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Disordered auxetic networks with no reentrant polygons
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It is widely assumed that disordered auxetic structures (i.e., structures with a negative Poisson’s ratio) must
contain reentrant polygons in two dimensions (2D) and reentrant polyhedra in 3D. Here, we show how to design
disordered networks in 2D with only convex polygons. The design principles used allow for any Poisson’s
ratio −1 < ν < 1/3 to be obtained with a prescriptive algorithm. By starting from a Delaunay triangulation
with a mean coordination 〈z〉 � 6 and ν � 0.33 and removing those edges that decrease the shear modulus the
least, without creating any reentrant polygons, the system evolves monotonically towards the isostatic point with
〈z〉 � 4 and ν � −1.
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Consider a homogeneous extension of a rod whose sides
are free. If we apply a uniform force at the two ends of
the rod in opposite directions, it will undergo a transverse
expansion when compressed and a transverse compression
when stretched along the applied forces. This is the familiar
behavior of most materials. This deformation can be quanti-
fied by Poisson’s ratio, which is defined as the negative ratio of
transverse contraction strain to longitudinal expansion strain.
In d dimensions, the Poisson’s ratio of any bulk material is
related to its bulk (K) and shear (G) elastic moduli by [1]

ν = dK − 2G

d(d − 1)K + 2G
, (1)

which reduces to ν = (K − G)/(K + G) in two dimensions
(2D). Since for any material K,G � 0 for stability, we must
have

(K = 0) − 1 � ν � 1

d − 1
(G = 0), (2)

where ν = (d − 1)−1 corresponds to an incompressible fluid
or rubber with a vanishingly small shear modulus compared
to its bulk modulus. Note that ν = 0 corresponds to K −
2G/d = λ = 0, where λ is the Lamé constant [2], as occurs
in cork, for example [3]. Thus a negative ν corresponds to
a negative Lamé constant which is not forbidden by thermo-
dynamics but is unusual. Normal materials have a positive
Poisson’s ratio. From a continuum elasticity point of view, this
is because most materials have a larger resistance to changes
in their volume (described by the bulk modulus K) compared
to resistance to changes in their shape (defined by their shear
modulus G) [4].

Equation (1) suggests that by designing a structure where
K < 2G/d or simply K < G in 2D, one can fabricate mate-
rials with a negative Poisson’s ratio. These types of materials
and structures are called auxetic. The concept of a negative
Poisson’s ratio goes back to Saint-Venant in 1848 [5] for
anisotropic materials. In the modern era, this concept was
extensively described by Love in 1944 [6], and later was in-
vestigated by Gibson in 1982 [7]. In 1987, Lakes refabricated

conventional polymer foams with a positive Poisson’s ratio
by heating under pressure to create reentrant structures on the
submillimeter scale, which then led to foams with a negative
Poisson’s ratio that were isotropic [8]. These investigations
suggested that auxetic behavior is the result of a mechanism
that involves the geometrical structure of the material and its
deformation under compressive load. A variety of these ma-
terials were designed and fabricated at the end of 1980’s and
the beginning of 1990’s [9–13]. Since then, many similar ef-
forts (theoretically, computationally and experimentally) have
led to auxetic materials [14]. These include auxetic cellular
foams [15–22], auxetic regular and disordered networks [23–
31], microporous polymers [10,32–34], and laminated fiber
composites [35,36]. In this Rapid Communication, we will
focus on disordered auxetic networks [31] with no reentrant
polygons.

It is important to note that theoretical studies of auxetic
materials fall into two distinct classes. In the first category,
of interest here, the material is overconstrained with all the
elastic moduli being nonzero and proportional to the spring
constant(s) in the system, where for simplicity we assume the
same spring constant for all edges present. In the second cat-
egory of auxetic structures, the structure is underconstrained
and a single internal mechanism or floppy mode is involved in
which the associated eigenvector shows auxetic behavior but
there is no restoring force and all the elastic moduli are zero
(for a recent treatment with references, see Refs. [37–39]).
All the edges retain their original lengths when the system
undergoes a deformation. In this case, Eq. (1) cannot be used
for the Poisson’s ratio as K = G = 0, and instead the ratio of
traverse to longitudinal strain is used. Note that for almost any
material with a few floppy modes (few meaning between, say,
2 and 5), a negative Poisson’s ratio can usually be achieved
by using a well-chosen linear combination of floppy mode
eigenstates. Thus we regard the first category as being more
challenging and focus on that here as it is of the most interest
for experimental fabrication.

Most presently known auxetics with nonzero elastic con-
stants and nearest-neighbor central forces are networks with
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FIG. 1. A hexagonal reentrant honeycomb with bowtie-shaped
polygons. This type of reentrance is common in engineered materials
with a negative Poisson’s ratio. The horizontal blue arrows on the
sides represent the external load that is applied to the system. The
red arrows, attached to the nodes, show the movements of all the
nodes in response to the external load. The magnitudes of the arrows
have been multiplied by 103 to make them visible to the eye.

a reentrant node structure [40]. A reentrant or pointed node
in a network is a node where two adjacent edges make an
angle greater than 180◦. A classic example of this can be
seen in Fig. 1. The mechanism of deformation for these
types of networks is very well understood and involves the
collapse of all the bowtie units as they are pushed from any
direction.

In this Rapid Communication, we demonstrate a computa-
tional method to build two-dimensional disordered networks
with Poisson’s ratios in the range −1 < ν < 1/3 and convex
polygons only. We have been unable to find any examples
of disordered networks in the literature with controllable
Poisson’s ratios and nearest-neighbor central forces that did
not contain reentrant polygons. The known auxetic structures,
such as chiral honeycombs [23] that do not possess any
reentrance, have unit cells with a specific type of symmetry
(e.g., rotational, chiral, mirror, etc.), with beams rather than
springs between the vertexes. When there is such a symmetry
in the system, a single mechanism such as unrolling can drive
the system auxetic. Our interest, on the other hand, is in
linear elasticity where the edges of a disordered network are
springs and the network is overconstrained. Such a network
has no symmetry (other than the repetitive structure associated
with the supercell) and when all the polygons are convex, its
structure resembles that of glassy and jammed networks that
are widely studied in rigidity theory [41,42].

In recent years, topological optimization methods have
been widely used to design networks with specific elastic
and mechanical properties [31,43,44]. In this Rapid Commu-
nication, we use the tuning by pruning method to generate
networks that have a finite shear modulus of order 1 and an
infinitesimal bulk modulus of order O(1/N ), so that K � G.
Here, N denotes the number of nodes in the network. In the
limit N → ∞, the bulk modulus of these systems becomes
zero and therefore the Poisson’s ratio, as defined by Eq. (1),
becomes exactly ν = −1. The networks are generated by
starting from a fully triangulated spring network with mean
coordination 〈z〉 = 6 and periodic boundary conditions. The
starting network is a Delaunay triangulation [45] of a set of
points generated by Poisson disk sampling in 2D [46,47]. An
example can be seen in Fig. 2(a).

The contribution of different edges to the elastic moduli
of a harmonic spring network can span over several orders of

(a)

(b)

FIG. 2. (a) A disordered triangular network with mean coordi-
nation 〈z〉 = 6 before removing any edges. (b) The same network
after removing one-third of the edges while the convexity of all the
polygons is conserved. The mean coordination number is 〈z〉 � 4
and the network has a negative Poisson’s ratio of ν = −0.9998. The
horizontal blue arrows on the sides represent the external load that is
applied to the system. The red arrows, attached to the nodes, show
the movements of all the nodes ui in response to the external load.
The magnitudes of arrows have been multiplied by 103 to make them
visible to the eye.

magnitude [48], affecting the bulk and shear moduli in very
different ways in some cases [43,49]. This means removing
some of the edges can cause a significant drop in either the
value of bulk or shear modulus (or both), while the removal of
some other edges does not change the moduli by a significant
amount. The wide distribution of edge response in these
networks allows us to identify and remove those edges that
have the minimum contribution to the changes in bulk or
shear modulus. For example, removing edges that have the
minimum contribution to the bulk modulus can be used to
build networks with a finite bulk modulus that resemble a
jammed system [44].
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Here, we remove those edges that have a smaller contribu-
tion to the shear modulus of the system. The shear modulus
is measured by compressing the network in the horizontal
direction, while stretching it in the vertical direction. This
deformation causes a change in the lengths of the springs
which are all assumed to have a unit spring constant k = 1
(N/m). These springs have no width so there is no energy
associated with bending them. Therefore the effective spring
constant is only based on stretching or compressing the
edges. The energy stored in the system (E) is then measured
and the shear modulus is calculated using the following
equation [50],

G = 1

2

E

Aδ2
, (3)

where A denotes the total area of the network and δ is the
strain applied to the system. Note that the shear modulus G is
independent of δ in the linear regime (δ � 1). If we iteratively
remove the edges with the smallest contribution to G from
a mean coordination 〈z〉 = 6 down to 〈z〉 � 4, the Poisson’s
ratio will monotonically go from ν � 1/3 to ν � −1 and the
resulting network will have a larger resistance to shearing than
to hydrostatic compression. This method of pruning naturally
introduces reentrance into the system. To avoid the emergence
of reentrant nodes and hence maintain the convexity of all
the polygons in the network, one more crucial condition is
added to the pruning protocol. This extra condition is Hilbert’s
mechanical stability [51], which is imposed on all nodes at
each step of the pruning process. The Hilbert’s condition
guarantees that each node must have at least d + 1 incident
edges and the geometrical arrangement of edges is such that
applied forces can cancel each other out. This geometrical
condition is useful for the global mechanical rigidity of
the network. In 2D this means no angles between adjacent
edges can be greater than 180◦, and hence reentrance is
prevented.

As an aside, all the removed edges could be replaced with
very weak springs (for example, a thousand times weaker)
to get back to the original Delaunay triangulation which
would still be auxetic. The only polygons then are trian-
gles which, of course, are convex. However, this illustrates
that to be meaningful, the notion of convexity has to be
tied in with springs of comparable magnitude. Any auxetic
network with nonconvex polygons can also be modified by
adding a single auxiliary node inside each reentrant polygon
and connecting that new node to the nodes of the polygon
with very weak springs. This will form a local triangula-
tion and will make the network entirely convex. But, again,
it is not a meaningful way of circumventing the meaning
of convex.

To be precise, we first generate disordered triangular net-
works with mean coordination 〈z〉 = 6 that are Delaunay
triangulation of a Poisson disk sampling with N = 500 points
on a 2D plane. We then loop over all the edges and collect
those that will not violate the Hilbert’s stability condition
if removed. This guarantees that the removal of an edge
will not create any nonconvex polygons in the network. The
contribution of each removable edge to the shear modulus of
the system is then measured and the edge list is sorted in
an ascending order based on the value of their contribution.

Finally, we select the first 10% of the edges with the smallest
contributions to G and remove one of these randomly. Slightly
more than one-third of the edges need to be removed to
drive the original triangulated network to an auxetic network
with ν � −1 and the mentioned process is repeated at each
step. We could have selected the edges with the smallest
contribution, but chose one out of the smallest 10% to demon-
strate that the result is robust, and the results are virtually
identical.

Figure 2(b) shows an auxetic network generated by this
method. As can be seen from the figure, there are no reentrant
nodes introduced to the system, and yet the network has a
negative Poisson’s ratio ν = −0.9998. The small deviation
of the Poisson’s ratio from −1 is a finite-size effect and
would vanish in the N → ∞ limit. The red arrows show the
displacements {ui} of all the nodes when we apply a small
strain of order δ = 10−4 in the horizontal direction (shown by
the blue arrows) and let the system relax. The center of mass
has been fixed here, which leads to

∑N
i=1 ui = 0, and therefore

there is not much motion happening at the central parts of the
network. The scale of these motions is magnified 103 times to
make them visible to the eye, since we are in the linear regime
and the motions are infinitesimal. However, this magnification
is for visualization only as anharmonic effects are present
at such large displacements for noncollinear networks of
harmonic springs.

The mechanism behind the auxetic behavior of the net-
works built here is not trivial, and a simple explanation has
eluded us, but lies within the method used to build them. The
generating process is very cooperative, as in each step an edge
is removed based on how its contribution to the shear modulus
is compared to all the other edges in the network. This
cooperative process adds to the complexity of the mechanism
that involves the deformation of such systems, and is a par-
ticular example of a larger phenomenon that involves pruning
spring networks in special ways to obtain desired properties.
Another example is to produce jammed networks [44], and
yet another is to produce allosteric effects of a similar kind
to those seen in proteins [52]. To date these are all empirical
algorithms and the underlying mathematics remains to be
understood.

We monitor both the shear and bulk moduli of these
networks as they are pruned. The bulk modulus is measured in
a similar way to the shear modulus by using Eq. (3). Figure 3
shows the behavior of both bulk and shear moduli against
the mean coordination of the system. The mean coordination
is defined as the average number of edges at each node.
All data points are ensemble averaged over 50 samples with
N = 500 nodes. Both these elastic moduli decrease monoton-
ically as the edges are removed [53], as required by general
principles.

At the starting point, the bulk modulus of a triangular net-
work is greater than the value of its shear modulus, therefore
the Poisson’s ratio is a positive number, as can be seen from
Eq. (1). It should be noted that if the nodes in a network
are connected by central forces and if every node is a center
of symmetry, then because of the Cauchy condition between
elastic constants, c12 = c44, the Poisson’s ratio would be ν =
(d + 1)−1, which in 2D gives ν = 1/3. This is the case for a
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FIG. 3. The shear (G) and bulk (K) moduli as the edges that
minimally affect G are pruned from mean coordination 〈z〉 = 6 down
to 〈z〉 � 4. The results are ensemble averaged over 50 samples, each
with N = 500 nodes.

2D regular triangular network [54] and is also closely true for
a Delaunay triangulation of the kind shown in Fig. 2(a). The
algorithm used here to select the removed edges aims to keep
the shear modulus of the system above zero. Since the changes
in bulk modulus are only loosely correlated with changes
in the shear modulus, driving the network to maximize the
shear modulus does not force it to also maximize the bulk
modulus. The bulk modulus decreases linearly as it would do
with random dilution [42]. This makes the difference between
bulk and shear become smaller and smaller until at about
〈z〉 � 4.92 they become equal. For any edges removed after
this, the shear modulus is larger than the bulk modulus and
therefore the Poisson’s ratio becomes negative. As 〈z〉 = 4
is approached, the bulk modulus goes to zero while the
shear modulus remains nonzero, therefore the Poisson’s ratio
approaches −1. Note that the last edge that is removed takes
the system to the isostatic point plus one edge [44] where there
is one state of self-stress in the system [39] and the shear
modulus is of order 1, while the bulk modulus is O(1/N ).
The removal of an additional edge is meaningless as this
would take the system to the isostatic point where the total
number of degrees of freedom and constraints are balanced
such that the only remaining floppy modes are the macro-
scopic rigid motions. At the isostatic point, the network is
still mechanically stable but both the bulk and shear mod-
uli are exactly zero and therefore Poisson’s ratio becomes
undefined.

Figure 4 shows the behavior of the ensemble-averaged
Poisson’s ratio as the networks are pruned. The central line,
shown as red, is the Poisson’s ratio, while the blue vertical
bars highlight the standard deviation of the measurements
over 50 samples, each with N = 500 nodes. As can be seen
from the plot, the Poisson’s ratio of these systems spans over
the range (−1, 1/3). The small standard deviations mean that

FIG. 4. The Poisson’s ratio vs the mean coordination 〈z〉 for the
50 samples used in Fig. 3. The red dots along the central line show
the value of the averaged Poisson’s ratio and the blue vertical bars
show the standard deviation for each data point.

this method can be used to design and build any disordered
convex structure with a desired Poisson’s ratio by choosing
the corresponding mean coordination that can be read from
Fig. 4.

In summary, here we introduce a method to produce dis-
ordered auxetic networks with near-neighbor forces without
reentrant polygons in 2D. The algorithm that we use produces
networks with any desired value of the Poisson’s ratio in the
range −1 < ν < 1/3 by tuning the mean coordination 〈z〉
down from 6 to 4 using a specific protocol. This protocol in-
volves removing edges that minimally reduce the shear modu-
lus while maintaining Hilbert’s mechanical stability condition
at each node. Any desired value of the Poisson’s ratio can be
achieved by this method, all the way down to −1. Starting
from a Delaunay triangulation, this leads to a disordered
network where all the polygons remain convex at every stage.
We chose all the spring constants to be the same, but they
could differ by factors of 2, etc., and similar results would be
obtained. This result remains quite perplexing and we have
no easy geometric explanation at this time. An examination of
Fig. 2 shows that while many of the polygons are far from their
maximum area, none are pathologically compressed—with
width/length ratios for each polygon being typically in the
range 1–2. We anticipate that similar results can be obtained
in 3D.
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