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Magnetoenhancement of superconductivity in composite d-wave superconductors
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We study composite d-wave superconductors consisting of randomly oriented and randomly distributed
superconducting droplets embedded in a matrix. In a certain range of parameters the application of a small
magnetic field enhances the superconductivity in these materials, while larger fields suppress superconductivity
as usual in conventional superconductors. We investigate the magnetic field dependence of the superfluid density
and the critical temperature of such superconductors.
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I. INTRODUCTION

In general, the superconducting order parameter is a func-
tion of two coordinates and two spin indices �α,β (r, r′).
Conventional low-Tc superconductors have a singlet order
parameter with s-wave symmetry which can be described by
a complex field �s (r) = �(r, r). Qualitatively, this describes
the Bose condensation of Cooper pairs into a zero-orbital-
momentum state. The propagation amplitude of a Cooper pair
between two spatial points can be written as a sum of positive
partial amplitudes corresponding to different Feynman paths.
In the presence of a magnetic field, these amplitudes acquire
phases and partially cancel one another. As a result, s-wave
superconductivity is suppressed by the magnetic field. This
qualitative picture is consistent with the corresponding solu-
tion of the Gor’kov equations [1].

Over the last decades a number of superconductors have
been discovered in which the order parameter changes sign
under rotation. The primary examples are the high-Tc super-
conductors for which the order parameter has singlet d-wave
symmetry (see, e.g., [2,3]): �(r, r′) changes sign under rota-
tion by π/2, and consequently, �(r, r) = 0. This means that
the Fourier transform �(k) changes sign under a π/2 rotation
as well, as shown schematically in Fig. 1. Still, the solution
of the Gor’kov equation in crystalline materials demonstrates
that the application of a magnetic field suppresses supercon-
ductivity.

In this paper, we study the magnetic properties of a com-
posite of randomly shaped and randomly oriented d-wave
superconducting grains embedded in a metallic matrix (see
Fig. 1). In such systems, the nodes of the order parameter
�(k) are locked to the crystalline axes of each grain. It
is known that the macroscopic properties of such granular
materials are distinct from both s- and d-wave supercon-
ductors [4–6]. Below we show that the application of a

magnetic field enhances the superfluid stiffness Ns and the
critical temperature Tc of such materials in certain parameter
regimes.

Granular composites are characterized by the following
lengths: the typical superconducting grain size R, the inter-
grain distance rG, the elastic electron mean free path in the
metal �, the zero-temperature coherence length of the bulk su-
perconductor ξ0, and the coherence length of the normal metal
LT = √

D/T . Here, D = �vF /3 is the diffusion coefficient,
and vF is the Fermi velocity in the metal.

In the regime where R, rG > ξ0 and the temperature T �
T b

c is smaller than the critical temperature of the bulk super-
conductor, one can neglect the fluctuations of the modulus of
the order parameter and reduce the Hamiltonian to that of a
system of Josephson junctions,

H = h̄

2e
Re

∑
i �=j

Jij e
i(θi−θj ). (1)

Here, Jij is the Josephson coupling between grains i and j ,
and θi is the phase of the order parameter in the ith grain.
Generally, Jij are complex numbers; however, in the absence
of magnetic field they may be chosen to be real but not
necessarily positive.

Since in random media all spatial symmetries are broken,
the anomalous Green’s function F (r, r′) is an admixture
of s, d, and higher angular momentum components of the
spin-singlet state. In the metallic matrix, at distances from
the nearest grain greater than �, only the singlet component
survives. Thus, in the simplest case where the intergrain
distance rG � �, the singlet component controls the value of
the Josephson couplings Jij .

In this diffusive regime and within the mean-field approxi-
mation, the s components of the normal G and anomalous F
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FIG. 1. Left: Pictorial representation of a d-wave superconducting grain and its normal-metallic environment. The grain, colored gray,
hosts a nonzero order parameter having the form indicated above the grain. The wave vector dependence of the order parameter is represented
by the red and blue rosette on the grain: red corresponds to �(k) > 0, and blue corresponds to �(k) < 0. The shading outside the grain
represents the sign of the anomalous Green’s function produced by the proximity effect: red is again positive, and blue is negative. Right:
A granular d-wave superconductor sandwiched between two homogenous s-wave superconductors, shaded gray. Each individual grain has a
randomly oriented order parameter owing to the random orientation of its crystalline axes. �1 and �2 indicate two directed paths across the
granular system.

Green’s functions satisfy the Usadel equation [7],

εFε − D

2
∇̂(Gε∇̂Fε − Fε∇Gε ) = 0,

|Gε |2 + |Fε |2 = 1, (2)

where ∇̂ = ∇ + 2eiA is the covariant derivative, A is the
vector potential, and Fε (r) and Gε (r) are Fourier trans-
forms of the Matsubara Green’s functions F (r, r, (t − t ′)) and
G(r, r, (t − t ′)).

In the case where T � T b
c , the size of the grain is larger

than ξ0, and the Andreev reflection from its boundary is effec-
tive, the boundary conditions for Eq. (2) at the d-n boundary
were derived in Ref. [8]. Since the relevant energy for comput-
ing the Josephson coupling, ε ∼ D/r2

G, is much smaller than
the value of the order parameter in the puddles, the boundary
condition for F (r, ε) is independent of ε and depends only on
the angle between the unit vector parallel to the direction of a
gap node n� and the unit vector n(r) normal to the boundary
at the point r on the surface: F (ε, r) = f {[n� · n(r)]2}. Here,
f (x) is a smooth function, which grows from f (0) = 0 to
f (1) ∼ 1.

In the absence of magnetic field H, a typical spatial distri-
bution of the solution of Eq. (2) for the anomalous Green’s
function F (r, ε → 0) due to an isolated grain is shown in
Fig. 1. Red and blue are used to indicate the regions where
F (r, ε → 0) has positive and negative signs, respectively. The
lines where F = 0 will be of particular interest to us.

At H = 0, the phase diagram of the system of d-wave
droplets embedded in a metal was studied in Refs. [4–6].
It has been shown that in the case where the droplets are
randomly oriented, the Josephson couplings Jij in Eq. (1) are
real quantities which can be decomposed as

Jij = ηiηj I
(0)
ij + ηij I

(1)
ij . (3)

Here,

ηi = sgn

[∫
si

F (r)dr
]

= ±1, (4)

ηij are random signs, and the integral in Eq. (4) is taken over
the surface si of grain i. The positive quantities I

(0),(1)
ij are

randomly distributed on the scales

I
(0)
ij ∝ GD

R2

Rd

rd
ij

exp(−rij /LT ), I
(1)
ij ∝ R2

r2
ij

I
(0)
ij , (5)

where G is the conductance of a block of the metal of linear
size R. Note that the two terms in Eq. (3) have different
characters. The first has its sign determined by a product of
quantities that depend on the properties of each grain sepa-
rately, roughly related to the shape of the grains. Conversely,
the sign of the second term is determined by a joint property
of the pair of grains i and j (related to the relative orientation
of their crystalline axes). At large grain concentration where
typically I (0) � I (1), this problem is a version of the standard
model of an XY spin glass [9], while in the opposite limit, the
system reduces to the well-known Mattis model [10].

In the presence of a magnetic field the Josephson couplings
Jij in Eq. (1) become complex. We can generally represent the
Josephson coupling at finite H by

Jij (H) = ±eiζij |Aij − Bij e
iχij |Iij . (6)

Each factor requires some explanation. The overall scale of
the coupling is set by Iij and depends on rij /R, while the
sign depends on the specific arrangement of grains i and j .
Together, these factors should be thought of as a rewriting
of Eq. (3), with Iij being the modulus and the ± symbol
being the sign. In the limit rij � R, Iij maps onto I

(0)
ij , and

the ± sign becomes ηiηj . In the limit rij � R, Iij maps
onto I

(1)
ij , and the ± sign becomes ηij . The remaining factors

indicate the effects of a magnetic field. ζij = A(r) · rij , where
rij is a vector connecting the centers of grains i and j . The
factor |Aij − Bij e

iχij | represents the geometry-dependent pro-
portionality constant from Eq. (3). Aij captures the positive-
weight diffusion paths, and Bij captures the negative-weight
paths. χij = (HSij /�0), where �0 is the flux quantum and Sij

is the area associated with the diffusion paths, which accounts
for the relative phase between positive and negative paths in
the field.

We will show that the magnetic field corrections to physical
quantities of the system associated with Eq. (6) are asymp-
totically larger than H 2 for small H. This is the reason why
we neglect the quadratic-in-H suppression of Aij and Bij in
Eq. (6).
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The value of the area Sij in Eq. (6) is also random. Its
characteristic value S is not universal. For example, if the
diffusion coefficient on the metal in Eq. (2) does not exhibit
spatial fluctuations, S ∼ R2.

II. MAGNETOENHANCEMENT OF
SUPERCONDUCTIVITY IN ONE DIMENSION

To illustrate the physical origin of the magnetic field en-
hancement of superconductivity let us first consider a quasi-
one-dimensional case where the droplets are embedded in a
metallic wire. In the absence of magnetic field the ground
state of the system corresponds to (θi − θj ) = 0 if Jij > 0
and (θi − θj ) = π if Jij < 0. To calculate the macroscopic
superfluid stiffness of the system 〈NS〉, we expand Eq. (1)
up to quadratic terms in θi − θj near the ground state. (We
define the superfluid stiffness by the usual equation 〈j〉 =
〈Ns〉∇θ , with 〈j〉 being the current density coarse grained on
a macroscopic scale.) As a result, we get the expression

〈Ns (H )〉 = lim
L→∞

〈
L

(∑ 1

|Jij |
)−1

〉

= rG

[∫
p(|J |)

|J | d|J |
]−1

, (7)

where the sum is taken over neighbor grains, L is the length of
the wire, and brackets 〈·〉 represent averaging over a random
distribution of Jij .

At H = 0, the probability density p(|Jij |) for the random
quantity |Jij | is finite at |Jij | = 0. As a result, the integral in
Eq. (7) diverges logarithmically, and the superfluid stiffness is
zero. Physically, this follows from the presence of arbitrarily
weak links in the long wire.

At H �= 0, the cancellations which produce small |Jij | are
less effective because they must cancel in the complex plane.
The upshot is that p(|Jij | = 0) = 0 at finite H . This cuts off
the logarithmic divergence in Eq. (7), and we obtain

〈Ns (H )〉 ∼ N (0)
s

| ln(φ2)| , (8)

where N (0)
s = 〈|Jij |〉 and φ = (HS/�0) is a dimensionless

measure of the characteristic flux between grains. According
to Eq. (8), the magnetic field enhancement of the superfluid
density is nonanalytic, which justifies our neglect of the
quadratic-in-H corrections to Jij : physically, the magnetic
field suppresses the density of weak links in the long wire.

III. MAGNETOENHANCEMENT OF
SUPERCONDUCTIVITY IN d > 1 DIMENSIONS

In higher dimensions, the disordered d-wave composite
superconductor can be frustrated and form a superconducting
glass. This complicates the theoretical analysis. Below we
discuss several cases where we can nonetheless prove the
existence of the magnetoenhancement of superconductivity.
The suppression of the probability for small couplings |Jij |
by a magnetic field is general and independent of dimension,
although their effect on the macroscopic superfluid density
is dimension dependent. As we will show, in two and three
dimensions the magnetoenhancement is smaller than in one

dimension but remains nonanalytic in H (namely, |H |). We
accordingly may neglect all quadratic and higher-order con-
tributions.

A. Magnetoenhancement of superfluid stiffness
in the Mattis regime

If the typical intergrain distance is larger than the grain
size and the normal metal coherence length, rG � R,LT , the
second term in Eq. (3) can be neglected. In the absence of
magnetic field, the Hamiltonian (1) reduces to a Mattis model,
for which the random factors ηi can be gauged out [4–6], and
accordingly, in Eq. (6) the ± sign may be taken to be positive.
In this regime, the phases χij (H ) and ζij (H ) play different
roles. We will show that the factors χij (H ) inside the modulus
in Eq. (6) lead to linear-in-|H | enhancement of the superfluid
stiffness Ns (H ) and critical temperature Tc(H ). On the other
hand, the ζij (H ) phases produce quadratic-in-H corrections
to physical quantities, and so we neglect them in the following
analysis. Thus, in this section we take for Jij (H) the simpler
expression

Jij (H) = |Aij − Bij e
iχij |J0e

−rij /LT . (9)

We take Aij + Bij = 1, with Aij being uniformly distributed
in [0, 1] and χij being uniformly distributed in [−π |φ|, π |φ|].
Finally, J0 is the characteristic energy scale of the nonexpo-
nential front factors in Eq. (5). Neglecting the variation in J0 is
a valid approximation because the disorder in the front factors
is subleading compared to that of the exponent.

It is convenient to represent the Josephson couplings in
logarithmic variables,

Jij = J0 exp(−ξij ), (10)

where ξij = ξ
(0)
ij + δξij , with

ξ
(0)
ij = rij /LT , δξij = − ln |Aij − Bij e

iχij |. (11)

This decomposition highlights that the distribution of δξij is
much narrower than that of ξ

(0)
ij in the rG � LT limit.

To calculate the superfluid stiffness of the system Ns at
H = 0, we expand the Mattis Hamiltonian, Eq. (1), up to
quadratic terms in θi . Calculating the superfluid stiffness is
then equivalent to calculating the macroscopic conductance
of a random resistor network where θi and |Jij | are analogs of
the voltage and conductances, respectively. In the rG � LT

regime, |Jij | are broadly distributed, and we can estimate
Ns using percolation theory, as is well known in the context
of hopping conductivity [11]. In this approach, we consider
switching on couplings Jij from strongest to weakest, until
at a critical value Jc ≡ J0 exp(−ξc ) the network of bonds
percolates. If the couplings are broadly distributed, then the
superfluid stiffness Ns is essentially given by Jc, analogous
to the global conductance of a resistor network being set
by the bottleneck with lowest individual conductance. Refer-
ence [11] gives a more detailed discussion.

In the zeroth approximation, where δξij = 0, we obtain

〈
N (0)

s

〉 = J0r
2−d
G

(
LT

r
(0)
c

)ν

e
− r

(0)
c
LT , (12)
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where r (0)
c ≡ LT ξ (0)

c is the value of rij at which the network
percolates and ν is the exponent governing the correlation
radius of the percolating cluster (e.g., ν = 4/3 in two di-
mensions, ν ≈ 0.9 in three dimensions [12]). See Sec. 5.6 of
Ref. [11] for details.

To calculate the magnetic field correction to the superfluid
density we use the perturbation theory of percolation theory
developed in Ref. [11] (see Sec. 8.3): the first-order correction
δξc to the percolation threshold ξc for typical δξij � ξ (0)

c is
given by the average perturbation, δξc = 〈δξij 〉. Thus,

δξc(H ) = −〈ln |Aij − Bij e
iχij |〉

= −
∫ πφ

−πφ

dχ

2πφ

∫ 1

0
dA ln |A − (1 − A)eiχ |

∼ 1 − π2

8
|φ|. (13)

Thus, the superfluid density, which is proportional to
exp[−ξ (0)

c − δξc(H )], is enhanced in small magnetic field
φ � 1:

〈�Ns (H )〉
〈Ns (0)〉 ≡ 〈Ns (H )〉 − 〈Ns (0)〉

〈Ns (0)〉 ∼ π2

8

|H |S
�0

. (14)

Note that Eq. (14) does not depend on any details of the
percolating cluster such as ν, ξ (0)

c , or even dimensionality.
It depends only on having a nonzero probability density for
Jij = 0, which comes from the fact that the d-wave order
parameter changes sign as a function of momentum.

The perturbative treatment of the problem which leads
to Eq. (14) is valid when the relevant δξij � ξc. On the
other hand, as φ → 0, the main contribution to Eqs. (13) and
(14) come from intergrain couplings with |Aij − Bij | → 0
for which δξij diverges logarithmically. The magnetic field
suppresses the probability of such events. This means that
Eqs. (13) and (14) are valid if φ > exp(−ξc ). In the opposite
limit, at very small magnetic field, the correction to the su-
perfluid stiffness 〈�Ns (H )〉/〈Ns (0)〉 ∼ cφ2 > 0 is quadratic.
However, even in this regime, we expect the magnetic field
correction to the stiffness is still positive. Indeed, at φc ∼ e−ξc

the linear and quadratic dependences should match. This gives
us an estimate for the coefficient,

c ∼ eξc � 1. (15)

On the other hand, the conventional negative contributions
to the magnetic field dependence of the superfluid density
〈�Ns (H )〉/〈Ns (0)〉 ∼ −aφ2 with a coefficient a of order 1.
Therefore, they are dominated by the magnetoenhancement
we discuss even for φ < φc ∼ e−ξc .

B. Numerical simulations of magnetoenhancement
in the Mattis regime

In order to verify the applicability of the perturbative
analysis, we simulate the model of Eq. (1) numerically in the
Mattis regime. We carry out simulations on a regular square
lattice of L × L Josephson coupled grains as in Fig. 2. At the
two boundaries in the x direction, the system is put in contact
with a large superconducting reservoir at fixed phase, while
the y direction is periodic. Since each reservoir is modeled

 

FIG. 2. The numerical simulations of the Mattis regime are car-
ried out on a square lattice of superconducting grains with random
couplings Jij . Two large superconducting leads are placed at either
end, with θL = 0, θR = �θ , while the system is periodic in the
transverse direction.

as a single site in contact with all sites on the corresponding
boundary, the system has L2 + 2 sites.

In our simulations, we sample couplings according to
the form of Eq. (9) with ξij ≡ rij /LT ∈ [−W,W ] uniformly
distributed (in units where J0 = 1). The parameter W thus
represents the typical distance between puddles, in units of
LT .

To compute the enhancement in the superfluid stiffness NS

as a function of the dimensionless magnetic flux φ, we con-
sider the change in energy due to a small phase difference �θ

(numerically, �θ = 1) applied between the two reservoirs. To
leading order, the phases θi at each site i minimize the energy

H = 1

2

∑
ij

Jij (φ)(θi − θj )2. (16)

We find the minimal energy H ∗ using a quadratic optimization
algorithm. The superfluid stiffness is simply given by

NS ∝ H ∗/�θ2. (17)

We work at disorder strength 0 � W � 8 and average each
measurement of NS over N = 1000 random samples.

The main panel of Fig. 3 shows the dependence of the
relative increase of the superfluid stiffness �Ns (H )

Ns (0) with φ for
several disorder strengths W . Two regimes are clearly visible:
for φ > φc ∼ e−ξc , the behavior is linear and matches the
prediction from the perturbative treatment of the percolation
theory, �NS/NS = φπ2/8. For φ � φc, however, the curves
cross over toward quadratic behavior, as expected.

The inset shows the dependence of the crossover point φc,
at which �NS becomes linear, on W . To extract the crossover
point numerically, we evaluate the derivative with respect to
φ of the data. Such a derivative grows for small φ and then
saturates to a finite value. We estimate φc as the point at
which the derivative stops growing. The error bars indicate the
spacing δφ between two consecutive values of φ. The inset
compares the numerical data to an exponential fit function
φc ∝ exp(−pW ), with p = 0.4 ± 0.1.

C. Magnetoenhancement of the critical temperature
in the Mattis regime

One can similarly estimate the change in Tc in a magnetic
field. At the mean-field level, all couplings Jij greater than
T are “rigid,” so that the phase on the grains connected by
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FIG. 3. Magnetoenhancement of superfluid stiffness in the Mat-
tis regime of a disordered Josephson network. Square lattice of
linear dimension L = 60 with N = 1000 samples per data point;
data for smaller sizes are indistinguishable. The main panel shows
the relative enhancement of superconductivity �NS/NS as a function
of dimensionless flux φ for several disorder strengths W . The line
π2

8 |φ| is the perturbative prediction of Eq. (14), which should hold
at large W over the range φc ∼ e−ξc < φ < O(1). At smaller fields
φ, the crossover to quadratic behavior is visible. The crossover point
φc(W ) is marked by vertical ticks. The inset shows the numerically
extracted crossover point φc as a function of W . The straight-line fit
shows the exponential dependence expected at large W .

such couplings is locked. Therefore, the critical temperature
may be found by determining when the set of rigid couplings
defined by the condition

Tc(H ) <
h̄

2e
|Jij | (18)

percolates.
A similar procedure was applied previously to calculate the

critical temperature of disordered ferromagnets [13,14]. The
difference is that in the present case ξc ≡ rc/LT depends on
temperature, so that Tc is determined by the equation

Tc = h̄

2e
J0 exp (−rc/LTc

). (19)

In the absence of δξij , rc = r (0)
c is independent of temperature,

as previously discussed in Sec. III A. Including δξij then shifts
rc/LT according to Eq. (13); thus, the equation determining Tc

is written

Tc = h̄

2e
J0 exp

(
−r (0)

c /LTc
− 1 + π2

8
|φ|

)
. (20)

Expanding with respect to small φ, we obtain
Tc(H ) − Tc(0)

Tc(0)
∼ π2

4

LTc (0)

r
(0)
c

|HS|
�0

. (21)

The above analysis has a mean-field character in that it
neglects fluctuations of the phase between rigid couplings.
However, we expect the conclusions to be correct in the
strong-disorder limit (W � LT ), where all but a vanishing
fraction of couplings in the percolating network are much
stronger than the putative Tc. Indeed, the authors of [14]
checked the validity of the percolation theory via Monte Carlo

simulations and found that Tc is given by Eq. (19) up to a
factor of order 1.

The magnetoenhancement of Tc behaves analogously to the
magnetoenhancement of Ns . Namely, the linear dependence
on |H | applies for fields larger than the previously mentioned
exponentially small cutoff φ > e−ξc .

IV. MAGNETOENHANCEMENT IN THE
SUPERCONDUCTING GLASS REGIME AT HIGH

TEMPERATURE

In the superconducting glass regime (rG � R), the cou-
plings Jij in Eq. (1) have random signs in the absence of
magnetic field. The frustration this induces at low temperature
makes this theoretical problem difficult. As with spin glasses,
most physical properties are out of equilibrium and time
dependent. It is not even clear how to define the superfluid
density in general. Therefore, in this section we restrict
ourselves to the case of high temperatures T � (h̄/2e)|Jij |,
where the system is in the normal state, and show that the
superconducting correlation function,

Akl = 〈ei(θk−θl )〉 = Tr

[
ei(θk−θl )

e−βH

Z

]
, (22)

is enhanced by a magnetic field. Here, H is given by Eq. (1),
β = 1/T , and Z is the partition function.

This correlation function controls the critical current in
a junction composed of two s-wave bulk superconductors
forming a sandwich around a granular d-wave composite (see
Fig. 1) in the regime where the temperature is below the
critical temperature of the s-wave leads.

The sign of the coupling Jij in the glass regime depends
on the relative orientation of the order parameter between the
two grains. We model this dependence by including a factor
cos 2(�i − �j ) in Eq. (6), where �i is the orientation of the
positive node of the order parameter on grain i. This factor
respects the d-wave symmetry of the grains: it retains its
sign if either grain rotates by π and changes sign if either
grain rotates by π/2. Furthermore, since the enhancement
of the correlation function relies on long-distance universal
behavior, as discussed below, we neglect the variation in all
other quantities affecting Jij for simplicity. This includes the
relative phases χij in Eq. (6). Thus, we model the Josephson
couplings as

Jij = J0 eiζij cos 2(�i − �j ), (23)

where ζij = A(r) · rij and �i is uniformly distributed in
[−π, π ].

The standard high-temperature expansion of Eq. (22) gives
the correlation function as a sum over paths � from grain k to
grain l:

Akl =
∑

�

A�, A� ≡
∏

〈ij〉∈�

(
πh̄β

2e
Jij

)
. (24)

The product over 〈ij 〉 ∈ � runs over all links along path �.
Furthermore, since (h̄β/e)|Jij | � 1, the leading-order terms
in the path sum (24) correspond to directed paths. See Fig. 1
for a qualitative example of such directed paths. In the high-
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FIG. 4. The disorder-averaged change in correlation length (in
units of lattice spacing) as a function of magnetic field H (in units of
flux quantum per lattice plaquette). The sum in Eq. (25) is evaluated
between opposite corners of a 1000 × 1000 square lattice. Data for
smaller sizes are indistinguishable.

temperature regime, the correlation function decays exponen-
tially at large distance: 〈ln |Akl|〉 ∼ −r/�(H ).

It follows from Eq. (24) that
1

�(H )
= ln

2e

π h̄βJ0

− lim
r→∞

1

r
ln

∣∣∣∣∣∣
∑

�

∏
〈ij〉∈�

eiζij cos 2(�i − �j )

∣∣∣∣∣∣. (25)

We have evaluated Eq. (25) using numerical simulations of
this model on a 2D square lattice in a uniform perpendicular
magnetic field. The average change in correlation length,
E[�(H )] − E[�(0)], is plotted as a function of H in Fig. 4.
At low magnetic field, � increases in a nonanalytic way:

�(H ) − �(0)

�(0)
∼

(
�(0)2 |H |

�0

)α

, (26)

with α = 0.59 ± 0.03. This nonanalyticity derives from the
statistics of directed paths in disordered media. Directed
path sums have a long history (see Ref. [15] and references
therein), and it is well known that the governing exponents are
universal. Different microscopic models for the couplings, as
long as they include fluctuations, give the same long-distance
behavior upon coarse graining. Thus, we are justified in using
the simple Eq. (23) for Jij , and Eq. (26) holds.

Indeed, the model defined by Eqs. (23) and (24) belongs to
the same universality class as that used to describe negative
magnetoresistance in hopping conductivity [16–20], so the
exponents at small field are the same. However, at short

distances, the model (23) has much more constructive interfer-
ence than that in hopping conductivity because the sign of the
paths going to grain i are all correlated with the orientation θi .
As a result, at large field where the magnetic length becomes
comparable to the “sign disordering length” of Eq. (24) at
H = 0, the magnetocorrection to � becomes negative, as
observed in Fig. 4.

V. CONCLUSION

We have shown that in certain parametric regimes, the ap-
plication of a magnetic field leads to nonanalytic enhancement
of both superfluid stiffness and the critical temperature in dis-
ordered composites of d-wave grains embedded in a metallic
matrix. Heuristically, the magnetoenhancement stems from
the suppression of destructive interference between Cooper
pairs carrying positive and negative amplitudes in the absence
of the field, although the length scale on which this suppres-
sion takes place varies between the cases we have considered.

Specifically, we have considered three cases where analytic
control is possible. First, in quasi-one-dimensional wires the
macroscopic superfluid stiffness can be inverse logarithmi-
cally enhanced from zero by the application of the field.
The strength of this effect follows from the suppression of
the density of weak nearest-neighbor Josephson couplings
by the application of the field. Second, at d > 1, where the
intergrain distance is much larger than the typical grain size
and normal metal coherence length (rG � R,LT ), frustration
in the effective system of Josephson couplings is suppressed,
and we find that the superfluid stiffness Ns and critical tem-
perature Tc are both enhanced linearly in |H | by mapping
onto percolation theory. Third, in the geometrically frustrated
regime (rG ∼ R) but at sufficiently high temperature that the
Josephson network is disordered, we find that the supercon-
ducting correlation length is enhanced with a nontrivial power
law |H |α , α < 1.

We view our results as a proof of principle for magne-
toenhancement of superconductivity. In all of the cases we
have presented, our analysis is possible because the system
is essentially unfrustrated at H = 0 and we can neglect the
effects of glassiness and metastability to leading order. It is an
interesting future direction to treat the intermediate, frustrated
regimes of this problem directly using more sophisticated
numerical techniques.

ACKNOWLEDGMENTS

The authors would like to especially thank S. A. Kivelson
for discussions, as well as A. G. Abanov, Y. Cao, B. Gregor, D.
Huse, and S. Gopalakrishnan. C.R.L. acknowledges support
from the Sloan Foundation through a Sloan Research Fellow-
ship and the NSF through Grant No. PHY-1656234. C.L.B.
acknowledges the support of the NSF through a Graduate
Research Fellowship, Grant No. DGE-1256082.

[1] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Dover,
New York, 1975).

[2] C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969
(2000).

[3] D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995).
[4] B. Spivak, P. Oreto, and S. A. Kivelson, Phys. Rev. B 77,

214523 (2008).
[5] B. Spivak, S. Kivelson, and P. Oreto, Phys. B (Amsterdam,

Neth.) 404, 462 (2009).

094508-6

https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1103/RevModPhys.67.515
https://doi.org/10.1103/RevModPhys.67.515
https://doi.org/10.1103/RevModPhys.67.515
https://doi.org/10.1103/RevModPhys.67.515
https://doi.org/10.1103/PhysRevB.77.214523
https://doi.org/10.1103/PhysRevB.77.214523
https://doi.org/10.1103/PhysRevB.77.214523
https://doi.org/10.1103/PhysRevB.77.214523
https://doi.org/10.1016/j.physb.2008.11.062
https://doi.org/10.1016/j.physb.2008.11.062
https://doi.org/10.1016/j.physb.2008.11.062
https://doi.org/10.1016/j.physb.2008.11.062


MAGNETOENHANCEMENT OF SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 98, 094508 (2018)

[6] S. A. Kivelson and B. Spivak, Phys. Rev. B 92, 184502
(2015)

[7] K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
[8] Y. Tanaka, Yu. V. Nazarov, A. A. Golubov, and S. Kashiwaya,

Phys. Rev. B 69, 144519 (2004).
[9] K. H. Fisher and J. A. Hertz, Spin Glasses (Cambridge Univer-

sity Press, Cambridge, 1991).
[10] D. Mattis, Phys. Lett. A 56, 421 (1977).
[11] A. L. Efros and B. I. Shklovskii, Electronic Properties of

Doped Semiconductors, Springer Series in Solid-State Sciences
(Springer, Berlin, 1984).

[12] M. E. Levinshtein, M. S. Shur, B. I. Shklovskii, and A. L. Efros,
Zh. Eksp. Teor. Fiz. 69, 386 (1975) [Sov. Phys. JETP 42, 197
(1976)].

[13] I. Y. Korenblit, E. F. Shender, and B. I. Shklovskii, Phys. Lett.
A 46, 4 (1973).

[14] A. Kaminski, V. M. Galitski, and S. Das Sarma, Phys. Rev. B
70, 115216 (2004).

[15] T. Halpin-Healy and Y. Zhang, Phys. Rep. 254, 215 (1995).
[16] V. L. Nguyen, B. Z. Spivak, and B. I. Shklovskii, Zh. Exp. Teor.

Fiz. 89, 1770 (1985) [Sov. Phys. JETP 62, 1021 (1985)].
[17] B. I. Shklovskii and B. Z. Spivak, Hopping Transport in Solids

(Elsevier, Amsterdam, 1991), Chap. 9.
[18] H. L. Zhao, B. Z. Spivak, M. P. Gelfand, and S. Feng, Phys.

Rev. B 44, 10760 (1991).
[19] L. Ioffe and B. Spivak, J. Exp. Theor. Phys. 117, 551 (2013).
[20] C. L. Baldwin, C. R. Laumann, and B. Spivak, Phys. Rev. B 97,

014203 (2018).

094508-7

https://doi.org/10.1103/PhysRevB.92.184502
https://doi.org/10.1103/PhysRevB.92.184502
https://doi.org/10.1103/PhysRevB.92.184502
https://doi.org/10.1103/PhysRevB.92.184502
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevB.69.144519
https://doi.org/10.1103/PhysRevB.69.144519
https://doi.org/10.1103/PhysRevB.69.144519
https://doi.org/10.1103/PhysRevB.69.144519
https://doi.org/10.1016/0375-9601(76)90396-0
https://doi.org/10.1016/0375-9601(76)90396-0
https://doi.org/10.1016/0375-9601(76)90396-0
https://doi.org/10.1016/0375-9601(76)90396-0
https://doi.org/10.1016/0375-9601(73)90219-3
https://doi.org/10.1016/0375-9601(73)90219-3
https://doi.org/10.1016/0375-9601(73)90219-3
https://doi.org/10.1016/0375-9601(73)90219-3
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1016/0370-1573(94)00087-J
https://doi.org/10.1016/0370-1573(94)00087-J
https://doi.org/10.1016/0370-1573(94)00087-J
https://doi.org/10.1016/0370-1573(94)00087-J
https://doi.org/10.1103/PhysRevB.44.10760
https://doi.org/10.1103/PhysRevB.44.10760
https://doi.org/10.1103/PhysRevB.44.10760
https://doi.org/10.1103/PhysRevB.44.10760
https://doi.org/10.1134/S1063776113110101
https://doi.org/10.1134/S1063776113110101
https://doi.org/10.1134/S1063776113110101
https://doi.org/10.1134/S1063776113110101
https://doi.org/10.1103/PhysRevB.97.014203
https://doi.org/10.1103/PhysRevB.97.014203
https://doi.org/10.1103/PhysRevB.97.014203
https://doi.org/10.1103/PhysRevB.97.014203



