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Kerr nonlinearity in a superconducting Josephson metamaterial
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We present a detailed experimental and theoretical analysis of the dispersion and nonlinear Kerr frequency
shifts of plasma modes in a one-dimensional Josephson junction chain containing 500 superconducting quantum
interfence devices in the regime of weak nonlinearity. The measured low-power dispersion curve agrees perfectly
with the theoretical model if we take into account the Kerr renormalization of the bare frequencies and the
long-range nature of the island charge screening by a remote ground plane. We measured the self- and cross-Kerr
shifts for the frequencies of the eight lowest modes in the chain. We compare the measured Kerr coefficients with
theory and find good agreement.
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I. INTRODUCTION

Metamaterials have artificially engineered properties that
do not occur in nature and enable one to control interactions of
matter with electromagnetic waves. Here a particular interest
lies in the realization of negative or high refractive index
materials [1–6]. Superconducting circuits operating in the
microwave region such as Josephson junction chains offer
a unique possibility for the design of metamaterials since
electromagnetic signals can propagate in such circuits with
extremely low losses, the circuit properties can be tuned by
applying an external magnetic field, and the Josephson effect
provides a mechanism for strong nonlinearity [7]. Numerous
applications of superconducting metamaterials range from
amplifiers and detectors to quantum information and metrol-
ogy [5,8].

Here we present Kerr effect measurements in a Joseph-
son junction chain containing 500 SQUIDs (Superconducting
Quantum Interfence Devices), and find a nonlinear relative
change of the refractive index �n/n ∼ 10−7 per photon, 11
orders of magnitude larger than typically observed in optical
systems [9]. We perform a detailed comparison between our
measurements and theory. We also characterize the dispersion
relation of the linear waves in the chain, and demonstrate
the necessity to include the long-range nature of the island
charge screening by a remote ground plane for its quantitative
understanding.

Our results apply directly to the realization of parametric
amplifiers at the quantum limit of noise based on Josephson
junction chains [10–14]. We expect as well a potential use of
our superconducting metamaterial in the realization of quan-
tum simulations based on superconducting circuits [15,16].

*Deceased May 15, 2017

Josephson junction chains have been studied for more
than three decades, motivated intially as a model system
for the study of the zero-temperature superconductor-to-
insulator quantum phase transition in superconducting gran-
ular films [17,18]. The superconductor-to-insulator quantum
phase transition has been observed in granular films [19] and
wires [20], as well in Josephson junction chains [21,22]. More
recently, the superconductor-to-insulator quantum phase tran-
sition of long Josephson junction chains has regained inter-
est and the nature of the insulating state was studied [23].
Quantum phase-slips have been studied in Josephson junc-
tion chains [24–26]. Other recent experiments successfully
employed Josephson junction chains as a high-inductance
environment for quantum systems such as superconducting
qubits [27,28], single Josephson junctions [29], or quantum
conductors [30]. These chains were also suggested theoreti-
cally as a platform for the study of the dynamics of the spin-
boson model realized in a superconducting circuit which cou-
ples a superconducting qubit to a high linear impedance envi-
ronment[16,31–33]. Nonlinear effects occuring in Josephson
junction chains might be used as well for the generation of
nonclassical states of microwaves [34–36].

In this paper, we present a detailed experimental and theo-
retical analysis of the dispersion and nonlinear Kerr frequency
shifts of plasma modes in a one-dimensional Josephson junc-
tion chain containing 500 SQUIDs in the regime of weak
nonlinearity. The paper is structured as follows. In Sec. II,
we give a description of the sample and of the experiment.
Section III summarizes the theory of a weakly nonlinear
chain, taking into account long-range Coulomb interactions
in the chain. In Sec. IV, we present the measurements of the
dispersion relation of a 500-SQUID chain and compare our
measurements to our theory. Section V shows our results on
the measured self- and cross-Kerr coefficients in the regime
of weak nonlinearity and we compare them to the theoretical
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FIG. 1. (a) SEM image of one part of the 500-SQUID chain.
(b) Optical image showing the SQUID chain connected at both ends
to a microstrip transmission line. (c) Equivalent electrical scheme of
the chain and transmission line for the local screening model.

expectations and find good agreement. Finally, Sec. VI
presents a conclusion and an outlook of our results.

II. SAMPLE AND EXPERIMENT DESCRIPTION

We fabricated one-dimensional chains of SQUIDs by
shadow evaporation of aluminum on a 300-μm-thick high-
resistivity silicon substrate. A 100 keV electron beam lithog-
raphy system and a bridge-free technic based on an asymmet-
ric undercut [37] were employed to prepare the resist masks.
Figures 1(a) and 1(b) show SEM and optical images of our
chain containing 500 SQUIDs. The chain is connected at both
ends to a 50 � microstrip transmission line, which was fab-
ricated during the same fabrication step as the junctions (see
Appendix A for the details of the measurement technique).
The Josephson junction area associated with each SQUID
is 0.72 μm2. Using the value of 45 fF/μm2 for junctions
based on aluminium oxide [38] we can deduce the capacitance
for each SQUID as CJ = 32.4 fF. The corresponding charg-
ing energy is EC = e2/2CJ , leading to EC/h = 0.598 GHz
where h is the Planck constant. From room temperature mea-
surements of the tunnel junction normal-state resistance, the
Josephson energy can be estimated to be EJ /h � 104 GHz,
resulting in a ratio between the Josephson energy and the
charging energy of EJ /EC � 170.

Figure 1(c) represents the standard equivalent electrical
scheme [39] of the Josephson junction chain connected at
both ends to a 50 � transmission line. Here CJ is the SQUID
capacitance, LJ = h̄/(2eIc cos φ) is the nonlinear Josephson
inductance of a SQUID, where Ic is the critical current and
φ the superconducting phase difference over the SQUID. Cg

is the capacitance of the superconducting island between two
SQUIDs to the ground-plane. The ground plane is defined by
the evaporation of a 200-nm-thick gold layer on the back of
the silicon substrate.

Two kinds of samples have been measured. Identical
chains, consisting of 500 Josephson junctions, were coupled
differently to the transmission line: one was embedded into
the microwave strip line, as explained above (Fig. 1), while the

other one was coupled capacitively to the transmission line.
The latter configuration, discussed in Appendix B, enables
us to infer the internal quality factor of the chain modes. As
it is easier to model theoretically the direct coupling of the
Josephson junction chain to the microstrip line in terms of
the calculation of the Kerr coefficients, this design was used
to study quantitatively the Kerr effect occurring in the chain,
which is presented in Sec. V.

III. THEORY OF A WEAKLY NONLINEAR JOSEPHSON
JUNCTION CHAIN WITH A REMOTE SCREENING GATE

The theory of self- and cross-Kerr effects between modes
propagating along Josephson junction chains in the regime of
weak nonlinearity was reported recently in detail in Ref. [40].
The regime of strong nonlinearity producing bistable behavior
in a Josephson junction chain has been studied in Ref. [41].
Also, the Kerr effect of modes of a transmission line resonator
embedding a single Josephson junction has been studied
theoretically [36]. In this system, only specific modes of the
resonator undergo a Kerr effect depending whether the single
junction is placed on a node or an antinode of the resonators
eigen mode. In a Josephson junction chain, all chain modes
undergo a Kerr effect as the nonlinearity is distributed over the
whole chain. Moreover, widely tunable positive and negative
Kerr coefficients have been studied in a chain of asymmetric
superconducting quantum interference devices with nearest-
neighbor coupling through common Josephson junction [42].

The theory developed in Ref. [40] focuses on Josephson
junction chains with a nearby screening ground plane, see
Fig. 1(c). In this case, the Coulomb interaction taken into
account to describe the modes is short range and includes
interaction between neighboring islands as well as between
islands and the ground plane. Then the standard way to model
Josephson junction chains is by introducing the junction
capacitances CJ and a ground capacitance Cg for each is-
land [39]. The experiments presented here are performed with
a chain on a dielectric substrate with a significant thickness,
such that it is separated from the screening ground plane by a
distance that is of the order or much larger than the wave-
length of the modes. Electrostatically, this situation cannot
be described with a single ground capacitance per island.
In addition, the experimentally measured dispersion relation
does not compare well with the standard dispersion relation
used in Ref. [40]. Therefore, the long-range Coulomb inter-
action between the islands of the chain must be included to
describe the physics of the propagating modes. The following
theoretical analysis goes beyond the usual models developed
for Josephson junction chains (see Ref. [40]) and describes the
dispersion relation in this situation of long-range interaction
of the modes as well as the Kerr and cross-Kerr coefficients.
The coherence of these propagating modes has been studied
in context with the superconductor-insulator quantum phase
transition in Ref. [43].

A. Hamiltonian

The starting point of the theory is the well-known quantum
phase model [39] for a Josephson junction chain with N

junctions connecting N + 1 superconducting islands. Island
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n carries a charge Qn and a phase φn, with n = 0, . . . , N .
Since, in our sample, both ends of the chain are connected to
a low-impedance circuit, the appropriate boundary conditions
are V0 = VN = 0, leading to φ0 = φN = 0. Therefore, our
problem reduces to N − 1 degrees of freedom. The chain is
described by the Hamiltonian

Ĥ = 1

2

N−1∑
n,m=1

Q̂nC
−1
nmQ̂m − EJ

N−2∑
n=1

cos(φ̂n+1 − φ̂n)

−EJ cos(φ̂1) − EJ cos(φ̂N−1). (1)

In this model, charge Q̂n and phase φ̂m are conjugate vari-
ables, such that [Q̂n, φ̂m] = −2ieδn,m, with e is the positive
electron charge.

The first term of the Hamiltonian is the charging energy.
It describes the Coulomb interaction between charges on
grains n and m. It depends on the chain’s inverse capacitance
matrix Ĉ−1 with matrix elements C−1

nm . The form of this
matrix is significantly different, depending on whether the
island charges are screened locally by the ground plane or
not. The matrix is precisely determined by the electrostatic
configuration of the chain with respect to nearby dielectrics
and gates as well as by the boundary conditions. The second
term is the total Josephson coupling energy of the chain. It is
the sum of the nonlinear Josephson energies −EJ cos(φ̂n+1 −
φ̂n) of neighboring islands n and n + 1, with a characteristic
coupling strength EJ .

In the limit where the Josephson energy is much larger than
the characteristic charging energy (we will provide a more
detailed criterion below), the phase differences φ̂n+1 − φ̂n

between neighboring islands are small, and the nonlinear
Josephson energy can be expanded in powers of these phase
differences. This is the weakly nonlinear regime of interest
here. Retaining the two lowest nonvanishing orders and drop-
ping the constant term, we can approximate the Hamiltonian
as Ĥ � Ĥ0 + Ĥ1, where

Ĥ0 = 1

2

N−1∑
n,m=1

Q̂nC
−1
nmQ̂m + EJ

2

N−2∑
n=1

(φ̂n+1 − φ̂n)2

+ EJ

2
φ̂2

0 + EJ

2
φ̂2

N−1 (2)

is the quadratic unperturbed Hamiltonian and

Ĥ1 = −EJ

24

N−2∑
j=1

(φ̂n+1 − φ̂n)4 (3)

is the nonlinear quartic correction term, that we will treat as a
perturbation.

B. Charging energy: effect of a remote ground plane

In the standard situation, one assumes a close ground plane
to provide an additional gate capacitance Cg that screens the
remaining charge on each island locally. Then, the capacitance
matrix of the chain is given by

Ĉ =

⎛⎜⎜⎜⎜⎝
2CJ + Cg −CJ 0 . . .

−CJ 2CJ + Cg −CJ 0 . . .

0 −CJ 2CJ + Cg −CJ 0 . . .

... 0
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎠. (4)

This is an (N − 1) × (N − 1) tridiagonal matrix. The main diagonal contains elements 2CJ + Cg . Only the first diagonals above
and below the main one are nonzero and contain −CJ , reducing in this model the Coulomb interactions to the nearest neighbors.

However, in the present experiment, the ground plane is not close. Indeed, the chain is located on top of a dielectric (silicon)
substrate, at a distance d � 300 μm away from the ground plane, while the space above the chain is filled with air/vacuum.
Crucially, d is of the order of or larger than the mode wavelength, which varies between 1.6 mm for the first mode down to
40 μm for the highest measured mode number 43. Therefore, the screening by the ground plane of each charge Qm cannot
be local. Instead, one has to properly account for the long-range part of the Coulomb potential. This is described in detail in
Appendix C.

We thus find the total capacitance matrix of the chain to be

Ĉ =

⎛⎜⎜⎜⎜⎝
2CJ + Cg,11 −CJ + Cg,12 Cg,13 . . .

−CJ + Cg,21 2CJ + Cg,22 −CJ + Cg,23 Cg,24 . . .

Cg,31 −CJ + Cg,32 2CJ + Cg,33 −CJ + Cg,34 Cg,35 . . .

...
. . .

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎠. (5)

Note that the full capacitance matrix is no longer tridiagonal,
describing the long-range Coulomb interactions along the
chain. The matrix does not contain any zero elements, so the
matrix inverse C−1

nm has to be obtained numerically. Below
we will use the improved capacitance matrix of Eq. (5) to
calculate the Kerr coefficients and to analyze the chain’s

experimentally measured dispersion relation. We emphasize
that although the long-range screening model presented above
looks significantly more complex than the standard model
with local screening, it has only one unknown parameter a0

which is a short distance cutoff length of the Coulomb interac-
tion (all the rest is known from the geometry). In the standard
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local model, the ground capacitance Cg is usually treated as
a fit parameter, so the number of fit parameters is effectively
unchanged. We will see that including the long-range screen-
ing enables us to obtain good fits for the dispersion relation,
whereas the use of local screening model Eq. (4) yields poor
fits.

C. Dispersion relation

The Hamiltonian Ĥ0 can be rewritten in the form

Ĥ0 = 1

2

N−1∑
n,m=1

Q̂nC
−1
nmQ̂m + 1

2

(
h̄

2e

)2 N−1∑
n,m=1

φnL
−1
nmφm, (6)

where we introduced the inverse inductance matrix L̂−1 with
matrix elements L−1

nm, such that

L̂−1 =

⎛⎜⎜⎜⎜⎝
2

LJ

−1
LJ

0 . . .

−1
LJ

2
LJ

−1
LJ

0 . . .

0 −1
LJ

2
LJ

−1
LJ

0 . . .

... 0
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎠. (7)

Here LJ = (h̄/2e)2(1/EJ ) is the Josephson inductance.
Since Ĥ0 is quadratic, it can be straightforwardly diagonal-

ized and represented in second quantized form:

Ĥ0 = 1

2

N−1∑
k=1

h̄ωkâ
†
kâk. (8)

Operators â
†
k and âk are bosonic; they create and annihilate

excitations of the electromagnetic modes sustained by the
chain. The frequencies ωk as function of k constitute the
dispersion relation of these modes along the chain. They are
found by solving the eigenvalue problem

Ĉ−1/2L̂−1Ĉ−1/2 �ψk = ω2
k
�ψk. (9)

D. Weak nonlinearity and Kerr coefficients

The eigenvectors �ψk of the matrix Ĉ−1/2L̂−1Ĉ−1/2 are
related to the spatial distribution of charge and phase along the
chain for the corresponding eigenmode k. For instance, intro-
ducing the vector �φ = (φ1, . . . , φN−1), the second-quantized
expression for the phases φn along the chain is given in
compact notation by

�φ = 2e
∑

k

√
1

2h̄ωk

(â†
k + âk )Ĉ−1/2 �ψk. (10)

With the help of Eq. (10), the perturbative part of the
Hamiltonian Ĥ1, Eq. (3), can also be expressed in second-
quantized form. Referring the reader to Ref. [40] for details,
here we only present the result for the diagonal part of the
Hamiltonian, including the fourth-order correction:

Ĥ0+H1 =
∑

k

h̄ω′
kâ

†
kâk− h̄

2

∑
k,k′

Kkk′ â
†
kâkâ

†
k′ âk′ +(off-diag.),

(11)

where (off-diag.) stands for fourth-order terms generated by
Eq. (3), which contain processes including more than two

photons and which are not probed in the present experiment.
The coefficients Kkk′ which describe the two photon process
are given by

Kkk′ = 2(2 − δkk′ )
π4h̄EJ

�4
0C

2
J ωkωk′

ηkkk′k′ , (12)

where ηkkk′k′ are dimensionless-mode wave function overlaps:

ηkkk′k′ =
∑

n

⎡⎣(∑
m

(√
CĈ−1/2

n,m −
√

CĈ
−1/2
n−1,m

)
ψm,k

)2

×
(∑

m

(√
CĈ−1/2

n,m −
√

CĈ
−1/2
n−1,m

)
ψm,k′

)2
⎤⎦. (13)

For the short range model, Eq. (12) can be evaluated to the
analytical formula

Kkk′ =
(

1

2
+ δkk′

8

)
h̄2ωkωk′

2NEJ

. (14)

As can be seen, the Kerr coefficients increase with increasing
frequency. In comparison to a single Josephson junction the
Kerr coefficients in a chain of N junctions are reduced by a
factor of N . The reason for this is that the mode wave function
amplitude scales as 1/

√
N . The nonlinearity is consequently

strongly reduced compared to a single Josephson junction.
Physically, the effect of the weak nonlinearity is threefold.

(i) The linear mode frequencies ωk are shifted to lower
frequencies,

ω′
k = ωk −

∑
k′

Kkk′/2, (15)

where Kkk′ are the Kerr coefficients. This equation reflects the
fact that the bare frequencies of the linear modes ωk undergo a
frequency downward shift due to the nonlinear potential even
in the absence of photons in the modes.

(ii) Two photons present in the same mode k interact
with each other, the corresponding nonlinear frequency shift
determined by the self-Kerr coefficient Kkk .

(iii) Two photons present in different modes k and k′ also
interact with each other; the corresponding frequency shift is
determined by the cross-Kerr coefficient Kkk′ for k �= k′. The
perturbative nature of these results implies that the Kerr shifts
should be small compared to the unperturbed frequencies
ωk . In other words, we require |∑k′ Kkk′/2| � ωk . In the
following, we will analyze our experimental data through this
theoretical model.

IV. DISPERSION OF PROPAGATING MODES
IN A JOSEPHSON JUNCTION CHAIN

The transmission amplitude measured as a function of
frequency, |S21(f )|, is presented in Fig. 2(a) within the band-
width of 2–18 GHz of our experimental setup. We can ob-
serve directly 15 chain modes, each related to a transmission
peak. Hereafter, all transmission experiments were performed
at zero flux. This measurement has been obtained with an
input power at room temperature of Pin = −60 dBm. The
attenuation of 62 dB in the input lines translates this power
to an input power of Psample = −122 dBm at the sample stage.
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FIG. 2. One-tone spectroscopy of propagation modes in the
chain of 500 SQUIDs. (a) Fifteen modes are resolved within the
bandwidth of the measuring circuit 2–18 GHz. (b) Zoom of mode
3, up: amplitude, bottom: phase of the signal. Continuous line is
the theoretical fit using Eq. (16) with Qi = 2540, Qc = 535, and
ωr/(2π ) = 6.717 GHz.

As an example, Fig. 2(b) shows the zoom of the transmitted
amplitude and phase near the frequency of mode number 3.
The shape of the resonance is well fitted by the formula from
Ref. [44]:

S21(ω) = |S21(ω)|eiϕ = 1

1 + Qc/Qi − 2iQc(ω − ωr )/ωr

.

(16)

Here the fitting parameters are the coupling quality factor Qc

and the resonant frequency ωr . The internal quality factor Qi

has been determined by measurements on a different set of
samples shown in Appendix B.

To extend the measurement to higher frequencies, we apply
a two-tone technique based on the cross-Kerr effect occurring
in the Josephson junction chain. While the VNA measures
continuously at a fixed frequency of the probe mode, the
external frequency generator sweeps the pump tone frequency
up to 40 GHz. When the frequency of the pumping tone hits
the frequency of one of the chain modes, the probe mode
exhibits the cross-Kerr frequency downshift. This induces

FIG. 3. Power-dependent two-tone spectroscopy measurement
of propagation modes in the chain of 500 SQUIDs. The measurement
tone for this two-tone measurement was mode n = 4 at 8.41 GHz.
The first 43 modes are clearly resolved. There is a cutoff frequency
for the transmission at 22 GHz, above which no signal is transmitted.

a dip in the measured transmission amplitude of the VNA.
Figure 3 shows a pump-power-dependent two-tone spec-
troscopy measurement. We can resolve clearly the 43 lowest
modes of the chain. The higher modes cannot be distinguished
as they merge all together just below the cutoff frequency of
�22 GHz.

Figure 4(a) (red stars) shows the dispersion curve de-
duced from the measurement shown in Fig. 3 by reading
out the frequency of each mode m at its lowest possible
detection power. We assume the wave vector kn for the mode
number n to be given by k = πn/L with L = 800 μm. In
these measurements, we succeed to obtain an experimental
dispersion relation over a large extension on wave vector
and frequency. At very low wave vector, we plotted a linear
dispersion relation, which can fit only the lower frequency
modes. It corresponds to a refraction index of 57. With
increasing wave vector, the refraction index is even increasing
more and at large wave vectors of k = 105 m−1 the refraction
index becomes as large as 250. We observe that, even in the
low wave-vector regime, the linear dispersion is not able to
describe the experimental dispersion. To this end, we fit in
Fig. 4(a) the dispersion relation with the local screening model
with the capacitance matrix Eq. (4) and with the long-range
screening model with the capacitance matrix Eq. (5). Both
include the frequency downshift from the Kerr nonlinear-
ity [see Eq. (15)]. The long-range screening model (blue
dots) fits perfectly the experimental dispersion, while for
the local screening model (green dots) the calculated values
of the frequencies for small wave vectors differ from the
experimental ones as much as 25% even for the best fit. This
striking difference is seen especially well in Fig. 4(b), where
we show the respective deviation of the two models from the
experimentally measured frequencies.
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FIG. 4. (a) Mode dispersion for the 500-SQUID chain. Red stars:
measured data, extracted from low-power, two-tone spectroscopy
(see Fig. 3); green dots: theoretical fit using the local screening
model; blue dots: theoretical fit using the long-range screening
model; dashed black line: low-frequency slope. (b) Deviation of
the mode frequencies obtained using the two models including the
Kerr shifts from the measured frequencies. While the local screening
model shows a maximum deviation of 25%, the long-range screening
model agrees within 0.1% with the measured mode frequencies.

From the fit of the long-range screening model, we deduce
the length a0 = 0.74 μm, which is twice smaller than the
island size of 1.6 μm. We also extract precisely the plasma
frequency value ωp/(2π ) = 22.726 GHz, which gives the
inductance associated with a single SQUID, LJ = 1.56 nH.
These parameters translate into a characteristic impedance of
the SQUID chain of Zchain = 3.8 k�.

V. SELF- AND CROSS-KERR EFFECTS IN REGIME
OF WEAK NONLINEARITY

We study experimentally the Kerr frequency shifts for
seven modes of the chain with mode numbers from 2 to 8.
For each selected pair of modes, the simultaneous study of
self-Kerr shift of the pumped mode k′ and the corresponding
cross-Kerr shift of the probed mode k were performed. The

FIG. 5. Kerr shifts of the mode frequencies: (a) the self-Kerr
frequency shift of mode k = 2, the regimes of weak and strong
nonlinearity are indicated. The inset shows the resonance at the
power where bistable behavior starts to appear. From the fit of the
Lorentzian, we deduced Qtot = 149 and (b) cross-Kerr frequency
shifts for mode k = 3 in the weakly nonlinear regime as a function
of pumping power to a different mode (modes k′ = 2, 4, 5, 6, 7, and
8). For each curve, the corresponding values of the slope Xkk′ are
extracted.

measurement procedure can be explained as follows: (i) The
VNA scans the vicinity of both modes k and k′ at low power
to detect their bare frequencies; (ii) the VNA scans mode
k′ at higher power to detect its self-Kerr shift; the updated
frequency for mode k′ as function of the input power is
determined; and (iii) the external source feeds the high power
to mode k′ at its updated frequency, while the VNA scans the
mode k to detect its cross-Kerr frequency shift. The VNA
is fixed at low readout power to ensure that the self-Kerr
effect on mode k is negligible. Then the updated frequency
for mode k is determined as function of the mode k′ power.
The measurement goes on by repeating recursively steps (ii)
and (iii) with gradually increasing pumping power.

Figure 5(a) shows typical self-Kerr shift results of these
measurements. We notice a strong dependence of the fre-
quency on the applied pump power; in particular, the fre-
quency shift scales linearly at low pump power as expected.
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TABLE I. Experimentally determined matrix of Kerr coefficients
K

exp
kk′ in 10−2 MHz/photon, obtained from Xkk′ in Table IV by

minimizing the asymmetry and fixing K
exp
kk′ = K th

kk′ .

mode index 2 3 4 5 6 7 8

2 8.44 23.87 21.33 28.81 23.08 29.60 24.99
3 23.87 16.07 35.33 49.5 32.63 40.74 34.7
4 21.49 36.45 20.53 51.57 38.04 53.16 38.83
5 28.81 2.45 38.99 38.99 53 66.69 42.97
6 23.08 33.9 39.47 58.41 22.12 49.5 26.41
7 29.6 42.81 52.52 77.67 48.7 22.92 42.97
8 24.99 33.9 37.56 39.95 21.8 39.47 23.71

Above a specific power, the dependence changes. The figure
inset shows the resonance shape measured slightly above this
characteristic point: the resonance has a non-Lorentzian shape
and shows a bistable state [45]. In the following, we will
consider and discuss only the weak nonlinearity regime for
powers below this characteristic point.

Figure 5(b) shows the cross-Kerr shifts for the mode num-
ber k = 3. Here again, the frequency of the mode k shifts
linearly with the power applied to the different modes k′.
Comparing the two measurements for the self- and cross-
Kerr effect [shown in Figs. 5(a) and 5(b)], we notice a large
difference in the signal-to-noise ratio for the self-Kerr and
cross-Kerr traces. This difference is explained by the fact
that all cross-Kerr measurements are performed at very low
readout power to avoid a shift in frequency due to the self-Kerr
effect.

From the experiments, we extract the proportionality co-
efficient Xkk′ , which relates the input power of the mode k′
to the Kerr shift on the mode k. The dimensionality of these
coefficients is MHz/μW, where the power corresponds to
the input power on top of the cryostat. The measured pro-
portionality coefficients, Xkk′ , are summarized in Table IV
in Appendix D. To compare the experimentally measured
coefficients Xkk′ to the theoretically calculated Kerr coef-
ficients, strictly speaking, one has to convert the applied
pump power Pk′ to the number of photons nk′ as nk′ =
Ak′Pk′ , giving Xkk′Pk′ = Kkk′nk′/2. This conversion involves
the mode quality factors, the attenuation of the transmission
line, the external coupling strength of the mode as well as its
frequency-dependent attenuation. Thus, we have to somehow
deduce the experimental Kerr coefficients K

exp
kk′ = Xkk′Ak′

with seven unknown attenuation factors A2, . . . , A8. We note
that the matrix of Kerr coefficients must be symmetric, Kkk′ =
Kk′k . Then, the attenuation factors Ak can be found up to an
overall dimensional factor by minimizing the asymmetry of
the resulting Kerr matrix:

min
{Ak}

∑
k,k′

Xkk′Ak′

Xk′kAk

.

The final dimensional factor is fixed by assuming K
exp
22 = K th

22.
The resulting matrix K

exp
kk′ is given in Table I. The largest

asymmetry in the resulting matrix still reaches 15%, which is
of the same order as the experimental error in the off-diagonal
matrix elements Xk �=k′ . The average asymmetry is around 4%.

TABLE II. The matrix of Kerr coefficients K th
kk′/2π in units of

10−2 MHz/photon, calculated from Eqs. (12) and (13) using the
long-range screening model, LJ = 1.56 nH and a0 = 0.74 μm.

mode index 2 3 4 5 6 7 8

2 8.44 15.59 19.57 23.24 26.42 29.13 31.5
3 15.59 16.71 27.69 32.47 36.76 40.74 44.09
4 19.57 27.69 26.42 41.06 46.31 50.93 55.07
5 23.24 32.47 41.06 36.61 54.91 60.32 65.09
6 26.42 36.76 46.31 54.91 46.95 68.44 73.85
7 29.13 40.74 50.93 60.32 68.44 56.98 81.33
8 31.5 44.09 55.07 65.09 73.85 81.33 66.53

The experimental self- and cross-Kerr coefficients have
similar amplitudes, which ranges around the hundreds of
kHz. They correspond to a nonlinear relative change of the
refractive index �n/n ∼ 10−7 per photon. In this sample with
strong coupling to the transmission line, the Kerr coefficients
are always smaller than the decay rate 1/T1 � 60 MHz, lead-
ing to the weak coupling limit Kk′kT1 � 1. In the second
sample with weak external capacitive coupling, presented
in Appendix B, the total decay rate is weaker. The strong
coupling regime is near to be achieved for the lowest mode
with Kk′kT1 ∼ 1. From the experimental parameters extracted
from the dispersion relation fit, we deduce the theoretically
expected Kerr matrix for our sample which is presented in
Table II. By comparing the theoretical Kerr coefficient matrix
(Table II) to the experimental Kerr matrix (Table I), we
deduce an average deviation of �(Kexp − K th) � 24% using
the following formula:

�(Kexp − K th) =
∑
k,k′

(
K

exp
kk′ − K th

kk′
)/

49.

This number should be compared with our experimental pre-
cision of 14%.

By studying more carefully the experimental matrix, we
observe that the Kerr coefficients do not increase as ωkωk′ but
even more strikingly undergo oscillations with a typical beat-
ing of �2 GHz as a function of mode frequency ωk keeping
the second frequency ωk′ fixed. We realized by supplementary
calculations that such oscillations can be induced when the
chain is coupled to resonant modes at its ends. Experimentally,
such modes can arise from standing modes in the injection
and measurement lines. From Fig. 2(a), we notice that our
total transmission spectrum is superposed above 10 GHz by
a beating with a frequency of around 2 GHz. This might
correspond to standing waves in our measurement lines with
very low quality factor (as the measurement lines are typically
designed to be impedance-matched). Theoretical modeling of
the influence of the nonlinearity of this standing wave with
strong dissipation on the measurement of our Kerr matrix
goes beyond the scope of this paper. Still, we believe that the
above argumentation gives a qualitative explanation why the
deviation between theory and experiment is by ten percentage
points larger than the experimental precision. Moreover, this
data-theory agreement is on par with other methods used to
determine the values of self and cross-Kerr coefficients in
superconducting quantum circuits [46].
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VI. SUMMARY AND CONCLUSION

We have investigated, both experimentally and theoreti-
cally, the dispersion relation and Kerr effect of plasma modes
in a one-dimensional Josephson junction chain containing 500
SQUIDs. Using the two-tone spectroscopy technique we can
resolve clearly up to 43 lowest modes propagating along the
chain. Remaining in the regime of weak nonlinearity, the mea-
sured dispersion curve fits perfectly with the theoretical model
if we take into account two factors: (1) the bare frequencies of
the modes are subjected to the Kerr nonlinear renormalisation
and (2) there is a long range Coulomb interaction between
the island charges, resulting from the remote ground plane.
To account for these long-range Coulomb interactions, we
introduced a remote ground model based on image charges
enabling us to fit perfectly the dispersion relation without
supplementary fitting parameters. From the fit of the disper-
sion relation, we deduced the values for the plasma frequency,
the inductance associated with a single SQUID and the short-
range cut off length a0. This enabled us to calculate the the-
oretical Kerr coefficent matrix. We performed measurements
of the cross- and self-Kerr coefficients for the modes from 2
to 8 and compared them with our theoretical predictions. The
comparison is satisfying. We believe that our results open new
ways to design Kerr-non linearities and band-gap engineering
for the realization of Josephson parametric amplifiers and
traveling-wave parametric amplifiers [12]. More generally,
our results might be used for the generation of nonclassical
microwave states using a Josephson junction chain as a non-
linear quantum metamaterial.
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APPENDIX A: EXPERIMENTAL TECHNIQUES

We performed transmission measurements of the ampli-
tude and phase with a Vector Network Analizer (VNA) in the
frequency range from 2 to 40 GHz at a temperature of 10 mK.
The 50 � impedance coaxial transmission lines, transmitting
the microwave signal to base temperature, have been step-
by-step attenuated by −62 dB (see Fig. 6). The output line
contains two amplifiers, a HEMT-amplifier at a temperature
of 4K and a second amplifier at room temperature. Two circu-
lators prevent noise emitted by the cold temperature amplifier
to go back to the sample. The sample was mounted on a
copper sample holder surrounded by a black-painted copper
shield. The two lowest modes of this copper cavity are T E101

and T E102 with frequencies of 15 and 23 GHz, respectively.
No antilevel crossing is observed between the chain modes

FIG. 6. The principal scheme of the experimental setup for one-
tone- and two-tone-driven transmission measurements, performed
at a temperature of 10 mK. The transmission amplitude and phase
through the SQUID-chain is measured by a Vector Network Analyzer
(VNA). For mode frequencies larger than 16 GHz, we use a two-
tone measurement where a second microwave tone is swept over
frequency by a second microwave generator while the frequency of
the VNA is kept constant.

and the T E101 mode, and the T E102 mode is higher than the
plasma frequency ωp of the junctions. Therefore, we conclude
that these modes do not affect the propagating modes of
the Josephson junction chain. To measure the response of
the chain up to frequencies of 40 GHz with the bandwidth
of our experimental setup of 2–18 GHz, we use a two-tone
configuration: We apply a second microwave tone whose
frequency is swept while the VNA measures the transmission
at the frequency of one of the low-frequency modes of the
chain.

APPENDIX B: COMPARISON WITH A JOSEPHSON
JUNCTION CHAIN COUPLED CAPACITIVELY

TO A TRANSMISSION LINE

In addition to the measurements presented in the main text,
we have measured as well the dispersion relation of a 500-
SQUID chain, which is capacitively coupled to a transmission
line as shown in the inset of Fig. 7. This chain was fabricated
under the same conditions with same chain parameters as
the in-line chain presented in the main part of the paper. In
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FIG. 7. Experimental dispersions for two identical chains of 500
SQUIDS having different coupling to the transmission line. The
inset shows the equivalent scheme for the capacitively coupled
chain.

Fig. 7, the dispersions of both chains are shown as a function
of mode number n. The value of the wave vector for the
capacitively coupled chain is a more complicated expression,
which depends on the coupling capacitances Cc and CE and
has not been calculated. As the boundary conditions are
different, the lowest eigenmodes with mode number n have
different frequencies. Both chains converge toward the same
cutoff frequency, which is given by the plasma frequency
ωp/(2π ) = 22 GHz. The inset of the Fig. 7 represents the
equivalent scheme for capacitively coupled chain. Figure 8
shows the typical Lorentzian shape of a resonant mode for
this chain.

In contrast to the in-line chain, where Qtot is dominated
by the external quality factor, the capacitively coupled chain
enables us to determine the internal quality Qi of the chain
and the coupling quality Qc for each chain mode. A typ-
ical resonance curve, shown in Fig. 8, is fitted with the

FIG. 8. Amplitude and phase of the resonance for the sec-
ond mode. The continuous line is the fit of the resonance
with Eqs. (B1). Fitting parameters are: Qi = 9988, Qc = 3318,
Z0 = 50 �, Xe = 10 �, and ω/(2π ) = 4.909 GHz.

TABLE III. Internal and coupling quality factors for modes of
capacitively coupled chain.

# 1 2 3 4 5 6 7 8

GHz 2.89 4.91 6.77 8.42 9.88 11.18 12.30 13.28
Qi 15860 9980 2540 3030 3840 1150 1560 1280
Qc 1460 3320 10130 28800 14680 13880 26310 95000

formula

S21(ω) = |S21(ω)|eiϕ,

S21(ω) = Z0

Z0 + iXe

1 + 2iQi
ω−ωr

ωr

1 + Qi

QcZ0
(Z0 + iXe ) + 2iQi

ω−ωr

ωr

,

(B1)

where Xe is an asymmetry factor [47].
The values of the external and internal quality factor, that

we obtain by fitting the resonant modes from 1 to 8, are
presented in Table III. We observe that the internal quality
factor for the lowest modes can reach 15 000 and decreases
with increasing mode number by one order of magnitude
down to 1000. The frequency dependance of the internal
quality factor 1/

√
Qi is shown in Fig. 9. The straight line

corresponds to a 1/ω2-dependence of the internal quality
factor. Such a frequency dependance is expected in case of
losses inside the ground plane, which can be modeled by a
series resistance placed between the ground capacitance C0

and the ground plane.

APPENDIX C: CHARGING ENERGY:
EFFECT OF A REMOTE GROUND PLANE

We first focus on the charging energy part of the Hamilto-
nian,

1

2

N−1∑
n,m=1

Q̂nC
−1
nmQ̂m, (C1)

FIG. 9. Frequency dependance of the internal quality factor: blue
points are experimental data, continous line is the theoretical fit with
a 1/ω2-dependance.
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FIG. 10. Two different models describing the effective screening
of the charge Qn. (a) In the local screening model, an island charge
is fully screened by the ground capacitance Cg and there is no
long-range interaction between different island charges.(b) The long-
range screening model takes into account long range interactions
between different island charges in the chain. For the calculation of
the potential of island n, multiple image charges are introduced to
satisfy the boundary conditions of the electrical field at the interface
silicon/air and at the ground plane where V = 0. A zoom on the
single island is presented as an inset for each model.

which, for a given charge configuration, is completely deter-
mined by the inverse capacitance matrix C−1

nm . This matrix
is the response function relating the voltage Vn on island n

to the charges Qm on islands m, Vn = ∑N−1
m=1 C−1

nmQm, which
depends on the specific dielectric environment. Following
Ref. [48], we assume that each charge Qn residing on the
corresponding island, consists of three parts (Fig. 10):

Qn = CJ (Vn − Vn−1) + CJ (Vn − Vn+1) + Q̃n. (C2)

The first two terms are the charges concentrated on the tun-
nel junctions with the neighboring islands, modeled as ideal
capacitors. The charges on the opposite sides of each junction
have opposite signs, so each junction is overall neutral, and
does not interact with the external dielectric environment. The
remaining part Q̃n, unscreened by the junctions, is some-
how distributed over the island, and can interact with the
environment. Therefore the screening by the ground plane of
each charge Q̃m cannot be local. Instead, one has to properly
account for the long-range part of the Coulomb potential to
relate the voltage Vn on island n to the charges Q̃m on the
islands m. For large d, Q̃m’s can be treated as point charges,

so in the planar geometry of the present experiment, it is
most natural to use the method of image charges [49]. Our
system contains two dielectric interfaces where the standard
electrostatic boundary conditions on the electric field must
be satisfied: the ground plane with zero potential, and the
interface between the dielectric substrate and air. We consider
the system, shown in Fig. 10(b). It contains a metallic plane at
z = −d, an insulating substrate with the dielectric constant ε

at −d < z < 0, and the half-space z > 0 is empty. Let us find
the electrostatic potential V (r), r = (x, y, z), produced by a
point charge Q̃, placed at the point x ′ = y ′ = 0, z′ = 0+ (on
top of the substrate). In the two regions −d < 0 < z and z > 0
we seek V (r) in two different forms:

V (x, y, z > 0) =
∞∑

j=0

(4πε0)−1ζj Q̃√
x2 + y2 + (z + 2jd )2

, (C3)

V (x, y,−d < z < 0) =
∞∑

j=−∞

(4πε0)−1ζ ′
j Q̃√

x2 + y2 + (z + 2jd )2
.

(C4)

Indeed, each expression satisfies the Laplace equation ∇2V =
0 in the corresponding region. They also must satisfy the
boundary conditions at the two interfaces z = −d and z = 0.
At z = −d (ground plane), we have V (x, y,−d ) = 0, which
imposes ζ ′

−j = −ζ ′
j−1. At z = 0, we have two conditions [49]:

first, ∂xV (x, y, z = 0−) = ∂xV (x, y, z = 0+), which gives
ζj = ζ ′

j + ζ ′
−j for j > 0; second, ε ∂zV (x, y, z = 0−) =

∂zV (x, y, x = 0+), which gives ζj = ε(ζ ′
j − ζ ′

−j ), again, for
j > 0. At j = 0, we can study the solution in the limit r → 0,
which fixes ζ0 = (1 + ε)/2. This gives a closed system of
equations for all ζj , ζ

′
j ; the solution for ζj determines the

coefficients in Eq. (C5). As a result, we find

Vn =
N−1∑
m=1

Q̃m

2πε0(1 + ε)

⎡⎣ 1√
(n − m)2a2 + a2

0

−
∞∑

j=1

2ε(1 − ε)j−1/(1 + ε)j√
(n − m)2a2 + (2jd )2

⎤⎦. (C5)

Here ε � 11.6 is the dielectric constant and a is the island
size, defined as the total length of the chain (800 μm in our
case) divided by the number of islands. The parameter a0 is
a short-distance cutoff length, which must be introduced to
avoid the divergence of the term with m = n and j = 0, rep-
resenting the interaction of a point charge with itself. Clearly,
at short distance, the pointlike treatment of the charge Q̃m

is incorrect, and its finite spatial extent must be taken into
account. Thus, a0 is expected to be of the order of the island
size and is treated as a fitting parameter of the model. From
the fit, we deduce the length a0 = 0.74 μm, which is twice
smaller than the island size of 1.6 μm. For a finite chain, we
write Eq. (C5) in the form Vn = ∑N−1

m=1 C−1
g,nmQ̃m and define a

generalized inverse ground capacitance matrix, C−1
g,nm, whose

inverse, Cg,nm = Cg,mn, is readily calculated numerically. The
matrice Cg,nm enters into the total capacitance matrix Ĉ of
Eq. (5) of the main text.
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FIG. 11. Dispersion relation of an infinite chain (black line)
compared to the propagating quantized modes (black dots) of the
500-SQUID chain without the Kerr nonlinearity. Blue dots show the
dispersion of the propagating modes of the 500-SQUID chain by
taking into account the Kerr nonlinearity.

In an infinite chain, the dispersion relation can be found
using the Fourier transform. At d � a, we can write

∞∑
n=−∞

e−ikna√
(na)2 + (2jd )2

≈
∫ ∞

−∞

dx

a

e−ikx√
x2 + (2jd )2

= 2

a
K0(2jd|k|), (C6)

where K0(ξ ) is the modified Bessel function. This gives

ω2
k = 1

LCJ

2(1 − cos ka)

2(1 − cos ka) + a2/2
k

, (C7)

2
k ≡ aCJ

πε0(1 + ε)

×
⎡⎣K0(a0|k|) − 2ε

∞∑
j=1

(1 − ε)j−1

(1 + ε)j
K0(2jd|k|)

⎤⎦. (C8)

Using the asymptotics K0(ξ � 1) = ln(2e−γ /ξ ) + O(ξ 2)
with γ = 0.577 . . . being the Euler-Mascheroni constant, one
can see that at small k � 1/d, all logarithmic in k terms
cancel, so the dispersion is linear in k. At k > 1/d, the
logarithmic part of the j = 0 terms becomes important. We

TABLE IV. Slope coefficients Xkk′ , extracted experimentally, in
MHz/μW. For instance, line 3 is extracted from the slopes presented
in Fig. 5(b).

mode index 2 3 4 5 6 7 8

2 32.69 101.43 93.96 72.54 74.27 41.45 31.3
3 92.28 68.76 154.36 124.35 105.35 56.99 43.48
4 83.21 155.31 90.04 129.53 122.63 74.27 48.7
5 111.95 166.4 208.05 98. 170.98 93.26 53.91
6 89.26 144.22 172.82 146.8 71.51 69.08 33.04
7 114.98 182.25 229.87 195.16 157.17 32.09 53.91
8 96.82 144.22 164.43 100.17 70.81 55.27 29.66

retrieve the dispersion relation of the one-dimensional plasma
modes in an homogeneous superconducting wire (Mooij-
Schön modes [50]).

Figure 11 shows the mode frequencies obtained from the
long-range screening model without including the Kerr shifts
Eq. (15) for our 500-SQUID chain (black dots), as well as the
dispersion curve for an infinite chain Eq. (C7) as a continous
black line. The wave vector kn for the mode number n has
been calculated assuming k = πm/L, where L = 800 μm.
Strictly speaking, this quantization rule is not justified in the
long-range interaction model, for which no local boundary
conditions at the chain ends can be written; indeed, the mode
wave functions can deviate from a plane wave at a distance of
∼d from the ends of the chain. Nevertheless, the dispersion
of the infinite chain and the mode frequencies obtained from
the long-range screening model without including the Kerr
shifts agree extremely well showing that the effect of the
long-range screening on the wave vector kn is negligibly
small. Moreover, for an infinite chain, the shift to lower
frequencies due to the Kerr non-linearity vanishes as can be
seen from Eqs. (14) and (15).

APPENDIX D: EXPERIMENTAL KERR MATRIX

The diagonal elements Xkk have ±6% of accuracy, while
the off-diagonal elements Xk �=k′ show an accuracy of ±14%,
which has been deduced from the standard deviation of the
linear fit of the frequency shift as a function of power.
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