
PHYSICAL REVIEW B 98, 104302 (2018)

Role of topology on the work distribution function of a quenched Haldane model of graphene
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We investigate the effect of equilibrium topology on the statistics of nonequilibrium work performed during
the subsequent unitary evolution, following a sudden quench of the Semenoff mass of the Haldane model. We
show that the resulting work distribution function for quenches performed on the Haldane Hamiltonian with
broken time reversal symmetry (TRS) exhibits richer universal characteristics as compared to those performed
on the time-reversal symmetric massive graphene limit whose work distribution function we have also evaluated
for comparison. Importantly, our results show that the work distribution function exhibits different universal
behaviors following the nonequilibrium dynamics of the system for small φ (argument of complex next nearest
neighbor hopping) and large φ limits, although the two limits belong to the same equilibrium universality class.
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I. INTRODUCTION

Studying the probability distribution of work in a driven
quantum system is an interesting area of recent research
[1–24]. We recall that in quantum mechanics, work (W ) is
not an observable, rather it acquires a stochastic behavior
due to the inherent probabilistic nature of quantum measure-
ments [25,26]. Naturally, the object of interest therefore is
no longer W itself but rather a distribution function P (W )
which encodes its fluctuating behavior. This work distribution
function is also intricately connected with popular informa-
tion theoretic tools like fidelity, fidelity susceptibility, and
Loschmidt echo [27–29]. The motivation behind studying the
work distribution function, particularly for many-body sys-
tems, lies in understanding the nonlinear responses embedded
in the fluctuation relations given in terms of work, heat and
entropy. Such understanding is crucial in light of the emerging
field of quantum thermodynamics where recent research has
focused on identifying the principles from which the known
thermodynamic laws in the macroscopic limit can be derived
[30–37]. Additionally, the progressing miniaturization of
physical devices to scales where quantum effects become
dominant has raised the question whether the well-known
efficiency limits for work extraction in macroscopic thermo-
dynamics holds in the quantum regime [38–43] (seeRefs. [44–
49] for review). On the other hand, numerous works on the
topological aspects of statistical mechanics have led to a
growing evidence that topology has a profound effect on both
the equilibrium [50,51] and nonequilibrium [52–57] dynamics
of a given system. As such, it is imperative to explore any
possible effect that a system’s topological structure might
have on the work distribution function.

Remarkably, it has been shown that the work distribution
function attains a universal behavior [3–7] following a
quench of the Hamiltonian of the system in the vicinity of
a quantum critical point (QCP). Moreover, P (W ) displays
an interesting edge behavior [3,6,7] following a gap in the
small W (W → 0) limit with a power-law behavior with W

and the associated exponent depends on the initial and final
value of of the quench parameter (with respect to the critical

point) and the spatial dimensionality. This universal behavior
has been probed extensively in free bosonic as well as free
fermionic models for both global and local quenches.

Generally, to define the amount of work done on the system
as a result of the sudden quench performed, one must make
two projective measurements. Considering the system to be
initially in thermal equilibrium, the first measurement projects
onto the eigenbasis of the initial Hamiltonian Hi at t = 0 with
probability p0

n = e−βE0
n /Zi (where β is the inverse temper-

ature, E0
n are the energy eigenvalues, and Zi is the initial

partition function of the system). Following a sudden quench,
the system evolves freely till a time τ after which the second
projective measurement is carried out onto the eigenbasis |φn

τ 〉
of the final Hamiltonian, with a probability pτ

n = |〈φn
τ |ψτ 〉|2.

The fluctuations in the work performed, which is encoded
in P (W ), therefore arise from both the thermal statistics
p0

n and the quantum measurement statistics pn
τ over many

ensembles. However, in our work, we will ignore the thermal
fluctuations and assume that the system is initially prepared
in a pure state. Interestingly, the first moment 〈W 〉 of the
distribution, which is the average work done, is exactly equal
to the residual energy accumulated during the driven unitary
evolution, which in turn serves as a fundamental measure
facilitating the understanding of the emergence of steady state
behavior in periodically driven many-body quantum systems
[58].

To elaborate further, let us assume that a closed d-
dimensional quantum many-body system is initially prepared
in the ground state |ψ0〉 of an initial Hamiltonian Hi ; a certain
parameter of the Hamiltonian is then quenched at time t = 0
using some protocol following which the system is allowed
to evolve unitarily. The work distribution function P (W )
characterising the probability that W amount of work has been
done after the system evolves freely for a time τ is

P (W ) =
∑

n

δ
(
W − [

En
τ − E0

i

])∣∣〈φn
τ

∣∣ψτ

〉∣∣2
, (1)

where |ψτ 〉 is the evolved state of the system at time τ ,
|φn

τ 〉 and En
τ denote the nth instantaneous energy eigenstate
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and its eigenenergy, respectively, while E0
i is the (ground

state) energy of |ψ0〉. If the quench is performed suddenly,
the subsequent time evolution of |ψ0〉 is dictated by the final
time independent Hamiltonian Hf with the final value of the
quench parameter, i.e., |ψt 〉 = e−iHf t |ψ0〉. One immediately
finds ∣∣〈φn

τ

∣∣ψτ

〉∣∣2 = ∣∣〈φn
f

∣∣e−iHf τ |ψ0〉
∣∣2 = ∣∣〈φn

f

∣∣ψ0
〉∣∣2

, (2)

where |φn
f 〉 are the instantaneous energy eigenstates of Hf . It

is now straightforward to show that

P (W ) =
∫ ∞

−∞
eiWτG(τ )dτ, (3)

where G(τ ) is the characteristic function of P (W ) and is
given as

G(τ ) = e−i�E0τ 〈ψ0| ei(E0
f −Hf )τ |ψ0〉 . (4)

Here, �E0 = E0
f − E0

i is the difference in the ground-state
energies of the final and initial Hamiltonians and hence is
the minimum threshold of possible work. This threshold is
set by the adiabatic limit of time evolution implying that
the irreversible work Wirr = W − �E0 can take only positive
values. We also note in passing that upon rescaling E0

f to zero,
the inner product term in Eq. (4) reduces to the conventional
Loschmidt overlap amplitude [59].

It is interesting to note that an expression similar to that of
the characteristic function of the work distribution also arises
while calculating the core hole Green’s function usually ana-
lyzed in the context of x-ray Fermi edge singularities [60,61],
which in turn shares a deep connection with the Anderson
orthogonality catastrophe problem (AOCP) [62]. Remarkably,
Anderson established that the noninteracting ground states
become orthogonal as the system size increases with a power-
law that depends universally on the phase shift induced by the
scattering potential. The calculation of the core hole Green’s
function involves the determination of the vacuum persistence
amplitude (VPA), which is again nothing but the complex
conjugate of the characteristic function of work. Moreover,
the absorption spectrum obtained in x-ray scattering experi-
ments, which is the Fourier transform of the VPA, displays
a power-law threshold singularity or Fermi edge singularity
due to the power-law decay of VPA. Naturally, one expects
such edge singularities to appear in the work distribution
function as well, which is again the Fourier transform of the
characteristic function. Due to the orthogonality catastrophe,
the two ground states before and after the sudden addition (or
quench) of the impurity potential, becomes orthogonal in the
thermodynamic limit; ensuring that the probability of doing
adiabatic work goes to zero as a power-law. This is exactly
what we expect thermodynamically both in case of the x-ray
Fermi edge singularity behavior and also in the statistics of
work distribution after a sudden quench is performed.

Let us now show how the characteristic function is related
to the partition function of a higher-dimensional statistical
model. An analytic continuation to imaginary time τ = −iS

enables us to rewrite Eq. (4) in the following way [3]:

G(S) = e−S�E0Z(S), (5a)

Z(S) = 〈ψ0| (eE0
f −Hf )S |ψ0〉 , (5b)

where Z(S), in accordance with the quantum to classical
correspondence principle, can be interpreted as the partition
function of a (d + 1)-dimensional classical system defined
on a strip geometry of width S with boundary states |ψ0〉.
The associated free energy F can be decoupled into three
contributions as follows:

F = − log G(S) = Ld (S × fb + 2fs + fc(S)), (6)

where fb = �E0/L
d is the bulk free energy density, fs is the

surface free energy due to the two boundaries of the strip
and hence is independent of its thickness S, while fc(S) is
the contribution due to the Casimir interaction between the
boundaries, which decays to zero for large S [63].

Close to a critical point, the response of the system is
characterized by a diverging correlation length ξ , thus there
is a slower nonexponential decay of the two point correlation
functions of fluctuations of the order parameter. In such a
scenario, the existence of the boundary states impose effective
boundary conditions on the order parameter, which leads to a
Casimir-like force between the boundaries. This results in a
contribution of an additional part fc(S) [Eq. (6)] to the free
energy of the system, which assumes the scaling form

fc(S) = S−dF (S/ξ ); (7)

here, F (S/ξ ) is a universal scaling function which is in-
dependent of microscopic details and only depends on the
surface and bulk universality classes. This is the source of
the universal behavior of P (W ) close to criticality, where the
scaling function F (S/ξ ) and hence fc(S) can be asymptoti-
cally expanded for S/ξ � 1. Therefore the universality in the
behavior of P (W ) for small W can be extracted from the large
S behavior fc(S). For the rest of the paper, we will only focus
on this low work regime of P (W ).

Let us now briefly recapitulate some of the generic aspects
of the universal behavior of P (W ) valid for a wide class
of free fermionic models. Especially, focusing on the 1D
transverse field Ising model with the transverse field close
to its critical value gc, P (W ) depends solely on the relative
value of the initial field gi and the final field gf (after a
sudden quench) with respect to gc [3,7]. In other words, it
depends on whether the quench is carried out within the
same quantum phase (gi, gf ≷ gc), or across the quantum
phases (gi > gc, gf < gc or gi < gc, gf > gc), or from (to)
the critical point (gi(f ) = gc). However, a few characteristics
are common in all the cases; there is a delta function peak
at the origin with a weight factor given by the ground-state
fidelity |〈φ0

f |ψ0〉|2. This corresponds to the reversible work,
which is the difference of the initial and final ground-state
energies as discussed above. In addition, there also exists an
edge at a lower cutoff of W below which P (W ) is zero.

In this paper, we explore the effect of equilibrium topology
on the nonequilibrium work statistics following a sudden
quench of a parameter of the system Hamiltonian. This is
relevant in the light of a growing number of recent studies
which explore connections between equilibrium topology and
dynamics, both in the context of periodic [64–66] and quench
[52,56,57,67–72] dynamics. We study the nonequilibrium
dynamics of the paradigmatic Haldane model [50], which is
an integrable two-dimensional model of spinless electrons;
the phase diagram of the model [Fig. 1(a)] hosts topological
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FIG. 1. (a) Topological phases of Haldane model characterized by integer Chern number ν values with t = 1. The two lobes (ν = ±1)
correspond to the phases where robust conducting edge states exist while the area outside the lobes (ν = 0) corresponds to a trivial
insulator/conductor phase. The sinusoidal curves are the quantum critical lines (QCLs) that separate the trivial and topological phases. (b)
Reciprocal lattice of graphene with only nearest-neighbor interactions. The spectrum is gapless at the two sets of inequivalent Dirac points
K(blue) and K ′(red) in the absence of any on-site potential.

as well as trivial phases. This model is based on an infinite
graphenelike honeycomb lattice [Fig. 1(b)] with broken sub-
lattice symmetry (SLS) and time-reversal symmetry (TRS)
manifested in the nearest-neighbor (NN) and complex next-
nearest-neighbor (NNN) hoppings. The Hamiltonian of the
Haldane model can be decomposed as a sum of Hamiltonians
of decoupled two-level systems,

H =
∑

�k
H (�k) =

∑
�k

�h(�k) · �σ + h0(�k)I, (8)

where �σ ≡ (σx, σy, σz) are the Pauli matrices, I is the (2 × 2)
identity matrix, and

hx (�k) = −t (cos (�k · �e1) + cos (�k · �e2) + cos (�k · �e3)), (9a)

hy (�k) = −t (sin (�k · �e1) + sin (�k · �e2) + sin (�k · �e3)), (9b)

hz(�k) = M − 2t ′ sin φ(sin (�k · �v1)

+ sin (�k · �v2) + sin (�k · �v3)), (9c)

h0(�k) = −2t ′ cos φ(cos (�k · �v1)

+ cos (�k · �v2) + cos (�k · �v3)). (9d)

Here, for a given lattice site, the vectors { �ei} and { �vi} (i =
1, 2, 3) are the locations of NN and NNN sites respectively.
Further, t is the amplitude of NN hopping in the graphene
honeycomb lattice, t ′ is the absolute part of the complex
NNN hopping and φ is its argument; M , on the other hand,
denotes the staggered on-site potential at the lattice sites,
also known as the Semenoff mass. When M = t ′ = 0, t =
1, the Hamiltonian reduces to that of the gapless graphene
Hamiltonian with no topological properties.

The topological nature of the Haldane model is an arte-
fact of the simultaneous presence of the Semenoff mass and
the complex NNN hoppings in the Hamiltonian, which are
responsible for breaking the SLS and TRS of the original
graphene lattice, respectively [50]. The different topological
phases are characterized by a topological order parameter

called the Chern number (ν). When ν = 0, the system behaves
as a trivial insulator/conductor while for ν = ±1, conducting
edge states arise, which are topologically protected and hence
robust while the bulk of the system remains insulating; the
topological and trivial phases are separated by the quantum
critical lines (QCLs). The phase diagram is shown in Fig. 1(a).

The motivation of our work is therefore to analyze the
effect of the above mentioned topological structure on the
work statistics of the system. To achieve this goal, we first
perform quenches on the Semenoff mass M fixing φ = 0 (so
that TRS is intact) and elucidate the dependence of P (W )
on the initial value Mi and final value Mf of the Semenoff
mass. In this case, the quench is always performed in the
topologically trivial state for any Mi and Mf . We then proceed
to the case with small φ 
= 0 [so that the model now has a
nontrivial topology Fig. 1(a)] and perform similar quenches
in the vicinity of QCLs and highlight the interesting features
appearing in P (W ).

Our results are summarized at the outset as follows. We
find that the universal nature of P(W) in the case of quenches
in M performed on the massive graphene Hamiltonian de-
pends on the relative position of Mi and Mf with respect to
the critical gapless point M = 0. However, when the quenches
are performed in the TRS broken topological Haldane Hamil-
tonian, we observe completely new and rich behavior. This
new behavior thus emerges only when both SLS and TRS
are broken and therefore is a consequence of the resulting
topological structure of the model.

The rest of the paper is organized as follows. In Sec. II,
we review the procedure for calculating the critical Casimir
free energy. In Secs. III and IV, the work distribution function
is calculated for quenches in the φ = 0 and small φ 
= 0,
respectively. The discussions and concluding comments are
presented in Sec. V and the experimental possibilities are dis-
cussed in Sec. VI. We further present two appendices showing
small momentum expansion (Appendix A) and the Mellin
transform (Appendix B) approach for evaluating P (W ).
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(a) (b) (c) (d)

FIG. 2. Schematic of the quenches performed in the topologically trivial (φ = 0) massive graphene Hamiltonian near M ≈ 0. The solid
lines are the QCLs, which are approximately linear for small φ and the arrows denote the direction of quench. Four cases are analyzed viz.
quench (a) without crossing QCP at (M = 0), (b) across the QCP, (c) from the QCP, and (d) ending at the QCP.

II. CASIMIR FREE ENERGY

As discussed already, the universality in the behavior of
P (W ) is directly linked to large S behavior of fc(S). To
present the outline of the procedure to extract fc(S) from the
total free energy, we first substitute Eq. (5a) in Eq. (6) so that

log Z(S) = −L2(2fs + fc(S)), (10)

where we have set d = 2 for the 2D Haldane model. The fact
that the quasi-momentum modes are conserved and indepen-
dent of each other, allows one to construct the initial state as

|ψ0〉 =
⊗

�k
|ψ0(�k)〉 , (11)

where |ψ0(�k)〉 is the energy eigenstate of Hi (�k) and the direct
product is taken over the first Brillouin zone (BZ) of the
lattice. This simplification, together with Eq. (8) immediately
implies that Eq. (5b) can be rewritten as

Z(S) = eSE0
f

∏
�k

〈ψ0(�k)| e−Hf (�k)S |ψ0(�k)〉 , (12)

where E0
f = −∑

�k εf (�k) and −εf (�k) is the ground state

energy of final Hamiltonian Hf (�k).
Further, Eq. (8) also suggests that the Hilbert space of the

decoupled two-level systems can be mapped to the surface of
a Bloch sphere of radius |�h|. Let us assume that the initial
state lies at a point (θi,�i) on this Bloch sphere where θ and
� are the azimuthal and polar angles, respectively. It can be
easily checked from Eqs. (9a)–(9c) that the quench which is
performed on M only effects the hz(�k) = |�h| cos θ component
of �h(�k), thereby limiting the subsequent dynamics of the state
to a great circle passing through the poles on the surface of
the Bloch sphere. Finally, expanding ψ0(�k) in the eigenbasis
of Hf (�k), we obtain

Z(S) =
∏

�k
cos2 (ϕ(�k))(1 + tan2 (ϕ(�k))e−2Sεf (�k) ), (13)

where ϕ(�k) = θf (�k)−θi (�k)
2 and θi(f ) = cos−1 hz,i(f )

|�hi,(f )| .
Substituting this expression for Z(S) in Eq. (10), we have

−L2(2fs + fc(S)) =
∑

�k
2 ln (cos (ϕ(�k)))

+
∑

�k
ln (1 + tan2 (ϕ(�k))e−2Sεf (�k) ). (14)

Now, assuming the continuum limit, we can identify the
surface and Casimir free energy contributions as

fs = − 1

L2AB

∫
BZ

ln (cos (ϕ(�k)))d�k, (15a)

fc(S) = − 1

L2AB

∫
BZ

ln
(
1 + tan2 (ϕ(�k))e−2Sεf (�k)

)
d�k,

(15b)

where AB = ∫
BZ

�dk is the area of the Brillouin zone.

III. WORK STATISTICS IN TOPOLOGICALLY
TRIVIAL GRAPHENE

When φ = 0, the amplitude of NNN hoppings are real
and their only effect is to rescale the energy spectrum of the
massive graphene Hamiltonian with NN hoppings by h0(�k).
We analyze the large S behavior of fc(S) for quenches close
to the gapless graphene point [M = 0, φ = 0 in Fig. 1(a)] as
follows: it is clear from Eq. (15b) that in the large S limit,
the contributions to fc(S) from the quasimomentum modes �k
fall off exponentially as we move away from the two Dirac
points �K1 and �K2, which are time-reversed partners of each
other, thus ε( �K1) = ε( �K2) ≈ 0 as M tends to zero. Thus the
dominant contribution to the integral in Eq. (15b) comes from
the lowest energy continuum around each of the Dirac points,
which contribute equally and identically to fc(S). Expanding
the energy spectrum around �K1 to leading nontrivial order in
k = |�k − �K1|, we have

ε(k) =
√

M2 + k2. (16)

In the continuum limit, the limits of the integration in
Eq. (15b) extend to infinity to yield

fc(S) = − 1

L2AB

∫ ∞

−∞

∫ ∞

−∞
dkxdky

× ln
(
1 + tan2 (ϕ(�k))e−2S

√
M2

f +k2)
. (17)

Further simplification requires the explicit form of tan (ϕ(�k))
for small k, which we now evaluate for several cases as
elaborated below.

A. Quench without crossing QCP (Mi , M f ≷ 0)

In this case, the initial and the final Semenoff masses are
either both positive or negative [Fig. 2(a)] and we have (see
Appendix A)

tan(ϕ(�k)) = C(Mi,Mf )k (18)
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to the leading order in k where C(Mi,Mf ) = (Mi −
Mf )/2MiMf depends only on Mi and Mf . Substituting in
Eq. (17), we get

f 1
c (S) = − 2π

L2AB

∫ ∞

0
ln

(
1 + C2(Mi,Mf )

× k2e−2S
√

M2
f +k2)

kdk, (19)

where the superscript 1 in f
�K

c (S) refers to the fact that
we are considering the contribution from the lowest en-
ergy continuum from only around �K1. Following few steps
of algebra (see Appendix B for detail), we eventually
obtain

fc(S) = −2 × π (1 − Mf /Mi )2

4L2AB

(
e−2S|Mf |

S2

)
, (20)

where the multiplicating factor 2 accounts for the
fact that each Dirac point contributes identically. The
characteristic function defined in Eq. (5a) takes the
form

G(S) = e−�E0Se−2L2fs e−L2fc (S)

= e−�E0Se−2L2fs (1 − L2fc(S) + . . . ), (21)

where we have expanded the third exponential to leading order
in fc(S) exploiting the fact that fc(S) decays exponentially
with S. Substituting the form of fc(S) from Eq. (20) and
performing an inverse Laplace transform on G(S) finally
gives us the small W behavior of P (W ) as

P (W ) = e−2L2fs

[
δ(W − �E0) + �(W − �E0 − 2|Mf |)

×
{

π (1 − Mf /Mi )2

2AB

(W − �E0 − 2|Mf |)
}]

.

(22)

P (W ) therefore has a delta function peak at W = �E0 and
the presence of the Heavyside theta function in the second
term implies the existence of an edge singularity. Note that the
quench amplitudes and other microscopic details only appear
in the coefficient of the edge-singularity while the exponent
of (W − �E0 − 2|Mf |) is independent of such details and is
thus universal.

B. Quench across the QCP (Mi ≷ 0 ≷ M f )

When Mi and Mf are on either side of the gapless graphene
point [Fig. 2(b)], the leading order term in the expansion of
tan(ϕ(�k)) takes the form (again, referring to Appendix A)

tan(ϕ(�k)) = − 1

C(Mi,Mf )k
. (23)

Proceeding similarly as in Sec. III A, we obtain the Casimir
interaction term as

fc(S) = −16π (1 − γ )M2
i M2

f

L2AB (Mi − Mf )2
e−2S|Mf |, (24)

where γ is the Euler-Mascheroni constant. The work distribu-
tion function is thus

P (W ) = e−2L2fs

[
δ(W − �E0) + δ(W − �E0 − 2|Mf |)

× 16π (1 − γ )M2
i M2

f

AB (Mi − Mf )2

]
, (25)

which interestingly has two delta function peaks at W = �E0

and W = �E0 + 2|Mf | and contains no continuum.

C. Quench from the QCP (Mi = 0)

If the quench originates from the critical (graphene) point
[Fig. 2(c)], tan (ϕ(�k)) depends only on the relative position of
Mf and is independent of its absolute value:

tan (ϕ(�k)) = −sgn(Mf ). (26)

The Casimir interaction term assumes the simple form

fc(S) = −2πMf

L2AB

(
e−2S|Mf |

S

)
(27)

and the work distribution is

P (W ) = e−2L2fs

[
δ(W − �E0)

+ 2πMf

AB

�(W − �E0 − 2|Mf |)
]
. (28)

Thus the continuum begins with a finite discontinuity at
W = �E0 + 2|Mf |.

D. Quench ending at the QCP(M f = 0)

In this case [Fig. 2(d)], tan (ϕ(�k)) once again is indepen-
dent of the absolute value of Mi and depends only on its
relative position to the QCP:

tan (ϕ(�k)) = sgn(Mi ). (29)

However, fc(S) now undergoes a power law decay with S,

fc(S) = − π

L2AB

(
1

S2

)
. (30)

This is expected from the fact that the correlation length
diverges at the gapless critical point and the two-point cor-
relations exhibit a power-law decay. P (W ) thus assumes the
form

P (W ) = e−2L2fs

[
δ(W − �E0) + �(W − �E0)

×
{

π

L2AB

(W − �E0)

}]
, (31)

which shows that there is no gap in the low-energy regime of
P (W ) and the continuum starts from W = �E0.

In summary, we demonstrated the appearance of univer-
sality in the small W limit of the work distribution func-
tion following a sudden quench in the topologically trivial
graphene Hamiltonian. Intuitively, one can provide a physical
interpretation for the terms appearing in P (W ) as follows.
For quenches performed without crossing the QCP, the delta
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(a) (b) (c) (d)

FIG. 3. Schematic of the quenches performed in the topological Haldane model with a small (φ 
= 0) and near the QCLs. The cases
analyzed are quench (a) within same phase, (b) across one QCL, (c) starting from the QCL, and (d) across the topological phase.

function term at W = �E0 in Eq. (22) corresponds to the
reversible work done in the adiabatic limit. The Heavyside
theta function term, on the other hand, indicates that the
threshold for quasiparticle excitations is equal to the minimum
energy gap 2|Mf | in the spectrum of Hf . These excitations
correspond to the irreversible work performed during the
post quench dynamics. Since a quench performed across the
QCP involves closing of the gap in the spectrum, excitations
are possible even in the adiabatic limit, which explains the
appearance of a second delta function term at W = �E0 +
2|Mf | [see Eq. (25)]. We would also like to point out that
the finite discontinuity at the edge for quenches originating
from the QCP [Eq. (28)] did not appear in the case of the
one-dimensional Ising model and is associated with the higher
dimensionality of our system, which is two-dimensional. Fi-
nally, the absence of any edge for quenches ending at the
QCP [Eq. (31)] is simply because of the fact that spectrum
of the final Hamiltonian is gapless and no threshold exists for
quasiparticles excitations.

IV. WORK STATISTICS IN TOPOLOGICAL
HALDANE MODEL

In this section, we shall set φ 
= 0 and probe the nontrivial
influence of the equilibrium topology on the distribution func-
tion P (W ). Let us recall that when complex NNN hoppings
are introduced into the graphene Hamiltonian, the two Dirac
points are no longer connected through TRS. The resulting
asymmetry in the spectrum prohibits simultaneous gap clos-
ings at the two Dirac points. The system now has two quan-
tum critical lines (QCLs) [Fig. 1(a)], Mc1 = 3

√
3t ′ sin φ and

Mc2 = −3
√

3t ′ sin φ for vanishing of the two Dirac points,
respectively. However, if φ is small, the two QCLs are very
close to each other as

|Mc1 − Mc2| ≈ 6
√

3t ′|φ|. (32)

Importantly, the spectrum at the two Dirac points, though
nonidentical, are still of the same orders of magnitude. For our
purpose, this means that the lowest-energy continuum around
both the Dirac points still make dominant contributions to
the Casimir interaction term fc(S) in the large S limit. The
spectrum around the Dirac points can now be expanded to
leading nontrivial order in k1 = |�k − �K1| and k2 = |�k − �K2|
in the form

ε(k1(2)) =
√

m2
1(2) + k2

1(2), (33)

where m1 = M − 3
√

3t ′φ and m2 = M + 3
√

3t ′φ. A quench
in the Semenoff mass from Mi to Mf is therefore equivalent
to simultaneous quenches in m1 and m2 from (m1i , m2i) to

(m1f ,m2f ). In view of the above situations, we now proceed
to evaluate fc(S) and P (W ) for the following cases.

A. Quench within trivial phase (Mi , M f ≷ ±3
√

3t ′ sin φ)
or within topological phase

(3
√

3t ′ sin φ > Mi , M f > −3
√

3t ′ sin φ)

The situation here [Fig. 3(a)] is similar to the quenches
carried out without crossing QCP in the massive graphene
model. We observe that

tan (ϕ(k1)) = C(m1i , m1f )k1, (34a)

tan (ϕ(k2)) = C(m2i , m2f )k2. (34b)

The Casimir interaction term assumes the form

fc(S) = − π

4L2AB

[
(1 − m1f /m1i )

2 e−2S|m1f |

S2

+ (1 − m2f /m2i )
2 e−2S|m2f |

S2

]
. (35)

and the work distribution function is obtained as

P (W ) = e−2L2fs

[
δ(W − �E0) + �(W − �E0 − 2|m1f |)

×
{

π (1 − m1f /m1i )2

4AB

(W − �E0 − 2|m1f |)
}

+�(W − �E0 − 2|m2f |)

×
{

π (1 − m2f /m2i )2

4AB

(W − �E0 − 2|m2f |)
}]

.

(36)

Comparing with Eq. (22), we see that P (W ) now has
two Heavyside theta funIctions indicating the existence of
two different thresholds for quasiparticle excitations. This is
a consequence of the unequal energy gaps at the two Dirac
points resulting from broken TRS.

B. Quench from trivial to topological phase
(Mi ≷ ±3

√
3t ′ sin φ ≷ M f ≷ ∓3

√
3t ′ sin φ) or vice versa

In this case [Fig. 3(b)], the quench is performed across one
of the two QCLs. One finds

tan(ϕ(k1)) = − 1

C(m1i , m1f )k1
, (37a)

tan(ϕ(k2)) = C(m2i , m2f )k2. (37b)

It should be noted that unlike the previous case, tan(ϕ(k)) has
a pole at k1 = 0, while it is analytic for k2. Therefore the two
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Dirac points contribute differently to the Casimir interaction
term and we obtain

fc(S) = − π

L2AB

[
8(1 − γ )m2

1im
2
1f

(m1i − m1f )2
e−2S|m1f |

+ (1 − m2f /m2i )
2 e−2S|m2f |

4S2

]
. (38)

This is also reflected in the work distribution as

P (W ) = e−2L2fs

[
δ(W − �E0) + �(W − �E0 − 2|m2f |)

×
{

π (1 − m2f /m2i )2

4AB

(W − �E0 − 2|m2f |)
}

+8π (1 − γ )m2
1im

2
1f

AB (m1i − m1f )2
δ(W − �E0 − 2|m1f |)

]
. (39)

We notice that there now exist both a delta function term
and a Heavyside theta function in the leading order. Par-
ticularly, if |m2f | < |m1f |, an adiabatic contribution will be
superimposed on the quasiparticle continuum in P (W ) after
the edge. This is a nontrivial behavior, which does not occur
for quenches in the trivial phase.

C. Quench starting from the QCLs(Mi = ±3
√

3t ′ sin φ)

For quenches originating from one of the QCLs, there are
three possible scenarios [Fig. 3(c)] depending on the relative
position of Mf with respect to the other QCL. For example,
if the quench originates from Mi = 3

√
3t ′φ, the Casimir

interaction term and the work distribution function for each
of the three scenarios are listed below:

a. Mf > −3
√

3t ′φ.

fc(S) = − π

L2AB

[
m1f

e−2S|m1f |

S

+
(

1 − m2f

6
√

3t ′ sin φ

)2
e−2S|m2f |

4S2

]
, (40a)

P (W ) = e−2L2fs

[
δ(W − �E0)

+ πm1f

AB

�(W − �E0 − 2|m1f |)
+�(W − �E0 − 2|m2f |)

×
{

π

4AB

(
1 − m2f

6
√

3t ′ sin φ

)2

× (W − �E0 − 2|m2f |)
}]

. (40b)

Here, P (W ) consists of two Heavyside theta functions and
there exists a finite discontinuity at W = 2|m1f |.

b. Mf = −3
√

3t ′ sin φ.

fc(S) = − π

L2AB

[
m1f

e−2S|m1f |

S
+ 1

2S2

]
, (41a)

P (W ) = e−2L2fs

[
δ(W − �E0) + �(W − �E0)

× π

L2AB

(W − �E0)

+ πm1f

AB

�(W − �E0 − 2|m1f |)
]
. (41b)

Once again, we obtain two Heavyside theta functions and the
continuum begins from W = �E0 with no gapped region.

c. Mf < −3
√

3t ′ sin φ.

fc(S) = − π

L2AB

[
m1f

e−2S|m1f |

S

+8(1 − γ )m2
2im

2
2f

(m2i − m2f )2
e−2S|m2f |

]
, (42a)

P (W ) = e−2L2fs

[
δ(W − �E0)

+ πm1f

AB

�(W − �E0 − 2|m1f |)
+ δ(W − �E0 − 2|m2f |)

× 8π (1 − γ )m2
2im

2
2f

AB (m2i − m2f )2

]
. (42b)

Here, P (W ) has a delta function peak at W = 2m2f and
the continuum begins with a finite discontinuity. It is evident
that in all the above subcases, the resulting P (W ) shows mul-
tiple thresholds as well as additional adiabatic contributions
similar to those obtained in Sec. IV B.

D. Quench across the topological phase
(Mi > 3

√
3t ′ sin φ, M f < −3

√
3t ′ sin φ)

The quench in this case is performed across the topolog-
ical phase from one trivial phase to another as indicated in
Fig. 3(d). Proceeding as before, the work distribution function
evaluates to

P (W ) = e−2L2fs

[
δ(W − �E0) + 8π (1 − γ )

AB )

×
{

m2
1im

2
1f

(m1i − m1f )2
δ(W − �E0 − 2|m1f |)

+ m2
2im

2
2f

(m2i − m2f )2
δ(W − �E0 − 2|m2f |)

}]
. (43)

Therefore there exist two additional delta function peaks and
no continuum.

V. DISCUSSIONS AND CONCLUSIONS

Let us now summarize our results as follows. We outlined
the universalities in the work distribution function for the
case of topologically trivial graphene Hamiltonian in Sec. III.
TRS ensured that the contributions from the two Dirac points
were identical and the expressions for P (W ) thus obtained are
similar to those available in literature for the one-dimensional
transverse Ising model [3,7]. Next, on introducing a small
nonzero value for φ, the TRS is broken and the result-
ing inequivalent spectrum at the two Dirac points leads to
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TABLE I. Summary of the universal characteristics of P (W ) for quenches performed in the topological Haldane model. W has been
rescaled to W = W − �E0. In all the cases, there is a delta function at W = 0, which has not been reported separately here.

Quench

Additional
delta-function

peak position(s)
at W =

Theta function
discontinuity
position(s) at

W =

Scaling
exponent of W

associated with
Theta function

edge Overall nature of P (W ) for small W

(A) Within trivial or
within topological phase

– (i) 2|m1f |
(ii) 2|m2f |

(i) 1
(ii) 1

Continuum starts from min{2|m1f |, 2|m2f |} and the slope
changes sharply at max{2|m1f |, 2|m2f |}.

(B) From trivial to
topological phase or vice
versa

2|m1f | 2|m2f | 1 Continuum starts from 2|m2f | and a delta function peak
exist at 2|m1f |, which may either lie prior to the continuum
or be superimposed on it.

(C) Away from one QCL
and ending:
(a) before the other QCL,

(b) on the other QCL,

(c) across the other QCL

(a) –

(b) –

(c) 2|m2f |

(ai) 2|m1f |
(aii) 2|m2f |

b.i. 0
(bii) 2|m1f |

(c) 2|m1f |

(ai) 0
(aii) 1

(bi) 1
(bii) 0
(c) 0

(a) If |m1f | � |m2f |, continuum starts with a nonzero finite
value at 2|m1f | and the slope changes sharply at 2|m2f |; if
|m1f | > |m2f |, continuum begins at 2|m2f | with a finite
discontinuity at 2|m1f |
(b) Continuum starts from the origin and the slope changes
sharply at 2|m1f |.
(c) Continuum starts from 2|m1f | with a nonzero finite
value and a delta function peak exist at 2|m2f |, which may
either lie prior to the continuum or be superimposed on it.

(D) Across the topological
phase

(i) 2|m1f |
(ii) 2|m2f |

– – Delta function peaks at 2|m1f | and 2|m2f |.

emergence of new behavior like the existence of multiple
thresholds for quasiparticle excitations and superimposition
of adiabatic contributions on the continuum of irreversible
excitations, as summarized in Table I. However, we would
like to point out that for quenches performed in M at a large
constant value of φ, the approximate equality in Eq. (32) is
no longer satisfied. The spectra at the two Dirac points are of
different orders of magnitude and therefore only one of them
contributes dominantly to the Casimir interaction term for any
given quench. In this scenario, the P (W ) reduces to a form
similar to that obtained in the topologically trivial case where
the two Dirac points contributed identically.

We can therefore conclude that although the work distri-
bution function in general displays similar universal behavior
for the topologically trivial graphene and the topological
Haldane model in the W → 0 limit for large values of φ, it
may, however, acquire a new class of universal behavior for
quenches performed arbitrarily close to φ = 0. We again note
here that the breaking of the TRS, which endows topological
structure to the graphene Hamiltonian, is also at the root of
the emergence of these new behaviors; hence signifying that
the system’s equilibrium topology may have a direct bearing
on the work distribution function at least for some values
of system parameters. This is significant because the work
distribution function now exhibits different universal behav-
iors following the nonequilibrium dynamics of the system for
small φ and large φ limits, although the two limits belong to
the same equilibrium universality class as far as our system is
concerned for all nonzero values of (TRS breaking) φ.

VI. EXPERIMENTAL POSSIBILITIES

Extracting the work distribution function or its character-
istic function is not an easy task experimentally as it requires
two projective and nondestructive measurements on the eigen-

bases of initial and final Hamiltonians. However, significant
progress has been made in recent times, notably, the use of
Ramsey interferometry on an ancillary qubit for extraction of
the characteristic function [8,9] and the extraction of the work
distribution function with Rubidium atoms on an atom chip
[73]. The former technique has been used to verify fluctuation
theorems for a quantum system in a nuclear magnetic reso-
nance platform [10]. The Haldane model on the other hand,
which is the system that we have considered in our work, has
also been realized experimentally by preparing noninteract-
ing ultracold fermionic gas on an optical honeycomb lattice
[74]. TRS is broken though circular modulation of the lattice
positions while a magnetic field gradient effectively plays the
role of the Semenoff mass. Since all the quenches considered
in our work are on the Semenoff mass only, experimentally
verifying our results with the ancillary qubit technique using
Ramsey interferometry will only require a quench of the
magnetic field gradient with constant periodic modulation of
the lattice position. We therefore believe that the experimental
verification of our results, although difficult to achieve, will
be possible.
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APPENDIX A: EVALUATION OF tan (ϕ(�k)) FOR SMALL �k
FOR TRIVIALLY GAPPED GRAPHENE

We have

cos θ (�k) = hz(�k)

ε(k)
= M/ε(k), (A1a)
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where hz(�k) is actually independent of �k for each Dirac point
in all the cases we consider throughout.

sin θ (�k) =
√

h2
x (�k) + h2

y (�k)

ε(k)
≈ k

ε(k)
(A1b)

to leading order in k. A simple trigonometric manipulation
allows one to write

tan (ϕ(�k)) = 1 − cos (θf (�k) − θi (�k))

sin (θf (�k) − θi (�k))
. (A2)

Substituting Eq. (A1) in the above equation, we obtain

tan (ϕ(�k)) =
√(

M2
f + k2

)(
M2

i + k2
) − MiMf − k2

(Mi − Mf )k
. (A3)

Expanding binomially and retaining terms up to O[k2],

tan (ϕ(�k)) =
|Mi ||Mf | − MiMf + k2 (Mi−Mf )2

2MiMf

(Mi − Mf )k
. (A4)

Hence if Mi,Mf ≷ 0, we have

tan (ϕ(�k)) = (Mi − Mf )

2MiMf

k, (A5)

where we have retained only the leading order term in k.
Similarly, if Mi ≷ 0 ≷ Mf , the leading order term is

tan (ϕ(�k)) = − 2MiMf

(Mi − Mf )k
. (A6)

Finally, it is straightforward to see from Eq. (A3) that if Mi =
0 (Mf = 0), we have tan (ϕ(�k)) = −sgn(Mf ) [sgn(Mi )],
respectively.

APPENDIX B: EVALUATION OF THE INTEGRAL FORM OF THE CASIMIR TERM

We choose tan (ϕ(�k)) = C(Mi,Mf )k to outline the procedure for evaluating fc(S). Other forms of tan (ϕ(�k)) can be likewise
evaluated. First, we recall the following inverse Mellin transformation,

ln (1 + x) = 1

2πi

∫ a+i∞

a−i∞

π

u sin πu
x−udu, (B1)

where u ∈ C and −1 < a < 0. Substituting in Eq. (17),

f 1
c (S) = i

L2AB

∫ ∞

0
kdk

∫ a+i∞

a−i∞

π

u sin πu
C(Mi,Mf )−2uk−2ue2uS|Mf |euSk2/|Mf |du, (B2)

where we have expanded εf (k) to order O[k2] as

εf (k) =
√

M2
f + k2 = |Mf |(1 + k2/2M2

f

)
. (B3)

The integral in k can be evaluated as Re[u] = a < 0, and therefore Eq. (B2) assumes the form

f 1
c (S) = i

L2AB

∫ a+i∞

a−i∞

π (−u)u�(−u)

2u sin πu

(
S

Mf

)u−1

C(Mi,Mf )−2ue2uS|Mf |du = i

L2AB

∫ a+i∞

a−i∞
g(u)du. (B4)

Further,
∫ a+i∞

a−i∞
g(u)du =

∫ b+i∞

b−i∞
g(u)du +

∑
b<Re[u]<a

res[g(u)], (B5)

where b < a and the residues are summed up over all the poles that lie within the strip b < Re[u] < a. The integrand g(u) has
poles on the real axis, which can be easily seen if we notice that

π

sin πu
= �(u)�(1 − u), (B6)

and the gamma function has simple poles at u = −n where n ∈ I+. The residue at the nth pole is (−1)n/n!. On choosing
b = −∞, the integral in the right-hand side of Eq. (B5) reduces to zero and the summation is now over all n ∈ I+. However,
since S is large, we consider only the contribution from the pole at u = −1 and, therefore, we obtain

f 1
c (S) = i

L2AB

�(1)�(2)

−2

(
S

Mf

)−2

C(Mi,Mf )2e−2S|Mf |(−2πi), (B7)
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where the last term within braces is the residue of �(−1), i.e., −1, multiplied by 2πi. The final expression is, therefore,

f 1
c (S) = −π (1 − Mf /Mi )2

4L2AB

(
e−2S|Mf |

S2

)
. (B8)
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