dk'
ot at at

3
With the help of the phonon Boltzmann equation ((1)),
Eq. (3) gives rise to the entropy balance equation for phonon
transport:
%+V~JS:0S, “)
ot
where the kinetic definitions of entropy flux and entropy
generation are obtained as, respectively [6,45,46],

O / VolfInf—(+ f)ln(l+ f)ldk,  (5)

S— f CHlnf —In(+ fldk.  (6)

B. Classical irreversible thermodynamics for Fourier’s law

The macroscopic expressions of entropy density and en-
tropy flux can be derived once the solution of the phonon
distribution function in Eq. (1) is obtained. As a first step,
we revisit the CIT for phonon heat transport in the diffusive
regime in the presence of a temperature gradient, where
Fourier’s law is valid.

Throughout this paper, we consider heat transport at or-
dinary temperatures, where the phonon resistive scattering
is dominant over the normal scattering. In other words, the
normal scattering and hydrodynamic phonon transport usually
relevant at very low temperature [16,47,48] are not taken into
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account. Thus the single mode relaxation time model is a very
good approximation to the scattering term in Eq. (1), which is
then reduced to

af S
o PV V= (7)

where the equilibrium phonon distribution is the Bose-
Einstein distribution:
R = 1 : ®)
exp(iw/kgT) — 1
The overall relaxation time tg in Eq. (7) has included
the effects from all the intrinsic phonon resistive scattering
(Umklapp scattering, imperfection scattering, etc.), and is
often computed based on Matthiessen’s rule [9]. Furthermore,
the isotropic gray Debye phonon model is assumed for the
convenience of the derivation of the macroscopic heat trans-
port equation from the phonon Boltzmann equation [23,31].
In the diffusive regime of heat conduction, the phonon
distribution function is obtained through a Chapman-Enskog
expansion to Eq. (7) within first order [9]:

f=rR+e, )

where the first-order perturbation quantity is fully expres-
sed as

T dfy’

$=-mw gﬂax AT

(10)

Einstein’s rule of summation is adopted hereafter. Putting
Eq. (9) into the kinetic definition of heat flux, we derive
Fourier’s law: ¢ = —AV T, with the definition of bulk thermal
conductivity:

A= 1CyueA, (11)

where the phonon mean free path is defined as A = v,7R.

To compute the integration in the kinetic definitions of
entropy density and entropy flux, we consider the following
approximations through Taylor’s expansion within second
order:

2
fInf~ fllln fo + ¢(14+1n f*) + ;;eq, (12)
I+ Hlnd+ fH= 1+ L) In(1+ fzh)
2
+o[1+1In (1 + fN]+ ﬁ
R
13)

Substituting Eq. (9) into the kinetic definition Eq. (2), we
obtain the expression of entropy density with the help of
Egs. (12) and (13):

g = —kB/[ n 1 — (1+ Y In (14 fzh)]dk

——Bff T (14)

The second-order term in ¢? is negligibly small in the near-
equilibrium regime where Fourier’s law is valid. As a result,
Eq. (14) is reduced to exactly the equilibrium entropy density:

5 = Seq = —kB/[ n = (T4 fRY) In(1+ fY)]dk

(15)
which is consistent with the local equilibrium hypothesis in
CIT. Substituting Eq. (9) into the kinetic definition Eq. (5), we
obtain the expression of entropy flux with the help of Egs. (12)
and (13):

Ji = kg / vged[In f' —1In (1 + fx")]dk

lk / il dk (16)
— kg [ Vogo—s—dk.
27 R+ Y

Putting the perturbation term Eq. (10) into the first term of
Eq. (16), with also the aid of Fourier’s law and Eq. (11), we
obtain the macroscopic expression of entropy flux:

J == a7

The second term of Eq. (16) vansihes, as the integrand is
an odd function of the wave vector. Equation (17) is exactly
the classical expression of entropy flux in CIT [7].

III. NONEQUILIBRIUM THERMODYNAMICS

In this section, a brief introduction will be first given
in Sec. IIT A to the derivation of the phonon hydrodynamic
model for nanoscale heat transport at ordinary temperatures
[31], which mainly refers to the non-Fourier heat conduction
at extremely small spatial scale and ultrafast temporal scale.
Heat transport in bulk materials with strong spatial and/or
temporal nonequilibrium effects (for instance, in the TTG
experiment on thick film [13], and in the frequency domain
thermoreflectance experiment on bulk substrate [49]) can be
also treated as “nanoscale heat transport” since it involves heat
transport over an extremely small characteristic length within
an extremely short time duration. In Secs. IIIB and IIIC,
the obtained nonequilibrium phonon distribution solution will
be then used to derive the macroscopic expressions of both
entropy density and entropy flux from their kinetic definitions
in Sec. IT A. Finally, it will be verified that the phonon hy-
drodynamic equation is consistent with the second law in the
frame of EIT in Sec. III D.

A. Phonon hydrodynamic model

The starting point of the derivation of the phonon hydrody-
namic equation is the moment balance equations of phonons.
The balance equations of energy density e and heat flux q are
obtained by multiplying on both sides of Eq. (7) the phonon
energy quanta fiw and the modal heat flux v, 7iw, respectively,
and then integrating over the wave-vector space:

X 4v.q=0 (18)

= 4V.Q=——. (19)
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To have a closed mathematical description, we have to
specify the flux of heat flux Q in terms of the four basic field
variables (e and three components of q). A regularized mo-
ment method originally put forward in rarefied gas flow [50]
has been used for the closure problem in nanoscale phonon
heat transport [31]. The main idea of this closure method
is a perturbation expansion around a referenced nonequilib-
rium phonon distribution rather than the usual equilibrium
one Eq. (8). The regularized moment method combines the
advantages of the Chapman-Enskog method [51] and moment
method [45] and overcomes some drawbacks of each method.
A four-moment phonon distribution function is derived first
through the maximum entropy principle as the referenced
nonequilibrium distribution [31]:

3 ofp
+ vaé oT GoVga-

fa= (20)

Higher-order approximation is then derived from the bal-
ance equation of the flux of heat flux:

008 0l

1 (1
7 My, = Sap — Ous ). (21
o ox, ey <3Uge Qﬁ) @D

where M,g, represents the flux of Q,g, being a third-order
tensor defined as Mg, = f Vga VgpVgy i f dK. The small pa-
rameter ¢ comes from the scaling of the phonon Boltz-
mann equation and will be set to unity after the perturbation
expansion:

Qus = Q4 +e0Q4) + ... (22)

Substituting Eq. (22) into Eq. (21), we obtain the terms of
each order on the small parameter separately:

1
' 0y = Jvgedup, (23)

Q(O) d
0. 0)
£ [ o0 ax ax, Mapy

The zeroth-order approximation Eq. (23) to the flux of
heat flux corresponds exactly to the four-moment phonon
distribution function Eq. (20). Furthermore, the first-order ap-
proximation is obtained by substituting Eq. (20) into Eq. (24).
Combining the zeroth-order and first-order approximations,
we get the explicit expression of the flux of heat flux as

2 8q 1 0qy  9qp
Sup + — 8,5 — —TrV? + —=).
3V + 15T "2 x, szvg(ax,g oxa

= ——Q(D (24)
Ja

1
Qaﬂ -
(25)

The phonon hydrodynamic equation is achieved by putting
Eq. (25) into the balance equation (19) of heat flux [31]:

3 1 1
rRa—(: +q=—AVT + §A2|:V2q +3V(V .q)]. (26)

The preceding derivation in the level of moment equations
has a counterpart in the level of the phonon distribution

function. The perturbation expansion around f; in Eq. (20)
gives rise to the phonon distribution function as

27

N 0
fszq_TR<8—];+Vg'Vf>

fa

Substituting Eq. (20) into Eq. (27), we get the nonequi-
librium phonon distribution solution corresponding to the
phonon hydrodynamic equation (26):

f=rRr+e, (28)

where the perturbation quantity is fully expressed as

3 0fy TR 94 3fR
= Cov? qaVea
vvg OT Cv Oxq 0T
3R 094 3f

2 Ve el T 9

The phonon hydrodynamic equation (26) has a very sim-
ilar mathematical form to the nonlocal heat transport equa-
tion in the phenomenological phonon hydrodynamic model
[17,27-29]:

wod fq= VT AV 2Vl GO)
where [ denotes a characteristic length of phonon dynamics
and is often assumed as the value of the phonon mean free
path. Equation (30) is actually adapted from the classical G-
K hydrodynamic equation of phonon transport in dielectric
crystals at low temperature [16,24]:

9 1
ma_? +q=—-AVT + gvéfoR[qu +2V(V-@], (3D

with 7y the relaxation time of phonon normal scattering.
Therefore, our theoretical derivation of Eq. (26) from the
phonon Boltzmann equation provides a solid kinetic founda-
tion to the phonon hydrodynamic model for nanoscale heat
transport around ordinary temperatures [31].

Finally we would like to clarify two widely used con-
cepts in the literature: (i) hydrodynamic phonon transport
(or phonon hydrodynamic phenomena) and (ii) the phonon
hydrodynamic equation (or model). “Hydrodynamic phonon
transport” refers to the heat transport processes where phonon
normal scattering plays a dominant role. As quasimomentum
is conserved in normal scattering, the behaviors of phonon
transport resemble those of fluid flow, including the phonon
Poiseuille flow and second sound [16,47,48]. In contrast, the
“phonon hydrodynamic equation” refers to the macroscopic
theoretical description of heat transport derived from the
phonon Boltzmann equation [16,17,23,31]. The heat transport
could be any kind, including hydrodynamic phonon transport
and nanoscale heat transport at room temperatures where
phonon resistive scattering dominates. The indirect correspon-
dence between hydrodynamic phenomena and the hydrody-
namic equation in phonon transport can be understood from
the history of the terminology. The “hydrodynamic equations”
originally referred to the fluid dynamic equations including
the Euler equations and Navier-Stokes equations proposed
during 18th to 19th centuries [9]. With the development of the
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kinetic theory of gases in the late 19th century and early 20th
century, the hydrodynamic equations were derived through
the classical Chapman-Enskog expansion to the Boltzmann
transport equation [1]. Later the kinetic theory was extensively
developed for transport processes via other microscopic par-
ticles [2,9]. Thus the macroscopic transport equations derived
from the mesoscopic Boltzmann equation are often called
hydrodynamic equations along the terminology in gas kinetic
theory, as for phonons [16,52], electrons [53,54], photons
[55,56], and so on. Although the earliest version was de-
rived in the study of hydrodynamic phonon transport [16,52],
phonon hydrodynamic equations represent, in a broader con-
text, all the macroscopic heat transport equations derived from
the phonon Boltzmann equation.

J

9 ho fg
f Cévg%qu‘ivgavgﬁkB?z —R- dk+/

912
C? vy
61,%
C? v?

99a
aXﬁ

(
(

) (5
) (5

/f T+ = +/ ’
_f ﬁ

There are only four terms left on the right-hand side of
Eq. (33) as the integrands in the other two terms from ¢?
are odd functions of the wave vector. After integration and
combination, the integral Eq. (33) becomes

/f +qu

_ 3q-q
CkaTzvé

2

5 Cykp (Vs

(Vaq),, (34)
where the symmetric traceless part of the second-order tensor
Vq is fully expressed as

(V)i = [V + (Vg)'l - 1(V - gL,

with the superscript “T” denoting the transpose of a ten-
sor and I denoting the unit tensor. Substitution of Eq. (34)
into Eq. (32) yields the macroscopic expression of entropy
density as

(35)

3
SC T2

3q-q
ZCV Tzvé

§ = Seq — v (l)q (Vq):) (36)

Supplemented with the kinetic definition Eq. (11) of bulk
thermal conductivity, Eq. (36) is further reformulated into the
following form:

s AX(VQ) (V). (37)

TR
7 4 S
The presence of the terms in the gradients has been ex-
plored from the macroscopic perspective in some theories of
weakly nonlocal thermodynamics [3,57].

:Seq—

C. Kinetic derivation of entropy flux

The macroscopic expression of entropy flux can be ob-
tained by substituting the nonequilibrium phonon distribution
Eq. (28) into its kinetic definition Eq. (5). With also the help

AGm.
dxy

AGm.
X,

B. Kinetic derivation of entropy density

The macroscopic expression of entropy density can be ob-
tained by substituting the nonequilibrium phonon distribution
solution Eq. (28) into its kinetic definition Eq. (2). With also
the help of approximations Eqgs. (12) and (13), we arrive

at
/f (1+ 1%

For nanoscale heat transport with strong nonequilibrium
effects, the perturbation part Eq. (29) is expected to be non-
negligible. Therefore the second term in Eq. (32) will be no
longer negligibly small as in CIT, and is computed by putting
Eq. (29) into it

(32)

hw 3fR
kpT? OT

aqﬁ

().Xﬁ

3 ) dk

e
) Vea Vep Vgm Vgn k/;“})“ af; dk (33)
ho fr
) Ve Ven 177 72 o1 4k
[
of approximations Eqs. (12) and (13), we arrive at
= —kB/vgy¢[ln fRI=In(1+ f1)]dk
1 @?
—kg / Voy —a———dk (38)
2 TR+ £

When putting the perturbation part Eq. (29) into Eq. (38),
the first integral term on the right-hand side of Eq. (38) is
reduced to

/ vy $[In £ — In (1 + £29)]dk

where two terms have been vanished as the integrands are odd

3 gf

vgavquac 2 ST [l nfg' —In (1+f1§q)]dk

(39)

functions of the wave vector. Since In fz? —In(1 + fg!) =
—hw/kgT, Eq. (39) further becomes
q
/vgyd)[ln frl=In(1+ f")]dk = —kB—VT. (40)

Thus the first term on the right-hand side of Eq. (38) is
exactly the contribution of classical entropy flux Eq. (17).
The second integral term on the right-hand side of Eq. (38)
becomes increasingly important in nanoscale heat transport,
and is computed by putting Eq. (29) into it

¢2
/ gymdk
f 67r dap (0’
1 1+f czo e, o
187x A (If

()

5 1 VeaVgmVenqo ax,

CCyvl aT
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where four terms have vanished as the integrands are odd

functions of the wave vector. Since f = (1 + f h%,
Eq. (41) further becomes
¢2
Voy —sa =~ dK
fomites
41 ag 67, aq aq
=gyt — g+ L ). (42)
SCVkBT 8)6/3 SCV]CBT 8x 8)60,

Substituting Egs. (40) and (42) into Eq. (38), we finally
obtain the macroscopic expression of the entropy flux:
q 218

s T
= T " 50,17 [Va+(Vg)'l.
(43)
Supplemented with the kinetic definition Eq. (11) of bulk
thermal conductivity as well as Eq. (35), Eq. (43) is further

reformulated into the following compact form:

3R
qv q)+5C Tzq

2

S5AT?

Some macroscopic physical consequences of a phe-
nomenological entropy flux of a similar form to Eq. (44) (yet
without explicit mesoscopic evaluation of the coefficient for
the second term) have been examined in Ref. [40] in the
context of radial heat transport through cylindrical geometry.

r=2+

q-(Vq);. (44)

D. Extended irreversible thermodynamic foundation

With the explicit macroscopic expressions of entropy den-
sity and entropy flux, we will now demonstrate that the
phonon hydrodynamic equation (26) is compatible with the
second law in the framework of EIT. In CIT for Fourier’s law,
the energy density is the only one in state variable space such
that the entropy density is seq = Seq(e) with the Gibbs relation:

Tdseq = de. 45)

The main idea of EIT is to include also the dissipative
variables into the state variable space. In the conventional
scheme of EIT, the dissipative variables include the heat flux
q, the flux of heat flux Q, and higher-order moment variables
such that the entropy is defined as s = s(e, q, Q,...) [43].
In the present paper, we introduce a slightly different scheme
based on Eq. (37): s = s(e, q, (Vq);). Later we will show
that the present scheme is equivalent to the conventional one
due to the relation between the flux of heat flux and the heat
flux gradient. With the help of Eq. (45), the generalized Gibbs
relation is obtained from Eq. (37) as below:

de R 2

d=p p 5

Equation (46) can be further rewritten as the time derivative
form:

ds 1 de TR dq 2TR

ar Tdr a2V ar s

A (V@) : d(Vq).  (46)

Ay VDo

(47)

The symmetric traceless part of the tensor V q is related to
the first-order component of the flux of heat flux as Q) =
—%rR vé(Vq)f). The flux of heat flux Eq. (25) can be split into
a trace part and a traceless part as Q = QI 4+ Q,,, with QI =
QO = %vzel and Q, = Q. Since the temporal variation of

higher-order moment Q") has been assumed to be in a smaller
order of magnitude than that of heat flux in the derivation
of the phonon hydrodynamic equation in Sec. III A, the third
term on the right-hand side of Eq. (47) is thus negligibly small
comparing to the second term. In this way, Eq. (47) is reduced
to

ds 1 de R dq
. S 48
a Tar Vg (48)

With the help of energy balance equation (18), Eq. (48) is
reformulated into the following form:
ds 1 TR dq
—=—-—=V.q— —q- —. 49
dt VR T “9)
Below we will derive the macroscopic expression of en-
tropy generation based on the entropy balance equation (4)
together with Egs. (49) and (44).
With the help of the derived macroscopic expression
Eq. (44) of entropy flux, the divergence of entropy flux is

calculated as below:
v ! + A 1V(V )+ V2
7) 523 4 4

vV.J
1
(Va)g, (50)

T

V S
5m( Q, :
where AT? has been assumed as a constant as in CIT [7].
Combining Egs. (49) and (50), we get exactly the entropy
balance equation as

vy
at
q dq A1 )
=— VT —g— + — | -V(V - v
I { wR + 5 [3 (V-q)+Viq
Vq) : (Vq)i. 51
sxT2( q), : (Va), (5D

An identification of Eq. (51) to Eq. (4) gives rise to the
macroscopic expression of entropy generation:

s q dq A1 5
= 1 v g vV
7 T { P EAAAAL U
SATZ ( Q). : (Vq),. (52)

Supplemented with the phonon hydrodynamic equation
(26), the entropy generation expression Eq. (52) becomes

s_49 2A2
BEYERETYE

The non-negativeness of entropy generation is explicitly
ensured: o > 0 due to the quadratic form of its expression.
In other words, the phonon hydrodynamic equation (26) for
nanoscale heat transport at ordinary temperature is consistent
with the second law in the frame of EIT.

There have been several macroscopic proposals of the EIT
scheme for the phonon hydrodynamic models as introduced in
Sec. I and further summarized in Table I. The flux of heat flux
is usually elevated into the state variable space. The relaxation
time of the flux of heat flux has been assumed negligibly small

o (Vq); :

(V). (53)
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TABLE I. Summary of extended irreversible thermodynamics for phonon hydrodynamic models. The flux of heat flux is split into a trace

part and a traceless part as Q = QI + Q,.

Entropy density Entropy flux Heat transport equation Reference
s =s(e, q,Qo, Q) F=231+:10Q.-q+Qq Eq. 31) (32]

s =s(e, q) F=3+L(q Vqg+2qV-q) Eq. (30) (39,41]

s =s(e.q.Q) F=44L(vg.q w4 q=—AVT + Vg [40]

s =s(e.q,(Vq)) yF==3+ 52;\722‘1' (V@) Eq. (26) Present paper

in the derivation of the G-K heat transport equation such that
the flux of heat flux becomes proportional to the heat flux
gradient [32,40]. Thus the present EIT scheme is actually
equivalent to the conventional one. Nevertheless, the heat flux
gradient is chosen as one of the state variables in the present
EIT scheme since the expression Eq. (37) of entropy density
is a natural production from the kinetic theory of phonons.
The mesoscopic foundation of EIT has been discussed from
Grad’s 13-moment kinetic theory of gases, which results in
the macroscopic expressions of entropy density and entropy
flux, respectively [43]:

m 1
= . —PY: P, 54
PS = PSeq SpkBTzq q 4pT o o (54)
Cq 2
== - —P'.q, 55
J T T 5pT 0 q (55

where p and P denote, respectively, the thermodynamic
pressure and the viscous pressure tensor. The flux of heat flux
in phonon transport plays a similar role as the viscous pressure
tensor in gas transport [23]. With the aid of the linear relation
between the flux of heat flux and the heat flux gradient,
the expressions of entropy density Eq. (37) and entropy flux
Eq. (44) have similar mathematical form as Eqs. (54) and (55)
separately. Our paper represents a direct mesoscopic founda-
tion for EIT of phonon heat transport in dielectric crystals far
from the equilibrium state. In other words, in contrast to the
previous extended nonequilibrium thermodynamics for heat
conduction discussed from a macroscopic phenomenologi-
cal perspective without a direct statistical mechanical basis
[32,36-38,40,41,58], the present EIT scheme is developed
from the kinetic theory of phonons in a more rigorous way.

IV. INTERFACIAL ENTROPY GENERATION

The previous section is focused on the expressions of
entropy density, entropy flux, and entropy generation in the
bulk region of nanosystems. Before the close of this paper, we
would like to discuss the role of interfacial entropy generation
at the system boundary. The interfacial entropy generation has
been extensively explored in rarified gas flows, and shown to
have an intimate relation with the nonequilibrium boundary
conditions in the framework of irreversible thermodynamics
[59,60]. On the other hand, with the increasing importance of
particle-boundary scattering over the particle-particle scatter-
ing at decreasing system size, the interfacial entropy gener-
ation becomes a significant contribution to the total entropy
generation in microscale gas transport [61]. In recent years,
the thermodynamic consistency of the nonequilibrium bound-

ary condition in nanoscale heat transport has been investigated
in terms of the interfacial entropy generation [42,58], where
both the phenomenological phonon hydrodynamic equation
and heat flow boundary condition were derived from EIT on
a macroscopic basis. In the present section, the macroscopic
expression of interfacial entropy generation will be derived
from the kinetic theory of phonons. Therefore, we provide a
mesoscopic foundation to the nonequilibrium thermodynamic
formulation of the boundary condition for the phonon hydro-
dynamic equation.

We will derive the interfacial entropy generation at the
lower boundary within the in-plane phonon transport as shown
in Fig. 1. Based on the entropy balance at the boundary and
the kinetic definition of entropy flux in Eq. (5), the mesoscopic
expression of interfacial entropy generation is obtained as

@:—@f%mmm—a+nma+mm&6®

where the distribution function of phonons at the boundary is

k-n<0

k-n>0’ 57

fw = {;4—:

with n the surface unit normal vector as shown in Fig. 1. The
distribution function of phonons incident on the boundary can
be determined from the nonequilibrium distribution solution
Eq. (28) in the bulk region, which is further reduced to

fT=R+e, (58)

with the perturbation quantity expressed as

3 9fg! 3R 3\ dfg’
= o GxwVex — 5 VUgx — —. (59
¢ cyvz ar T T o2 Gy ) ot (59)

The distribution function of phonons leaving from the
boundary is correlated to that of incident phonons through
the Maxwell model of particle-boundary interaction [50].
For simplicity, the widely used fully thermalizing diffuse

FIG. 1. Schematic of in-plane phonon transport for the derivation
of interfacial entropy generation.
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phonon-boundary scattering is assumed [62]:
fr=f (60)

Substitution of Egs. (58) and (60) into Eq. (56) gives the
interfacial entropy generation as

o) = —kg / vey (f 7 In f7 = frlIn fr?)dk
.

o [ ua [0+ £+ )
— (14 £ In (14 fz")]ak, (61)

where Q~ represents the hemispherical wave-vector space
with k-n < 0. Supplemented with the approximations
Egs. (12) and (13), Eq. (61) will be reduced to

ot =t [ vafoln (4 ) - 1
2
¢ }dk, (62)

2R+ £

The first term on the right-hand side of Eq. (62) propor-
tional to ¢ has vanishing contribution to the integral as the
integrand is an odd function of k.. Thus Eq. (62) is further

Ugy¢2

simplified as
/ A1+ feq)

Putting Eq. (59) into Eq. (63) and completing the integra-
tion, we get the macroscopic expression of interfacial entropy
generation as

O'<S — 2 qJ%W +i Tl%vg <8qx>2
w

(63)

! 32 vagT2 32 CV T2
3 0w 09«
L e EA 64
t e, ! (By)w ©4)

The heat flux tangential retardant boundary condition has
been also derived from the principle in kinetic theory of
phonons for the phonon hydrodynamic equation (26) [31]:

8 [ 04x
=—A|l— . 65
dew = 73 ( oy )W (65)
The boundary term of this form or similar forms plays
a significant role in the explanation of the effective thermal

conductivity of nanostructures [17,28,31]. With the help of
Eq. (65), the macroscopic expression Eq. (64) of interfacial
entropy generation finally becomes

801 Ag? Ag?
0 = ——F ~ 04—

' 2048 AT? AT?
The non-negativeness of interfacial entropy generation in
Eq. (66) is thus explicit, which infers that the nonequilibrium
boundary condition Eq. (65) for the phonon hydrodynamic
equation (26) is consistent with the second law of thermody-
namics. The mathematical form as a square of boundary heat
flux is exactly the same as that of boundary entropy generation

in previous EIT formulation [42,58].

(66)

V. CONCLUSIONS

In this paper, we have provided the nonequilibrium ther-
modynamic foundation to the phonon hydrodynamic model
for nanoscale heat transport at ordinary temperatures. The
macroscopic expressions of entropy density Eq. (37) and
entropy flux Eq. (44) are derived from their kinetic definitions
in terms of the nonequilibrium phonon distribution solution.
The phonon hydrodynamic equation is thus verified to be
consistent with the second law in the frame of extended
irreversible thermodynamics. On the other hand, we have
computed the macroscopic expression of interfacial entropy
generation Eq. (66) from the kinetic theory of phonons,
and shown that the heat flow boundary condition for the
phonon hydrodynamic equation also meets the thermody-
namic requirement. This paper provides a solid mesoscopic
theoretical foundation to the previous macroscopic nonequi-
librium thermodynamics for the phonon hydrodynamic model
in nanoscale heat transport. Our analysis could be generalized,
with suitable modifications, to incorporate the contribution
of phonon normal scattering and electrons to heat transfer in
future work.

ACKNOWLEDGMENTS

Y.G. and M.W. acknowledge financial support from the
National Natural Science Foundation of China (Grants No.
51621062 and No. 51676107), the Key Basic Scientific Re-
search Program (Grant No. 2013CB228301), and the Ts-
inghua University Initiative Scientific Research Program. D.J.
acknowledges financial support from the Direccién General
de Investigacién of the Spanish Ministry of Economy and
Competitiveness (Grant No. TEC2015-67462-C2-2-R).

[1] S. Chapman and T. G. Cowling, The Mathematical Theory
of Non-Uniform Gases (Cambridge University, Cambridge,
England, 1953).

[2] R. L. Liboft, Kinetic Theory: Classical, Quantum and Relativis-
tic Descriptions (Springer-Verlag, New York, 2003).

[3] V. A. Cimmelli, Different thermodynamic theories and different
heat conduction laws, J. Non-Equilib. Thermodyn. 34, 299
(2009).

[4] 1. Miiller, Thermodynamics of irreversible processes-past and
present, Eur. Phys. J. H 37, 139 (2012).

[5] I. Miiller and T. Ruggeri, Rational Extended Thermodynamics
(Springer, New York, 1998).

[6] W. Dreyer and H. Struchtrup, Heat pulse experiments revisited,
Continuum Mech. Thermody. 5, 3 (1993).

[7]1 S. R. De Groot and P. Mazur, Non-Equilibrium Thermo-
dynamics (Dover, New York, 1962).

[8] Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill,
New York, 2007).

[9] M. Kaviany, Heat Transfer Physics (Cambridge University,
New York, 2014).

104304-8


https://doi.org/10.1515/JNETDY.2009.016
https://doi.org/10.1515/JNETDY.2009.016
https://doi.org/10.1515/JNETDY.2009.016
https://doi.org/10.1515/JNETDY.2009.016
https://doi.org/10.1140/epjh/e2012-20029-1
https://doi.org/10.1140/epjh/e2012-20029-1
https://doi.org/10.1140/epjh/e2012-20029-1
https://doi.org/10.1140/epjh/e2012-20029-1
https://doi.org/10.1007/BF01135371
https://doi.org/10.1007/BF01135371
https://doi.org/10.1007/BF01135371
https://doi.org/10.1007/BF01135371

NONEQUILIBRIUM THERMODYNAMICS OF PHONON ...

PHYSICAL REVIEW B 98, 104304 (2018)

[10] L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G.
Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk
et al., Evaluating broader impacts of nanoscale thermal trans-
port research, Nanoscale and Microscale Thermophys. Eng. 19,
127 (2015).

[11] S. Volz, J. Ordonez-Miranda, A. Shchepetov, M. Prunnila, J.
Ahopelto, T. Pezeril, G. Vaudel, V. Gusev, P. Ruello, E. M. Weig
et al., Nanophononics: State of the art and perspectives, Eur.
Phys. J. B 89, 15 (2016).

[12] N. Yang, G. Zhang, and B. Li, Violation of Fourier’s law and
anomalous heat diffusion in silicon nanowires, Nano Today §,
85 (2010).

[13] J. A. Johnson, A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich,
T. Kehoe, C. M. S. Torres, G. Chen, and K. A. Nelson, Di-
rect Measurement of Room-Temperature Nondiffusive Thermal
Transport Over Micron Distances in a Silicon Membrane, Phys.
Rev. Lett. 110, 025901 (2013).

[14] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis.
Univ. Modena 3, 21 (1948).

[15] P. Vernotte, Les paradoxes de la théorie continue de 1’équation
de la chaleur, CR Acad. Sci 246, 3154 (1958).

[16] R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second
sound, and phonon hydrodynamic phenomena in nonmetallic
crystals, Phys. Rev. 148, 778 (1966).

[17] E. X. Alvarez, D. Jou, and A. Sellitto, Phonon hydrodynamics
and phonon-boundary scattering in nanosystems, J. Appl. Phys.
105, 014317 (2009).

[18] D. Y. Tzou, A unified field approach for heat conduction from
macro- to micro-scales, J. Heat Transfer 117, 8 (1995).

[19] D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging
Behavior (Wiley, New York, 2015).

[20] M. Criado-Sancho and J. Llebot, Behavior of entropy in hyper-
bolic heat conduction, Phys. Rev. E 47, 4104 (1993).

[21] C. Bai and A. Lavine, On hyperbolic heat conduction and
the second law of thermodynamics, J. Heat Transfer 117, 256
(1995).

[22] M. Al-Nimr, M. Naji, and V. Arbaci, Nonequilibrium entropy
production under the effect of the dual-phase-lag heat conduc-
tion model, J. Heat Transfer 122, 217 (2000).

[23] Y. Guo and M. Wang, Phonon hydrodynamics and its applica-
tions in nanoscale heat transport, Phys. Rep. 595, 1 (2015).

[24] R. A. Guyer and J. A. Krumhansl, Solution of the linearized
phonon Boltzmann equation, Phys. Rev. 148, 766 (1966).

[25] C. de Tomas, A. Cantarero, A. F. Lopeandia, and F. X.
Alvarez, From kinetic to collective behavior in thermal trans-
port on semiconductors and semiconductor nanostructures, J.
Appl. Phys. 115, 164314 (2014).

[26] P.Torres, A. Torelld, J. Bafaluy, J. Camacho, X. Cartoixa, and F.
Alvarez, First principles kinetic-collective thermal conductivity
of semiconductors, Phys. Rev. B 95, 165407 (2017).

[27] E. X. Alvarez, D. Jou, and A. Sellitto, Pore-size dependence of
the thermal conductivity of porous silicon: a phonon hydrody-
namic approach, Appl. Phys. Lett. 97, 033103 (2010).

[28] A. Sellitto, E. X. Alvarez, and D. Jou, Second law of thermody-
namics and phonon-boundary conditions in nanowires, J. Appl.
Phys. 107, 064302 (2010).

[29] A. Sellitto, I. Carlomagno, and D. Jou, Two-dimensional
phonon hydrodynamics in narrow strips, Proc. R. Soc. A 471,
20150376 (2015).

[30] A. Sellitto, V. A. Cimmelli, and D. Jou, Mesoscopic Theories of
Heat Transport in Nanosystems (Springer, New York, 2016).

[31] Y. Guo and M. Wang, Phonon hydrodynamics for nanoscale
heat transport at ordinary temperatures, Phys. Rev. B 97,
035421 (2018).

[32] D. Jou and J. Casas-Véazquez, Nonequilibrium absolute tem-
perature, thermal waves and phonon hydrodynamics, Physica
A 163, 47 (1990).

[33] G. Lebon and P. Dauby, Heat transport in dielectric crystals
at low temperature: A variational formulation based on ex-
tended irreversible thermodynamics, Phys. Rev. A 42, 4710
(1990).

[34] G. Lebon, M. Torrisi, and A. Valenti, A non-local thermo-
dynamic analysis of second sound propagation in crystalline
dielectrics, J. Phys.: Condens. Matter 7, 1461 (1995).

[35] A. Valenti, M. Torrisi, and G. Lebon, Heat pulse propagation by
second sound in dielectric crystals, J. Phys.: Condens. Matter 9,
3117 (1997).

[36] V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlocal effects and
second sound in a nonequilibrium steady state, Phys. Rev. B 79,
014303 (2009).

[37] V. A. Cimmelli, A. Sellitto, and D. Jou, Nonequilibrium tem-
peratures, heat waves, and nonlinear heat transport equations,
Phys. Rev. B 81, 054301 (2010).

[38] V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlinear evolution and
stability of the heat flow in nanosystems: Beyond linear phonon
hydrodynamics, Phys. Rev. B 82, 184302 (2010).

[39] G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, An extended
thermodynamic model of transient heat conduction at sub-
continuum scales, Proc. R. Soc.A 467, 3241 (2011).

[40] A. Sellitto, V. Cimmelli, and D. Jou, Entropy flux and anoma-
lous axial heat transport at the nanoscale, Phys. Rev. B 87,
054302 (2013).

[41] G. Lebon, Heat conduction at micro and nanoscales: A review
through the prism of Extended Irreversible Thermodynamics, J.
Non-Equilib. Thermodyn. 39, 35 (2014).

[42] D. Jou, G. Lebon, and M. Criado-Sancho, Variational principles
for thermal transport in nanosystems with heat slip flow, Phys.
Rev. E 82, 031128 (2010).

[43] D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible
Thermodynamics (Springer, New York, 2010).

[44] R. E. Peierls, Quantum Theory of Solids (Clarendon, Oxford,
1955).

[45] Z. Banach and W. Larecki, Nine-moment phonon hydrodynam-
ics based on the maximum-entropy closure: one-dimensional
flow, J. Phys. A 38, 8781 (2005).

[46] W. Larecki and Z. Banach, Influence of nonlinearity of the
phonon dispersion relation on wave velocities in the four-
moment maximum entropy phonon hydrodynamics, Physica D
266, 65 (2014).

[47] S. Lee, D. Broido, K. Esfarjani, and G. Chen, Hydrodynamic
phonon transport in suspended graphene, Nat. Commun. 6,
6290 (2015).

[48] Y. Guo and M. Wang, Heat transport in two-dimensional mate-
rials by directly solving the phonon Boltzmann equation under
Callaway’s dual relaxation model, Phys. Rev. B 96, 134312
(2017).

[49] K. T. Regner, D. P. Sellan, Z. H. Su, C. H. Amon, A. J.
H. McGaughey, and J. A. Malen, Broadband phonon mean

104304-9


https://doi.org/10.1080/15567265.2015.1031857
https://doi.org/10.1080/15567265.2015.1031857
https://doi.org/10.1080/15567265.2015.1031857
https://doi.org/10.1080/15567265.2015.1031857
https://doi.org/10.1140/epjb/e2015-60727-7
https://doi.org/10.1140/epjb/e2015-60727-7
https://doi.org/10.1140/epjb/e2015-60727-7
https://doi.org/10.1140/epjb/e2015-60727-7
https://doi.org/10.1016/j.nantod.2010.02.002
https://doi.org/10.1016/j.nantod.2010.02.002
https://doi.org/10.1016/j.nantod.2010.02.002
https://doi.org/10.1016/j.nantod.2010.02.002
https://doi.org/10.1103/PhysRevLett.110.025901
https://doi.org/10.1103/PhysRevLett.110.025901
https://doi.org/10.1103/PhysRevLett.110.025901
https://doi.org/10.1103/PhysRevLett.110.025901
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1063/1.3056136
https://doi.org/10.1063/1.3056136
https://doi.org/10.1063/1.3056136
https://doi.org/10.1063/1.3056136
https://doi.org/10.1115/1.2822329
https://doi.org/10.1115/1.2822329
https://doi.org/10.1115/1.2822329
https://doi.org/10.1115/1.2822329
https://doi.org/10.1103/PhysRevE.47.4104
https://doi.org/10.1103/PhysRevE.47.4104
https://doi.org/10.1103/PhysRevE.47.4104
https://doi.org/10.1103/PhysRevE.47.4104
https://doi.org/10.1115/1.2822514
https://doi.org/10.1115/1.2822514
https://doi.org/10.1115/1.2822514
https://doi.org/10.1115/1.2822514
https://doi.org/10.1115/1.521461
https://doi.org/10.1115/1.521461
https://doi.org/10.1115/1.521461
https://doi.org/10.1115/1.521461
https://doi.org/10.1016/j.physrep.2015.07.003
https://doi.org/10.1016/j.physrep.2015.07.003
https://doi.org/10.1016/j.physrep.2015.07.003
https://doi.org/10.1016/j.physrep.2015.07.003
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1063/1.4871672
https://doi.org/10.1063/1.4871672
https://doi.org/10.1063/1.4871672
https://doi.org/10.1063/1.4871672
https://doi.org/10.1103/PhysRevB.95.165407
https://doi.org/10.1103/PhysRevB.95.165407
https://doi.org/10.1103/PhysRevB.95.165407
https://doi.org/10.1103/PhysRevB.95.165407
https://doi.org/10.1063/1.3462936
https://doi.org/10.1063/1.3462936
https://doi.org/10.1063/1.3462936
https://doi.org/10.1063/1.3462936
https://doi.org/10.1063/1.3309477
https://doi.org/10.1063/1.3309477
https://doi.org/10.1063/1.3309477
https://doi.org/10.1063/1.3309477
https://doi.org/10.1098/rspa.2015.0376
https://doi.org/10.1098/rspa.2015.0376
https://doi.org/10.1098/rspa.2015.0376
https://doi.org/10.1098/rspa.2015.0376
https://doi.org/10.1103/PhysRevB.97.035421
https://doi.org/10.1103/PhysRevB.97.035421
https://doi.org/10.1103/PhysRevB.97.035421
https://doi.org/10.1103/PhysRevB.97.035421
https://doi.org/10.1016/0378-4371(90)90314-I
https://doi.org/10.1016/0378-4371(90)90314-I
https://doi.org/10.1016/0378-4371(90)90314-I
https://doi.org/10.1016/0378-4371(90)90314-I
https://doi.org/10.1103/PhysRevA.42.4710
https://doi.org/10.1103/PhysRevA.42.4710
https://doi.org/10.1103/PhysRevA.42.4710
https://doi.org/10.1103/PhysRevA.42.4710
https://doi.org/10.1088/0953-8984/7/7/025
https://doi.org/10.1088/0953-8984/7/7/025
https://doi.org/10.1088/0953-8984/7/7/025
https://doi.org/10.1088/0953-8984/7/7/025
https://doi.org/10.1088/0953-8984/9/15/005
https://doi.org/10.1088/0953-8984/9/15/005
https://doi.org/10.1088/0953-8984/9/15/005
https://doi.org/10.1088/0953-8984/9/15/005
https://doi.org/10.1103/PhysRevB.79.014303
https://doi.org/10.1103/PhysRevB.79.014303
https://doi.org/10.1103/PhysRevB.79.014303
https://doi.org/10.1103/PhysRevB.79.014303
https://doi.org/10.1103/PhysRevB.81.054301
https://doi.org/10.1103/PhysRevB.81.054301
https://doi.org/10.1103/PhysRevB.81.054301
https://doi.org/10.1103/PhysRevB.81.054301
https://doi.org/10.1103/PhysRevB.82.184302
https://doi.org/10.1103/PhysRevB.82.184302
https://doi.org/10.1103/PhysRevB.82.184302
https://doi.org/10.1103/PhysRevB.82.184302
https://doi.org/10.1098/rspa.2011.0087
https://doi.org/10.1098/rspa.2011.0087
https://doi.org/10.1098/rspa.2011.0087
https://doi.org/10.1098/rspa.2011.0087
https://doi.org/10.1103/PhysRevB.87.054302
https://doi.org/10.1103/PhysRevB.87.054302
https://doi.org/10.1103/PhysRevB.87.054302
https://doi.org/10.1103/PhysRevB.87.054302
https://doi.org/10.1515/jnetdy-2013-0029
https://doi.org/10.1515/jnetdy-2013-0029
https://doi.org/10.1515/jnetdy-2013-0029
https://doi.org/10.1515/jnetdy-2013-0029
https://doi.org/10.1103/PhysRevE.82.031128
https://doi.org/10.1103/PhysRevE.82.031128
https://doi.org/10.1103/PhysRevE.82.031128
https://doi.org/10.1103/PhysRevE.82.031128
https://doi.org/10.1088/0305-4470/38/40/018
https://doi.org/10.1088/0305-4470/38/40/018
https://doi.org/10.1088/0305-4470/38/40/018
https://doi.org/10.1088/0305-4470/38/40/018
https://doi.org/10.1016/j.physd.2013.10.006
https://doi.org/10.1016/j.physd.2013.10.006
https://doi.org/10.1016/j.physd.2013.10.006
https://doi.org/10.1016/j.physd.2013.10.006
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1103/PhysRevB.96.134312
https://doi.org/10.1103/PhysRevB.96.134312
https://doi.org/10.1103/PhysRevB.96.134312
https://doi.org/10.1103/PhysRevB.96.134312

YANGYU GUO, DAVID JOU, AND MORAN WANG

PHYSICAL REVIEW B 98, 104304 (2018)

free path contributions to thermal conductivity measured using
frequency domain thermoreflectance, Nat. Commun. 4, 1640
(2013).

[50] H. Struchtrup, Macroscopic Transport Equations for Rarefied
Gas Flows (Springer-Verlag, Heidelberg, 2005).

[51] Z. Banach and W. Larecki, Chapman-Enskog method for a
phonon gas with finite heat flux, J. Phys. A 41, 375502
(2008).

[52] E. W. Prohofsky and J. A. Krumhansl, Second-sound propaga-
tion in dielectric solids, Phys. Rev. 133, A1403 (1964).

[53] O. Muscato and V. Di Stefano, Hydrodynamic modeling of the
electro-thermal transport in silicon semiconductors, J. Phys. A
44, 105501 (2011).

[54] L. Barletti, Hydrodynamic equations for electrons in graphene
obtained from the maximum entropy principle, J. Math. Phys.
55, 083303 (2014).

[55] T. Christen and F. Kassubek, Minimum entropy production
closure of the photo-hydrodynamic equations for radiative
heat transfer, J. Quant. Spectrosc. Radiat. Transfer 110, 452
(2009).

[56] G. C. Pomraning, The Equations of Radiation Hydrodynamics
(Pergamon, Oxford, 1973).

[57] V. A. Cimmelli, Weakly nonlocal thermodynamics of
anisotropic rigid heat conductors revisited, J. Non-Equilib.
Thermodyn. 36, 285 (2011).

[58] G. Lebon, D. Jou, and P. C. Dauby, Beyond the Fourier heat
conduction law and the thermal no-slip boundary condition,
Phys. Lett. A 376, 2842 (2012).

[59] V. Roldughin, Non-equilibrium thermodynamics of boundary
conditions for slightly rarefied gases, J. Non-Equilib. Thermo-
dyn. 16, 13 (1991).

[60] V. M. Zhdanov and V. I. Roldugin, Non-equilibrium thermody-
namics and kinetic theory of rarefied gases, Phys.-Usp. 41, 349
(1998).

[61] Y. Guo and M. Wang, Thermodynamic analysis of gas flow and
heat transfer in microchannels, Int. J. Heat Mass Transfer 103,
773 (2016).

[62] J. E. Turney, A. J. H. McGaughey, and C. H. Amon, In-plane
phonon transport in thin films, J. Appl. Phys. 107, 024317
(2010).

104304-10


https://doi.org/10.1038/ncomms2630
https://doi.org/10.1038/ncomms2630
https://doi.org/10.1038/ncomms2630
https://doi.org/10.1038/ncomms2630
https://doi.org/10.1088/1751-8113/41/37/375502
https://doi.org/10.1088/1751-8113/41/37/375502
https://doi.org/10.1088/1751-8113/41/37/375502
https://doi.org/10.1088/1751-8113/41/37/375502
https://doi.org/10.1103/PhysRev.133.A1403
https://doi.org/10.1103/PhysRev.133.A1403
https://doi.org/10.1103/PhysRev.133.A1403
https://doi.org/10.1103/PhysRev.133.A1403
https://doi.org/10.1088/1751-8113/44/10/105501
https://doi.org/10.1088/1751-8113/44/10/105501
https://doi.org/10.1088/1751-8113/44/10/105501
https://doi.org/10.1088/1751-8113/44/10/105501
https://doi.org/10.1063/1.4886698
https://doi.org/10.1063/1.4886698
https://doi.org/10.1063/1.4886698
https://doi.org/10.1063/1.4886698
https://doi.org/10.1016/j.jqsrt.2009.01.019
https://doi.org/10.1016/j.jqsrt.2009.01.019
https://doi.org/10.1016/j.jqsrt.2009.01.019
https://doi.org/10.1016/j.jqsrt.2009.01.019
https://doi.org/10.1515/JNETDY.2011.018
https://doi.org/10.1515/JNETDY.2011.018
https://doi.org/10.1515/JNETDY.2011.018
https://doi.org/10.1515/JNETDY.2011.018
https://doi.org/10.1016/j.physleta.2012.09.034
https://doi.org/10.1016/j.physleta.2012.09.034
https://doi.org/10.1016/j.physleta.2012.09.034
https://doi.org/10.1016/j.physleta.2012.09.034
https://doi.org/10.1070/PU1998v041n04ABEH000383
https://doi.org/10.1070/PU1998v041n04ABEH000383
https://doi.org/10.1070/PU1998v041n04ABEH000383
https://doi.org/10.1070/PU1998v041n04ABEH000383
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.093
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.093
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.093
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.093
https://doi.org/10.1063/1.3296394
https://doi.org/10.1063/1.3296394
https://doi.org/10.1063/1.3296394
https://doi.org/10.1063/1.3296394



