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Freezing of soft-core bosons at zero temperature: A variational theory
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The properties of a macroscopic assembly of weakly repulsive bosons at zero temperature are well described
by Gross-Pitaevskii mean-field theory. According to this formalism the system exhibits a quantum transition
from superfluid to cluster supersolid as a function of pressure. We develop a thermodynamically rigorous
treatment of the different phases of the system by adopting a variational formulation of the condensate wave
function—represented as a sum of Gaussians—that is amenable to exact manipulations. Not only is this
description quantitatively accurate, but it is also capable to predict the order (and sometimes even the location) of
the transition. We consider a number of crystal structures in two and three dimensions and determine the phase
diagram. Depending on the lattice, the transition from fluid to solid can be first order or continuous, a lower
coordination entailing a milder transition. In two dimensions, crystallization would occur at the same pressure
on three distinct lattices (square, honeycomb, and stripes), all providing metastable phases with respect to the
triangular crystal. A similar scenario holds in three dimensions, where the simple-cubic and diamond crystals
also share a common melting point; however, the stable crystal at low pressure is typically fcc. Upon compression
and depending on the shape of the potential, the fcc crystal may transform into hcp. We conclude by sketching a
theory of the solid-fluid interface and of quantum nucleation of the solid from the fluid.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion in trapped gases of alkali atoms in the 1990s [1,2], made
eventually possible by the development of novel (laser and
evaporative) cooling techniques, has boosted a lot of theoreti-
cal and experimental activities on ultracold quantum systems
(see, e.g., [3]). Generally speaking, these systems provide
an opportunity to study quantum many-body effects under
controlled conditions, even beyond the contact-interaction
approximation assumed in the Bogoliubov theory [4]. In the
weak-interaction limit, an effective approach to the physics of
ultracold atoms is the simple mean-field theory, as formulated
in terms of the Gross-Pitaevskii equation [5–7].

Interestingly, many quantum systems undergo phase tran-
sitions near zero temperature (T = 0). Such transitions take
place in many-body systems with competing ground states;
they are driven by a nonthermal control parameter, such as
pressure, magnetic field, or chemical composition. At the tran-
sition point, order is destroyed solely by quantum fluctuations.
A quantum transition is continuous when the ground state of
the system changes continuously across the transition point;
otherwise, the transition is first order. For instance, dipolar
bosons confined in a one-dimensional optical lattice exhibit
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various phases as the strength of interaction increases, going
from superfluid to a crystal-like state [8–10].

A paradigmatic example of quantum transition is the crys-
tallization of softly repulsive bosons at T = 0 [11–17]. Ex-
perimental candidates for this transition are ultracold gases of
atoms dressed with Rydberg states, which are highly excited
electronic states (see, e.g., [18]). The effective atom-atom
interaction is a bounded pair repulsion, having an essentially
flat core of micrometric radius and a positive van der Waals
tail [19,20]. In classical terms, an interaction that is every-
where finite can stabilize cluster crystals at low temperature
and high density [21–25], based on purely energetic consider-
ations [26]: for example, when repulsion is “fatter” than Gaus-
sian, it is more convenient to form isolated blobs of particles
than having them distributed homogeneously in space. Such
an arrangement ensures a large mobility to atoms, which can
freely hop from one site to another [27]. Cluster-crystal order
also occurs in weakly repulsive bosons at high pressure, with
the additional bonus of supersolid behavior (i.e., crystalline
order coexisting with superfluid behavior) near the melting
point [28–32].

Focusing on the penetrable-sphere model (PSM) [33,34] as
a prototype of bounded repulsion, here we provide a thorough
variational study of the zero-temperature phase diagram of a
thermodynamic system of identical bosons in two and three
dimensions, thus completing a work initiated in Refs. [15,16].
Following an earlier proposal made by Tarazona [35] in
the different context of classical density-functional theory,
we assume a specific parametric form of the condensate
wave function from the outset, first verifying that it indeed
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reproduces the optimal single-particle wave function and en-
ergy very accurately. The use of this variational state leads
to a number of simplifications in the energy functional which
make the theory much more manageable numerically, opening
up to the possibility of working out the ground-state phase
diagram of soft-core bosons in relatively small time. By
considering a wide spectrum of possible lattices, we identify
stable and metastable crystalline phases and fully characterize
their melting transition. Moreover, we show that all these crys-
tals are supersolid, i.e., they exhibit nonclassical rotational
inertia. Finally, we present a preliminary discussion about the
structure of the solid-fluid interface and of nucleation of the
solid from the fluid.

The outline of the paper is as follows. In Sec. II we
introduce the model and the variational theory employed
to study its thermodynamics. We also outline the method
used to analyze the transition behavior. In Sec. III we first
assess the quality of our theory compared to the theory in
Ref. [15]; then we present our results. Section IV is devoted to
a mean-field description of the solid-fluid interface and of the
ensuing theory of quantum nucleation. Concluding remarks
are offered in Sec. V.

II. MODEL AND THEORY

We consider a macroscopic number N of pointlike
bosons of mass m, interacting through a bounded poten-
tial u, even function of its argument [an example is the
PSM interaction u(x) = ε�(σ − |x|), where � is the Heav-
iside step function and ε, σ > 0]. The system Hamiltonian
reads

H =
N∑

i=1

p2
i

2m
+
∑
i<j

u(xi − xj ). (2.1)

In the mean-field (Hartree) approximation, which applies for
u of sufficiently weak strength, the system ground state is
represented as a perfect condensate:

�(x1, . . . , xN ) =
N∏

i=1

ψ (xi ), (2.2)

with ∫
V

ddx |ψ (x)|2 = 1, (2.3)

where d is the space dimensionality and V = O(N ). The
single-particle state ψ is chosen such that the expectation
value of H in the state � be as low as possible, which leads
to (see, e.g., [36])

− h̄2

2m
∇2ψ (x) + N

∫
ddx ′ |ψ (x′)|2u(x − x′)ψ (x) = μψ (x).

(2.4)
The quantity μ in Eq. (2.4) is the Lagrange multiplier en-
forcing the condition 〈�|�〉 = 1 [equivalent to Eq. (2.3)].
In the quantum-gas literature, the above equation is known
as the (time-independent) Gross-Pitaevskii (GP) equation.
Clearly, Eq. (2.4) is only a necessary condition; among
all solutions, the physical one has the least possible
energy.

Equation (2.4) has always a spatially homogeneous solu-
tion. However, under appropriate conditions, crystalline order
may develop. Hence, it is natural to use a plane waves expan-
sion for the single-particle wave function:

ψ (x) = 1√
V

∑
G

cGeiG·x, (2.5)

where the G’s are reciprocal-lattice vectors and
∑

G |cG|2 =
1; V is the system volume and periodic conditions hold. This
leads to rewrite the GP equation as [15](

h̄2K2

2m
+ ρũ(0)

)
cK + ρ

∑
G �=0

ũ(G)SGcK+G = μcK, (2.6)

where ρ = N/V is the number density, SG =∑G′ cG′c∗
G′+G,

and ũ(k) is the real-valued Fourier transform of u. The fluid
phase, corresponding to cG = δG,0, is a special solution to
Eq. (2.6) with μ = ρũ(0).

A different but equivalent perspective is to view the Fourier
coefficients cG, as well as the lattice constant a, as parameters
to be optimized. Using the variational method, the best so-
lution of type (2.5) should minimize the average energy per
particle:

E ([c], a; ρ) = h̄2

2m

∑
G

G2|cG|2

+ ρ

2

∑
G1,G2,G3

ũ(G1)c∗
G1+G2

cG1+G3cG2c
∗
G3

,

(2.7)

i.e., the sum of zero-point kinetic energy and potential energy.
By requiring the derivative of E ([c], a; ρ) − μ

∑
G |cG|2 with

respect to c∗
G to be zero, we re-obtain Eq. (2.6). The way

to solve these equations for a fixed a is by iteration: at
each step of the procedure, SG is first estimated from the
cG coefficients drawn from the previous step; the resulting
linear system is then solved, determining eigenvalues μn

and normalized eigenvectors. Finally, the string of coeffi-
cients is updated to the eigenvector with the minimum E
value.

Kunimi and Kato have solved Eq. (2.6) for PSM bosons
in two dimensions (2D) [15], showing that for sufficiently
high density the ground state is a triangular crystal (we shall
later confirm and further extend their result by a rigorous
thermodynamic analysis, see the end of this section). Macrì
et al. [31] have tested mean-field (MF) results by Monte
Carlo simulation, proving that the condensate is indeed almost
perfect in the fluid region and that the exact freezing point lies
extremely close to the theoretical estimate. However, if we
wish to perform a systematic study of the phases of the PSM
and systems alike in three dimensions, the effort of solving
Eq. (2.6) or to perform accurate simulations would be much
greater. That is why we make an ansatz on the shape of ψ ,
described as a sum of Gaussians centered at the lattice sites,
which is of no consequence for the overall picture since—as
we shall verify—the results obtained are close to those of
unconstrained MF theory.
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We decide to represent the self-organized, quantum single-
particle state by the real-valued wave function

ψ (x) = Cα

1√
V

∑
R

e−α( x−R
a

)2
, (2.8)

where Cα is a normalization constant and the R’s are direct-
lattice vectors. Two variational parameters appear in (2.8), i.e.,
α and a, related to the width and periodicity of the Gaussians,
respectively. We stress that a, to be interpreted hereafter as
the nearest-neighbor distance, is an adjustable parameter as
well, independent of the density, so as to grant the possibility
to have cluster-crystal solutions (see the follow-up discussion
at the end of this section). When α → 0, the fluid phase is
recovered.

Our first task is to normalize ψ (x), by requiring that
Eq. (2.3) is satisfied. Using the identity

(x − R)2 + (x − R′)2 = 2

(
x − R + R′

2

)2

+ (R − R′)2

2
,

(2.9)
Cα is easily found to be

Cα =
√

v0

ad

(
2α

πI (α)2/d

)d/4

with I (α) =
∑

R

e
− α

2a2 R2

(2.10)

[v0 is the volume of the primitive cell, e.g., v0 = (
√

3/2)a2

for the triangular lattice]. On the other hand, ψ (x) can also be
written as a Fourier series,

ψ (x) = 1√
V

∑
G

ψGeiG·x. (2.11)

Denoting C a primitive cell, we find

ψG =
√

V
1

v0

∫
C
ddx e−iG·xψ (x)

≡ C ′
αe− G2a2

4α with C ′
α =

√
ad

v0

(
2π

αI (α)2/d

)d/4

. (2.12)

Finally, from the normalization condition
∑

G ψ2
G = 1 we

derive a different expression for I (α):

I (α) = ad

v0

(
2π

α

)d/2∑
G

e− G2a2

2α , (2.13)

which proves useful to develop a low-α expansion of the
energy functional (see Appendix A).

The advantage of the Gaussian series (2.8) over the more
general expression (2.5) is an analytical simplification of the
energy functional, allowing a considerable speed up in the
computations. Let us first consider the specific (i.e., per unit
particle) kinetic energy. Its general expression is

Ekin = − h̄2

2m

∫
ddx ψ∗(x)∇2ψ (x)

= h̄2

2m

∫
ddx ∇ψ∗(x) · ∇ψ (x), (2.14)

where the equality follows after observing that, even though
ψ and its gradient do not vanish at infinity, the integral over
a cell of every partial derivative of a smooth periodic function
is zero. For the function ψ in Eq. (2.8) it readily follows
that ∫

ddx[∇ψ (x)]2

= 4α2C2
α

V a4

∑
R,R′

e
− α

2a2 (R−R′ )2

×
∫

ddx (x − R) · (x − R′)e− 2α

a2 (x− R+R′
2 )2

. (2.15)

The inner integral is solved by a change of variables, eventu-
ally arriving at∫

ddx[∇ψ (x)]2

= 4α2C2
α

v0a4

(
πa2

2α

)d/2∑
R

(
da2

4α
− R2

4

)
e
− α

2a2 R2

. (2.16)

Finally, using Eq. (2.13) and its derivative, a closed-form
expression for the kinetic energy is obtained:

Ekin = e0
d

2

ασ 2

a2

(
1 + 2

d
α

I ′(α)

I (α)

)
. (2.17)

In this equation, σ is a characteristic length of the potential
(say, its range), whereas e0 = h̄2/(mσ 2) is a natural energy
unit. Using these units, we see from (2.7) that the ground
state is only controlled by the dimensionless quantity ρσdε/e0

(which we refer in the following as the “density”) or, equiva-
lently, by the value of g ≡ ρũ(0)/e0.

As for the potential energy, it admits no concise form
like (2.17), but its expression can nevertheless be greatly
simplified and reduced to the numerical evaluation of a few
single, rapidly converging series. Indeed, replacing cG with
ψG in the second term of (2.7) we get

Epot = 1

2
ρC ′4

α

∑
G1

ũ(G1)e− G2
1a2

2α

∑
G2

e− (G2
2+G1 ·G2 )a2

2α

×
∑
G3

e− (G2
3+G1 ·G3 )a2

2α . (2.18)

Each of the inner sums equals

∑
G

e− (G2+G1 ·G)a2

2α = e
G2

1
8α

∑
G

e− (G+G1/2)2a2

2α . (2.19)

For the sake of clarity, now take d = 2. Writing G1 as an
integer combination of reciprocal-lattice basis vectors, i.e.,
G1 = pb1 + qb2, the sum in the right-hand side (r.h.s.) of
Eq. (2.19) can at most take 4 (= 2d ) distinct values, according
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to whether p, q are even or odd:

∑
G

e− (G+G1/2)2a2

2α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
G e− G2a2

2α , p and q both even,∑
G e− (G+b1/2)2a2

2α , p odd and q even,∑
G e− (G+b2/2)2a2

2α , p even and q odd,∑
G e− (G+(b1+b2 )/2)2a2

2α , p and q both odd.

(2.20)

Denoting J1(α), J2(α), J3(α), and J4(α) the four sums in Eq. (2.20), the specific potential energy becomes (with obvious
meaning of the symbols)

Epot = 1

2
ρC ′4

α

{
J1(α)2

(e,e)∑
G

ũ(G)e− G2a2

4α + J2(α)2
(o,e)∑

G

ũ(G)e− G2a2

4α + J3(α)2
(e,o)∑

G

ũ(G)e− G2a2

4α + J4(α)2
(o,o)∑

G

ũ(G)e− G2a2

4α

}
. (2.21)

Further simplifications may occur depending on the lattice. For example, while J2(α) = J3(α) = J4(α) on the triangular lattice,
J2(α) = J3(α) �= J4(α) on the square lattice. In the former case, the energy per particle reads in compact form:

E (α, a; ρ) = e0
ασ 2

a2

(
1 + α

I ′(α)

I (α)

)
+ 1

2
ρ

{
(e,e)∑

G

ũ(G)e− G2a2

4α +
(

J (α)

I (α)

)2 ¬(e,e)∑
G

ũ(G)e− G2a2

4α

}
, (2.22)

with

J (α) = 2πa2

αv0

∑
G

e− (G+b1/2)2a2

2α . (2.23)

For the triangular lattice, the reciprocal-lattice vectors are given by

b1 = 2π

a

(
1,− 1√

3

)
and b2 = 2π

a

(
0,

2√
3

)
. (2.24)

Numerical minimization of Eq. (2.21) will give the optimal α and a. An expression similar to (2.21) holds for any Bravais lattice.
The situation is somewhat harder for a non-Bravais lattice (i.e., a Bravais lattice with a basis). An example is the honeycomb

lattice: its reference lattice is triangular with lattice constant c = √
3a, but every cell of volume v0 = (

√
3/2)c2 contains two

particles, whose positions within the cell are described by, say, e1 = (0, 0) and e2 = (0, a). The variational wave function now
reads

ψ (x) = Cα

1√
V

∑
R,e

e−α( x−R−e
a

)2
, (2.25)

where Cα is still given by Eq. (2.10), but I (α) is different:

I (α) =
∑

R

[
2e

− α

2a2 R2 + e
− α

2a2 (R+e1−e2 )2 + e
− α

2a2 (R+e2−e1 )2]
. (2.26)

The Fourier coefficients of ψ (x) are now written as

ψG = C ′
α (e−iG·e1 + e−iG·e2 )e− G2a2

4α , (2.27)

with the same C ′
α as in Eq. (2.12). Imposing normalization in the Fourier representation, an alternate I (α) expression follows:

I (α) = 4

(
2π

α

)d/2
ad

v0

∑
G

cos2

(
G · (e2 − e1)

2

)
e− G2a2

2α . (2.28)

Finally, the energy per particle is given by

E = 1

2
e0

∑
G

(Gσ )2|ψG|2 + 1

2
ρ
∑

G1,G2,G3

ũ(G1)ψ∗
G1+G2

ψG1+G3ψG2ψ
∗
G3

, (2.29)

where, using ψG = uG + ivG,∑
G2,G3

ψ∗
G1+G2

ψG1+G3ψG2ψ
∗
G3

=
∑

G2,G3

[(
uG1+G2uG1+G3 + vG1+G2vG1+G3

)(
uG2uG3 + vG2vG3

)
+ (uG1+G2vG1+G3 − vG1+G2uG1+G3

)(
uG2vG3 − vG2uG3

)]
. (2.30)
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FIG. 1. PSM bosons on the triangular lattice at T = 0: typical
surface plot of the energy functional (2.22) at high density [note
that the zero of energy has here been shifted to ρũ(0)/2]. For this
example, which refers to ρ = 14 (units of e0ε

−1σ−d ), the absolute
minimum falls at α = 9.50204 and a = 1.504540 (units of σ ). The
location of the minimum energy (−0.2716735 . . .) is separated by a
low barrier from the “fluid” minimum at α = 0 (to make this barrier
visible, contour lines have been plotted every 0.05 starting from
−0.2499).

Before closing this section, we discuss how to extract
thermodynamic properties from raw energy data. Once best
parameters (α and a) have been computed for each den-
sity, the internal energy per particle is given by e(ρ) =
E (α(ρ), a(ρ); ρ) [there is a different energy branch for each
crystal, while e(ρ) = (̃u(0)/2)ρ for the fluid]. Typically, at
low density the deepest minimum of E as a function of α

occurs at α = 0. Upon increasing ρ, and provided that crys-
tallization is first order, a secondary minimum first appears at
a positive α value, which then becomes the absolute minimum
at a still larger density (see Fig. 1). However, if the pressure
P is fixed the stable phase must minimize the generalized
enthalpy h̃(ρ; T = 0, P ) = e(ρ) + P/ρ (per unit particle).
The minimum h̃ is the enthalpy h(P ) at T = 0, while the
abscissa ρeq(P ) of the minimum is the equilibrium density.
Alternatively, we can resort to a graphical construction: for
each possible phase, we plot e as a function of the specific
volume v = ρ−1; the slope of the tangent line at v is −P (v).
For a given lattice, the transition occurs where the fluid and
crystal energy branches have a common tangent, and the
coexistence volumes are the abscissae of the contact points.
Finally, the chemical potential at P is μ = e(ρeq ) + P/ρeq,
which is nothing but the intercept on the energy axis of the
tangent at (ρ−1

eq , e(ρeq )). In formal terms, the full equilibrium
energy curve coincides with the boundary of the convex hull
of all the individual e vs v curves.

We stress that in a crystal of soft-core particles the number
Nc of cells may not be equal to N . Indeed, the classical
PSM interaction is known for stabilizing cluster crystals at
low temperature [23]. The same will also occur, based on
the argument in [21], for smoothed-step interactions like the
softened van der Waals (SVDW) repulsion, u(r ) = ε/[1 +
(r/σ )6], and the sequence of generalized-exponential-model
(GEM) potentials, un(r ) = ε exp{−(r/σ )n}, for n > 2 [37].
The Gaussian repulsion (n = 2) is a marginal case: despite
there is no evidence of a cluster crystal in two or three

dimensions, clear hints of clusterization are detected in one
dimension [38]. The quantum counterparts of the PSM and
SVDW interactions have been studied by Monte Carlo sim-
ulation in Refs. [17,28,39], and cluster crystals have been
found. In a mean-field setting, the criterion for clusterization
is simply stated as follows. Denoting Nc the number of lattice
cells, the number of particles per cell is on average

N

Nc

= N

V

V

Nc

= ρv0. (2.31)

Therefore, if in equilibrium ρv0 > 1 the crystalline phase is
actually a cluster crystal.

III. RESULTS

We first present results for PSM bosons in two dimensions.
By numerically solving the GP equation, Kunimi and Kato
have concluded that the fluid coexists at T = 0 with a trian-
gular crystal in the interval 38.44 � g � 40.98 [15]. Besides
confirming this result with our approach, we shall provide data
for other metastable 2D crystals, showing that crystallization
on nontriangular lattices would instead be continuous.

We first solve Eq. (2.6) on the triangular lattice [G =
pb1 + qb2, with b1 and b2 defined at Eq. (2.24)]. For fixed
ρ and a we truncate the system of equations by assuming
that cG = 0 for |p|, |q| > 5 (we have checked that nothing
changes if this threshold were rather 10). Then, diagonaliza-
tion of the resulting 121 × 121 Hermitian matrix of coeffi-
cients is cyclically performed within the iterative procedure
described in Sec. II, until self-consistency is attained. At this
point we verify that

μ = 2E − 1

2
e0

∑
G

(Gσ )2|cG|2, (3.1)

as expected. Finally, a is optimized until its value is deter-
mined to five decimal places. Next, for the same lattice we
solve the variational theory, searching for the minimum of
(2.22) on a grid of (α, a) values covering the region where
the absolute minimum of E lies. The spacing of the grid is
progressively reduced around the minimum, until its location
is determined to 10−6 precision. The whole procedure is then
repeated for the square lattice.

The data in Figs. 2 and 3 clearly document that the two
theories give largely similar indications for the transition
properties of PSM bosons at zero temperature. Looking at
Fig. 2, we see that freezing is first order on the triangular
lattice (left panel), while it seems to be continuous on the
square lattice (right panel). As for the latter, we prove in
Appendix A 1 that the transition to a square crystal indeed
occurs continuously within Gaussian variational theory, by all
evidence at the same density/pressure indicated by MF theory.
For the case of the triangular crystal we report in Fig. 3 left
panel the optimal values of the variational parameters α and a.
Again, a and e(ρ) have nearly identical values at all densities
in the two theories. Coexisting densities are ρF0 = 12.234 and
ρS0 = 13.045 in MF theory (fully consistent with the g thresh-
olds reported in Ref. [15]), while ρF0 = 12.315 and ρS0 =
13.131 (both 0.7% higher) in variational theory. Finally, we
show in Fig. 4 a comparison between the crystalline ground
states in the two theories close to melting. For both types of
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FIG. 2. PSM bosons in two dimensions at T = 0: generalized
enthalpy for two pressures, P = 235.12 (left) and P = 341.1488
(right). At these pressures, freezing in MF theory occurs into a
triangular crystal and into a square crystal, respectively (in all figures,
e and P values are given in units of e0 and e2

0ε
−1σ−d , respectively).

Besides fluid data (black crosses), we report crystal data from MF
theory (red dots) and Gaussian variational theory (blue dots). In
the latter theory the transition to the triangular crystal occurs at
P = 238.24 (1.3% higher than the MF estimate), whereas on the
square lattice the transition pressure is the same for the two theories.
In the insets, a magnification of the transition region is shown. Each
horizontal dotted line marks the value of the chemical potential at the
transition (38.436, left; 46.2979, right).

crystal, the wave functions along two distinct high-symmetry
directions are, to a large extent, similar.

Then we have considered other crystals, a honeycomb
crystal and a striped crystal (periodic in one direction only), to
see what transition pressure would result in these cases. Like
the square crystal, also these crystals melt continuously. More
importantly, the melting pressure is apparently the same as for
the square crystal. Indeed, we rigorously prove in Appendixes
A 2 and A 3 that the transition point is exactly the same for the
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FIG. 3. PSM bosons in two dimensions at T = 0. Left: Optimal
parameters for the triangular crystal as a function of the density ρ

according to MF theory (red dots) and Gaussian variational theory
(blue dots). Right: Variational-theory lattice constant a, plotted as a
function of ρ, for various 2D crystals. The vertical dotted line marks
continuous freezing (ρ = 14.73710 . . ., see Appendix A).
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FIG. 4. PSM bosons in two dimensions at T = 0: we compare
the crystalline ground state ψ in MF theory (red) with the optimal
variational state ψ (blue), along two space directions [(1,0) and (1,1)]
and on two lattices (triangular lattice: ρ = 13, left panels; and square
lattice: ρ = 15, right panels).

three crystals, at least within Gaussian variational theory. This
evidence is surprising: not only the nature of the transition is
the same for the three lattices but also its location is universal
(we shall come back to this later). In the right panel of Fig. 3
we compare the values of a in the various crystals. As it might
be expected, a typically decreases with increasing density,
only the square crystal makes an exception to this rule at
moderate densities, signaling an anomalous behavior of the
mean site occupancy.

To establish which phase is stable at a given pressure
there is no other way but to try all the many possibilities,
compute the energy as a function of density for each, and
finally select the one with the lowest enthalpy. We show the
outcome in Fig. 5: in the left panel the energy of each phase
is plotted as a function of volume; in the right panel, the
enthalpies of the various phases are compared with each other.
As expected, the triangular crystal is the only stable solid
phase, the other crystals being metastable and sufficiently
far above in enthalpy to be likely irrelevant for the kinetics
of the fluid-to-solid transformation. We have then considered
other interactions, smooth deformations of the PSM repulsion:
the GEM potentials and the SVDW interaction. Looking at
Table I, where we collect the transition thresholds for all the
cases considered, we see that a smoother interaction entails a
higher transition pressure. Eventually, for n = 2 [where ũ(k)
is everywhere positive] crystallization is swept away at zero
temperature.

We briefly comment about the possibility of a stable hex-
atic phase in a 2D quantum system at T = 0, an issue that
clearly goes beyond the scope of our mean-field analysis.
To our knowledge, evidence of quasi-long-range bond-angle
order in a quantum fluid has only been reported for distin-
guishable charges (u(r ) ∝ 1/r [40,41]) and aligned dipoles
(u(r ) ∝ 1/r3 [41,42]) confined in a plane. Both systems
feature a hexatic phase in the classical regime (i.e., for high
temperature and/or large potential-to-kinetic energy ratio).
When moderate quantum fluctuations are included, the hex-
atic phase is shifted to lower temperatures, while, deeper in the
quantum regime, the hexatic phase is suppressed completely.

104104-6



FREEZING OF SOFT-CORE BOSONS AT ZERO … PHYSICAL REVIEW B 98, 104104 (2018)

 20

 25

 0.06  0.07  0.08  0.09

e

v

fluid
tr. crys.

sq. crys.
hc. crys.

stripes

 20

 21

 0.075  0.08

-4

-3

-2

-1

 0

 1

 200  400  600

Pc Pc

h
-h

F

P

tr. crys.
sq. crys.
hc. crys.

stripes

FIG. 5. PSM bosons in two dimensions at T = 0, variational-
theory results. Left: e vs v for all the phases examined (see leg-
end). The red straight line is the common tangent to the fluid
and triangular-crystal branches. The arrows mark the coexisting
volumes. The inset shows a magnification of the transition region
(the coexisting volumes are now signaled by two dotted lines).
Right: Enthalpy h(P ) for each solid phase, using the fluid phase as
reference (black). The arrows mark the location of the transition into
the triangular crystal (left) and into the square crystal (right). The
transition pressure for the honeycomb and the striped crystal is the
same as for the square crystal.

It is not clear whether the hexatic order can survive down
to zero temperature (evidences of opposite sign are given by
Bruun and Nelson and by Clark et al.). We also underline that
nothing precludes that hexatic order and cluster-crystal order
can coexist in the same system, see for example [43].

Summarizing up to this point, MF results are confirmed
by Gaussian variational theory both qualitatively and quanti-
tatively. In particular, freezing in 2D occurs continuously for

TABLE I. Soft-core bosons at T = 0: location of the freezing
transition (the error is of one unit on the last decimal place; in one
case only the datum refers to a solid-solid transition). Where not
specified, results are from Gaussian variational theory.

Model Crystal Pc μc Order

PSM tr. (MF) 235.12 38.436 1st
PSM tr. 238.24 38.690 1st
PSM sq. (MF) 341.1488 46.2979 2nd
PSM sq. 341.1488 46.2979 2nd
PSM hc. 341.1488 46.2979 2nd
PSM stripes 341.1488 46.2979 2nd
GEM-10 tr. 421.22 47.987 1st
GEM-4 tr. 942.89 66.516 1st
SVDW tr. 541.20 53.306 1st
PSM fcc 427.89 59.872 1st
PSM bcc 430.13 60.029 1st
PSM fcc → hcp 510.5 64.55 1st
PSM sh 705.80 76.895 1st
PSM sc 987.4772 90.9543 2nd
PSM diam. 987.4772 90.9543 2nd
SVDW fcc 1013.65 81.667 1st
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FIG. 6. PSM bosons in three dimensions at T = 0, variational-
theory results. Left: e vs v for all the phases examined (see legend).
The red straight line represents the common tangent to the fluid and
fcc-crystal branches, whereas the arrows mark the location of the
coexisting volumes. The inset shows a magnification of the transition
region (the coexisting volumes are now signaled by two dotted lines).
Right: Enthalpy h(P ) for each solid phase, using the fluid phase as
reference (black). The arrows mark the location of the transition into
the fcc crystal (left), the sh crystal (middle), and the sc crystal (right).
The transition pressure for the diamond crystal is the same as for the
sc crystal.

loosely packed crystals, i.e., those having a low coordination
number z: the lower z is, the smaller a in order to keep
particles bound to each other. Furthermore, all crystals turn
out to be cluster crystals: at the melting transition, the average
number of particles per lattice site is spectacularly large and
grows almost linearly with density (at melting, ρv0 is 25.98
for the triangular crystal, 25.47 for the square crystal, and
29.41 for the honeycomb crystal).

In three dimensions (3D), the competition for thermo-
dynamic stability at T = 0 is restricted to the fluid phase
and the compact cubic phases only (fcc, bcc, and hcp), see
Fig. 6. Loosely packed crystals, such as the simple-cubic
(sc) crystal and the diamond crystal, melt continuously at
a common critical pressure (see Appendixes A 4 and A 5),
much higher than the melting pressure of, say, the fcc phase.
For PSM bosons, also the simple-hexagonal (sh) crystal is
too far away in enthalpy from the fcc crystal to be of any
relevance for crystallization (the c/a ratio of the optimal sh
crystal is approximately 0.90 near melting). The stable solid
phase is the fcc crystal (ρF0 = 14.294, ρS0 = 16.599, and
ρv0 = 36.7 at melting, in full agreement with the estimates
in Ref. [16]), even though its enthalpy is only imperceptibly
smaller than the hcp one (Fig. 7). Upon increasing pressure,
the hcp crystal eventually takes over, implying a solid-solid
transition (transition thresholds can be read in Table I). The
bcc crystal, whose energy is lower than fcc energy at low
density, is only metastable (see Fig. 8 left panel). In Fig. 9
the optimal values of the variational parameters are plotted as
a function of ρ for all phases. The situation is slightly different
for SVDW bosons (Fig. 8 right panel): the stable solid phase
is now fcc at all pressures (ρF0 = 24.824, ρS0 = 28.236, and
ρv0 = 52.2 at melting), but the bcc crystal (which is nearer in
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scale), using the fcc crystal as reference. The vertical lines mark the
location of the transitions (see Table I).

density to the fluid) is so close in enthalpy to the fcc crystal
that, according to Ostwald’s rule of stages [44], the onset of
the solid from the overcompressed fluid will occur through
an initial stage characterized by a nucleus of prevailing bcc
character [45–48]. This expectation is based on an analogy
between quantum and classical (or thermal) nucleation, which
we try to substantiate theoretically in Sec. IV. If Ostwald’s
rule applies [49,50], the stable fcc structure will first appear in
the core of near-critical nuclei, while bcc-like order survives
in the external corona.
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variational-theory results for the generalized enthalpy h̃(ρ ) =
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P = 1013.65 and μ = 81.667. Besides fluid data (black crosses),
results are reported for the fcc crystal (blue dots), the hcp crystal
(cyan dots), and the bcc crystal (red dots). For both models freezing
first occurs into a fcc crystal. In the inset of the right panel we plot
the difference in enthalpy between the hcp and the fcc crystal as a
function of pressure. This difference is positive at all pressures, hence
for T = 0 the fcc crystal is always more stable than the hcp crystal.
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FIG. 9. PSM bosons in three dimensions at T = 0. Left: Optimal
parameters for the fcc crystal as a function of the density according to
Gaussian variational theory. Right: The lattice constant a is plotted
as a function of ρ for various 3D crystals (the hcp data are hidden
behind fcc ones). A curious prediction of variational theory is the
isostructural transition undergone by the sc crystal near ρ = 24.8,
signaled by a jump in the lattice constant and a cusp in the enthalpy
(see Fig. 6 right panel). The vertical dotted line marks continuous
freezing (ρ = 21.71372 . . ., see Appendix A).

It is worth comparing the ground state of the quantum PSM
and SVDW systems as a function of pressure to the phase
diagram of the respective classical fluids. As far as the PSM
is concerned, the fcc crystal is the only stable classical solid
at low pressure [23], exactly as in the case of PSM bosons
at T = 0. Instead, no phase diagram is available for classical
SVDW particles. However, Zhang and Charbonneau [22] have
reconstructed the 3D phase diagram of a similar system of
classical particles interacting through the GEM-4 potential.
In that case, cluster-crystal order at T = 0 is fcc; but, at
higher temperatures, the liquid first freezes into the cluster-bcc
phase, which under pressure is eventually transformed into
the cluster-fcc phase. This means that the T = 0 chemical
potential of the cluster-bcc crystal is close to that of the
cluster-fcc crystal, i.e., the same as found for weakly repulsive
SVDW bosons.

In Appendix B we derive the MF spectrum of excitations in
the fluid. This is accomplished by solving, in the amplitude-
phase representation, the time-dependent GP equation for a
slightly perturbed condensate wave function. The oscillatory
solution obtained has the expected Bogoliubov-like disper-
sion [15,32],

h̄ω(k) =
√

h̄2k2

2m

(
h̄2k2

2m
+ 2ρũ(k)

)
. (3.2)

If ũ(k) is negative in a range of k values, the fluid phase
exhibits superfluid behavior. Under the same assumption,
ω(k) shows a roton minimum for sufficiently high density.
The roton minimum becomes unstable exactly at the transition
density for continuous freezing (see Appendix B), i.e., at the
upper threshold for thermodynamic stability of the fluid. Fi-
nally, we discuss in Appendix C the supersolid behavior of the
crystal, i.e., the property of anomalous rotational inertia [51].
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By adapting an argument exposed in Ref. [52], we find that
within Gaussian variational theory any crystalline phase is
necessarily supersolid at all pressures.

IV. THE SOLID-FLUID INTERFACE

In this section we develop an elementary theory of the in-
terface between solid and fluid at coexistence (T = 0 and P =
Pcoex). At a coarse-grained level of description the boundary
region between the two phases is most easily represented in
terms of the spatial dependence of a suitable order parameter
distinguishing the two phases.

Let Emin(ρ) represent the absolute minimum of the vari-
ational energy E (α, a; ρ) as a function of ρ [Emin(ρ) has a
double-parabola shape, with a cusp at the point where the
minimum jumps from α = 0 to α > 0]. At a fixed pressure P ,
the equilibrium density ρeq(P ) is the point of absolute min-
imum for Emin(ρ) + P/ρ, with ρeq(P ) ≡ ρF(P ) < ρF0 for
P < Pcoex and ρeq(P ) ≡ ρS(P ) > ρS0 for P > Pcoex; going
across Pcoex, the equilibrium density jumps from ρ = ρF0 to
ρ = ρS0. However, the fluid density is still defined above
the coexistence pressure, at least up to P ∗ (supercompressed
fluid). Similarly, the solid density is also defined below the
coexistence pressure, down to P ∗∗ (undercompressed solid).
In the interval P ∗∗ < P < P ∗, which encloses Pcoex, ρF(P )
and ρS(P ) are both well defined.

At coexistence, solid and fluid have the same enthalpy:

hS(Pcoex) = hF(Pcoex) ≡ ρF0ũ(0)

2
+ Pcoex

ρF0
. (4.1)

In the interval P ∗∗ < P < P ∗, the quantity (defined for
every ρ)

�h(ρ; P, T = 0) = Emin(ρ) + P

ρ
− hF(P ) (4.2)

has the shape of a double well, with two minima at ρF(P )
and ρS(P ), respectively, equal to 0 and hS(P ) − hF(P ). For
P = Pcoex, the minima of �h are both zero, in agreement with
Eq. (4.1). For higher pressures, the high-density minimum
(“solid”) is deeper than the low-density minimum (“fluid”),
while the opposite occurs for P < Pcoex.

To describe the solid-fluid interface at coexistence, we
promote the density ρ to a field ρ(x) (in every “small” region
of solid, the value of α and a will conform to the values
expected for the bulk solid with density equal to the local
one). In two dimensions, the density field at equilibrium will
minimize the Landau free-energy functional [53]

H[ρ] =
∫

d2x

{
1

2
c(∇ρ)2 + 1

2
κ (∇2ρ)2 + h(ρ(x, y))

}
,

(4.3)
where c, κ > 0 are rigidity moduli and h(ρ) ≡
N�h(ρ; Pcoex, T = 0)/V is the enthalpy difference per
unit volume between solid and fluid, so that H is the enthalpy
content attached with the interface. The minimum of H must
comply with boundary conditions. For example, if we want
to describe a straight interface perpendicular to x, separating
the solid (on the left) from the fluid (on the right), we should
have

ρ(−∞) = ρS0 and ρ(+∞) = ρF0 (4.4)

(for symmetry reasons, ρ will uniquely depend on x). Among
all profiles that satisfy the conditions (4.4), the equilibrium
profile ρ0(x) minimizes

H[ρ] = Ly

∫ +∞

−∞
dx

{
1

2
c

(
dρ

dx

)2

+ 1

2
κ

(
d2ρ

dx2

)2

+ h(ρ(x))

}
,

(4.5)
Ly being the macroscopic transverse size of the sample. The
value of H at the point of minimum is, by definition, γLy (γ
is the interface tension). One finds [53]

γ =
∫ +∞

−∞
dx
{
cρ ′2

0 (x) + 2κρ ′′2
0 (x)

}
. (4.6)

For κ = 0 and h(ρ) = h0(1 − ρ/ρF0)2(1 − ρ/ρS0)2 (φ4 the-
ory) the Euler-Lagrange solution of (4.5) is analytic [54]:

ρ0(x) = ρS0 + ρF0

2
− ρS0 − ρF0

2
tanh

x


, (4.7)

with  = ρF0ρS0
√

2c/h0/(ρS0 − ρF0), leading in turn to γ =
c(ρS0 − ρF0)2/(3). The limit of this approach to the descrip-
tion of the interface is that nobody knows how to extract the
phenomenological coefficients c and κ from the microscopic
interaction potential, hence γ should actually be computed by
another route.

The same functional (4.3) can also serve to formulate in
simple terms the process of solid nucleation from the fluid (as-
suming that a single order parameter suffices to characterize
the solid cluster, see [55] for a discussion). Nucleation has to
do with the decay of the fluid phase above Pcoex. This occurs
through the onset of a sufficiently large solid inclusion, or
cluster, defining the enthalpy barrier that should be overcome
in order for crystallization to occur. However, at variance
with thermally activated nucleation, the overcoming of the
nucleation barrier here occurs at T = 0, triggered by quantum
fluctuations alone (see, e.g., Ref. [56] and references cited
therein).

We briefly review the derivation of the cluster free energy
proposed in Ref. [53]. While at coexistence h(ρ) has two
minima of equal depth, for pressures higher than Pcoex the
absolute minimum of h(ρ) falls at ρ = ρS > ρS0. At an el-
ementary level, this function can be represented as a fourth-
order polynomial,

h(ρ) = c2ρ
2 + c3ρ

3 + c4ρ
4, (4.8)

with c2 = c20 − c′
20(P − Pcoex) (c20, c

′
20 > 0), all other cn

being constant. Near Pcoex, the spatial profile of the order
parameter for a spherical solid cluster of radius R  √

2c/c20

is well described by ρ0(r − R) [providing that the “center” of
ρ0(x) is chosen at x = 0]. In this case, the free-energy cost for
the cluster becomes

�G(R) = 2π

∫ +∞

0
dr r

[
cρ ′2

0 (r − R) + 2κρ ′′2
0 (r − R)

]
− 2πc′

20�P

∫ +∞

0
dr rρ2

0 (r − R). (4.9)

Following the same steps as in Ref. [53], we eventually
arrive at the following MF expression of the cost of cluster
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formation:

�G(R) = 2πRγ̃

(
1 − 2̃δ

R
+ ε̃

R2

)
− πR2ρS0|�μ|, (4.10)

with �μ = −c′
20ρS0�P < 0 and γ̃ , δ̃, ε̃ linear functions of

�P . Equation (4.10) is similar to the MF cost of cluster
formation for thermal nucleation [53,57]. At coexistence,
while γ̃ reduces to γ [Eq. (4.6)], δ̃ becomes

δ = −
∫ +∞
−∞ dx x

(
cρ ′2

0 + 2κρ ′′2
0

)∫ +∞
−∞ dx

(
cρ ′2

0 + 2κρ ′′2
0

) . (4.11)

The value of δ (“Tolman’s length”) is nonzero if ρ0(x) is
an asymmetric density profile, like in case of an interface
between phases of different nature.

V. CONCLUSIONS

In this paper we employ MF theory to study pressure-
driven crystallization of soft-core bosons at T = 0, in two
and three dimensions. Within this theory, the ground state of
the system is represented as a perfect condensate, which is
realistic for weak interparticle forces (ultracold atomic gases
can approach this condition closely). However, rather than
solving the GP equation, which is tantamount to selecting the
best MF state, we make a two-parameter ansatz on the single-
particle wave function which has the advantage of speeding
up calculations considerably, without affecting accuracy in
any sensible way. This is especially true in three dimen-
sions, where obtaining self-consistency in the GP equation is
painfully slow.

By means of the variational method we compute the energy
of many crystalline states, then deciding which phase is stable
at the given pressure by a comparison of their enthalpies. As
a rule, these crystals are cluster crystals, meaning that site
occupancy is larger than one. Moreover, they are supersolids,
meaning that the moment of inertia is diminished with respect
to a classical solid. In two dimensions, the best crystalline
ground state is triangular, and the freezing transition is first
order. On other lattices (square, honeycomb, and striped)
freezing would be continuous and, more importantly, it will
occur at the same pressure for all; this critical pressure also
corresponds to the highest pressure at which the fluid can exist
as a superfluid (these features also hold in three dimensions).
We find that crystallization is pushed to higher and higher
pressures when the exponent n in the GEM potential is
reduced from n = ∞ (PSM limit), until freezing is completely
washed out in the Gaussian, n = 2 case.

The phase diagram in three dimensions is more crucially
dependent on the nature of the interaction. While open, low-
coordinated crystals (like simple-cubic and diamond crystals)
are always metastable, the enthalpies of the other cubic crys-
tals are close to each other. For PSM bosons the phase se-
quence for increasing pressure is fluid-fcc-hcp; for a softened
van der Waals repulsion the only stable crystal is fcc (even
though close to freezing the bcc crystal is only marginally less
stable than the fcc crystal).

From a more general perspective, our results confirm the
idea of relating the supersolid state of soft-core bosons to
the clustering behavior of the solid: in essence, within a MF

approximation the quantum theory can be mapped onto a
classical-like description in terms of quantum densities [11],
which makes the classical analog more apparent. It is also
by virtue of such a quantum-to-classical mapping, realized
through the variational approach, that we have shown that
quantum nucleation of the solid from the fluid can be treated
along the same lines of the better known process of nucleation
induced by thermal fluctuations.

In a forthcoming publication we will examine in depth
the case of one-dimensional soft-core bosons (which can be
realized in elongated optical or magnetic traps with Rydberg-
dressed atoms), where the reconstruction of phase diagram by
means of Gaussian variational theory is to a large extent fully
analytic.

APPENDIX A: WHEN FREEZING IS CONTINUOUS

As discussed in Sec. III, on some lattices the freezing tran-
sition of soft-core bosons at T = 0 turns out to be continuous.
In this event, a low-α expansion of the energy functional
E (α, a; ρ) allows one to compute the transition point exactly.
We illustrate in some detail how this expansion is worked out
for the square lattice, while we only state results for other
lattices.

1. Square lattice

We first use Eq. (2.13) to develop, on the basis of
Eq. (2.17), a low-α kinetic-energy expansion. By ordering
terms according to their relative importance for small α val-
ues, we readily obtain

Ekin = 8π2σ 2

a2
e0(X2 − 2X4 + · · · ) with X = e−π2/α.

(A1)
As for the potential energy, we should estimate all the sums
appearing in Eq. (2.21). In this case too, X proves to be a
natural expansion variable. The derivation is straightforward
but lengthy; the final result is

Epot = ρ

2
{4(̃u(−1, 0) + ũ(0,−1) + ũ(1, 0) + ũ(0, 1))X2

+ [̃u(−2, 0) + ũ(0,−2) + ũ(2, 0) + ũ(0, 2)

− 16(̃u(−1, 0) + ũ(0,−1) + ũ(1, 0) + ũ(0, 1))

+ 16(̃u(−1,−1) + ũ(−1, 1)

+ ũ(1,−1) + ũ(1, 1))]X4 + · · · }, (A2)

where ũ(−1, 0) stands for ũ(G) with G = (−1)b1 + 0b2, and
so on. Putting together (A1) and (A2) we obtain the following
expansion for the excess energy of the crystal:

�E ≡ Ekin + Epot − ρũ(0)

2
= 8

[
π2σ 2

a2
e0 + ρũ

(
2π

a

)]
X2

+ 2

[
−8π2σ 2

a2
e0 − 16ρũ

(
2π

a

)
+ 16ρũ

(
2
√

2π

a

)

+ ρũ

(
4π

a

)]
X4 + · · · . (A3)

The extremal points of �E ≡ rX2 + wX4 are the roots
of �E ′(α) = 0, that is X = 0 and (provided r < 0 and w > 0)
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X = √−r/(2w), with specific energies equal to �E = 0 and
�E = −r2/(4w), respectively. To be specific, let us con-
sider the PSM case, for which ũ(0) = πεσ 2 and ũ(k) =
2πεσJ1(kσ )/k for k > 0 (J1 is a Bessel function of the first
kind). A nontrivial solution to �E ′(α) = 0 exists when r < 0,
that is ρ > ρ0(a) with

ρ0σ
2 = −e0

ε

π2(
a
σ

)3
J1
(

2π
a

σ
) . (A4)

The density ρ0 is positive for 0.89560368 . . . < a/σ <

1.63978795 . . . [we note that J1(2πσ/a) < 0 also in other
ranges of a, but the corresponding energy extrema are nonop-
timal]. The smallest ρ0 at which �E turns negative is the
minimum of ρ0(a) in the above interval, that is the maximum
of y = −x3J1(2π/x). The derivative y ′ is positive for

x < 1.31474663 . . . ≡ ac

σ
. (A5)

Hence, the transition occurs for ρ = ρ0(ac ) =
14.73710 . . . e0ε

−1σ−2 ≡ ρc (w is strictly positive near
ρc); the a and ρ values at the transition are fully consistent
with the numerical solution (see Fig. 3 right panel). At
ρc, X switches continuously from 0 (fluid) to a value
∝ (ρ − ρc )/ρc (crystal). Right at the transition, P =
Pc = περ2

c σ
2/2 = 341.1488 . . . e2

0ε
−1σ−2. Slightly above

ρc, where r � r0(1 − ρ/ρc ) and w � w0 > 0, the optimal α

value and the excess energy behave as

α(ρ) ∼ 2π2∣∣ ln ( r0
2w0

ρ−ρc

ρc

)∣∣ and �e(ρ) ∼ − r2
0

4w0ρ2
c

(ρ − ρc )2;

(A6)
moreover, the average number of particles per cluster equals
ρca

2
c � 25.4739 . . . e0/ε, which is surprisingly large. Finally,

from the general formula of the isothermal compressibility,

K−1
T = −V

∂P

∂V

∣∣∣∣
T =0

= ρP ′(ρ) = 2ρ2e′(ρ) + ρ3e′′(ρ),

(A7)
it follows that K−1

T has different values in the two phases for
ρ = ρc:

F : K−1
T = περ2

c σ
2; S : K−1

T = περ2
c σ

2 − r2
0

2w0
ρ3

c . (A8)

Therefore, KT shows a jump at the transition and, exactly at
ρc, the solid is more compressible than the fluid.

2. Stripes

A periodic one-dimensional modulation of the single-
particle wave function in 2D corresponds to a striped crystal.
Denoting Lx the macroscopic size of the lattice in the direc-
tion of system periodicity, and Ly the size of the sample in the
perpendicular direction, the variational wave function reads

ψ (x) = 1√
Lx

∑
G

ψGeiGx 1√
Ly

≡ ψ0x (x)ψ0y, (A9)

with G = (2π/a)n (a is the periodicity along x and n is any
integer). Moreover,

ψG =
(

2π

αI (α)2

)1/4

e− G2a2

4α with I (α) =
+∞∑

n=−∞
e− α

2 n2
.

(A10)
Plugging (A9) into the Hartree energy functional, we obtain

E = 1

2
e0

∑
G

(Gσ )2ψ2
G

+ 1

2
ρ
∑

G1,G2,G3

ũ(|G1|)ψG1+G2ψG1+G3ψG2ψG3 , (A11)

where ũ(|G1|) is the Fourier transform of the 2D potential
computed in |G1|. A derivation similar to that worked out for
the square lattice then leads to �E ≡ rX2 + wX4 + · · · with

r = 4

[
π2σ 2

a2
e0 + ρũ

(
2π

a

)]
and

w = −8π2σ 2

a2
e0 + ρ

[
ũ

(
4π

a

)
− 16ũ

(
2π

a

)]
. (A12)

Note, in particular, that the X2 term changes sign at the same
density ρ0(a) as for the square lattice, hence the considera-
tions made for the square crystal also apply for stripes. In
particular, for the PSM we find (using reduced units) ac =
1.31474 . . ., ρc = 14.73710 . . ., and Pc = 341.1488 . . .

3. Honeycomb lattice

For the honeycomb lattice, the excess energy reads

�E ≡ Ekin + Epot − ρũ(0)

2

=
[

4π2σ 2

3a2
e0 + 3ρũ

(
4π

3a

)]
e− 8π2

9α

− 3ρũ

(
4π

3a

)
e− 4π2

3α + · · · . (A13)

In the PSM case, the coefficient of the leading term in the
low-α expansion of �E changes sign at the density

ρ0σ
2 = −e0

ε

8π2

27
(

a
σ

)3
J1
(

4π
3a

σ
) . (A14)

In order that ρ0(a) > 0, it must be 0.59706912 . . . < a <

1.09319196 . . . [in the same interval the subleading term
in Eq. (A13) is positive]. The smallest ρ above which
the energy becomes negative is the minimum of ρ0(a).
For y = −x3J1[4π/(3x)], the derivative y ′ is positive
for

x < 0.876498 . . . ≡ ac = 2
3 1.31474663 . . . (A15)

Hence, the transition is continuous and occurs exactly at
the same density ρc = 14.73710 . . . of the square lattice;
also the critical pressure is the same: Pc = περ2

c σ
2/2 =

341.1488 . . .
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4. Simple-cubic lattice

Numerical analysis suggests that crystallization is contin-
uous also on the simple-cubic lattice. Indeed, for small α we
have

�E ≡ Ekin + Epot − ρũ(0)

2
= 12

[
π2σ 2

a2
e0 + ρũ

(
2π

a

)]
X2

+ 3

[
−8π2σ 2

a2
e0 − 16ρũ

(
2π

a

)
+ 32ρũ

(
2
√

2π

a

)

+ ρũ

(
4π

a

)]
X4 + · · · . (A16)

For the PSM, where ũ(k) = 4πε[sin(kσ ) − kσ cos(kσ )]/k3

and ũ(0) = 4πεσ 3/3, the coefficient of X2 changes sign at

ρ0σ
3 = −e0

ε

2π4(
a
σ

)5(
sin 2πσ

a
− 2πσ

a
cos 2πσ

a

) . (A17)

The smallest ρ value above which the energy becomes neg-
ative is the minimum of ρ0(a). For y = −x5[sin(2π/x) −
(2π/x) cos(2π/x)], the derivative y ′ > 0 for

x < 1.15317 . . . ≡ ac. (A18)

Hence, the transition occurs at ρc = ρ0(ac ) = 21.71372 . . .

(reduced units). Near this density, the coefficient of X4

is positive. The transition pressure is Pc = 2πεσ 3ρ2
c /3 =

987.4772 . . .

5. Diamond lattice

The diamond lattice can be described as a fcc lattice with a
two-atom basis:

a1 = (2a/
√

3)(0, 1, 1), a2 = (2a/
√

3)(1, 0, 1),

a3 = (2a/
√

3)(1, 1, 0); e1 = (0, 0, 0) and

e2 = (a/
√

3)(1, 1, 1), (A19)

again denoting a the nearest-neighbor distance. The volume
of the primitive cell is v0 = |a1 · a2 ∧ a3| = 16/(3

√
3)a3,

whereas the reciprocal-lattice vectors are

b1 =
√

3π

2a
(−1, 1, 1), b2 =

√
3π

2a
(1,−1, 1), and

b3 =
√

3π

2a
(1, 1,−1). (A20)

On this lattice too the freezing transition of the PSM is
continuous and falls at the density ρc = 21.71372 . . . Indeed,

�E ≡ Ekin + Epot − ρũ(0)

2
= 8

[
π2σ 2

a′2 e0 + ρũ

(
2π

a′

)]
e− 9π2

8α

+
[
−18π2σ 2

a2
e0 + ρũ

(
3π

a

)
+ 6ρũ

(√
6π

a

)

− 64ρũ

(
3π

2a

)]
e− 9π2

4α + · · · , (A21)

with a′ = (4/3)a. The lowest density ρc at which the coef-
ficient of the leading term in (A21) becomes negative is the
same as for the simple-cubic lattice. The transition pressure is

also the same, Pc = 987.4772 . . . However, the value of a at
the transition is 3/4 of that in (A18), namely 0.86487 . . ., as
fully confirmed by numerical calculations.

APPENDIX B: SPECTRUM OF EXCITATIONS
IN THE FLUID

In order to investigate the collective excitations of the
system in the fluid phase, one possibility is to solve the so-
called Bogoliubov–De Gennes equations, as illustrated, e.g.,
in Ref. [31]. Here we follow a different route, by elaborat-
ing on an argument in [58]. The starting point is the time-
dependent GP equation [5–7],

ih̄
∂ψ

∂t
(x, t ) = − h̄2

2m
∇2ψ (x, t )

+N

∫
ddy |ψ (y, t )|2u(x − y)ψ (x, t ), (B1)

which describes the MF dynamics of a system of identical
bosons at T = 0. This equation is the bosonic variant of
the time-dependent Hartree equations, in turn derived from
the quantum variational principle once the action has been
specialized to a factorized t-dependent system ground state, in
the same spirit of the ansatz (2.2). Multiplying Eq. (B1) by ψ∗
and then subtracting the complex conjugate of the resulting
equation, we arrive at

∂

∂t
(ψ∗ψ ) + ih̄

2m
∇ · (ψ∇ψ∗ − ψ∗∇ψ ) = 0, (B2)

which has the form of a continuity equation if a velocity field
is defined by

v = ih̄

2m

ψ∇ψ∗ − ψ∗∇ψ

|ψ |2 . (B3)

Indeed, writing ψ in terms of its amplitude and phase,

ψ = 1√
V

√
η(x, t )eiθ (x,t ), (B4)

Eq. (B3) is rewritten as

∂η

∂t
+ ∇ · (ηv) = 0 with v = h̄

m
∇θ. (B5)

However, the previous equation is not sufficient to calculate
both η and θ . Another equation can be obtained by plugging
Eq. (B4) directly into the GP equation, with the result that

ih̄
1

2
√

η

∂η

∂t
− h̄

√
η
∂θ

∂t

= − h̄2

2m

i√
η
∇η · ∇θ − h̄2

2m
i
√

η∇2θ

+ h̄2

8m

(∇η)2

η3/2
− h̄2

4m

∇2η√
η

+ h̄2

2m

√
η(∇θ )2

+ ρ

∫
ddy η(y, t )u(x − y)

√
η. (B6)
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While the imaginary part of (B6) reproduces the continuity
equation (B5), the real part reads

−h̄
∂θ

∂t
= − h̄2

2m

∇2√η√
η

+ h̄2

2m
(∇θ )2

+ ρ

∫
ddy η(y, t )u(x − y). (B7)

Taking the gradient of (B7), the outcome is

m
∂v
∂t

+ m(v · ∇)v

= h̄2

2m
∇
(∇2√η√

η

)
− ρ∇

∫
ddy η(y, t )u(x − y). (B8)

Equation (B8) resembles a Navier-Stokes equation without
viscosity term, if we identify the first term on the right-hand
side with (minus) a pressure gradient.

The final step consists in deriving an equation for the
small deviations of η from the homogeneous-fluid solution
η = 1 and ∇θ = 0. Such perturbed solutions are the sought-
for excited states. Inserting η = 1 + δη and ∇θ = δu into
Eqs. (B5) and (B8), and simply ignoring every term that is
not linear in δη or δu, we get from the continuity equation:

∂δη

∂t
+ h̄

m
∇ · δu = 0 =⇒ ∂2δη

∂t2
= − h̄

m
∇ ·
(

∂δu
∂t

)
.

(B9)
Moreover, we have

m
∂v
∂t

= h̄
∂δu
∂t

,

m(v · ∇)v = m

2
∇(v2) = h̄2

2m
∇(δu2)

= O(δu2),
h̄2

2m
∇
(∇2√η√

η

)
= h̄2

4m
∇(∇2δη),

−ρ∇
∫

ddy η(y, t )u(x − y) = −ρ∇
∫

ddy δη(y, t )u(x − y),

(B10)

which eventually simplify Eq. (B8) to

∂δu
∂t

= h̄

4m
∇(∇2δη) − 1

h̄
ρ∇
∫

ddy δη(y, t )u(x − y).

(B11)
Inserting Eq. (B11) into the second of Eq. (B9), we finally
obtain

∂2δη

∂t2
= − h̄2

4m2
∇2(∇2δη) + 1

m
ρ∇2

∫
ddy δη(y, t )u(x − y).

(B12)
This equation admits solutions in the form of plane waves,
δη = ε cos(k · x − ωt ), where ε is a small dimensionless am-
plitude. The dispersion relation of these waves can be obtained
by observing that

∂2δη

∂t2
= −ω2δη, ∇2δη = −k2δη,

∇2(∇2δη) = k4δη, and

∇2
∫

ddy δη(y, t )u(x − y) = −k2ũ(k)δη. (B13)

Substituting these formulas into Eq. (B12), we finally arrive
at

h̄2ω2 = h̄2k2

2m

(
h̄2k2

2m
+ 2ρũ(k)

)
, (B14)

which coincides with Eq. (6) of Ref. [31] and is identical (for
a contact interaction) to the celebrated Bogoliubov spectrum.
As long as the r.h.s. of (B14) is positive, and ũ(k) is negative
in some range of k, the fluid is (by Landau’s argument)
superfluid. We have recently become aware of a different
approach to obtain the excitation spectrum of a superfluid,
based on the use of the nonlinear logarithmic Schrödinger
equation [59–61].

For the PSM in 2D, a roton minimum is only present
in the excitation spectrum if the density is larger than
5.032; moreover, the r.h.s. of (B14) is positive up to g ≡
ρũ(0)/e0 = 46.2979 . . ., corresponding to exactly the same
density 14.7371 . . . where continuous freezing occurs (crys-
tallization into a triangular crystal occurs at a density smaller
than this). The behavior is analogous in 3D: The r.h.s. of
Eq. (B14) is positive up to ρũ(0)/e0 = 90.9542 . . ., which
corresponds to the same density (21.7137 . . .) where contin-
uous freezing takes place. In fact, this result is absolutely
general. Using k = 2π/a in the quantity within parentheses
in (B14), we see that it reduces to

2

[
π2σ 2

a2
e0 + ρũ

(
2π

a

)]
, (B15)

which, up to a constant factor, is identical to the quantity r

encountered in Appendix A, whose crossover from positive
to negative values triggers the phase transformation. In other
words, the ultimate threshold of the fluid as a thermodynamic
phase coincides with the threshold of its dynamic stability as a
superfluid. Exactly at this point, the roton wave vector equals
2π/ac.

To evaluate the energy of the perturbed solution, besides
the amplitude we also need to calculate the phase gradient. To
this aim, we must solve Eq. (B11). The terms on the r.h.s. are
estimated as

∇(∇2δη) = εk2k sin(k · x − ωt ) (B16)

and

∇
∫

ddy δη(y, t )u(x − y) = −εkũ(k) sin(k · x − ωt ).

(B17)
Hence, the solution to (B11) is δu = χk cos(k · x − ωt ) with

χ = ε
m

h̄

ω(k)

k2
. (B18)

We now substitute η = 1 + ε cos[k · x − ω(k)t] and ∇θ =
χk cos[k · x − ω(k)t] into the energy functional, which in
terms of η and θ reads [11]

E[η, θ ] = ρũ(0)

2
+ h̄2

8mV

∫
ddx

(
(∇η)2

η
+ 4η(∇θ )2

)
+ ρ

2V

∫
ddx ddx ′[η(x′) − 1]u(x − x′)[η(x) − 1].

(B19)
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Up to O(ε3) terms, the energy is given by

E = ρũ(0)

2
+ h̄2k2ε2

8mV

∫
ddx sin2[k · x − ω(k)t] + h̄2k2χ2

2mV

∫
ddx cos2[k · x − ω(k)t]

+ ρε2

2V

∫
ddx ddx ′ cos[k · x′ − ω(k)t] u(x − x′) cos[k · x − ω(k)t]. (B20)

Now imagine that the box V is an hypercube of side L = V 1/d and assume that k takes the discrete values

k = 2π

L
(n1, n2, . . . , nd ) with nα = 0,±1,±2, . . . (B21)

We first evaluate the kinetic term. For one thing,∫
ddx sin2[k · x − ω(k)t] = 1

2

∫
ddx{1 − cos[2k · x − 2ω(k)t]} = V

2
− 1

4

∫
ddx
[
e2i[k·x−ω(k)t] + H.c.

] = V

2
. (B22)

Similarly, ∫
ddx cos2[k · x − ω(k)t] = V

2
. (B23)

In the end, the kinetic energy reads

h̄2k2ε2

8mV

∫
ddx sin2[k · x − ω(k)t] + h̄2k2χ2

2mV

∫
ddx cos2[k · x − ω(k)t] = h̄2k2

2m

ε2

8
+ mω2(k)

4k2
ε2. (B24)

As for the potential energy,∫
ddx ddx ′ cos[k · x′ − ω(k)t] u(x − x′) cos[k · x − ω(k)t]

= 1

4

{
e2iω(k)t

∫
ddx ddx ′ e−ik·(x+x′ )u(x − x′) + H.c.

}
+ 1

4

{∫
ddx ddx ′ e−ik·(x−x′ )u(x − x′) + H.c.

}

= 1

4

⎧⎪⎪⎨⎪⎪⎩e2iω(k)t ũ(k)
∫

ddx ′ e−2ik·x′

︸ ︷︷ ︸
0

+H.c.

⎫⎪⎪⎬⎪⎪⎭+ V

2
ũ(k) = V

2
ũ(k). (B25)

Plugging Eqs. (B24) and (B25) into Eq. (B20), the specific energy of the perturbed solution finally equals

E = ρũ(0)

2
+ ε2

8

(
h̄2k2

2m
+ 2ρũ(k)

)
+ mω2(k)

4k2
ε2 = ρũ(0)

2
+ mω2(k)

2k2
ε2, (B26)

which is clearly larger than the homogeneous-fluid energy.

APPENDIX C: SUPERFLUID FRACTION
OF THE CRYSTAL

Like a superfluid, also a supersolid can be characterized by
the nature of its response to uniform axial rotations [13,51].
Under a slow rotation, a fraction of the quantum solid may
stand still, with the result that its moment of inertia is smaller
than expected from a classical analysis. Leggett [51] has
proposed to call superfluid fraction of a quantum solid the
quantity (also dubbed “nonclassical rotational inertia frac-
tion”):

fs = I0 − I

I0
, (C1)

where I is the moment of inertia of the crystal around the axis
of rotation and I0 its classical value.

To estimate fs we appeal to an argument in Ref. [52],
which we here adapt to our setting. We first recall that, when a

thermodynamic system is subject to rotation, say, around the
z coordinate axis, the free energy at T = 0 and P = 0 should
be written as

E − ωLz, (C2)

E being the total energy in the presence of rotation, ω the
angular velocity, and Lz the z component of the angular mo-
mentum (notice that the first law of thermodynamics in differ-
ential form reads dE = T dS − PdV + ωdLz + μdN). For
a system of rotating bosons, the state ψ must be determined
by requiring that the energy functional e[ψ] − ω〈ψ |Lz|ψ〉 be
minimum, which for small ω values is nothing but the energy
per particle in the absence of rotation minus (1/2)Iω2. In
other words:

I = − ∂2

∂ω2
minψ {e[ψ] − ω〈ψ |Lz|ψ〉}

∣∣∣∣
ω=0

. (C3)
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The operator Lz is given by

〈ψ |Lz|ψ〉 = − ih̄

2
ẑ ·
∫

ddx r ∧ (ψ∗∇ψ − ψ∇ψ∗). (C4)

For ω �= 0 the quantum state ψ acquires a phase θ (x) =
ωS(x) + O(ω2) (like in [52], we assume that the amplitude√

η is instead the same as without rotation; this statement is
tantamount to saying that any possible ω dependence of η can
only have relevance for the properties of the “normal” solid
component). Putting ψ = (1/

√
V )

√
η exp{iωS} in (C4), we

readily obtain

〈ψ |Lz|ψ〉 = h̄ω

V

∫
ddx η∇S · (ẑ ∧ r), (C5)

leading in turn [see (B19)] to

e[ψ] − ω〈ψ |Lz|ψ〉 = e0[ψ] + h̄2

2m
ω2 1

V

∫
ddx η(∇S)2

− h̄ω2

V

∫
ddx η∇S · (ẑ ∧ r), (C6)

where e0[ψ] is the energy functional for θ = 0. Therefore,

I = minS

{
2h̄

V

∫
ddx η∇S · (ẑ ∧ r) − h̄2

m

1

V

∫
ddx η(∇S)2

}
.

(C7)

Upon considering that

I0 = 1

V

∫
ddx ηmr2

⊥ = m

V

∫
ddx η(ẑ ∧ r)2, (C8)

we finally obtain

fs = h̄2

m2

minS{
∫

ddx η[∇S − (m/h̄)ẑ ∧ r]2}∫
ddx η(ẑ ∧ r)2

. (C9)

While computing fs is difficult, finding a lower value is much
simpler, if we consider that

fs �
ηmin

ηmax

h̄2

m2

minS{
∫

ddx[∇S − (m/h̄)ẑ ∧ r]2}∫
ddx(ẑ ∧ r)2

= ηmin

ηmax
.

(C10)
To obtain this estimate, we have made use of the fact
that the minimum of

∫
ddx[∇S − (m/h̄)ẑ ∧ r]2 is reached

for ∇S = 0 [the argument goes as follows: first note that
there is no gradient equal to (m/h̄)(ẑ ∧ r), since ∇ ∧
(ẑ ∧ r) �= 0; on the other hand, the Euler-Lagrange equa-
tion for the functional in (C10) is ∇2S = 0, and the only
bounded harmonic function on R3 is a constant]. It is clear
that in our variational theory the function η never van-
ishes in the middle region between one lattice site and the
other, implying that fs is strictly positive at every pres-
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