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We study the temperature evolution of the quasiparticle bands of the FeSe monolayer on the SrTiO3 (STO)
substrate from 10 to 300 K by applying the anisotropic, multiband, and full-bandwidth Eliashberg theory.
To achieve this, we extend this theory by self-consistently coupling the chemical potential to the full set of
Eliashberg equations. In this way, the electron filling can accurately be kept at a constant level at any temperature.
Solving the coupled equations self-consistently, and with focus on the interfacial electron-phonon coupling,
we compute a nearly constant Fermi surface with respect to temperature and predict a nontrivial temperature
evolution of the global chemical potential. This evolution includes a total shift of 5 meV when increasing
temperature from 10 to 300 K and a humplike dependence followed by a kink at the critical temperature Tc.
We argue that the latter behavior indicates that superconductivity in FeSe/SrTiO3 is near to the BCS-BEC
crossover regime. Calculating the temperature-dependent angle -resolved photoemission spectroscopy (ARPES)
spectra, we suggest a new route to determine the energy scale of the interfacial phonon mode by measuring
the energy position of second-order replica bands. Further, we reexamine the often used symmetrization
procedure applied to such ARPES curves and demonstrate substantial asymmetric deviations. Lastly, our results
reveal important aspects for the experimental determination of the momentum anisotropy of the supercon-
ducting gap.
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I. INTRODUCTION

The iron selenide (FeSe) monolayer grown on strontium
titanate (STO) shows superconductivity at an extremely high
critical temperature of Tc ∼ 50 − 70 K [1–6], in stark contrast
to the bulk FeSe value of around 8 K [7]. This observation has
led to a huge interest in probing the increase in Tc caused by
few-layer materials grown on a substrate [8–10]. One of the
important observations of various angle-resolved photoemis-
sion spectroscopy (ARPES) experiments is the appearance of
replica bands, and the rather strong dependence of the critical
temperature and other characteristic experimental results on
the electron doping of the system [11,12]. On the theory
side, it was suggested [1,13] and has been shown recently via
calculations specific to FeSe/STO [14], that the high transition
temperature in the single-layer can be explained by a small-q
electron-phonon interaction (EPI) that arises at the interface.
Antiferromagnetic spin fluctuations have been predicted for
bulk FeSe [15] and very recently, for monolayer FeSe on
STO [16], yet their role for the superconductivity still needs
to be clarified. There is, moreover, a lack of a completely
self-consistent, temperature-dependent theory that not only
explains the change of results in ARPES experiments with T

[4,6], but is, in addition, capable of making predictions for the
temperature evolution of not yet measured, though resolvable,
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quantities like the global chemical potential. This quantity
was measured, e.g., for bulk FeSe and found to have a totally
nontrivial behavior [17].

Here we present the first temperature-dependent, full band-
width, multiband and anisotropic Eliashberg theory extended
with an additional equation that self-consistently keeps the
electron filling constant. This, in turn, ensures not to change
the properties of the system due to electron doping, as we raise
the temperature. Starting from the observations of Ref. [14],
we introduce a small-momentum electron-phonon coupling
as the superconductivity mediating mechanism. After self-
consistently solving the extended set of Eliashberg equa-
tions we calculate a shift of the global chemical potential of
∼5 meV when going from 10 K to 300 K, as well as a hump-
like behavior below Tc. Such behavior is characteristic of sys-
tems with large gaps and shallow bands [18,19] and indicates
that superconductivity in FeSe/STO is near to a BCS-BEC
crossover, similar to bulk FeSe [20]. We observe no significant
temperature-induced changes in the positions of either the
main band at ∼−50 meV or the replica band at ∼−160 meV.
We also find weak second-order replica bands whose peak
position lies below the main replica bands at an energy that
equals exactly the characteristic frequency of the interfa-
cial phonon. This energy difference does not depend on the
electron-phonon coupling strength, in contrast to the location
of the main replica band [13,14]. Thus, we suggest that the
detection of the weaker replica bands can provide a definite
measure of the energy scale of the involved interfacial phonon
mode. Our results show that an additional feature appears
with increasing T in the ARPES spectrum at zero energy.
This peak originates from thermal broadening effects of the
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electron-boson interaction at the Fermi level, spreading out
and transferring spectral weight to the M point. Further, we
test explicitly the symmetrization procedure, which is a com-
monly used procedure in the evaluation of ARPES data [1,5],
and find a nonnegligible deviation in the spectral function,
compared to the nonsymmetrized results. By mimicking the
superconducting gap measurement procedure usually applied
in experiment, we report a significant sensitivity of the mo-
mentum dependence with respect to the measurement angle
and the Fermi surface sampling. As a consequence, we find
that the location of the observed gap maxima can change from
being at the intersection of the two elliptical electron Fermi
sheets to being along the major axis of the ellipsis. The latter
anisotropy agrees with recent ARPES observations [21]. In
addition, for large temperature changes, we observe slightly
varying results for the Fermi surface. The chemical potential
renormalization average over momenta is found to be nearly
constant with respect to temperature, though still a function
of energies, while the exact reverse is true for the global
chemical potential μ. Regarding momenta on the Fermi sur-
face, there are clear signatures of this renormalization to be-
come more isotropic with raising T , developing the tendency
for an increasingly global competition with μ at the Fermi
level.

II. METHODOLOGY

We build upon the theory of Ref. [14], which has shown
the crucial importance of the EPI to account for the high Tc

observed in experiments. It was revealed that the influence
of so-called deep Fermi sea Cooper pairing is nonnegligible,
making a multiband treatment, that includes also the bands
not crossing the Fermi level, a necessity [14]. Within this
treatment, the electron density was kept fixed by adjusting
the chemical potential so as to satisfy the respective equation
for the electron filling [14]. However, this procedure makes
it difficult to efficiently account, with the needed precision,
for changes in the system’s chemical potential, e.g., when the
temperature is varied, so as to accurately predict the concomi-
tant temperature evolution of the quasiparticle spectra. This is
why we increase here the number of coupled equations within
Eliashberg theory by one, explicitly including the calculation
of the chemical potential in a self-consistent manner. By doing
so, we not only prevent the electron density from changing,
but we are also able to determine variations in the global
chemical potential up to numerical accuracy.

The EPI is modeled by small-q phonons derived from
the isotropic mode h̄� = 81 meV of the interface [1,22].
The FeSe electrons are coupled to these phonons by g(q) =
g0 exp(−|q|/qc ), where g0 is the global effective electron-
phonon scattering strength, qc = 0.3a−1, and a is the FeSe lat-
tice constant. The coupling constant g0 = 728 meV is found
by imposing the position of the main energy band at the
M point of the folded Brillouin zone (BZ) to be at around
−50 meV and the replica band to appear at −160 meV [14],
which are the values observed by ARPES measurements [1,2].
To match the experiment as reliable as possible, we take the
experimental temperature T = 10 K for calculating g0. In this
way, we take electron screening effects implicitly into account

and do not have to include them in our Hamiltonian, which is
shown in Eq. (A1) in Appendix A.

We use a ten-band tight-binding energy dispersion of bulk
FeSe, as developed in Ref. [23] by a fit to density functional
theory (DFT) calculations, and modified with respect to the
relevant hopping parameters, to account for the monolayer
situation, in Ref. [24]. For a given temperature T and initial
choice of the chemical potential μ(I ), which rigidly shifts
the momentum (k)- and band (n)-dependent bare energy
dispersion ξb

n (k), the electron filling of a system with L bands
in the normal state is given by

n0 = 1 + 2T

L

∑
k′,m′

∑
n

ξb
n (k′) − μ(I )

ω2
m′ +

[
ξb
n (k′) − μ(I )

]2 . (1)

This expression is derived from a noninteracting theory in
Matsubara space, where ωm = πT (2m + 1) are the fermionic
frequencies. Since the electron filling is to be kept constant
at a particular value n0, to model an experimental situation
where the temperature is varied but without moving charges,
we can invert Eq. (1) to find self-consistently the associated
chemical potential. In this simple case of the normal state, the
infinite Matsubara summation can be taken care of analyti-
cally, yielding the following expression:

μ(I ) =
[∑

k′,n

ξ b
n (k′)

ξb
n (k′) − μ(I )

tanh

(
ξb
n (k′) − μ(I )

2T

)
+(1−n0)L

]

×
[∑

k′,n

1

ξb
n (k′) − μ(I )

tanh

(
ξb
n (k′) − μ(I )

2T

)]−1

, (2)

which can be calculated straightforwardly.
Our numerical tests reveal that this equation can be im-

plemented in a robust way only by introducing the hyper-
bolic tangents, i.e., by making use of the infinite summation
instead of a finite interval. Armed with Eq. (2), giving a
chemical potential that corresponds to the desired electron
filling, we follow the Eliashberg treatment to find three cou-
pled equations for the mass renormalization function Z, the
chemical potential renormalization χ , and the superconduct-
ing gap function φ when the electron-boson interaction is
turned on. The expressions for these quantities are given in
Eqs. (A10)–(A13). The electron filling within this formalism
changes to

n1 = 1 − 2T

L

∑
k′,m′

∑
n

ξb
n (k′) − μ + χ (k′, iωm′ )

�n(k′, iωm′ )
, (3)

where �n is given by Eq. (A6), and we impose that n1 = n0,
while in general μ �= μ(I ). Inverting Eq. (3) is less straight-
forward than treating the bare case, since the Matsubara
summation cannot be directly evaluated. We therefore make
the following assumption: The summand in Eq. (3) can ac-
curately be approximated by the normal-state expression for
any ωm above a threshold M, i.e., for |m| > M. Using this
assumption, we find the chemical potential μ which ensures a
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constant electron density, and is strongly coupled to the functions Z, χ , and φ, which again are functions of μ, as follows:

μ=
⎡
⎣ 1

2T

∑
k′,n

(
tanh

(
ξb
n (k′) − μ(I )

2T

)
− tanh

(
ξb
n (k′) − μ

2T

))
+

∑
k′,n

∑
|m′|�M

(
ξb
n (k′) + χ (k′, iωm′ )

�n(k′, iωm′ )
+ ξb

n (k′)

ω2
m′ + [

ξb
n (k′) − μ

]2

)⎤
⎦

·
⎡
⎣∑

k′,n

∑
|m′|�M

(
1

�n(k′, iωm′ )
+ 1

ω2
m′ +

[
ξb
n (k′) − μ

]2

)⎤
⎦

−1

. (4)

We note that this result is invariant under any shift of M,
as long as the corresponding assumption is fulfilled. Again,
the inclusion of the infinite Matsubara frequency terms is
necessary to ensure the stability and the reliable convergence
of our algorithm. The expression for the chemical poten-
tial has been implemented in the Uppsala Superconductivity
(UppSC) code [14,25–27], which solves self-consistently the
Eliashberg equations on the basis of ab initio calculated
input. To our knowledge, we are the first to solve this set
of four highly coupled equations iteratively and obtain full
bandwidth, momentum-, temperature-, and energy-dependent
results after analytic continuation from the imaginary to the
real axis (see Appendices A and B for details).

III. RESULTS

Within the theory that we present here, the momentum-,
temperature-, and energy-dependent spectral function can
easily be obtained from the Green’s function. In Fig. 1,
we show the temperature evolution of the spectral function
A(k, ω) evaluated at the M [=(π, π )] point of the folded
BZ, corresponding to the experimentally relevant situation.
Such spectra correspond to the so-called energy distribution
curves (EDCs). The maximum value of the main band that
changes slightly with increasing temperature, is drawn in red
as guide for the eyes. The replica band (denoted in orange,
dashed) is located at energies around −160 meV. Its energy
position does not show any significant T dependence. The
same observation holds true for the higher order replica
band, shown in yellow in Fig. 1, that we are able to resolve
within our calculations. Such a second-order replica peak was
previously reported within one-band model calculations [13].
Its appearance is therefore a generic feature of the interfacial
small-q EPI, independent of details of the replicated electron
bands around the M point. Above T = 100 K, still another,
and yet unexpected feature, highlighted by the dotted green
line on the right-hand side, forms at energies very slightly
above zero. Further, we find a nonnegligible broadening, due
to thermal effects, of all peaks below ω = 0 eV for increasing
temperatures.

At this point, it deserves to be mentioned that ARPES
experiments [1,2,28] have detected the electron band at the M

point and also a deeper lying hole band at the same position
in momentum space. The latter hole band is not present in
the here-used tight-binding energy dispersions for monolayer
FeSe (see Refs. [14,24]). The measured band dispersions of
monolayer FeSe could thus far not be reproduced by corre-
lated band-theory calculations as dynamical mean field theory
[29,30]. As the here-used tight-binding bands provide a very

good description of the bands in the near-Fermi energy region,
we therefore preferred to use these.

Despite the fact that we can reproduce the observed strik-
ing features of the electron band detected in ARPES experi-
ments very well, there are as yet no direct measurements of the
second-order replica band, nor of the temperature-dependent
feature evolving at positive energies. Concerning the main
replica band near −160 meV, it deserves to be mentioned that
a recent work attributes the appearance of this band to the in-
teraction of the outgoing photoelectron with a surface phonon
[31]. Here, however, we compute it from the interfacial EPI
of FeSe electrons with the substrate phonon. A proof of this
mechanism would be the observation of the here-predicted
second-order replica band. Its, thus far, lacking detection can
be explained by limited ARPES resolution, since the signal is
expected to be very weak.

10 K

40 K

70 K

100 K

130 K

160 K

190 K

220 K

250 K

280 K

300 K

ω (eV)

A(π, π, ω) (arb.u.)

FIG. 1. Self-consistently calculated spectral function at the high-
symmetry M-point of the folded BZ for different temperatures. The
main peak lies at approximately −50 meV, its position changes
slightly as temperature increases (solid red line). The dashed orange
line shows the maximum of the replica band, which is peaked near
−160 meV, well in agreement with experiment [1,2]. We observe
also a second-order replica band, depicted by the yellow line, at
around −240 meV. At temperatures above 100 K, a feature at slightly
positive energies emerges due to thermal broadening effects (dotted
green line). Just as we find for the position of the main band, the
energy positions of all replica bands barely move as the temperature
increases.
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The binding energy difference between the location of
the main and our second-order replica band is equal to the
characteristic energy of the interfacial phonon used in our
theory, � = 81 meV. However, the energy distance between
our obtained main replica bands and the electron bands that
form the Fermi surface around M is significantly larger than �

[14]. This is in contrast to previous findings where both first-
and second-order replica bands were found to appear always
in multiples of � below the main electron bands [13]. The
reason for this difference may be the significantly lower values
of the coupling strength needed to explain the Tc in Ref. [13]
and/or the simplicity of the effective model used. In fact, one
can qualitatively show that, while the distance between the
main bands and the first-order replicas depends on both � and
the coupling strength [13,14], the relative difference in energy
between one replica band and its next order counterpart is
approximately equal to the frequency of the involved phonon
mode regardless of the coupling strength. Therefore, measur-
ing the energy location of the second-order replica band with
ARPES in FeSe/STO can provide valuable insight not only on
the characteristic energy scale of the interfacial phonon mode
but also on the overall coupling strength when combined with
a measurement of the main replica bands.

For the detection of the positive-energy peak, which we
predict in Fig. 1, there are two experimental difficulties to
be overcome: obtaining ARPES data at positive energies
(although only very slightly above zero) and ensuring not to
damage the sample at higher temperatures. The origin of this
feature is the thermal broadening of quasiparticle occupancies
at the Fermi level in combination with the EPI that spreads
the spectral weight across the BZ. In other words, the dip at
exactly zero frequency resembles the properties of a Fermi
surface point nearby. Regarding the position of the main
bands, measurements in bulk FeSe reveal a shift toward higher
binding energies with increasing temperature [17], a trend we
do not find for the single layer case.

Turning to the temperature-dependent evolution of the
Fermi surface, it has been shown that the iron-based supercon-
ductors show a quite large tendency for rigid band shifts due to
the global chemical potential [32,33]. A possible explanation
for this is the shallowness of the electron and hole pockets
[32]. Since recent experiments on bulk FeSe have shown a
10 meV change in the chemical potential [17], it is worth
examining whether this trend applies for the monolayer as
well. As is evident from Eq. (4), our theory self-consistently
allows for such rigid shifts with temperature, which are sup-
plementary to the chemical potential renormalization function
χ . In Figs. 2(c) and 2(d), the evolution of μ can be seen to
be nontrivial in the range of 10 K � T � 300 K. For sake of
comparison, we also plot the normal-state behavior calculated
from Eq. (2) [purple line in Fig. 2(c)] that shows an opposite
trend. Since, up to this date, there are no corresponding
measurements of the chemical potential, we predict not only
a change of ∼5 meV in this experimentally resolvable tem-
perature range, but also a humplike shape for T < Tc. Our
predicted shift is large enough to be nontrivial, but too small
to introduce a topological change in the Fermi surface. This
is directly revealed in Fig. 2(b), where we show the Fermi
surface for 10 K and 300 K. There are small changes, just
large enough to be resolvable, but not of significant size.
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FIG. 2. (a) Calculated energy-dependent real part of the chem-
ical potential renormalization, plotted for several temperatures in
the range 10 K � T � 300 K; the lower curve represents the self-
consistent result for 〈χ ′(k, ω)〉k, the upper curve includes the global
shift due to μ, i.e., 〈χ ′(k, ω)〉k − μ. (b) Fermi surface for T =
10 K (orange) and T = 300 K (purple). (c) Comparison between
the normal, noninteracting state chemical potential μ(I ), shown in
purple, and the self-consistent result μ, depicted in blue, as a function
of temperature. (d) Computed results for μ within a temperature
interval with upper bound slightly above Tc (indicated by the gray
dashed line), which shows a well-pronounced hump and a kink at the
transition temperature.

We note, however, that the deviations are larger for the inner
electron pocket, due to the small-q EPI.

It would be interesting to separate the effect of thermal
broadening from that of the EPI on the calculated ∼5 meV
shift in the chemical potential. This may be achieved by
comparing the two curves in Fig. 2(c). There, the purple curve
is the temperature dependence of the chemical potential (μ(I ))
for the noninteracting, nonsuperconducting system, which
we can compare with the full interacting result (blue curve)
for the temperature range Tc � T � 300 K. In this tempera-
ture interval, the noninteracting μ(I ) varies as μ(I )(300 K) −
μ(I )(Tc ) = −2.3 meV, whereas the interacting μ varies with
opposite trend as μ(300 K) − μ(Tc ) = +5.8 meV. The abso-
lute change in the chemical potential due to the EPI is thus 2.5
times larger than what would be expected solely from thermal
broadening effects. Yet, if we subtract the purely temperature
broadening contribution from our μ, we estimate a chemical
potential shift of ∼8 meV when going from Tc to 300 K
caused by interaction effects only.

Since, in addition to the global μ, there is also the
anisotropic renormalization function χ , we show in Fig. 2(a)
the real part (denoted by a prime) of the k-averaged value
of this quantity. The lower curve corresponds to 〈χ ′(k, ω)〉k
in the range 10 K � T � 300 K as a function of energy,
while the upper curve shows 〈χ ′(k, ω)〉k − μ for the same
temperatures. It is nicely seen from Fig. 2(a), when comparing
the thickness of both curves, that μ and χ almost perfectly
share the same nontrivial dependencies with respect to energy
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FIG. 3. Calculated temperature evolution for the two Fermi sur-
face sheets, colored with the corresponding zero-frequency value of
the chemical potential renormalization function. The phase transition
at Tc is reflected in a small kink along the temperature axis.

and temperature. While the global chemical potential is
obviously constant with ω, there is almost no change in the
BZ average of χ when heating the system. On the contrary, χ

exhibits momentum-dependent changes with temperature, as
we show in Fig. 3.

In Fig. 3, we show the temperature evolution of two main
energy bands at Fermi surface points kF , for temperatures
from 10 K to 300 K, colored with the chemical potential
renormalization function at frequency ω = 0 eV. From
Fig. 2(b), we have already seen that there are no large
changes in the Fermi surface, neither in the topology nor
in the size. The visualization in Fig. 3, however, reveals a
small kink at the superconducting transition temperature. The
inner electron band shows lower values of χ ′(kF, 0) at the
corners and remains essentially unchanged with increasing
temperature. More interestingly, the value at the outer energy
band not only increases with T , but becomes more isotropic
due to thermal broadening. This can be understood as χ

developing from a very fine-structured function of momenta
and energy, at temperatures not too far above Tc, to a more
isotropic one for large temperatures that competes more and
more globally with the rigid energy shift due to μ.

We now focus on the humplike shape of our calculated
μ(T ) for T < Tc. This characteristic behavior is in good
agreement with previous BCS mean field calculations where
a similar humplike shape followed by a kink at the transition
temperature was found as the ratio �/δεF approaches one,
i.e., as the system approaches the BCS-BEC crossover regime
[18] (� is the BCS superconducting gap and δεF is the
distance of the bottom of the band from the Fermi level).
The here-predicted T -dependence of μ could be verified, e.g.,
by work-function measurements [19]. In bulk FeSe, it was
demonstrated that this ratio can be as high as 0.5 when the
shallow hole bands near the Fermi level are tuned with doping
and that this �/δεF value suffices to drive the system through
a BCS-BEC crossover as is evidenced by the non-BCS shape
of the Bogoliubov quasiparticle bands seen by ARPES [34].

In FeSe/STO, the average value of the superconducting gap
near the Fermi level is around 10–15 meV while the bottom
of the electron bands at the M point of the BZ lies around
50 meV below the Fermi level, as also found previously [14].
This leads to an enhanced �/δεF ≈ 0.2 − 0.3, which places
FeSe/STO on the BCS side of the BCS-BEC crossover regime

but significantly close to it. Here, despite the fact that we do
not observe any deviation from the usual BCS Bogoliubov
spectrum as in Ref. [34], i.e., our calculated spectral function
exhibits the characteristic “back-bending” near the Fermi
level [14] as also witnessed experimentally [1], our calculated
nontrivial dependence of the chemical potential below Tc

indicates that FeSe/STO may also be a promising playground
to study BCS-BEC crossover phenomena. In contrast to bulk
FeSe, in FeSe/STO it is the electron bands that show the
BCS-BEC tendency that we find here, simply because the hole
bands around � are far away from the Fermi level as a result
of charge transfer at the interface [5,6]. In FeSe/STO, the elec-
tron bands are not as shallow as the hole bands of bulk FeSe,
however the superconducting gap is much larger than the one
observed in the bulk material. It is therefore not peculiar that
the monolayer inherits the tendency to BCS-BEC crossover.

We note that here we focus our discussion on Cooper pair
formation at the electron bands. It has recently been shown
that due to the large energy scale and the small-q form of the
interfacial EPI, pairing at bands away from the Fermi level is
also to be expected in FeSe/STO [14]. In the calculations pre-
sented here, such deep Fermi sea Cooper pairing is included;
however, since the binding energy (gap) of this type of pairing
is of the order of μeV, its impact on the spectra that we report
should be small. Nevertheless, whether such pairing is of BCS
or BEC nature is an interesting open issue.

It is worth pointing out that, apart from the quantity
�/δεF , the evolution from the BCS to the BEC regime
is often characterized by the ratio ξ0/l, where ξ0 is the
superconducting coherence length and l the interparticle
distance (electron mean free path) [35]. In the extreme BEC
limit, ξ0 → 0 and the electron pairs are tightly bound, thus
behaving as bosons. These two ratios are closely related, yet
it has been shown that �/δεF is the best detection parameter
of the BCS-BEC crossover regime [36]. It is nonetheless
customary to provide an estimation of ξ0/l since its value may
provide complementary insights into the BCS-BEC crossover
regime, and its calculation is straightforward within the BCS
approximation [35,36]. Within Eliashberg theory, the value of
this quantity may be accessed by calculating the ratio between
the local and London penetration depths [37]. A discussion on
this issue based on single band, isotropic Eliashberg theory is
given in Ref. [38], while anisotropic Eliashberg calculations
based on ab initio input have only just recently become
available [39]. To provide an estimate of ξ0/l on the same
level of theory as the rest of the calculations presented here,
we would need to extend our present Eliashberg theory to
include impurity scattering effects which are essential for the
proper calculation of the respective penetration depths [38].
This procedure is out of the scope of the present paper, and
therefore left for future investigation.

ARPES experiments cannot easily access the ω > 0 eV
regime, it is therefore a generally accepted practice to sym-
metrize the measured EDCs with respect to zero energy, and
plot the results at a specific Fermi surface point (kF ) [1,3,5,6].
Since we have access to the full energy range, we plot our
results for two different Fermi surface momenta, and compare
with the symmetrized versions, in Fig. 4. In the upper panels
of this plot, we can observe that the gap closing is smoother
in the right-hand plot, while in the left (symmetrized) panel
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FIG. 4. (a), (c) Computed ARPES spectra, symmetrized with
respect to zero energy, at two different Fermi surface points; in
this way experimental data are usually presented. (b), (d) Self-
consistently computed, nonsymmetrized results obtained within our
theory. Especially for temperatures above Tc, there can be large
deviations; note that the symmetrized data in (c) yield three intensity
maxima at high temperatures, while there are actually only two, as
clearly revealed in panel (d).

there remains a small dip at ω = 0 eV up to high temperatures,
which is however completely artificial. The differences are
even more drastic in the lower panels of Fig. 4. Starting with
the right-hand panel, we see two peaks with energy-symmetric
position (but not height) merging into one maximum with in-
creasing temperature and thereby closing the superconducting
gap. The leftmost peak changes its position slightly with vary-
ing T and remains isolated throughout. This peak is primarily
due to crossing of the binding energy of one of the two elec-
tron bands that are separated in energy at this specific kF point.
It is therefore less associated to the coherence of Bogoliubov
quasiparticles. This explains why the spectral weight of this
peak is much weaker at positive energies. Turning to the sym-
metrized version in Fig. 4(c), not only are the coherence peaks
identical in height, but the isolated left maximum is replicated
to the right. This results in a physically different situation
at high temperatures, namely, that there are three, instead
of two maxima. From these observations, we learn that the
broadly accepted and widely used symmetrization procedure
in ARPES experiments should always be handled with caution
by physically questioning the genuineness of features appear-
ing in the non-accessible energy range. We report further that
the superconducting coherence peaks are always distributed
symmetrically around zero energy. By mirroring the data,
one might in this respect not get the correct peak height
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kx
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180◦

270◦
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90◦

FIG. 5. Simulation of momentum-dependent gap measurements
resulting from symmetrized EDC curves in a 20 meV window and
for T = 10 K. The red dots in the right-hand graph represent Fermi
surface points. The experimentally measured Fermi surface is mod-
eled by circles of various thicknesses, over which the results are
averaged. Using the same color code for both panels, the resulting
gap � at a particular angle in the left plot is calculated by an average
over all k-points at this angle on the corresponding circle in the right
panel. Depending on the thickness of the circle, reflecting the quality
of the approximation with respect to the “real” Fermi surface, the
maximum gap value is obtained at different angles and the degree
of anisotropy changes. The polar axes in both panels are the same;
a 0◦ (45◦) angle corresponds to the line along the X − M (� − M)
direction.

at positive energies, but the gap value remains trustworthy.
The latter property reflects the particle-hole symmetry of the
Bogoliubov spectrum, which of course must be conserved. On
the other hand, the peak-height asymmetry around the Fermi
level reflects the fact that the underlying normal state system
is doped, and therefore, intrinsically particle-hole asymmetric.
As a side remark, we note that particle-hole asymmetric
ARPES spectra have been discussed before in the context
of pseudogap phenomena related to BCS-BEC crossover in
the cuprates [40]. Our calculated spectral structures are not
related to such effects but occur due to the completeness of our
Eliashberg theory, i.e., by taking into account multiple bands,
momentum- and frequency-dependence, and chemical poten-
tial renormalization throughout the full electron bandwidth.

An experimental quantity that can be extracted from the
energy location of the coherence peak in the measured EDCs
is the value of the superconducting gap. The momentum
dependence of the latter can then be obtained by combining
EDCs from different Fermi surface momenta. This procedure
not only depends on the way the Fermi surface is sampled but
also on the window around the Fermi level where the spectra
are integrated over energy. What is more, this procedure may
be significantly complicated when the superconducting gap
function is strongly momentum- and energy-dependent and/or
when the material’s electronic band structure includes shallow
bands, as discussed above. For example, Lee et al. sample
the momenta used for the gap measurements from a Fermi
surface that has the shape of a circular band, see Fig. 1(a) in
Ref. [1]. We mimic this situation in Fig. 5 by testing different
thicknesses of such bands in momentum space. For a given k,
which lies on this broadened circle, we use our symmetrized
ARPES data to simulate a peak-to-peak measurement
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procedure for extracting the superconducting gap. Taking the
average over all such momenta corresponding to a specific
angle, we can produce a polar plot similar to Fig. 2(f) in
Ref. [1]; it is shown in the left panel of Fig. 5.

Note that the absolute value of the obtained gap � is not
to be compared directly to the work of Lee and coworkers,
since we most probably have a different electron filling. It is,
however, evident that the angle of the maximal value of �

depends on the thickness of the circular band from which we
are sampling the momenta. The largest BZ area is used for the
solid dark blue curve in the left panel of Fig. 5, which results
in a maximum gap at 0◦ (i.e., along the X − M symmetry
line of the folded BZ). On the contrary, choosing the smallest
thickness yields a maximum � at 45◦ (i.e., along the � − M

direction), shown by the green dotted line. The most isotropic
gap, qualitatively comparable to results reported in Ref. [1], is
shown by the dashed black line. Interestingly, the case where
the gap maxima lie along the � − M direction of the BZ
(green dotted line) is in good agreement with more recent
ARPES measurements [21]. There it was shown that this par-
ticular gap anisotropy cannot be fitted by assuming different
form factors for the symmetry of the gap and the possibility
of a sign alternating gap or a competition between intra-
and interorbital pairing was suggested. In contrast, here we
find a similar gap anisotropy with an anisotropic s-wave gap
which is driven by the concomitant momentum decoupling
of the small-q interfacial EPI [41]. These simulations lead
to the conclusion that the gap measurement in this material
strongly depends on both the Fermi-surface sampling and the
measurement angle. Caused by the possibly large anisotropy
of �, deviations of more than 5 meV (see the green dotted line

10 K

M

Γ

M

300 K

ω (meV)

A( , ω) (arb.u.)

ω (meV)

A( , ω) (arb.u.)

FIG. 6. The spectral function A(k, ω) calculated as a function
of energy along the high-symmetry line M − � − M , shown for
temperatures T = 10 K (left) and T = 300 K (right). Apart from the
hole bands at � and the electron bands at M , the superconducting
coherence peaks are clearly visible in the left panel. In addition, in
the left panel the phonon kink appears precisely at the characteristic
mode of 81 meV, which we used as input for the calculations. This
feature is, although mediated by electron-phonon interaction, not
robust with temperature, as we observe in the right panel. Instead
another peak appears at small positive energies (compare also Fig. 1).

in Fig. 5) are possible for a fixed Fermi surface approximation,
depending only on the angle.

Due to the efficacy of our theory, we can show the self-
consistently calculated ARPES-resolvable spectral function,
being a function of energy, along the high-symmetry line M −
� − M in the folded BZ for temperatures below and above
Tc, see Fig. 6. It is easily observed that in the superconducting
state (left panel), coherence peaks appear at the electron bands
at M and sharp peaks appear at the hole bands at �; after the
transition to the normal state (right) the coherence peaks van-
ish and the remaining quasiparticle peaks are less pronounced
and more spread. In the same figure, one can also discern the
formation of the replica bands near the M point. Further ex-
amination reveals that the characteristic phonon peak present
for 10 K at an energy of 81 meV is being washed out due to
thermal effects. As we stated already when describing Fig. 1,
this thermal broadening results in a signal developing slightly
above zero frequency; due to this feature appearing only near
the main energy bands, our explanation of this being caused
by Fermi surface spectral weight spreading is well justified.

IV. CONCLUSIONS

We have presented the first self-consistent full bandwidth,
multiband, and anisotropic Eliashberg theory with inherent
temperature dependence and fixed doping level for the FeSe
monolayer on the STO substrate. The developed procedure
is generally applicable to other materials and serves as a way
to distinguish doping from temperature effects. Within our
treatment, we observed that increasing temperature from 10 to
300 K leads to a 5 meV shift of the global chemical potential.
This shift is less than what was recently reported for bulk
FeSe, but it may be resolvable in future experiments. More-
over, we found a nontrivial behavior of the global chemical
potential below Tc that should be accessible in experiments,
and which indicates that superconductivity in FeSe/STO is
not far from the BCS-BEC crossover regime, similar to the
situation in bulk FeSe. Regarding the latter, it has been shown
recently that this regime can be accessed by either applying
magnetic fields [42] or doping [34]. Hence, it would be worth
investigating whether FeSe/STO can be tuned in a similar
manner through the BCS-BEC crossover regime. Further, we
were able to observe an approximately decoupled energy and
temperature dependence for the momentum-averaged chemi-
cal potential renormalization and μ, respectively. Though not
yet measured, with raising temperature we can predict both
an almost constant Fermi surface and, to good approximation,
fixed positions of the main and replica electronic energy
bands at the M point that should be observable in ARPES
measurements. Additionally, we observe the formation of
second-order replica bands for which we highlight here their
potential importance in accurately determining the energy
scale of the interfacial phonon, when measured in conjunction
with the main replica bands. For temperatures well above Tc

we find another peak developing at energies slightly above
zero. We could furthermore show that the generally accepted
symmetrization method in ARPES measurements remains
trustworthy with respect to how the gap is determined, but it
can introduce large biases when focusing on features other
than the position of the superconducting coherence peaks.
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Difficulties in measuring � can, however, nevertheless
occur if the Fermi surface sampling is inaccurate, or the
superconducting gap function is very anisotropic and/or
energy dependent.

The origin of the high-temperature superconductivity in
FeSe/STO has been debated and attributed to conventional
as well as unconventional mechanisms [1,13,14,43–46]. Our
self-consistent multiband Eliashberg-theory calculations pro-
vide results which support the picture of phonon-mediated
superconductivity in FeSe/STO. This does not exclude the
possible presence of spin fluctuations, but suggests that these
are not primary to the superconductivity. We do note, however,
that very recent scanning tunneling spectroscopy experiments
have observed a “dip-hump” structure which has been inter-
preted as a possible signature of a magnetic excitation [47,48],
soliciting thus further studies of the origin of the tunneling
spectrum of this remarkable system.

On a more general note, our extension of the full
bandwidth, multiband, and anisotropic Eliashberg theory to
systematically include temperature dependence while self-
consistently accounting for the chemical potential, opens
up perspectives for future fully ab initio calculations of
phonon [25] and spin-fluctuation [26] mediated superconduc-
tivity as well as of concomitant electronic band renormaliza-
tions.
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APPENDIX A: ANISOTROPIC MULTIBAND
ELIASHBERG THEORY

In this Appendix, we provide details about the coupled
set of equations, which we solve in Matsubara space to
obtain the results shown in the main text. The microscopic
Hamiltonian of the system which we consider consists of a
phonon, an electronic and a coupling part, where the electrons
are assumed to originate in the FeSe layer and the phonons
come from the substrate. By using ρ̂i , i = 0, · · · , 3, as the
usual set of Pauli matrices and ξb

n (k) as the band-dependent
electronic energy dispersion, which we obtain from a ten-band
tight-binding model based on DFT, we can write

H =
∑
k,n

(
ξb
n (k) − μ

)
�

†
knρ̂3�kn +

∑
q

h̄�

(
b†qbq + 1

2

)

+
∑
k,k′

∑
n,n′

gnn′
q uq�

†
k′nρ̂3�kn′ , (A1)

with �
†
kn = (c†k↑,n, c−k↓,n) the electron Nambu spinors. The

creation and annihilation operators are denoted as c
†
kn, ckn

and b
†
q, bq for fermions and bosons, respectively, with n the

band index and k, q momentum vectors. The displacements
of the phonons in Eq. (A1) are defined as uq, the Einstein-like
phonon frequency of the optical mode is given by �. We
assume the electron-phonon coupling to be band-independent,
i.e., gq ≡ gnn′

q , and define it to have the functional form

gq = g0 exp(−a|q|/0.3) [1]; a is the FeSe lattice constant
and g0 the global effective EPI strength. In the definition
of the Hamiltonian Eq. (A1) the Coulomb interaction is not
explicitly accounted for (see discussion in Ref. [14]). We
treat the electron self-energy in the Migdal limit, which has
been shown to remain a valid approximation even under non-
adiabatic conditions when the EPI is dominated by forward
scattering [49,50]. Further following the standard Eliashberg
treatment we find the electronic self-energy as

�̂n(k, iωm) = T
∑
k′,m′

∑
n′

ρ̂3Ĝn′ (k′, iωm′ )ρ̂3

∫ ∞

0
dω

× α2Fnn′ (k, k′; ω)

Nn′ (0)

2ω

(ωm − ωm′ )2 + ω2
, (A2)

with temperature T , fermionic Matsubara frequencies ωm =
πT (2m + 1) and the band-, momentum-, and frequency-
dependent matrix Green’s function is defined as

Ĝn(k, iωm) = [
iωmZ(k, iωm)ρ̂0 − φ(k, iωm)ρ̂1

− [
ξb
n (k) − μ + χ (k, iωm)

]
ρ̂3

]
�−1

n (k, iωm),

(A3)

with

�n(k, iωm) = −[ωmZ(k, iωm)]2 − φ2(k, iωm)

−[
ξb
n (k) − μ + χ (k, iωm)

]2
. (A4)

The self-energy Eq. (A3) contains the density of states at
the Fermi level Nn′ (0) and the Eliashberg function,

α2Fnn′ (k, k′; ω) ≡ α2Fn′ (k, k′; ω)

= Nn′ (0)|gq|2δ(ω − �). (A5)

Within Eliashberg theory, we obtain the set of three cou-
pled and self-consistent equations, describing the mass renor-
malization Z, the gap function φ and the chemical potential
renormalization χ ; these are given below in Eqs. (A10)–
(A13). The Matsubara frequency- and momentum-dependent
EPI is defined by an integral over real frequencies of the
Eliashberg function as

Ve−ph(q, ωm − ωm′ )

=
∫ ∞

0
dω

α2Fn′ (k, k′; ω)

Nn′ (0)

2ω

(ωm − ωm′ )2 + ω2
, (A6)

which directly comes from Eq. (A3). The superconduct-
ing gap function can be found by the familiar expres-
sion �(k, iωm) = φ(k, iωm)/Z(k, iωm). The quantities in
Eqs. (A10)–(A13) are to be solved iteratively in coupled
momentum and Matsubara space. As described in the main
text we extend the treatment by an additional equation for
the chemical potential, with which we are able to keep the
electron filling at a desired level. This procedure, in particular,
allows us to isolate the temperature dependence of various
quantities. Although it is not an easy task to couple Eq. (4)
to Z, χ , and φ, there is neither a significant increase in
the computational complexity of the algorithm nor is there
a need for a much larger number of iterations or Matsubara
frequencies to get the desired precision. To derive Eq. (4),
we split the Matsubara sum of Eq. (3) into a normal-state
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and a superconducting part, as described in the main text.
This normal-state expression can be evaluated analytically and
gives a finite correction to the “usual” sum bounded by a hard
cutoff:

Z(k, iωm) = 1 − T

ωm

∑
k′,m′

∑
n

Ve−ph(q, ωm − ωm′ )

× ωm′Z(k′, iωm′ )

�n(k′, iωm′ )
, (A7)

χ (k, iωm) = T
∑
k′,m′

∑
n

Ve−ph(q, ωm − ωm′ )

× ξb
n (k) − μ + χ (k′, iωm′ )

�n(k′, iωm′ )
, (A8)

φ(k, iωm) = −T
∑
k′,m′

∑
n

Ve−ph(q, ωm − ωm′ )
φ(k′, iωm′ )

�n(k′, iωm′ )
.

(A9)

The Eliashberg equations, Eqs. (A10)–(A13), together with
the expression for the chemical potential, Eq. (4), constitute a
set of four coupled equations which has been implemented
in the UppSC code [27]. As input for our self-consistent
calculations, we use a parametrized ten-band set of energy
dispersions ξb

n (k) that have been obtained from ab initio DFT
calculations [23] for bulk FeSe and have been adjusted to the
monolayer case, as discussed in Ref. [24]. When deposed on
the substrate, the lattice constant of the monolayer is distorted,
which has to be taken into account. An important feature of
the energy dispersions used for our calculations is that only
two bands are crossing the Fermi level near the M point. The
hole bands located at � are below the Fermi energy. The bands
at M have been shown to yield the largest contributions to
several, but not all superconducting properties [14]. These are
the bands that have been used for creating the Fermi surfaces
shown in Fig. 3.

Within our numerical algorithm, we use the strict conver-
gence criterion of 10−8 for the relative error for each function
and for all momenta and energies. We are even able to keep
the electron filling constant with respect to the initial value,
almost up to numerical accuracy. As described in the main
text, for the calculations we used the constants g0 = 728 meV

0

2

4

6

8

10

Δ
(m

eV
)

T (K)

FIG. 7. Calculated maximum superconducting gap edge among
Fermi surface momenta. The gap follows the usual trend leading to
Tc ∼ 60 K, indicated by the dashed gray line.

and h̄� = 81 meV [14]. To be confident about well-converged
results in Matsubara space, we chose about 3000 frequencies,
which corresponds to approximately twice the full electronic
bandwidth.

APPENDIX B: FROM MATSUBARA TO
REAL FREQUENCIES

Since we want to compare our theoretical results to ex-
perimental data from ARPES measurements, we need to
analytically continue the results obtained in Matsubara space.
Making use of the formally exact procedure brought forward
in Ref. [51], we derive another set of self-consistent coupled
equations, now on the real-frequency axis, these are given
below in Eqs. (B2)–(B6). From Eq. (A7), we recall that
the Eliashberg function contains a delta peak at the phonon
frequency, which is why we introduce a Lorentzian-shaped
function, which is properly normalized and introduces a natu-
ral (physical) broadening [51,52]. In addition, we find that the
zero-frequency components introduce numerical instabilities
if not treated with special care. For this part of our algorithm,
we have used the convergence criterion of a relative error 10−6

and cross-checked the results with our previous work [14] and
with converged Padé approximants:

Z(k, ω) = 1 − 1

ω
T

∑
k′,m′

∑
n

Ve−ph(q, ω − ωm′ )
Z(k′, iωm′ )iωm′

�n(k′, iωm′ )

− 1

2ω

∫ ∞

−∞
dz′ ∑

k′

∑
n

α2Fn(k, k′; z′)
Nn(0)

(
tanh

ω − z′

2T
+ coth

z′

2T

)
Z(k′, ω − z′)(ω − z′)

�n(k′, ω − z′)
, (B1)

χ (k, ω) = T
∑
k′,m′

∑
n

Ve−ph(q, ω − ωm′ )
ξb
n (k′) − μ + χ (k′, iωm′ )

�n(k′, iωm′ )

+ 1

2

∫ ∞

−∞
dz′ ∑

k′

∑
n

α2Fn(k, k′; z′)
Nn(0)

ξb
n (k′) − μ + χ (k′, ω − z′)

�n(k′, ω − z′)

(
tanh

ω − z′

2T
+ coth

z′

2T

)
, (B2)

φ(k, ω) = −T
∑
k′,m′

∑
n

Ve−ph(q, ω − ωm′ )
φ(k′, iωm′ )

�n(k′, iωm′ )
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− 1

2

∫ ∞

−∞
dz′ ∑

k′

∑
n

α2Fn(k, k′; z′)
Nn(0)

φ(k′, ω − z′)
�n(k′, ω − z′)

(
tanh

ω − z′

2T
+ coth

z′

2T

)
. (B3)

The superconducting gap edge at the Fermi level is found
from

�2(kF, ω) = ω2 −
[
ξb
n (kF) − μ + χ (kF, ω)

Z(kF, ω)

]2

, (B4)

with the usual convention � = φ/Z. The calculated maxi-
mum of the superconducting gap edge is shown in Fig. 7 as a
function of temperature. It is easily seen that with a tempera-

ture resolution of 1 K, we obtain a superconductivity transition
temperature of about 60 K, which agrees very well with exper-
iment [1]. Making use of the fact that � = 0 eV above Tc, and
considering the zero-frequency component, we find the Fermi
surface from the condition ξb

n (kF) − μ + Re(χ0(kF, 0)) = 0,
with the index 0 of χ denoting the temperature above Tc [14].
Note that as we describe in the main text, the Fermi surface is,
in general, temperature dependent, though the variations are
found to be very small.
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