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Stability of half-quantum vortices in equal-spin pairing states of 3He
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Recent experiments on superfluid 3He in globally anisotropic aerogels have shown realization of the polar
superfluid phase and of the half-quantum vortices (HQVs) in this phase upon rotation. To clarify why the HQVs,
which had not been detected clearly in the A phase of the bulk liquid, have been realized in the polar phase,
we theoretically examine the relative stability of a HQV pair against a single phase vortex in both the bulk A

phase and the polar phase in an aerogel. By taking care of important roles of a higher-order gradient term, which
assists the stability of HQVs but has never been incorporated so far in the Ginzburg-Landau approach, we find
that several consequences, including the extension of the polar phase at lower pressures in the phase diagram,
facilitate realization of the HQVs there in contrast to the case of the bulk A phase in a slab geometry.
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I. INTRODUCTION

Recent experimental works on superfluid 3He in strongly
anisotropic (or one-dimensional) aerogels have shown the
presence of the polar pairing state [1] arising from an
anisotropy-induced lift [2] of degeneracy between different
pairing states and have found a clear evidence of realization of
the long-sought half-quantum vortices (HQVs) in the rotating
polar phase [3–5]. So far, HQVs have been searched for in the
A phase of superfluid 3He in a slab geometry and by expecting
the orbital l vector to be locked to the surface normal of the
film plane. The fixed l vector to the surface normal implies that
the orbital degrees of freedom of the Cooper pair condensate
are frozen out. In spite of intensive studies performed so far,
no convincing data suggesting the presence of HQVs have
been reported in 3He-A phase.

The seminal theoretical work performed in the London
limit has indicated [6] that a pair of HQVs is always lowered
in energy compared to a single phase vortex (PV) with the
uniform d vector as far as the l vector is locked to the surface
normal. In the London limit, the gradient energy of one HQV
pair becomes lower than that of a PV with increasing the
distance a between the two HQVs in the pair, and the stable
size of the pair is determined by balancing this gain of the
gradient energy with the dipole energy increasing with a

[6]. Based on these results in the London limit, the absence
of clear evidence of HQVs in 3He-A in a slab geometry is
often ascribed to an experimental problem such that the film
thickness is too large to lock the l vector to the surface normal
of the film plane.

On the other hand, numerical works on the conventional
Ginzburg-Landau (GL) equations performed more recently
have suggested [7–9] that the strong-coupling (SC) correc-
tions to the condensation energy tend to destabilize a HQV
relative to a PV. Since no effect of SC corrections is incorpo-
rated in the London limit used in Ref. [6], the London limit
might have overestimated the stability of HQVs. However,
a HQV pair has not been considered in the conventional
GL analysis and, hence, the previous results [7,8] cannot be

directly compared with the result [6] in the London limit. In
fact, the pair size dependence stabilizing a HQV pair in the
London limit occurs from the Fermi-liquid (FL) correction to
the gradient energy [10,11] which is not incorporated at all in
the conventional GL model.

Further, the experimental fact that the HQV has been seen
in the polar phase in aerogels, while it has not in the bulk A

phase in a slab geometry, needs to be clarified. In considering
HQVs in the A phase, we focus on the situation in a slab
geometry under a weak magnetic field perpendicular to the
film plane. We assume that the film thickness is thin enough
to make the dipole energy ineffective and that the d vector
has been confined to be parallel to the film plane by the
magnetic field [6]. Then, the issue on HQVs in the A phase
in a slab geometry can be considered on the same ground as
that in the polar phase. A clear difference between the two
cases is that the HQV in the latter is a line object. Then, a
question arises that the HQV in the polar phase might not be
intrinsically stable but be stabilized just by a strong pinning to
the one-dimensional (linelike) aerogel.

In this work, we examine the stability of a HQV pair in
the bulk A phase and the corresponding issue in the polar
phase realized in anisotropic aerogels on the same footing.
To perform this, the GL theory for the superfluid 3He needs
to be extended in a form enabling one to study stability of
a HQV pair relative to a single PV by clarifying how the FL
correction to the gradient terms in the London limit stemming,
together with the so-called SC corrections to the bulk free
energy, from the repulsive channel of the interaction between
the quasiparticles should appear in microscopically deriving
the GL free energy. To examine the gradient energy terms be-
yond the conventional weak-coupling description, we use two
models, the FL model based on the use of the four-point vertex
between the normal quasiparticles in the FL theory [12] and
the spin fluctuation (SF) model describing the quasiparticle
effective interactions in terms of the SF propagator in the same
manner as the derivation of the so-called SC corrections to the
bulk GL free energy [13]. We find new terms consistent with
the FL-corrected gradient terms in the London limit in both
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the two approaches mentioned above. Performing numerical
analysis of the variational equations of the resulting extended
GL free energy, we find that, in the bulk A phase, a HQV
pair may be intrinsically stabilized far below the superfluid
transition, and that, in the polar phase in anisotropic aerogels,
the HQV pair is certainly stabilized even near the polar to
normal transition temperature where the SC correction, which
is unfavorable for the HQV’s stability, becomes the most
important. Therefore, it is argued that the emergence of the
HQVs in the polar phase [3] is not due to the strong pinning of
the vortices to the one-dimensional aerogel structure. Further,
we find that these results on the HQV pair’s stability in the
superfluid 3He phases in the two different situations do not
depend much on the detail of the effective interaction between
the quasiparticles. Our results definitely show that the HQVs
in the bulk A phase are less stable than those in the polar
phase. More or less, this is partly due to the fact that the bulk
A phase occurs only in the high-pressure region where the
SC correction to the bulk free energy becomes important. The
competition in the bulk A phase between the gradient energy
and the bulk SC free-energy term will lead to emergence
of a single PV as a metastable defect and, hence, tends to
result in a coexistent state of the HQVs and the PVs there
if experimentally entering the superfluid phase via a rapid
cooling upon rotation.

This paper is organized as follows. We review a basic
model and the familiar weak-coupling results on the bulk GL
free-energy terms in Sec. II and the results on the HQV pair in
the bulk A phase in London limit in Sec. III. In Sec. IV, the SF
model on the effective interaction between the quasiparticles
is reviewed, and the presence of a nontrivial term is pointed
out. In Secs. V and VI, the gradient energy terms of the
quartic order in the order parameter are carefully examined
to find out the terms assisting the stability of a HQV pair. In
Sec. VII, the vortex core energies of a HQV pair and a PV are
evaluated to qualitatively point out what affects the stability of
a HQV pair. Our numerical results on the variational equations
on the extended GL free energies obtained by incorporating
the new terms are presented in Sec. VIII. Summary of our
results is given in Sec. IX. Details of theoretical calculations
which are needed to obtain new GL terms are shown in the
Appendix.

II. REVIEW ON PAIRING STATES

The superfluid order parameter is defined from the off-
diagonal average �αβ (p; k) = 〈ap+k/2,αa−p+k/2,β〉 in the form

�αβ (p; k) = i(σ2σμ)αβDμ(p; k) (1)

with

Dμ(p; k) = Aμ,i (k)p̂i . (2)

Here, k means the center-of-mass momentum of the Cooper
pair. Further, the amplitude |�| of the order parameter is
conventionally defined by |�|2 = 〈A∗

μ,iAμ,i〉. Then, up to
O(|�|4), the bulk energy contribution of the GL free energy

FIG. 1. “Gor’kov box” expressing the quartic terms of the GL
free energy in the WC approximation.

takes the form

Fbulk =
∫

d3r[α(T )A∗
μjAμj + β1|AμiAμi |2 + β2(AμiA

∗
μi )

2

+β3A
∗
μiA

∗
νiAμjAνj + β4A

∗
μiAνiA

∗
νjAμj

+β5A
∗
μiAνiAνjA

∗
μj ]. (3)

In the weak-coupling (WC) approximation, the five quartic
terms in Eq. (3) occur from Fig. 1, and the corresponding
value of each βj , which will be denoted as β

(WC)
j , satisfies

the relations

β
(WC)
3 = −2β

(WC)
1 ,

β
(WC)
2 = β

(WC)
4 = −β

(WC)
5 . (4)

In the bulk liquid, β
(WC)
2 = β

(WC)
3 = 2β0 ≡ N (0)|ψ (2)(1/2)|/

(240π2T 2).
The order parameter in the A phase is of the form

Aμj = �√
2
d̂μ(m̂ + in̂)j , (5)

where each vector is a real unit vector, and m̂ and n̂ are
orthogonal to each other. Hereafter, we often consider the A

phase with l = m × n fixed to ẑ far from a vortex core. Then,

Aμj = |�|√
2
ei�d̂μ(x̂ + iŷ)j (6)

can be used in place of Eq. (5) far from a vortex core. On the
other hand, the order parameter in the polar phase takes the
form

Aμ,j = |�|ei�d̂μẑj . (7)

By substituting the order parameters listed above into Fbulk,
the coefficient of the |�|4 term in Fbulk is determined de-
pending on the pairing symmetry. For instance, between the
corresponding coefficients, βA = β2 + β4 + β5, βB = β1 +
β2 + (β3 + β4 + β5)/3, βpol = ∑

j=1,...,5 βj , and βP = β1 +
β2 + (β3 + β4 + β5)/2, for the A, B, polar, and planar phases,
respectively, the following relation is found to be satisfied:

β
(WC)
A : β

(WC)
B : β

(WC)
pol : β

(WC)
P = 6 : 5 : 9 : 6. (8)

According to the conventional mean field theory for an or-
dered phase near a second-order transition, the most stable

094524-2



STABILITY OF HALF-QUANTUM VORTICES IN EQUAL- … PHYSICAL REVIEW B 98, 094524 (2018)

FIG. 2. Schematic pictures expressing the textures of dμ around
one pair of HQVs (left) and a PV (right).

pairing state of the bulk liquid 3He has the lowest value of
the coefficient of the quartic term. Thus, according to Eq. (8),
the B phase is always realized in the bulk liuid in equilibrium
in the WC approximation. The well-known SC contributions
to βj which stabilize the A phase at higher pressures will be
mentioned in Sec. IV.

III. HQV IN LONDON LIMIT

First, let us start from reviewing the gradient energy in the
situation [6] with one HQV pair. As far as equal-spin pairing
states with frozen orbital components are concerned, the
gradient energy in the London limit is commonly expressed
as

FL/Lz = 1

2

∫
d2r[Ks (∇�)2 + Ksp∇dμ · ∇dμ]. (9)

The phase � and the d vector dμ in the case of one HQV pair
are represented by

� = 1
2 (ϕ+ + ϕ−),

d = êx cosα + êy sinα (10)

with ϕ± = tan−1[(y/(x ∓ a/2)], and α = (ϕ+ − ϕ−)/2,
where êx is the unit vector in the x direction, and a is the size
of a HQV pair (see Fig. 2). In this case, Eq. (9) is given by [6]

FL(a)/Lz = πKs ln

(
r�

ξc

)
− π

2
(Ks − Ksp )ln

(
a

ξc

)
, (11)

respectively, where a lower cutoff length ξc of the order of the
coherence length is assumed, and the upper cutoff length r�

may be, as usual, identified with the average spacing between
neighboring HQV pairs determined by the rotation angular
velocity �. The first term of Eq. (11) is nothing but the energy
F

(PV)
L of a single PV, and the presence of the second term with

Ks > Ksp [6,11] indicates the stability of a HQV pair in the
London limit where a � ξc is assumed. This is why the HQV
pair has a lower energy than a PV in the London limit.

The actual size of the HQV pair is determined in the
London limit by minimizing the sum of the gradient en-
ergy shown above and the dipole energy with respect to the
pair size a. The vortex energy in the GL approach includes
the free-energy contributions other than the gradient energy
which may arise from various components of the order param-
eter Aμ,i . On the other hand, the dipole energy contribution

is effective at long length scales of the order of the dipole
coherence length ξd where the London limit is safely valid.
Therefore, it will be sufficient to clarify the sign of the energy
difference between the HQV pair and a single PV, which
corresponds to the above-mentioned FL(a) − F

(PV)
L , at length

scales comparable with ξd in order to judge the stability of a
HQV pair relative to a single PV.

When the conventional FL correction is incorporated, we
have the relation [15]

Ks − Ksp = N (0)

900

(
ψ (2)(1/2)

|�|2
πT

)2

×
(

vF

2πT

)2[
F s

1

1 + F s
1 /3

− Fa
1

1 + Fa
1 /3

]
(12)

valid up to O(|�|4), where N (0) and vF are the density of
states (DOS) and the Fermi velocity of the quasiparticle in the
normal state, and F s

1 and Fa
1 are the Landau parameters of

the normal Fermi liquid (FL) written in the standard notation
and satisfying the relation F s

1 > Fa
1 . This expression (12) has

several consequences: First of all, the stability of a HQV
pair is guaranteed by the repulsive interaction between the
quasiparticles which does not appear in the conventional WC
BCS model taking account only of the attractive component
of the interaction. Second, the stability of a HQV pair is
determined, in the language of the GL theory, by a gradient
energy contribution in the nonlinear [O(|�|4)] term which is
neglected in the conventional GL approach [7,8]. Since, origi-
nally, the London limit and the GL theory are two different
limits of a single theory, a recovery of the London results
is expected by performing an extension of the GL approach.
Based on these motivations, a derivation of the second term of
Eq. (11) in the GL approach will be considered in Sec. VI.

IV. SPIN FLUCTUATION MODEL OF
EFFECTIVE INTERACTION

Below, the spin fluctuation approach (SF) will be used as
one model to incorporate effects of the repulsive interactions
between the quasiparticles. This approach has been used
as a simplified model describing the strong-coupling (SC)
correction to the bulk free energy necessary to stabilize the
A phase at higher pressures and start from defining the bare
Hamiltonian for fermions in the form

He − μN =
∑
p,σ

ξpa
†
p,σ ap,σ + I

∑
p,p′

a
†
p,↑ap,↑a

†
p′,↓ap′,↓ (13)

with I > 0. In this model, the normal SF propagator plays the
role of the effective interaction between the quasiparticles. By
treating the SF in the Gaussian approximation, the O(|�|4)
diagrams arising from the SF free energy Ff l are described in
Fig. 3 and expressed by [13,16,17]

Ff l = − I
2

2N (0)
T

∑
�

∫
q

1

1 − IχN (q,�)
δχα,α (q,�)

− I 2

4
T

∑
�

∫
q

(
1

1 − IχN (q,�)

)2

× δχα,β (q,�)δχβ,α (q,−�), (14)
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(a) (b)

(d)(c)

FIG. 3. SC diagrams contributing to O(|�|4) terms in the GL
free energy. The wavy line expresses the normal SF propagator
1/(1 − IχN ). See the text for further details.

where I = N (0)I, χα,β is the spin density correlation func-
tion, and δχα,β = χα,β − δα,βχN with χN = χα,α|�=0/2.

Here, let us examine how the two terms in Ff l contribute to
Fbulk [Eq. (3)] in the case of the ordinary bulk liquid. The so-
called SC correction to βj , β

(SC)
j,se , which is of O(β (WC)

j Tc/EF)
(j = 1 to 5), has followed from the last term of Eq. (14)
accompanied by two (normal) SF propagators. One example
of the corresponding diagrams is expressed by Fig. 3(d). In
the case of the bulk liquid, β

(SC)
j,se ’s are given by

β
(SC)
1,se = −0.1β0δ = β

(SC)
5,se

7
, β

(SC)
2,se = 0.2β0δ,

β
(SC)
3,se = β

(SC)
2,se + 5β

(SC)
1,se

6
= β

(SC)
4,se − 5β

(SC)
1,se , (15)

where δ ∝ T/EF was defined in Ref. [13]. On the other hand,
the contribution to the first (quadratic) term of Fbulk following
from the first term of Eq. (14) can be absorbed into the
coefficient α(T ) by redefining Tc. Further, the contributions
of Figs. 3(a) and 3(b) to the quartic terms of Fbulk are found
to take the same form as that of the WC diagram Fig. 1, and,
for this reason, these two diagrams can be regarded as having
been absorbed into the βj s listed in Eq. (4).

In contrast, much attention should be paid to roles of
Fig. 3(c). In Ref. [14], the contribution of this diagram to Fbulk

has been argued to be of a higher order in Tc/EF by neglecting
the frequency dependence only in the four-point vertex so
that this figure is rather included in the family of Fig. 3(d).
Here, this argument will be reconsidered by assuming that
the SF in Eq. (14) carries only low-energy fluctuations. When
following the treatment used in Ref. [16], Fig. 3(c) in the case
with a spatially uniform order parameter is expressed in the

form

F
(c)
f l =

∫
q

−4πT 2I
2

1 − IχN (q, 0)

∑
ε

1

(2|ε|)3

〈
1

(vp · q)2 + 4ε2

× [2(D∗
μ0(p)Dμ0(p))2 + |Dμ0(p)Dμ0(p)|2]

〉
p̂
, (16)

which is nonvanishing and of the same order in Tc/EF as
that of Fig. 1, where Dμ0(p) = Aμip̂i , and 〈. . .〉p̂ denotes the
angle average over the p direction on the Fermi surface. In
Eq. (16), the quantum (� �= 0) components of the SF were
neglected following Ref. [13], and I was assumed to be a
quantity of the zeroth order in Tc/EF. Then, the resulting
contribution of Fig. 3(c) to each βj , �β

(c)
j , satisfies the ratio

�β
(c)
1 : �β

(c)
2 : �β

(c)
3 : �β

(c)
4 : �β

(c)
5 = 1 : 2 : 2 : 2 : 2, and,

when each β
(WC)
j is replaced by the sum of β

(WC)
j + �β

(c)
j , the

ratio between the coefficients of the quartic terms for the main
p-wave pairing states, A, B, polar, and planar pairing states,
is found to be the same as the WC one, Eq. (8). Therefore, the
conclusion on the relative stability between the different main
pairing states is unaffected by taking account of Fig. 3(c),
although the overall value β0 should be slightly renormalized
by including the contribution of Fig. 3(c). For this reason, we
will keep using β

(WC)
j below as the βj value at the zeroth order

both in Tc/EF and the disorder strength.

V. GRADIENT ENERGY IN WC APPROXIMATION

Now, the gradient terms will be considered within the GL
approach. In the conventional GL approach, the gradient term
is taken within the O(|�|2) terms and, in the bulk liquid which
is isotropic in real space, has the form

Fgrad2 = 1

2

∫
d3r[K1∂iA

∗
μ,j ∂iAμ,j + 2K2(∇ · A∗

μ)(∇ · Aμ)],

(17)

where ∇ · Aμ ≡ ∂jAμ,j . In the case of superfluid 3He in
an anisotropic aerogel, additional O(|�|2) terms occur (see
Appendix). However, it is easily verified by fixing |�| and
using dμδdμ = 0 that the second term of Eq. (11) stabilizing a
HQV pair does not occur from any quadratic [i.e., O(|�|2)]
gradient terms. This implies that, if using the conventional
GL approach under a fixed |�|, the energy of a HQV pair
is estimated to be the same as that of a PV [18]. Therefore,
to study the stability of a HQV pair against a PV in the GL
framework, additional gradient terms have to be searched for
in the O(|�|4) terms.

Next, it will be pointed out that the terms like the second
term of Eq. (11) stabilizing a HQV pair do not occur within the
WC approximation unaccompanied by any repulsive interac-
tions between the quasiparticles. In this WC approximation,
the O(|�|4) terms occur from the familiar “Gor’kov box”
diagram, Fig. 1. When the pair field �αβ (p) has a center-of-
mass momentum which will be denoted as kj below, Fig. 1
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can be expressed, e.g., in the form∑
kj

δk1+k3,k2+k4〈f (vp · kj )Tr[�(p; k1)�†(p; k2)

×�(p; k3)�†(p; k4)]〉. (18)

The original expression of the function f will be given in the
Appendix. The term in which all kj in f are zero results in
the quartic terms of Fbulk. By focusing on the terms of the
quadratic order in kj and changing from the momentum (kj )
representation to the center-of-mass coordinate (r) representa-
tion, Eq. (18) is found to be expressed as a linear combination
of the following two kinds of terms:

A1 =
∫

r
Tr(σμσνσρσλ)〈papb[D∗

μ(p)∂aDν (p)∂bD
∗
ρ (p)

×Dλ(p) + ∂aD
∗
μ(p)∂bDν (p)D∗

ρ (p)Dλ(p)]〉,

A2 =
∫

r
Tr(σμσνσρσλ)〈papb[D∗

μ(p)∂aDν (p)D∗
ρ (p)

× ∂bDλ(p) + ∂aD
∗
μ(p)Dν (p)∂bD

∗
ρ (p)Dλ(p)]〉, (19)

where Dμ(p) = Aμ,i (r)p̂i . Here, the two pairing states of
our interest will be expressed altogether as ei�dμf (p)
[see Eqs. (6) and (7)]. Then, ∂aDμ(p) can be written
as ei�(i∂a�dμ + ∂adμ)f (p) [19]. By performing the trace
over the spin indices and using the relations dμ∇dμ =
0 and Tr(σμσνσρσλ) = 2(δμ,νδρ,λ + δμ,λδρ,ν − δμ,ρδλ,ν ), one
can easily verify that, by assuming the amplitude |�| to
be fixed, both expressions in Eq. (19) are proportional to
(∇�)2 + ∇dμ · ∇dμ. Thus, nonvanishing contributions to
Ks − Ksp [see Eq. (12)] do not occur from the expressions
in Eq. (18). That is, any gradient term stabilizing a HQV pair
does not occur at all from Fig. 1.

Clearly, Fig. 1 also includes the diagrams with a simple self
energy correction like Fig. 3(a). Further, by using the iden-
tity Tr(σμσνσρσλ) = Tr(σμσ2σ

T
α σ2σνσρσλσα ), the diagrams

of the type of Fig. 3(b) also take the form of Eq. (18).
Therefore, we do not have to consider the gradient terms
arising from the diagrams of the type of Figs. 3(a) and 3(b).
Then, in the spin-fluctuation approach, the diagram Fig. 3(c)
becomes the only diagram contributing to the stability of
HQVs up to O(|�|4).

VI. INTERACTION-INDUCED GRADIENT ENERGY
IN QUARTIC ORDER

In this section, we will show that the gradient term assisting
the stability of the HQV pair corresponding to the second term
of Eq. (11) in the London limit occurs from the diagram of
the type of Fig. 3(c). As a model of the effective repulsive
interaction between the quasiparticles, let us consider two
models. One is the conventional Fermi-liquid (FL) model, and
the other is the SF model reviewed in Sec. III.

A. Fermi-liquid model

If we are based on the FL description, the four-point
vertex part �, which is the rectangle in Fig. 4 corresponding
to Fig. 3(c), will be assumed to be frequency independent
according to Ref. [12]. Since the momenta kj carried by the

p+k

p+k

1

3

-p

p'+k4

-p'

p'+k2

FIG. 4. Diagram corresponding to Fig. 3(c) rewritten so as to fit
to the Fermi-liquid description. The rectangle denotes the four-point
vertex part with a vanishingly small momentum transfer k1 − k3 =
k4 − k2 along the horizontal direction.

four order parameter fields in Fig. 4 are small, � is assumed
to take the form [12]

2N (0) × �αβ,γ δ (p + k1, p′ + k2; p + k3, p′ + k4)

 �(s)(p̂ · p̂′)δα,γ δβ,δ + �(a)(p̂ · p̂′)(σs )α,γ (σs )β,δ (20)

under the momentum conservation k1 + k2 = k3 + k4, where

�(u)(cosθ ) =
∑
l�0

�
(u)
l Pl (cosθ ) (21)

(u = s, a), �
(u)
l = F

(u)
l /[1 + F

(u)
l /(2l + 1)] with the Landau

parameters F
(u)
l , and Pl (x) is the Legendre polynomial. The

resulting free-energy term is expressed in the form

FFL4 =
∑
kj

δk1+k2,k3+k4

∫
p

∫
p′

�αβ,γ δ (p + k1, p′

+ k2; p + k3, p′ + k4)T

×
∑

ε

Gp+k1 (ε)G−p(−ε)Gp+k3 (ε)

× T
∑
ε′

Gp′+k2 (ε′)G−p′ (−ε′)Gp′+k4 (ε′)(�†(p, k1)

×�(p, k3))αγ (�†(p′, k2)�(p′, k4))βδ, (22)

where Gp(ε) = (iε − ξp )−1 is the Matsubara Green’s func-
tion. Noting that the ξp integral of Gp+k1 (ε)G−p(−ε)Gp+k3 (ε)
is −2πv · (k1 + k3)/(2|ε|)3 when the particle-hole symmetry
is assumed, this diagram is found to contribute not to the bulk
quartic term, but only to the gradient term of O(|�|4). Using
the relation

i

∫
k1,k3

ei(k1−k3 )·r(k1 + k3)j 〈p̂l p̂j�
†(p; k1)�(p; k3)〉p̂

= 1

15
σμσν (fμν,l − f ∗

νμ,l ), (23)

where

fμν,l = A∗
μs∂lAνs + A∗

μl∂jAνj + A∗
μj∂jAνl, (24)

and keeping only the l � 1 components in Eq. (21), we obtain

FFLgrad4 = N (0)

(
ψ (2)(1/2)

120πT

)2(
vF

2πT

)2

×
∫

r

[
2�

(s)
1 Imfμμ,lImfλλ,l

+�
(a)
1 Re(fμν,l − fνμ,l )Re(fμν,l − fνμ,l )

]
. (25)
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In the London limit, Eq. (25) is highly simplified and, in the
A phase with the l vector along the rotation axis (‖ ẑ), takes
the form

FFLL4 = N (0)

1800

(
ψ (2)(1/2)|�|2

πT

)2(
vF

2πT

)2

×
∫

r

[
�

(s)
1 (∇⊥�)2 + �

(a)
1 ∇⊥dμ · ∇⊥dμ

]
, (26)

which is nothing but Eq. (9) with Eq. (12) satisfied. In the
polar phase, the corresponding FFLL4 is the quarter of Eq. (26).

The expression following by substituting Eq. (24) into
Eq. (25) is highly involved. Since the ratio of the Landau
parameters |F (a)

1 /F
(s)
1 | is quite small, however, Eq. (25) can be

simplified by neglecting the antisymmetric term proportional
to �

(a)
1 . The resulting expression will be given in Eq. (A17)

and will be used for our numerical analysis.

B. Spin fluctuation model

To explain derivation of the result on Fig. 3(c) in this
model, it will be sufficient to consider the expressions cor-
responding to Eq. (19) based on Eq. (14) given in Sec. III.
Noting that δχαα (q) is accompanied by two Pauli matrices,
σα , at the external vertices, the corresponding expressions to
Eqs. (19) we should examine are

C1 =
∫

r
Tr(σμσνσασρσλσα )〈papb(D∗

μ(p)∂aDν (p)∂bD
∗
ρ (p)

×Dλ(p) + ∂aD
∗
μ(p)∂bDν (p)D∗

ρ (p)Dλ(p))〉,

C2 =
∫

r
Tr(σμσνσασρσλσα )〈papb(D∗

μ(p)∂aDν (p)D∗
ρ (p)

× ∂bDλ(p) + ∂aD
∗
μ(p)Dν (p)∂bD

∗
ρ (p)Dλ(p))〉. (27)

Using Tr(σμσνσασρσλσα ) = 2(3δμ,νδρ,λ − δμ,λδρ,ν +
δμ,ρδλ,ν ), one finds that the two expressions of
Eq. (27) are proportional to 3(∇�)2 + ∇dμ · ∇dμ and
−3(∇�)2 + ∇dμ · ∇dμ, respectively. Thus, a difference
between the coefficients of (∇�)2 and ∇dμ · ∇dμ terms may
occur from Fig. 3(c) depending on the pairing states. The
detailed form, composed of 51 kinds of invariants, of the
gradient term of O(|�|4) resulting from Fig. 3(c) is presented
in Eq. (A15) in the Appendix.

When the London limit is taken in the present SF model,
the difference in the coefficient Ks − Ksp corresponding to
Eq. (12) becomes

Ks − Ksp = N (0)

2240

( |�|2
πT

)2(
vF

2πT

)2

× [u1+ + u1− − 2(u2+ + u2−)] (28)

for the state (6) of the A phase, where u1± and u2± are defined
in Eq. (A16) in the Appendix.

In the polar phase created by an anisotropic aerogel, the
corresponding expression to Eq. (28) becomes its half value.
In numerically investigating the vortices not only Eqs. (17)
and (A15) or (A17), but also the anisotropy-induced O(|�|2)
gradient terms (A2) and (A3), given in the Appendix, will also
be incorporated.

FIG. 5. Examples of theoretical superfluid phase diagrams of
(a) the bulk liquid 3He and (b) the liquid 3He in a medium with
anisotropic and elastic scatting processes which mimics [2] an aero-
gel with a stretched global anisotropy. (a) Obtained in terms of the
material parameters given in Ref. [23] and by setting I = 0.725,
while the parameter values (2πτ )−1 = 0.13 mK and the anisotropy
parameter defined in Ref. [2] δu = −0.5 were also used in obtaining
(b). The AXY phase denotes the A phase with the l vector lying in the
plane perpendicular to the anisotropy axis.

Before ending this section, the numerical factors in
Eqs. (12) and (28) will be compared with each other. If the
experimental values of the Landau parameters at 30 bar [15]
are used, Eq. (12) becomes

0.7N (0)

(
vF|�|2
2π2T 2

)2

. (29)

On the other hand, Eq. (28) becomes

1.8N (0)

(
vF|�|2
2π2T 2

)2

(30)

for the bulk liquid when the values I = 0.724 and T/EF =
1.2 × 10−3 are used (see the caption of Fig. 5 below).

Therefore, it is anticipated that the SF model of the re-
pulsive interaction between the quasiparticles stabilizes the
HQV pair more easily compared with the FL model. Since the
Landau parameters always satisfy F s

1 � |Fa
1 |, and �s

1 is not so
sensitive to the pressure in the pressure range between 5 (bar)
and 30 (bar) [15] as well as I [13] which is nothing but the
parameter that determines the coefficient 1.8 in Eq. (30), the
difference in the Ks − Ksp value between the two models may
be regarded as being essentially independent of the pressure
value.
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FIG. 6. Typical example of spatial profiles of the order-parameter
components Aab (see Sec. VII) described on the x-y plane in the case
of a HQV pair in the bulk A phase. This figure has been obtained
consistently with derivation of Fig. 7(b).

VII. ESTIMATION OF VORTEX CORE ENERGY

In the preceding section, the energy gain in a HQV pair
through the gradient energy, which had been suggested in the
study in the London limit, has been found by microscopically
reexamining the GL approach. On the other hand, the cost
of the condensation energy near the vortex core, i.e., the
vortex core energy, is also non-negligible to understand how
the HQV is stabilized depending on the pairing states. The
dependencies on the pairing states arise from the difference in
the combination of the βj parameters. To express it clearly
in the presence of HQVs in an equal-spin pairing state, it
is convenient to rewrite the quartic terms of the GL free
energy in the chirality basis ê± = ∓(êx ± iêy )/

√
2 and ê0 =

êz. Then, the pair field is represented by Aab (a, b = ±, 0) in
place of Aμi (μ, i = x, y, and z).

First, the case of the bulk A phase with l̂ ‖ ẑ will be
considered. The corresponding GL quartic terms are simply
expressed by

f
(4)

bulk = (β2 + β4)|(|A++|2 + |A−+|2)2 + 4β5|A++A−+|2.
(31)

The order parameter in the presence of one HQV pair is
expressed in terms of Eqs. (10) by

Aμ,i

|�| = ei�dμ(ê+)i = 1√
2

(eiϕ+ (ê−)μ + eiϕ− (ê+)μ)(ê+)i

(32)
so that A−+ = |�|eiϕ+ , and A++ = |�|eiϕ− . That is, as is seen
later, a pair of HQVs’ solution of Aμ,i correspond to those of
integer vortices of A±+, [7,8] (see Figs. 2 and 6). Then, the
core energy of a pair of HQVs is estimated as 2(β2 + β4)ξ 2

if setting |A±+| far from the vortex cores to be unity and
assuming the core area to be ξ 2. On the other hand, since
both of A±+ vanish at the core in the case of a single PV, the
corresponding one of a single PV is 4βAξ 2. Thus, the HQV
obtains a gain in the condensation energy if the ratio

rA = β2 + β4

2(β2 + β4 + β5)
(33)

is less than unity. In the WC approximation, this ratio is just
unity. If, however, the SC correction obeying the relation (15)
is incorporated, this ratio becomes rA = (1 + 0.4375δ). That
is, as noted in Ref. [9], the HQVs are destabilized by the SC
corrections to βj .

Now, we turn to the corresponding quantities in the polar
phase in an anisotropic aerogel. In this case, the order param-
eter in the presence of a HQV pair is expressed by Eq. (32)
with (ê+)i replaced by (ê0)i , and the corresponding expression
of Eq. (31) is given by replacing A±+, β2 + β4, and β5 there
by A±0, β2 + β3 + β4, and β1 + β5, respectively. In this case,
however, there are additional quartic terms induced by the
anisotropy parameter δu denoted as β

(WC)
jz in Ref. [2] (see

Appendix). Then, the resulting ratio rpol corresponding to
Eq. (33) is given by

rpol = β2 + β3 + β4 + 2(β2z + β3z + β4z)

2
[∑

j=1...5(βj + 2βjz)
] . (34)

When the expressions shown in Ref. [2] of βjz are used, the
ratio rpol becomes precisely unity within the WC approxima-
tion, and, by incorporating the SC correction to βj s, we have

rpol = 1 + δ

3(1 + cr )
, (35)

where the factor cr is given in the Appendix and is positive for
a moderately large stretched anisotropy δu < −0.1. That is, in
the WC approximation, a HQV pair is estimated to have the
same core energy as a single PV, while an inclusion of the SC
corrections to the coefficients of the bulk quartic terms makes
a HQV pair less stable than a PV, although the energy cost of
a HQV pair due to the SC corrections in the polar phase is
smaller than the corresponding one in the bulk A phase case.

Further, in the polar phase, another origin of the gain
in the core energy of the HQVs is present. As pointed out
in Ref. [16], the self-energy diagrams reconstructed by the
impurity scatterings lead to a large enhancement of the βj

parameters which become the origin of the absence of the
equilibrium A phase in the globally isotropic aerogel [20].
Due to the presence of the prefactor 2 in the denominator of
the ratio (34), these scattering-induced positive contributions,
given in Eq. (A6) in the Appendix, to βj ’s also result in a
reduction of the ratio rpol.

We have also estimated the ratios rA and rpol by using
the βj parameters determined experimentally for the bulk
liquid and the liquid in a globally isotropic aerogel [21]. For
instance, one finds that using the values in Ref. [21] results
in rA = 1.3 for the bulk 3He at 26 bar, which is, according
to the expression of rA given below Eq. (33), the value corre-
sponding to δ = 0.7. This is a reasonable result, judging from
the fact that, according to Eqs. (4) and (15), the bulk A phase
is stable when δ > 0.465. Similarly, using the corresponding
values [21] for an isotropic aerogel, one finds that rpol = 1.01
and 1.04 at 5 and 10 bars, respectively. Further, as noted
above, a moderately large stretched anisotropy |δu| appearing
in βj in the WC approximation through the parameter cr (see
Appendix) seems to further reduce rpol.

One might wonder if, in the case of a highly anisotropic
aerogel, anisotropic pairing states are stabilized so that this
mechanism explaining the feature in the isotropic aerogel
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is not reflected there. As shown in Ref. [16], however,
the anisotropic pairing states are primarily stabilized by
anisotropic SC effects on the quadratic terms of the GL
expansion of the free energy, and the scattering-induced en-
hancement of βj parameters in the quartic GL terms remains
in the case of anisotropic aerogels. In fact, since no additional
contributions induced by the anisotropy are incorporated for
simplicity in the O(|�|4) gradient terms, anisotropic SC
contributions to βj [16] will not be considered consistently.
Therefore, it is concluded that it is the scattering-induced
enhancement of βj which becomes one possible origin for
stabilizing the HQV in the polar phase.

VIII. NUMERICAL RESULTS

To address whether the HQV is stabilized in the bulk A

phase and the polar phase in anisotropic aerogels by using
quantitatively reasonable parameters, we have numerically
compared the free energy of a HQV pair with that of a single
PV in both the systems.

Both for the bulk A phase and the polar phase in an aerogel,
the free energy of a HQV pair is computed by numerically
solving variational GL equations following from the extended
GL free energy (see below) including the O(|�|4) gradient
terms (A15) or (A17), derived in this work. The vortices
are assumed to be straight along the z axis so that we can
focus on the order parameter Aμ,i (x, y) in the x-y plane.
Further, the longer cutoff length in the x-y plane for a single
HQV pair is assumed to correspond to the lattice constant of
the vortex lattice and to be determined by the magnitude of
the rotation velocity [6]. As a numerical method, we closely
follow the direct 2D method in Ref. [22] by adopting the
London result [Eq. (10)] as the outer boundary condition for
the order parameter Aμ,i (x, y). Further, the system size in the
x direction along which the HQV pair with the pair separation
a can be extended will be chosen to be 10 times longer than
that in the perpendicular (y) direction. The HQV pair with
a = 0 is nothing but a PV. Therefore, to see the stability
of a HQV pair, we examine the free energy of a HQV pair
measured from that of a PV, i.e., the free-energy difference
in equilibrium Feq (a) − Feq (a = 0) as a function of the pair
size a.

Strictly speaking, it is necessary, like the analysis in the
London limit [6], to see the sum of the gradient energy and
the dipole energy in order to judge the stability of a HQV
pair. However, the dipole energy becomes important only at
the large enough scale of the order of 10 (μm) comparable
with the dipole coherence length ξd , and, at such large scales,
the results on the dipole energy in the London limit are reliable
quantitatively. Therefore, as mentioned in Sec. III, we focus
here on the a dependence of the vortex energy difference
Feq (a) − Feq (0).

To determine reasonable parameter values to be used for
the numerical computation of the vortices in each phase, we
have first started from determining an appropriate pressure
(P ) to temperature (T ) phase diagram both for the bulk liquid
3He and the liquid 3He in an aerogel. Applying the experimen-
tal pressure dependencies of EF, the bulk Tc, and the effective
mass m∗ of a normal quasiparticle [23] to Eqs. (3), (4), and
(15), Fig. 5(a) is obtained as the phase diagram of the bulk

liquid 3He when the interaction parameter I is 0.724, where
the relation between I and the SC parameter δ (see Sec. IV)
given in Ref. [13] was used.

Since, strictly speaking, we focus on the case with a
magnetic field parallel to the z axis applied to confine the dμ

vector to the x-y plane, the region of the A phase can become
slightly broader than in the figure. However, we assume that a
magnetic field with a moderate magnitude will be sufficient
for the in-plane confinement of dμ and will not affect the
temperature width of the A-phase region.

On the other hand, in the case of liquid 3He in a stretched
aerogel, we obtain Fig. 5(b) by applying the values of the
scattering strength 1/(2πτ ) = 0.13 mK and the dimension-
less anisotropy parameter δu = −0.5 [2] to Eqs. (3), (4), (15),
(A6), and (A7).

To explain and discuss our results on the vortex energy,
we will use our results obtained by using Eq. (A17) of the
FL model as the O(|�|4) gradient energy in most part of this
section. Some of the corresponding results following from the
use of Eq. (A15) of the SF model will be shown at the end of
this section.

First, we explain the obtained results of the order parame-
ter’s spatial profile and Feq (a) − Feq (0) in the bulk A phase,
where the l vector is oriented to the ẑ axis far from vortex
cores, e.g., due to the slab geometry (see Sec. I). To enable us
to study a wider temperature range of the A phase, we focus
here on the results at 30 bar. In this case, the variational GL
equations are obtained from the sum of the bulk free-energy
terms used to obtain the phase diagram and the gradient
energy terms (17) with Eqs. (A1) and (A17). The resulting
profile of each nonvanishing component of the order parame-
ter is shown in Figs. 6(a) and 6(b), where the order parameter
is represented by Aa,b (a, b = ±), defined in Sec. VI, rather
than Aμ,i . As the left figures of Fig. 6(a) show, a HQV pair is
represented as a pair of integer vortices of A++ and A−+. In
contrast to the expectation in London limit, however, Feq (a)
increases with increasing a at least near the vortex cores
reflecting that rA > 1 due to the SC corrections to the βj pa-
rameters mentioned in Sec. IV (see Fig. 7). In addition to this,
as the right figures of Fig. 6(a) show, the components A±−
with the opposite orbital chirality appear in a range around the
vortex cores. It can be seen that, even if setting the boundary
condition with l ‖ +ẑ, the order-parameter component with
l ‖ −ẑ tends to appear near the vortex cores. This feature, seen
also in numerical results on the ordinary GL equations [8]
with no O(|�|4) gradient term, seems to be another origin of
elevating the energy of the HQV pair in the bulk A phase since
the spatial region in which the components with the opposite
chirality are nonvanishing become wider on approaching the
superfluid transition temperature. As is seen below, such an
excitation of unfavorable components of Aμ,i does not occur
in the case of the polar phase which, as is seen later, seems to
be a stage on which the HQV appears more easily.

Figures 7(a) and 7(b) show the corresponding free-energy
difference normalized properly (see the figure caption). Just
below Tc (= 2.44 mK), i.e., at T = 2.43 mK, the contribution
of the O(|�|4) gradient term (A17) is too small to make a
reduction of Feq (a) at larger a visible, and, reflecting the
cost of the free energy near the vortex cores due to the SC
corrections and the mixing of the Aμ,i components with the
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FIG. 7. Free energy Feq (a) of a HQV pair measured from that of
a PV, Feq (0), in the case of the A phase in Fig. 5(a) at 30 bar. The
normalization F̃ ≡ βA[Feq (a) − Feq (0)]/α2(T ) is used. (a) F̃ (a) at
2.43 mK in close vicinity of the superfluid transition temperature
2.44 mK, while (b) is the result at 2.08 mK which is just above the
A-B transition at 30 bar. The F̃ curve in (a) does not become negative
over the lengths of several tens (μm).

opposite orbital chirality, the energy of a HQV pair is never
lowered [see Fig. 7(a)]. It implies that the HQV is not realized
even as a metastable state very close to Tc.

For comparison, we show in Fig. 8 the corresponding result
of the free-energy difference obtained at 2.08 mK just above
the AB transition temperature at 30 bar without the new
gradient energy term (25). Since the WC (|�|4) term (A11) is
taken into account in obtaining Fig. 8, the results in this figure
that Feq (a) > Feq (0), and that Feq is a independent at large
a imply that the HQV pair should not be realized at all in the
conventional WC approximation with no term corresponding
to the FL correction to the gradient energy. In contrast, the
similar result in Fig. 7(a) simply implies that the O(|�|4)
gradient term (25) is ineffective in the close vicinity of Tc.

On the other hand, as is seen in Fig. 7(b), the free energy
Feq (a) computed with the term (25) decreases with increasing

FIG. 8. Free-energy difference Feq (a) − Feq (0) computed with
no Eq. (25) in the case of the A phase at 2.08 mK and at 30 bar,
which becomes a independent with increasing a.

FIG. 9. Example of spatial profiles of the nonvanishing compo-
nents A±0 of the order parameter mapped on the x-y plane in the case
with a HQV pair in the polar phase in a medium modeling [2] an
anisotropic aerogel. This figure has been obtained consistently with
derivation of Fig. 10(b).

a, like in Eq. (11), moderately below Tc [see also Fig. 11(c)]. It
strongly suggests that a HQV pair with a size a of 10 μm or so
becomes stable. Nevertheless, the feature seen over a tempera-
ture range below Tc that Feq (a) > Feq (0) for smaller a values
should be noted because it may facilitate the situation in which
PVs coexist with HQV pairs in particular on a cooling upon
rotation [24]. Therefore, broadly speaking, the present results
applicable to the bulk A phase lying only at higher pressures
above 20 bar suggest that, at higher temperatures, the PVs
tend to coexist with HQVs due to the importance of the SC
correction to the condensation energy, while only the HQVs
may be stabilized at lower temperatures close to the AB phase
boundary. This feature seems to be consistent with a recent
experimental result [25], in which the measurement has been
performed just near Tc, and coexistence of PVS and HQVs has
inevitably occurred.

Next, we turn to the case in a strongly anisotropic aerogel
where the polar phase is realized. By using Eqs. (3), (4),
(15), (17), (A2), (A3), (A6), (A7), and (A17) and solving the
resulting variational GL equations with the parameter values
used in obtaining the phase diagram Fig. 5(b), numerical
solutions of one HQV pair are obtained. As one example, we
show here the obtained results at 9 bar since the NMR data in
Ref. [3] have been taken at a low pressure, 7 bar. In this case,
in contrast to the bulk A-phase case, the temperature width
of the polar phase is wider in such lower pressures where the
SC correction indicated in Eq. (15) tending to destabilize the
HQV is weaker. Thus, the situation in which the HQVs are
realized is expected to be prepared more easily in the polar
phase in an aerogel. In fact, the obtained profiles of the order
parameters Aμ,i are consistent with this expectation: The
components A±0 shown in Fig. 9 are the only nonvanishing
components of Aab obtained in the polar phase under the outer
boundary condition (10). So, the HQV in the polar phase has
a much simpler structure than that in the bulk A phase. The
resulting pair size dependencies of the free energy close to the
normal to polar superfluid transition at 1.74 mK and at the low
temperature 1.36 mK are shown in Fig. 10. In contrast to the
bulk A phase, even in Fig. 10(a) taken close to Tc, the small
a range in which Feq (a) > Feq (0) is extremely narrow, and
Feq (a) decreases with increasing a for almost all a values.
Thus, even near Tc, a HQV pair is expected to be more stable
in the polar phase in aerogels at least at such low pressures.
This HQV’s stability seems to be a consequence of the two
features: One is the fact that the measure of the SC effect
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FIG. 10. Normalized free energy F̃ ≡ βpol[Feq (a) − Feq (0)]/α2

in the polar phase at two different temperatures and at 9 bar in
Fig. 5(b) . The figures (a) and (b) are the results at 1.73 m (just below
the superfluid transition point) and 1.36 mK (just above the polar to
A transition point), respectively.

rpol, defined in Sec. VII, is low and close to unity reflecting a
cancellation between the SC effect and the impurity scattering
effect in the βj parameters (see Sec. VII), and the other is the
simpler order-parameter profiles in real space shown in Fig. 9.

Our results shown above were obtained by using the gra-
dient energy (25) derived based on the conventional Fermi-
liquid theory as the additional term stabilizing the HQV pairs.
Before ending this section, the corresponding results obtained
by replacing Eq. (A17) with the interaction-induced gradient
term (A15) in the SF approach [13] will be shown. Figures 11
and 12 are the corresponding results to those of Figs. 7 and
10. Quantitatively, the quantum SF model of the repulsive
interaction between the quasiparticles seems to stabilize the
HQV pair further. Nevertheless, our conclusions on the HQV
pair’s stability in the bulk A phase and the polar phase in the
anisotropic aerogels are qualitatively the same, irrespective of
which of Eqs. (A15) and (A17) is used.

As in the bulk A phase, the range of the a values in which
Feq (a) > Feq (0) becomes visible even in the polar phase at
higher pressures as a result of the SC effect enhanced with
increasing the pressure. In Fig. 13 taken just below Tc and
at 30 bar, this feature is clearly seen. Nevertheless, such a
range is too narrow to make the HQV pairs unstable. Based on
these results obtained from the impurity scattering model [2]
on the superfluid 3He in anisotropic aerogel, it is believed that
the emergence of the HQVs in the polar phase in anisotropic
aerogels [1,3] is not a metastable event assisted by the pinning
to the aerogel structures but an intrinsic event.

IX. SUMMARY AND DISCUSSION

As mentioned in Sec. I, there has been a gap so far on
theoretical understanding of the HQVs in superfluid 3He

FIG. 11. Panels (a) and (b), corresponding to Figs. 7(a) and
7(b), respectively, are results corresponding to Fig. 7 obtained using
Eq. (A15) in place of Eq. (A17) and the parameter value I = 0.724.
Panel (c) is the log(a) plot of the panel (a).

between the London limit and the conventional GL theory.
For instance, in the A phase with l vector perpendicular to
the plane in a slab geometry, the treatment in the London
limit predicts that, as a consequence of the Fermi-liquid (FL)
correction to the gradient terms, a HQV pair is more stable
than a single PV, while the conventional GL free energy based
on the familiar weak-coupling approximation does not include
such a gradient term leading to the HQV pair’s stability.
Clearly, the use of the conventional GL free energy [7,8] is
not appropriate for studying the HQVs’ stability. To bridge
this gap on theoretical descriptions of a HQV pair, we have
microscopically examined the gradient energy terms in the
GL free energy. Depending on the way of describing the SC
effect on the bulk free energy [13,26], the two approaches
for describing the effects of the repulsive interaction between
the quasiparticles on the GL gradient term contributing to
the HQVs’ stability can be considered. One is the Fermi-
liquid model, and the other is the spin fluctuation model. By
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FIG. 12. Results corresponding to Fig. 10 obtained using
Eq. (A15) in place of Eq. (A17) and the parameter value I = 0.724.
Panels (a) and (b) correspond to Figs. 10(a) and 10(b), respectively.

deriving the corresponding interaction-induced gradient en-
ergy term in the two approaches, we have performed numer-
ical computations on the resulting extended GL free energy
and have reached the conclusion that, in the bulk A phase
in a slab geometry, HQV pairs may be stabilized without
coexistence with PVs far below Tc, while, in the case of the
polar phase realized in anisotropic aerogels, a HQV pair is
certainly stable even close to Tc in particular at low pressures.

We note that the stability of a HQV pair in the polar phase
is unexpected in the following sense: As mentioned in the
sentences below Eqs. (26) and (28), the interaction-induced
gradient term stabilizing the HQVs in the polar phase is
smaller than that in the bulk A phase, and thus that once one
is based on the London limit and takes account only of the
gradient terms, it is difficult to understand why the HQVs
have been more clearly realized in the polar phase. In fact,
the importance of the vortex pinning via the aerogel structure
for the emergence of the HQVs has been stressed in Ref. [3].
On the other hand, our results obtained by taking account of

FIG. 13. Normalized free energy F̃ ≡ βpol[Feq (a) − Feq (0)]/α2

in the polar phase close to Tc (2.35 mK) at 30 bar in Fig. 5(b) obtained
using Eq. (A15), i.e., based on the SF model.

both the condensation energy and the gradient energy suggest
that the stability of HQVs in the polar phase in aerogels can be
understood without invoking the pinning effect. At the present
stage, it is unclear to us to what extent the vortex pinning
effect due to the aerogel structure assists the stability of HQVs
realized in experiments [3].

Emergence of a HQV pair in the bulk A phase is limited to
some extent because the SC contribution tending to destabilize
the HQVs is more effective at higher pressures where the bulk
A phase is realized. It is speculated that the coexistence of
HQVs and PVs found in the bulk A phase [25] is due not to
the presence of a texture of the l vector in a slab geometry with
a large film thickness, but to the pressure-induced SC effect.
In contrast, the fact that the polar phase region in anisotropic
aerogels is wider at lower pressures [1,16] seems to have
assisted realization of HQVs.

It should be stressed that the situation in which the A

phase is realized at low pressures in a quasi-two-dimensional
geometry where the l vector is fixed perpendicularly to the
plane may be another candidate for realization of the HQV.
Such a situation is seen, e.g., in Fig. 7(c) in Ref. [4] and in
Ref. [27].

We have not considered the HQVs in the A phase [1,2]
occurring at lower temperatures than the polar phase in the
anisotropic aerogels in this work because talking account of
effects of the texture of the l vector which is inevitably present
in this phase is beyond the scope of this work. But, this A

phase is also one of the A phases occurring at lower pres-
sures commented in the last paragraph. The measurements in
Refs. [3,28] have shown that the HQVs seen in the polar phase
survive in this A phase where the Majorana fermions should
exist as their core state [29]. Clearly, it is an intriguing subject
to examine effects of the disorder-induced texture of the l
vector on the HQV stability. In relation to this, the possibility
of a HQV pair in the polar phase upon rotation around an axis
perpendicular to the anisotropy axis of the aerogel should be
considered because the HQV in this case may be movable in
contrast to the case upon rotation parallel to the anisotropy
axis [3].

The present theory taking account of an additional gradient
term in the GL free energy might play a significant role in
describing the vortices in the B phase [22,30] because the
gradient energy is more important near the vortex cores. Ac-
cording to our preliminary results, the O(|�|4) gradient term
(A17) stabilizes the nonaxisymmetric vortex with the core
consisting of a HQV pair: the FL-based gradient term (25)
assists the stability of this vortex, while the weak-coupling
higher-order gradient term (A11) tends to destabilize it. These
subjects should be considered further in future works.
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APPENDIX

In this appendix, expressions which were omitted in the
text but are to be used for numerical calculations will be
presented.
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(b) (c)(a)

FIG. 14. (a) Lowest-order diagram in the anisotropy δu leading to
Eq. (A2). (b), (c) Quantitatively dominant diagrams expressing δχαα

in the lowest order in δu. The wavy line denotes the SF propagator in
the normal state.

In the WC approximation, the coefficients in Eq. (17) are
given by

K
(WC)
1 = K

(WC)
2 = N (0)

60

(
vF

2πT

)2

|ψ (2)(y)|, (A1)

where y = [1 + 1/(2πτT )]/2, and τ−1 denotes the relaxation
rate of a quasiparticle via the elastic impurity scattering with
the aerogel structure. As far as the system is isotropic, the
relation K1 = K2 remains valid even if the SF-induced cor-
rections to Eq. (17) which occurs from Eq. (14) are included.
Consistently with the neglect of the contributions of Fig. 3(c)
to the quartic bulk energy terms, these corrections to Eq. (17)
may be neglected for simplicity so that Kj in Eq. (17) will be
identified with K

(WC)
j in our numerical analysis. In aerogels,

the anisotropy-induced correction to the WC gradient term of
O(|�|2) resulting from the diagram of Fig. 14(a), up to O(δu),
takes the form

f
(WC)

grad,ani = −N (0)

1080

δu

2πT τ

(
vF

2πT

)2

ψ (3)(y)[2∂jA
∗
μ,z∂jAμ,z − ∂iA

∗
μ,i∂jAμ,j + (∂jA

∗
μ,j ∂zAμ,z + c.c.)], (A2)

where δu is the parameter measuring the anisotropy strength introduced in Ref. [2].
On the other hand, the main correction terms due to the SF to the anisotropic gradient term of O(|�|2), which result from

Figs. 14(b) and 14(c), are expressed by

f
(SC)

grad,ani = π2N (0)

3360
(πI )2 δu

2πT τ

(
vF

2πT

)2[(
L1 + 3

2
L2

)
∂iAμ,j ∂iA

∗
μ,j +

(
16L1 + 27

16
L2

)
∂iAμ,z∂iA

∗
μ,z

+
(

−5L1 + 27

16
L2

)
(∇ · Aμ)(∇ · A∗

μ) +
(

2L1 + 3

4
L2

)
∂zAμ,i∂zA

∗
μ,i +

(
11L1 + 135

32
L2

)
[(∇ · Aμ)∂zA

∗
μ,z + c.c.]

]
,

(A3)

where

L1 = ψ (3)(y)
∑
m

D1(|m|),

L2 = [ψ (3)(y) − ψ (3)(y + |m|)]D1(|m|), (A4)

and

D1(|m|) = T

8π2EF

∫ ∞

0
dq

(
1 − I + I

3
q2 + π2T

4|q|EF
|m|

)−1

. (A5)

Next, the terms to be added in the bulk free energy (i.e., except the gradient terms) in the case with impurity scattering
processes will be briefly explained. In considering the vortices in 3He in aerogels, additional contributions to βj arising from the
impurity-scattering effects due to the aerogel need to be taken into account. They were obtained in Ref. [16], and, when only the
unitary pairing states are assumed to be realized, their main contributions are given by

β
(SC)
2,vc = 30

(πI )2

2πτT
β0

∑
m

D1(|m|)
[(

2

15
+ π2

80

)
ψ (3)(y) + π2

40
[ψ (3)(y) − ψ (3)(y + |m|)]

]
,

β
(SC)
3,vc = β

(SC)
4,vc = 30

(πI )2

2πτT
β0

∑
m

D1(|m|)
[(

2

15
+ π2

480

)
ψ (3)(y) + π2

240
[ψ (3)(y) − ψ (3)(y + |m|)]

]
, (A6)

while the corresponding β
(SC)
1,vc and β

(SC)
5,vc are zero.

In evaluating the condensation energy of the polar phase in an anisotropic aerogel, anisotropy-induced terms in the GL free
energy need to be taken into account in addition to the six terms in Eq. (3). In the case of superfluid 3He in a globally anisotropic
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aerogel, such additional terms to the GL free energy take the form

Fbulk,ani =
∫

d3r
[
(α(SC)|se + α(SC)|vc)A∗

μjAμj + (
α(WC)

z + α(SC)
z

∣∣
se + α(SC)

z

∣∣
vc

)
A∗

μzAμz + [
β

(WC)
1z AμiAμiA

∗
μzA

∗
μz

+β
(WC)
2z A∗

μiAμiA
∗
νzAνz + β

(WC)
3z AμiAνiA

∗
μzA

∗
νz + β

(WC)
4z A∗

μiAνiA
∗
νzAμz + β

(WC)
5 A∗

μiAνiA
∗
μzAνz + c.c.

]]
(A7)

in the notation in Refs. [2,16]. In addition to β
(WC)
jz , anisotropy-induced corrections also appear in β

(WC)
j defined in Eq. (3). Their

detailed expressions were given in Ref. [16] together with the coefficients of the quadratic terms in Eq. (A7). By applying them
to the ratio rpol defined in Sec. VII, we obtain rpol given in Eq. (35), where

cr = 1

2πτT

∣∣∣∣ψ
(3)(y)

ψ (2)(y)

∣∣∣∣
(−331δu − 35

378

)
. (A8)

Finally, we will explain how to derive the gradient terms of O(|�|4). The WC contribution to the gradient term of O(|�|4)
follows from the full expression of Fig. 1:

F
(WC)
4 = β−1

2

∑
ε

∑
k1,...k4

δk1+k3,k2+k4

∫
d3p

(2π )3
Tr(σμσνσρσλ)Gp(ε)G−p+k1 (−ε)Gp+k2−k1 (ε)G−p+k4 (−ε)

×Dμ(p; k1)D∗
ν (p; k2)Dρ (p; k3)D∗

λ(p; k4). (A9)

Alternatively, this expression may be expressed in the form of Eq. (18), where

f (v · kj ) = β−1

2
N (0)

∑
ε

∫
dξ Gp(ε)G−p+k1 (−ε)Gp+k2−k1 (ε)G−p+k4 (−ε) (A10)

with the single-particle kinetic energy measured from the Fermi energy ξ . By picking the quadratic terms in ki up from the
product of the Green’s functions and rewriting the O(k2) terms in Eq. (A9) in the real-space representation, the contribution to
the gradient terms of O(|�|4) in the WC approximation becomes

F
(WC)
grad4 = N (0)

v2
F

384(2πT )4
ψ (4)(y)Tr(σμσνσρσλ)

∫
d3r〈p̂i p̂j [Dμ(p)∂iD

∗(p)νDρ (p)∂jD
∗
λ(p)

+ ∂iDμ(p)D∗
ν (p)∂jDρ (p)D∗

λ(p) + 3

2
(Dμ(p)∂iD

∗
ν (p)∂jDρ (p)D∗

λ(p) + ∂iDμ(p)D∗
ν (p)Dρ (p)∂jD

∗
λ(p)

+ ∂iDμ(p)∂jD
∗
ν (p)Dρ (p)D∗

λ(p) + Dμ(p)D∗
ν (p)∂iDρ (p)∂jD

∗
λ(p))], (A11)

where Dμ(p) is the Fourier transform of Dμ(p; k). The final expression of Eq. (A11) will be summarized below together with
the corresponding one of Fig. 3(c) or Fig. 4.

The expression of Fig. 3(c) is given by the first line of Eq. (14) with

δχαα (q) = −β−1

2
Tr(σμσνσασρσλσα )

∑
k1...k4

δk1+k3,k2+k4

∫
d3p

(2π )3

∑
ε

Gp− (ε)G−p−+k1 (−ε)Gp−+k2−k1 (ε)

×Gp++k2−k1 (ε + �)G−p++k4 (−ε − �)Gp+ (ε + �)Dμ(p; k1)D∗
ν (p; k2)Dρ (p; k3)D∗

λ(p; k4). (A12)

The corresponding gradient free-energy term is given by

FSgrad4 = − I
2

2N (0)
T

∑
�

∫
q

1

1 − IχN (q,�)
δχ ′′

α,α (q,�), (A13)

where δχ ′′ is the gradient term of δχ , and, if, for simplicity, focusing on its � = 0 term arising from the thermal SF, it is
expressed as

δχ ′′
α,α (q, 0) = − π

16
β−1N (0)v2

FTr(σμσνσασρσλσα )
∑

ε

〈
p̂i p̂j

|ε|5[(v · q)2 + 4|ε|2]

∫
d3r[3(Dμ(p)∂iD

∗
ν (p)∂jDρ (p)D∗

λ(p)

+ ∂iDμ(p)D∗
ν (p)Dρ (p)∂jD

∗
λ(p) + ∂iDμ(p)∂jD

∗
ν (p)Dρ (p)D∗

λ(p) + Dμ(p)D∗
ν (p)∂iDρ (p)∂jD

∗
λ(p))

+ (Dμ(p)∂iD
∗
ν (p)Dρ (p)∂jD

∗
λ(p) + ∂iDμ(p)D∗

ν (p)∂jDρ (p)D∗
λ(p))]

〉
. (A14)
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Then, the gradient energy density of O(|�|4) following from the sum of Eqs. (A11) and (A13) is given by

fSgrad4 = N (0)

26880(πT )2

(
vF

2πT

)2

[u1+((∇ · Aμ)(∇ · A∗
λ)A∗

μiAλi + AλjA
∗
μj∂kA

∗
λi∂iAμk + (∇ · Aμ)(∇ · A∗

μ)AλjA
∗
λj

+AλjA
∗
λj ∂kA

∗
μi∂iAμk + (∇Aμi ) · (∇A∗

μi )AλjA
∗
λj + (∇Aμi ) · (∇A∗

μj )(AλiA
∗
λj + A∗

λiAλj )

+ (∇Aμi ) · (∇A∗
λi )A

∗
μjAλj + (∇Aμi ) · (∇A∗

λj )A∗
μiAλj + (∇Aμi ) · (∇A∗

λj )A∗
μjAλi + (Aλ · ∇)A∗

λi (A
∗
μ · ∇)Aμi

+ (Aλ · ∇)A∗
μi (A

∗
λ · ∇)Aμi + (Aλ · ∇)Aμi (A

∗
λ · ∇)A∗

μi + (Aλ · ∇)Aμi (A
∗
μ · ∇)A∗

λi

+ [(∇ · Aμ)(A∗
μi (Aλ · ∇)A∗

λi + Aλi (A
∗
μ · ∇)A∗

λi ) + (∇ · Aμ)(A∗
λi (Aλ · ∇)A∗

μi + Aλi (A
∗
λ · ∇)A∗

μi )

+A∗
μi ((Aλ · ∇)A∗

λ · ∇)Aμi+ Aλi ((A
∗
μ · ∇)A∗

λ · ∇)Aμi + Aλi ((A
∗
λ · ∇)A∗

μ · ∇)Aμi + A∗
λi ((Aλ · ∇)A∗

μ · ∇)Aμi + c.c.])

+u1−((∇Aμi ) · (∇A∗
λi )AμjA

∗
λj + (∇Aμi ) · (∇A∗

λj )(AμiA
∗
λj + AμjA

∗
λi ) + (∇ · Aμ)(∇ · A∗

λ)AμiA
∗
λi

+AμiA
∗
λi∂kA

∗
λj ∂jAμk + (A∗

λ · ∇)Aμi (Aμ · ∇)A∗
λi + (Aμ · ∇)Aμi (A

∗
λ · ∇)A∗

λi + [(∇ · Aμ)(A∗
λj (Aμ · ∇)A∗

λj

+Aμj (A∗
λ · ∇)A∗

λj ) + Aμi ((A
∗
λ · ∇)A∗

λ · ∇)Aμi + A∗
λi ((Aμ · ∇)A∗

λ · ∇)Aμi + c.c.])

+u2+((∇A∗
μi ) · (∇A∗

λj )(AμiAλj + AμjAλi ) + (∇A∗
μi ) · (∇A∗

λi )AμjAλj + (Aμ · ∇)A∗
μi (Aλ · ∇)A∗

λi

+ (∇ · A∗
μ)(∇ · A∗

λ)AμiAλi + (Aλ · ∇)A∗
μi (Aμ · ∇)A∗

λi + AμiAλi∂jA
∗
μk∂kA

∗
λj + 2[(∇ · A∗

μ)(Aλi (Aμ · ∇)A∗
λi

+Aμi (Aλ · ∇)A∗
λi ) + Aλi ((Aμ · ∇)A∗

μ · ∇)A∗
λi + ((Aμ · ∇)A∗

λ · ∇)A∗
μi )] + c.c.)

+u2−((∇A∗
μi ) · (∇A∗

μj )AλiAλj + (Aλ · ∇)A∗
μi (Aλ · ∇)A∗

μi

+ 2[(∇ · A∗
μ)Aλi (Aλ · ∇)A∗

μi + Aλi ((Aλ · ∇)A∗
μ · ∇)A∗

μi] + c.c.)

+u3(AλjAλj ((∇A∗
μi ) · (∇A∗

μi ) + (∇ · A∗
μ)(∇ · A∗

μ) + ∂kA
∗
μi∂iA

∗
μk ) + c.c.)], (A15)

where

u1± = I

[
3

10
ψ (5)(y)ln

(
1 + I

3(1 − I )

)
+ 2

∑
m>0

1

m2
ln

(
1 + I

3[1 − I + π2T m/(4EF)]

)(
5ψ (3)(m + y) + 84

m2
ψ (1)(y + m)

+ 24

m
[ψ (2)(y) − ψ (2)(y + m)] + 168

m3
[ψ (y) − ψ (y + m)]

)]
± ψ (4)(y),

u2± = I

[
1

10
ψ (5)(y)ln

(
1 + I

3(1 − I )

)
+ 2

∑
m>0

1

m2
ln

(
1 + I

3[1 − I + π2T m/(4EF)]

)(
4ψ (3)(m + y) + 168

m2
ψ (1)(y + m)

+ 36

m
[ψ (2)(y) − ψ (2)(y + m)] + 336

m3
[ψ (y) − ψ (y + m)]

)]
± 1

3
ψ (4)(y),

u3 = 1

2
u2− − 1

3
ψ (4)(y). (A16)

Here, ψ (y) is the digamma function, and ψ (k)(y) = dkψ (y)/dyk . The terms accompanied by the m summation imply the
contributions arising from the quantum SF with � = 2πmT �= 0 neglected in Eq. (A14). The terms proportional to ψ (4)(y) are
the contributions of the WC diagram Fig. 1, and the remaining terms in Eq. (A15) are the results from Fig. 3(c). By applying
Eq. (6) to (A15) with keeping the amplitude |�| fixed, we find Eq. (28) in the text.

Finally, the detailed expression of the gradient energy of O(|�|4) in the FL approach will be given. For simplicity, the Landau
parameter �a

1 ≡ Fa
1 /(1 + Fa

1 /3) will be set to be zero because Fa
1 is usually believed to be much smaller than F s

1 . Then, the sum
of Eqs. (A11) and (25) becomes

fFLgrad4 = N (0)ψ (4)(y)

26880(πT )2

(
vF

2πT

)2

[w1( (∇ · Aμ)(∇ · A∗
λ)A∗

μiAλi + (∇Aμi ) · (∇A∗
λj )A∗

μiAλj + (Aλ · ∇)A∗
λi (A

∗
μ · ∇)Aμi )

+AλjA
∗
μj∂kA

∗
λi∂iAμk + (∇ · Aμ)(∇ · A∗

μ)AλjA
∗
λj + AλjA

∗
λj ∂kA

∗
μi∂iAμk + (∇Aμi ) · (∇A∗

μi )AλjA
∗
λj

+ (∇Aμi ) · (∇A∗
μj )(AλiA

∗
λj + A∗

λiAλj ) + (∇Aμi ) · (∇A∗
λi )A

∗
μjAλj + (∇Aμi ) · (∇A∗

λj )A∗
μjAλi

+ (Aλ · ∇)A∗
μi (A

∗
λ · ∇)Aμi + (Aλ · ∇)Aμi (A

∗
λ · ∇)A∗

μi + (Aλ · ∇)Aμi (A
∗
μ · ∇)A∗

λi

+ [w1((∇ · Aμ)(A∗
μi (Aλ · ∇)A∗

λi + Aλi (A
∗
μ · ∇)A∗

λi ) + A∗
μi ((Aλ · ∇)A∗

λ · ∇)Aμi )

+ (∇ · Aμ)(A∗
λi (Aλ · ∇)A∗

μi + Aλi (A
∗
λ · ∇)A∗

μi ) + Aλi ((A∗
μ · ∇)A∗

λ · ∇)Aμi + Aλi ((A∗
λ · ∇)A∗

μ · ∇)Aμi

+A∗
λi ((Aλ · ∇)A∗

μ · ∇)Aμi + c.c.] − ((∇Aμi ) · (∇A∗
λi )AμjA

∗
λj + (∇Aμi ) · (∇A∗

λj )(AμiA
∗
λj + AμjA

∗
λi )
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+ (∇ · Aμ)(∇ · A∗
λ)AμiA

∗
λi + AμiA

∗
λi∂kA

∗
λj ∂jAμk + (A∗

λ · ∇)Aμi (Aμ · ∇)A∗
λi + (Aμ · ∇)Aμi (A

∗
λ · ∇)A∗

λi

+ [(∇ · Aμ)(A∗
λj (Aμ · ∇)A∗

λj + Aμj (A∗
λ · ∇)A∗

λj ) + Aμi ((A∗
λ · ∇)A∗

λ · ∇)Aμi + A∗
λi ((Aμ · ∇)A∗

λ · ∇)Aμi + c.c.])

+ 1

3
(w2((∇A∗

μi ) · (∇A∗
λj )AμiAλj + (Aμ · ∇)A∗

μi (Aλ · ∇)A∗
λi + (∇ · A∗

μ)(∇ · A∗
λ)AμiAλi )

+ (∇A∗
μi ) · (∇A∗

λj )AμjAλi + (∇A∗
μi ) · (∇A∗

λi )AμjAλj + (Aλ · ∇)A∗
μi (Aμ · ∇)A∗

λi + AμiAλi∂jA
∗
μk∂kA

∗
λj

+ 2[w2((∇ · A∗
μ)(Aλi (Aμ · ∇)A∗

λi + Aμi (Aλ · ∇)A∗
λi ) + Aλi ((Aμ · ∇)A∗

μ · ∇)A∗
λi ) + Aλi ((Aμ · ∇)A∗

λ · ∇)A∗
μi]

+ c.c.) − 1

3
((∇A∗

μi ) · (∇A∗
μj )AλiAλj + (Aλ · ∇)A∗

μi (Aλ · ∇)A∗
μi + 2[(∇ · A∗

μ)Aλi (Aλ · ∇)A∗
μi

+Aλi ((Aλ · ∇)A∗
μ · ∇)A∗

μi] + c.c.) − 1

2
(AλjAλj ((∇A∗

μi ) · (∇A∗
μi )

+ (∇ · A∗
μ)(∇ · A∗

μ) + ∂kA
∗
μi∂iA

∗
μk ) + c.c.)], (A17)

where

w1 = 1 + 28

15
�s

1
(ψ (2)(y))2

ψ (4)(y)
,

(A18)

w2 = 1 − 14

5
�s

1
(ψ (2)(y))2

ψ (4)(y)
,

and the terms proportional to ψ (4)(y) are the WC contributions from Fig. 1.
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