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A massive Goldstone (MG) mode, often referred to as a Higgs amplitude mode, is a collective excitation
that arises in a system involving spontaneous breaking of a continuous symmetry, along with a gapless
Nambu-Goldstone mode. It has been known in the previous studies that a pure amplitude MG mode emerges
in superconductors if the dispersion of fermions exhibits the particle-hole (p-h) symmetry. However, clear
understanding of the relation between the symmetry of the Hamiltonian and the MG modes has not been reached.
Here we reveal the fundamental connection between the discrete symmetry of the Hamiltonian and the emergence
of pure amplitude MG modes. To this end, we introduce nontrivial charge-conjugation (C), parity (P), and
time-reversal (T ) operations that involve the swapping of pairs of wave vectors symmetrical with respect to the
Fermi surface. The product of CPT (or its permutations) represents an exact symmetry analogous to the CPT
theorem in the relativistic field theory. It is shown that a fermionic Hamiltonian with a p-h symmetric dispersion
exhibits the discrete symmetries under C, P, T , and CPT . We find that in the superconducting ground state,
T and P are spontaneously broken simultaneously with the U(1) symmetry. Moreover, we rigorously show that
amplitude and phase fluctuations of the gap function are uncoupled due to the unbroken C. In the normal phase,
the MG and NG modes become degenerate, and they have opposite parity under T . Therefore, we conclude that
the lifting of the degeneracy in the superconducting phase and the resulting emergence of the pure amplitude MG
mode can be identified as a consequence of the spontaneous breaking of T symmetry but not of P or U(1).

DOI: 10.1103/PhysRevB.98.094503

I. INTRODUCTION

Massive Goldstone (MG) modes, often referred to as Higgs
amplitude modes, and Nambu-Goldstone (NG) modes are
ubiquitous in systems that involve spontaneous breaking of
continuous symmetries [1–4]. In the simplest U(1) symmetry
breaking, the former induce amplitude oscillation of a complex
order parameter [5] and the latter induce phase oscillation.
Whereas NG modes have been studied in various condensed
matter systems, MG modes have evaded observations until
recently with only a few exceptions [6–8].

Despite the increasing number of observations, for example,
in superconductors [6,9–13], quantum spin systems [14–17],
charge-density-wave materials [8,18], ultracold atomic gases
[19–22], and theoretical studies [23–32], fundamental aspects
of MG modes in condensed matter systems have not been fully
understood, in contrast to NG modes; spontaneous breaking of
a continuous symmetry does not guarantee emergence of MG
modes, while that of NG modes is ensured by the Goldstone
theorem [2]. For instance, whereas a MG mode appears in
a Bardeen-Cooper-Schrieffer (BCS) superconductor [6,24],
it does not exist in a Bose-Einstein condensate (BEC) [33],
despite the fact that both of the systems involve U(1) symmetry
breaking and furthermore one evolves continuously to the other
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through the BCS-BEC crossover [34–38]. Varma pointed out
that the approximate particle-hole (p-h) symmetry, i.e., the
linearly approximated fermionic dispersion ξk � vF (k − kF )
(vF is the Fermi velocity and kF is the Fermi wave number), re-
sults in the effective Lorentz invariance of the time-dependent
Ginzburg-Landau equation in the weak-coupling BCS limit,
which yields the decoupled amplitude and phase modes [33].
A pure amplitude MG mode also appears in lattice systems if
the energy bands exhibit the rigorous p-h symmetry [26,27].

It has been thus recognized in the previous studies that
a pure amplitude MG mode emerges in superconductors if
the dispersion of fermions ξk exhibits the p-h symmetry
[24–27,33]. However, the p-h symmetry in the context of
the previous works refers to the characteristic feature of the
fermionic dispersion ξk that should be distinguished from the
symmetry of the Hamiltonian. Meanwhile, clear understanding
of the relation between the symmetry of the Hamiltonian and
MG modes has not been reached.

In this paper we reveal the fundamental connection between
the discrete symmetry of the Hamiltonian and the emergence
of pure amplitude MG modes. We introduce three discrete
operations for general nonrelativistic systems of fermions,
which we refer to “charge conjugation” (C), “parity” (P), and
“time reversal” (T ). The product of CPT (or its permutations)
represents an exact symmetry analogous to the CPT theorem
in the relativistic field theory [39]. We show that the standard
BCS Hamiltonian with a p-h symmetric dispersion is invariant
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under C, P, T , and CPT in addition to the global U(1) gauge
invariance. If the U(1) symmetry is spontaneously broken
in the superconducting ground state, the symmetries under
P and T are simultaneously broken while the symmetry
under C is unbroken. We rigorously show that amplitude and
phase fluctuations of the gap function are uncoupled due to
the unbroken C. The MG mode thus induces pure amplitude
oscillations of the gap function in a p-h symmetric system.
It is also shown that the MG and NG modes reduce to the
degenerate states in the normal phase due to the U(1) symmetry
and they have opposite parity under T . Therefore, the lifting of
the degeneracy in the superconducting phase and the resulting
emergence of the pure amplitude MG mode can be identified
as a consequence of the spontaneous breaking of T symmetry
but not of P or U(1). Thus, the breaking of T proves to be
responsible for the emergence of the pure amplitude MG mode.

This paper is organized as follows: In Sec. II we present
the model and introduce the pseudospin representation. In
Sec. III we define the three discrete operations C, T , and P to
discuss the symmetries of the Hamiltonian under the operations
of C, T , P , and CPT . In Sec. IV we study the symmetry
of the superconducting ground state. In Sec. V we discuss
collective modes within the classical spin analysis. In Sec. VI
we give a rigorous proof of the uncoupled amplitude and phase
fluctuations of the gap function in a p-h symmetric system due
to the unbroken C. In Sec. VII we give a direct demonstration of
the relation between the emergence of the pure amplitude MG
mode and the spontaneously broken T symmetry. In Sec. VIII
we summarize. We set h̄ = kB = 1 throughout the paper.

II. PSEUDOSPIN REPRESENTATION

We study for simplicity the reduced BCS Hamiltonian [40]

H =
∑
k,s

ξkc
†
kscks − g

∑
k,k′

c
†
k↑c

†
−k↓c−k′↓ck′↑, (1)

where c
†
ks (cks) is the creation (annihilation) operator of a

fermion with momentum k and spin s (= ↑,↓), g(>0) denotes
the attractive interaction between fermions, and ξk = εk − μ

is the kinetic energy of a fermion measured from the chemical
potential μ. For example, εk = k2/2m in a continuous system
(m is the mass of a fermion). We do not specify the form of εk

for generality of argument.
To discuss the symmetries of the Hamiltonian (1), it is con-

venient to introduce the pseudospin representation [41]: Sμk =
1
2�

†
kτμ�k (μ = x, y, z), where τ = (τx, τy, τz) are Pauli ma-

trices and �k = (ck↑, c
†
−k↓)t is the Nambu spinor [42]. Note

that Szk is related to the fermion number operator nks = c
†
kscks

by Szk = 1
2 (nk↑ + nk↓ − 1). In the pseudospin language, the

fermion vacuum is the spin-down state (|0〉k = |↓〉k) and the
fully occupied state is the spin-up state (c†k↑c

†
−k↓|0〉k = |↑〉k).

The pseudospin representation of the Hamiltonian (1) is
given by

H =
∑

k

2ξkSzk − g
∑
k,k′

S⊥k · S⊥k′ , (2)

where S⊥k = (Sxk, Syk ). The kinetic energy (interaction) term
is translated into the Zeeman (ferromagnetic XY exchange)

term in the pseudospin language. The rotational symmetry
of the Hamiltonian (2) in the xy plane represents the U(1)
symmetry of Eq. (1) with respect to the transformation �k →
eiτzα�k.

III. HIDDEN DISCRETE SYMMETRIES

In this section we define three discrete transformations for
fermions and discuss the symmetry of the Hamiltonian (2)
under those operations.

A. Charge conjugation

Let us consider a unitary transformation for the Nambu
spinor [43]:

C�kC = τx�k, C�
†
kC = �

†
kτx. (3)

Here k is the mirror reflected wave vector of k with respect to
the Fermi surface, i.e., k and k are on the opposite side of the
Fermi surface and away from it with the same minimum dis-
tance [see Figs. 1(a)–1(c)]. For example, k = (2kF − k)k/|k|
in a continuous system. Note that k = k if k is on the Fermi
surface. Since C transforms a particle (c†) into a hole (c)
and vice versa, it can be referred to as a charge-conjugation
operation. C is specifically given by

C = F
∏

k

σxk, F =
∏
ξk>0

fk,k, (4)

where σμk = 2Sμk. The operator fk,k swaps the state of k and
that of k: fk,k|ψ〉k|φ〉k = |φ〉k|ψ〉k. One can show C† = C and
C2 = 1 from Eq. (4).

The pseudospin operators are transformed by C as

CSμkC = (−1)δμ,x+1Sμk, CSμC = (−1)δμ,x+1Sμ, (5)

where Sμ = ∑
k Sμk is the total spin. Equation (5) shows that

C consists of the π rotation of pseudospins about the x axis
and the swapping of k and k.

Transforming Eq. (2) by C, we obtain

CHC =
∑

k

2(−ξk )Szk − g
∑
k,k′

S⊥k · S⊥k′ . (6)
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FIG. 1. Illustration of the wave vector k and the dispersion −ξk in
(a) a continuous system and (b) the 1D lattice at half-filling (μ = 0).
(c) k for the half-filled energy band in the square lattice.
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Hence, CHC = H and equivalently [H, C] = 0, if the fermion
dispersion satisfies the condition

−ξk = ξk. (7)

Equation (7) indicates the invariance of the dispersion ξk under
the successive mirror reflections with respect to ξ = 0 and k =
kF [see Figs. 1(a) and 1(b)], which we refer to particle-hole
(p-h) symmetry in view of the fact that the density of states
N (ξ ) = ∑

k δ(ξ − ξk ) is even if Eq. (7) holds.
Figure 1(a) shows that, whereas ξk = k2/2m − μ is not p-h

symmetric, the linearized dispersion ξk � vF (k − kF ) is p-h
symmetric. Therefore, a continuous system has an approximate
p-h symmetry if the interaction is weak enough. On the other
hand, Fig. 1(b) illustrates that the tight-binding energy band
in the d-dimensional cubic lattice ξk = −2t

∑d
i=1 cos(ki ) (t is

the hopping matrix element) exhibits a rigorous p-h symmetry
at half-filling (μ = 0).

B. Time reversal

The “time-reversal” operation of the Nambu spinor and the
pseudospin operators are defined to be

T �kT −1 = τy�k, T �
†
kT −1 = �

†
kτy, (8)

T SμkT −1 = −Sμk, T SμT −1 = −Sμ. (9)

The time-reversal T can be written in the form

T = UTK, UT = F
∏

k

(−iσyk ), (10)

where K is the complex conjugation operator and UT is the
unitary operator that rotates pseudospins π about the y axis and
swaps k and k. From Eq. (9), the p-h symmetric Hamiltonian
that satisfies Eq. (7) is time-reversal invariant T HT −1 =
H. T reverses the time in the Heisenberg representation as
T Sμ(t )T −1 = −Sμ(−t ).

It is important to note that T represents time reversal
in the pseudospin space, which is different from the usual
time-reversal operation discussed, for example, in Ref. [44].
Although the usual time-reversal symmetry is not broken
in s-wave superconductors [44], T is spontaneously broken
simultaneously with the U(1) symmetry breaking as we shall
show later.

C. Parity

The “parity” operation, denoted by P , is defined to be the
inversion of pseudospins in the xy plane. It is equivalent to the
π rotation about the z axis and therefore can be represented as

P =
∏

k

σzk. (11)

It satisfies P† = P and P2 = 1. The transformation by P is
given as

P�kP = τz�k, P�
†
kP = �

†
kτz, (12)

PSμkP = (−1)δμ,z+1Sμk, PSμP = (−1)δμ,z+1Sμ. (13)

The Hamiltonian (2) is invariant by P: PHP = H. Since the
π rotation in the xy plane is an element of U(1), P is trivially
broken in the U(1) broken ground state.

D. CPT invariance

The transformation by the product � = CPT is given as

��k�
−1 = i�k, ��

†
k�

−1 = −i�
†
k, (14)

�Sμk� = (−1)δμ,y+1Sμk, �Sμ� = (−1)δμ,y+1Sμ. (15)

Using Eqs. (4), (10), and (11), we obtain � = ∏
k(−1)K and

thus �H�−1 = H. Since the LagrangianL = ∑
k i�

†
k

∂
∂t

�k −
H is transformed as �L(t )�−1 = L(−t ), the action is invari-
ant and therefore CPT and all other permutations of C, P ,
and T are exact symmetries analogous to the CPT invariance
in relativistic systems [39].

IV. SYMMETRY OF THE GROUND STATE

We study the symmetries of the superconducting ground
state focusing on that of a p-h symmetric system. It is
reasonable to expect that all the symmetries of the true
ground state are realized in the BCS wave function |�〉 =∏

k(uk|↓〉k + vk|↑〉k ). Here uk = √
(1 + ξk/Ek )/2 and vk =√

(1 − ξk/Ek )/2. The gap function is set positive real
in the ground state without loss of generality �0 =
g

∑
k〈c−k↓ck↑〉 = g〈Sx〉 > 0. Ek =

√
ξ 2

k + �2
0 is the disper-

sion of single-particle excitations (bogolons). |�〉 represents
the ground state of the mean-field (MF) Hamiltonian HMF =
−∑

k H0
k · Sk, where Sk = (Sxk, Syk, Szk ). The effective

magnetic field H0
k = (2�0, 0,−2ξk ) lies in the xz plane with

the polar angle ϕk [see Fig. 2(b)], where sin ϕk = �0/Ek and
cos ϕk = −ξk/Ek. Note that ϕk = π − ϕk, if Eq. (7) holds.
The requirement that the average spin S0

k = 〈Sk〉 is in parallel
with H0

k leads to the MF gap equation 1 = g
∑

k
1

2Ek
[41].

Figures 2(a) and 2(b) show the pseudospin configuration
of the superconducting ground state described by |�〉. The
pseudospins smoothly rotate sidewise in the xz plane from up
to down towards the positive x direction as k increases [41].
The spontaneous U(1) symmetry breaking with respect to the
phase of the gap function sets the direction of rotating spins
projected in the xy plane. In a p-h symmetric system, Sk is the
mirror reflected image of Sk with respect to the xy plane.

The symmetry under C is unbroken in the ground state of a
p-h symmetric system. In fact, using uk = vk and vk = uk, the
BCS wave function is shown to be parity even (C|�〉 = |�〉)

FIG. 2. Schematic illustration of the pseudospin distribution Sk

described by the BCS wave function |�〉 for a positive real gap
function (a) as a function of k [41] and (b) on the Bloch sphere. (a)
Spins rotate in the xz plane from up to down towards the positive x

direction as k increases from below to above kF . (b) In a p-h symmetric
system, Sk is the mirror reflected image of Sk with respect to the xy

plane.
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FIG. 3. Schematic illustration of the double-well potential for a
real gap function and the spontaneous breaking of the symmetries
under T and P . The operation of either T or P flips the sign of the
gap function and transforms |�〉 to |�̄〉.

that reflects the invariance of the MF Hamiltonian (CHMFC =
HMF). As shown in Fig. 2, the pseudospin configuration
is indeed invariant under the π rotation of spins about the
x axis followed by the swapping of k and k. In contrast,
the symmetries under T and P are spontaneously broken
accompanied by the U(1) symmetry breaking. The operation
of either T or P flips the sign of the gap as

T HMFT −1 = PHMFP = −
∑

k

H̄0
k · Sk = H̄MF, (16)

T |�〉 = |�̄〉, P|�〉 =
{∏

k

(−1)

}
|�̄〉. (17)

Figure 3 schematically illustrates the spontaneous breaking
of the symmetry under T and P and their operations on
|�〉. Hereafter, the overline represents the replacement �0 →
−�0, e.g., H̄0

k = (−2�0, 0,−2ξk ) and |�̄〉 = ∏
k(uk|↓〉k −

vk|↑〉k ).
The symmetries of the Hamiltonian and the ground state are

compared between p-h symmetric and nonsymmetric systems
in Table I. It shows that the broken symmetry of T and
unbroken symmetry of C are characteristic to a p-h symmetric
system. Given the fact that a pure amplitude MG mode arises
only in a p-h symmetric system as shown later, Table I implies
that it results from the broken T and C, which we reveal in the
following.

TABLE I. Symmetry of the Hamiltonian H and the ground state
wave function |�〉 for a p-h symmetric system (ξk = −ξk) and a p-h
nonsymmetric system (ξk �= −ξk). and × mean presence and absence
of the symmetry, respectively.

p-h symmetric p-h nonsymmetric

Symmetry H |�〉 H |�〉
C � � × ×
T � × × ×
P � × � ×
� = CPT � � � �
U(1) � × � ×

V. COLLECTIVE MODES

We first discuss collective modes within the classical spin
analysis [41] (details are given in Appendix B). We study
dynamics of the pseudospins based on the MF Hamilto-
nian H′

MF = −∑
k H k · Sk. Here the magnetic field H k =

(2Re�,−2Im�,−2ξk ) is self-consistently determined by the
gap function � = g

∑
k〈c−k↓ck↑〉 = g(〈Sx〉 − i〈Sy〉), which

is allowed to take complex values. The time evolution of Sk(t ),
which is treated as a classical spin, is described by the equation
of motion

dSk

dt
= Sk × H k. (18)

Introducing amplitude and phase fluctuations from the
ground state � = (�0 + δ�)eiδθ , one finds that spin fluctu-
ations in the x direction induce amplitude fluctuations δ� =
gδSx and those in the y direction induce phase fluctua-
tions δθ = −gδSy/�0, where δSk = Sk(t ) − S0

k. Linearizing
Eq. (18) by fluctuations δ�, δθ ∝ e−iωt , we obtain

[1 − 2gχxx (ω)]δ� − 2gχxy (ω)�0δθ = 0, (19)

2gχyx (ω)δ� − [1 − 2gχyy (ω)]�0δθ = 0, (20)

where χμν (ω) are the dynamical spin susceptibilities defined as
χμν (ω) = −i

∫ ∞
0 〈[Sν, Sμ(t )]〉e−iωtdt [Sμ(t ) is the Heisenberg

representation and 〈· · · 〉 denotes the average]. For example,
χxy represents the coupling of amplitude and phase, while χzx

represents that of density and amplitude. The susceptibilities
are calculated as

χxx =
∑

k

ξ 2
k

Ek
(
4E2

k − ω2
) , χyy =

∑
k

Ek

4E2
k − ω2

, (21)

χxy = −χyx = iω

2

∑
k

ξk

Ek
(
4E2

k − ω2
) . (22)

Using the MF gap equation, one finds that Eqs. (19)
and (20) have the NG mode solution (δθ �= 0, δ� = 0) with
ω = 0. They also have a solution for a pure amplitude mode
(δ� �= 0 and δθ = 0) with ω = 2�0, if phase and amplitude
are uncoupled χxy (2�0) = χyx (2�0) = 0. From Eq. (22), this
leads to the condition∑

k

1

Ekξk
=

∫
dξ

N (ξ )

ξ

√
ξ 2 + �2

0

= 0. (23)

Equation (23) is satisfied if N (ξ ) is even. Thus, MG mode
arises as a pure amplitude mode in a p-h symmetric system [25].

The p-h symmetry also ensures fermion number conserva-
tion (δSz = 0) [45]. δSz is represented as

δSz = 2χzx (ω)δ� + 2χzy (ω)�0δθ, (24)

where χs are given by

χzx =
∑

k

�0ξk

Ek
(
4E2

k − ω2
) , χzy =

∑
k

iω�0/2

Ek
(
4E2

k − ω2
) .

(25)

The MG mode solution (δ� �= 0, δθ = 0, and ω = 2�0)
satisfies δSz = 0, if χzx (2�0) = 0, which reduces to Eq. (23).
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Hence, the MG mode does not induce density fluctuation and
indeed conserves total fermion number N = 2Sz + ∑

k 1.
If the p-h symmetry is absent, due to χzx (ω) �= 0 and

χzy (ω) �= 0, Eq. (24) indicates that δ� and δθ must be finite in
order to satisfy δSz = 0. As a result, δ� is inevitably coupled
with δθ and therefore the MG mode induces both amplitude
and phase fluctuations. The energy of the MG mode becomes
greater than 2�0 [26,27].

VI. RIGOROUS PROOF OF χx y = χzx = 0

The arguments in the last section are based on the MF
approximation restricted to zero temperature (T = 0). We
rigorously show that amplitude is decoupled from phase
and density in a p-h symmetric system at any temper-
ature. We focus on χzx (ω) and evaluate 〈[Sx, Sz(t )]〉 ∝∑

n e−En/T 〈n|[Sx, Sz(t )]|n〉. Here |n〉 denotes an exact eigen-
state of H with energy En. Since C is not broken, |n〉 is parity
either even or odd under C. Using the fact that Sx and Sz have
opposite parity under C, we obtain

〈n|SxSz(t )|n〉 = (〈n|C)(CSxC)(CSz(t )C)(C|n〉)

= −〈n|SxSz(t )|n〉 = 0. (26)

One can analogously show 〈n|Sz(t )Sx |n〉 = 〈n|SzSx (t )|n〉 =
〈n|Sx (t )Sz|n〉 = 0 and therefore χzx (ω) = χxz(ω) = 0.
χxy (ω) = χyx (ω) = 0 can be shown analogously using the
opposite parity of Sx and Sy . Thus, the unbroken symmetry
under C is essential for the pure amplitude character of the
MG mode.

VII. EMERGENCE OF THE MG MODE
BY THE BROKEN T SYMMETRY

We show that the spontaneous breaking of T is responsible
for the emergence of the MG mode. The creation operator of
the MG mode β

†
H and that of the NG mode β

†
NG derived by the

Holstein-Primakoff theory are given by (see Appendix C for
details)

β
†
H = A

∑
k

ξk

Ek

(
S ′+

k

2|�0| − 2Ek
+ S ′−

k

2|�0| + 2Ek

)
, (27)

β
†
NG = A′ ∑

k

1

Ek
(S ′+

k + S ′−
k ). (28)

Here S ′±
k = S ′

xk ± iS ′
yk, which creates and annihilates a pair

of bogolons, are the raising and lowering operators of the
pseudospins for bogolons S′

k = (S ′
xk, S

′
yk, S

′
zk ). S ′±

k are trans-
formed as (see Appendix A)

CS ′±
k C = −S ′±

k , PS ′±
k P = −S̄ ′±

k , T S ′±
k T −1 = S̄ ′±

k .

(29)

Using Eq. (29), one can show that the MG mode is even and
the NG mode is odd under C:

Cβ
†
HC = β

†
H, Cβ

†
NGC = −β

†
NG. (30)

Their opposite parity under C is consistent with the uncoupled
phase and amplitude. A single MG mode is thus prohibited to
decay into an odd number of NG modes by the selection rule.

Moreover, since the excited states of energy 2�0 with a pair of
bogolons are odd under C (see Appendix A), a MG mode with
energy 2�0 is stable against decay into independent bogolons.

The MG and NG modes thus have definite parity under C
due to the unbroken C, while the discrete symmetries under T
and P are broken. From Eq. (29) we obtain

T β
†
HT −1 = Pβ

†
HP = −β̄

†
H, (31)

T β
†
NGT −1 = β̄

†
NG, Pβ

†
NGP = −β̄

†
NG, (32)

where β
†
H → β̄

†
H and β

†
NG → β̄

†
NG by the replacement �0 →

−�0. Note that using Eqs. (30), (31), and (32), �β
†
H�−1 = β

†
H

and �β
†
NG�−1 = β

†
NG are indeed satisfied.

Denoting the vacuum state for βH and βNG (β̄H and β̄NG) as
|vac〉 (|vac〉), we have the relation T |vac〉 = P|vac〉 = |vac〉,
since either T orP flips the sign of the gap function [46]. From
Eqs. (30), (31), and (32), one obtains

C(β†
H|vac〉) = β

†
H|vac〉, (33)

T (β†
H|vac〉) = P (β†

H|vac〉) = −β̄
†
H|vac〉, (34)

C(β†
NG|vac〉) = −β

†
NG|vac〉, (35)

T (β†
NG|vac〉) = β̄

†
NG|vac〉, (36)

P (β†
NG|vac〉) = −β̄

†
NG|vac〉. (37)

In the normal phase, setting �0 = 0, β
†
H|vac〉 and β̄

†
H|vac〉

trivially reduce to the same state β
†
H0|FS〉 ≡ |φH〉, while

β
†
NG|vac〉 and β̄

†
NG|vac〉 reduce to β

†
NG0|FS〉 ≡ |φNG〉. Here |FS〉

denotes the vacuum in the normal phase. β
†
H0 and β

†
NG0 are

given by

β
†
H0 ≡ β

†
H|�0=0 ∝

∑
k

1

ξk
Syk, (38)

β
†
NG0 ≡ β

†
NG|�0=0 ∝

∑
k

1

ξk
Sxk. (39)

Since β
†
NG0 can be transformed to β

†
H0 by the π/2 rotation about

the z axis in the pseudospin space, Eqs. (38) and (39) indicate
that the |φH〉 and |φNG〉 states are degenerate in the normal
phase before breaking the U(1) symmetry [47,48]. Setting
�0 = 0 in Eqs. (33), (34), (35), (36), and (37), we obtain [49]

C|φH〉 = |φH〉, T |φH〉 = P|φH〉 = −|φH〉, (40)

T |φNG〉 = |φNG〉, C|φNG〉 = P|φNG〉 = −|φNG〉. (41)

The above equations show that |φH〉 is odd and |φNG〉 is even
under T . On the other hand, both |φH〉 and |φNG〉 are odd under
P . From these facts, we can conclude that the lifting of the
degeneracy of |φH〉 and |φNG〉 in the superconducting phase
should be induced by the spontaneous breaking ofT symmetry,
not by the breaking of P or U(1) symmetry. Consequently,
the breaking of T proves to be responsible for the emergence
of the pure amplitude MG mode. The spontaneously induced
magnetic field that breaks the T symmetry is given by H 0

xk =
2�0. Therefore, the energy splitting between the MG and NG
modes should be of the order of |H 0

xk| = 2�0. This is consistent
with the fact that the energy gap of the MG mode is 2�0.
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VIII. CONCLUSIONS

Extending the previous understanding of the emergence of
the MG mode in the presence of the p-h symmetric fermionic
dispersion, we have revealed the fundamental connection
between the emergence of the pure amplitude MG mode and
the discrete symmetry of the Hamiltonian in superconductors,
which has not been clarified in the previous works. We have
shown that a nonrelativistic Hamiltonian for fermions with a p-
h symmetric dispersion exhibits nontrivial discrete symmetries
under C, P, T , and CPT . In the U(1) broken superconducting
ground state of such a p-h symmetric system, T and P are
spontaneously broken, while C is unbroken. We have shown
that the spontaneous breaking of the discrete T symmetry
leads to the emergence of the MG mode that induces pure
amplitude oscillation of the gap function due to the unbroken
C. It may be possible to show a similar relation between
the discrete symmetry of the Hamiltonian and the emergence
of the MG modes in other nonrelativistic systems, such as
ultracold bosons in optical lattices [20,32] and quantum spin
systems [15,16].
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APPENDIX A: PSEUDOSPIN REPRESENTATION
FOR BOGOLONS

In this Appendix we introduce a pseudospin representa-
tion for bogolons and examine the symmetries of the states
involving excited bogolons. The pseudospins for bogolons
S′

k = (S ′
xk, S

′
yk, S

′
zk ) [41] are defined as

⎛
⎜⎝

S ′
zk

S ′
xk

S ′
yk

⎞
⎟⎠ =

⎛
⎜⎝

− cos ϕk − sin ϕk 0

sin ϕk − cos ϕk 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

Szk

Sxk

Syk

⎞
⎟⎠. (A1)

Using Eq. (A1), the MF Hamiltonian is represented as

HMF =
∑

k

2EkS
′
zk. (A2)

Denoting the eigenstates of S ′
zk as |↑′〉k and |↓′〉k, they can

be written as

|↑′〉k = uk|↑〉k − vk|↓〉k, (A3)

|↓′〉k = uk|↓〉k + vk|↑〉k, (A4)

where |↓′〉k represents the vacuum of bogolons and |↑′〉k is the
excited state of energy 2Ek, in which a pair of bogolons are
excited. Since Sk is rotated about the angle π − ϕk in the xz

plane in Eq. (A1), all the rotated pseudospins S′
k are aligned

downward in the z direction in the ground state. In fact, the
BCS wave function can be written as

|�〉 =
∏

k

|↓′〉. (A5)

The raising and lowering operators, which creates and
annihilates a pair of bogolons, are given by

S ′±
k = S ′

xk ± iS ′
yk

= ξk

Ek
Sxk ± iSyk + �0

Ek
Szk. (A6)

Equation (29) can be derived from the above equation.
If we denote the excited state with a single pair of bogolons

as

|ek〉 = S ′+
k |�〉 = |↑′〉k

∏
k′ �=k

|↓′〉k′ , (A7)

both |ek〉 and |ek〉 have excitation energy 2Ek and degenerate
in a p-h symmetric system. Using Eq. (29), we obtain

C|ek〉 = −|ek〉. (A8)

From Eq. (A8) it can be easily shown that |ek〉 − |ek〉 is parity
even, while |ek〉 + |ek〉 is parity odd under C. The even parity
states vanish at k = k = kF because of |ek〉 = |ek〉. It means
that the lower edge of the single-particle continuum with
energy 2�0 consists of parity odd states.

APPENDIX B: CLASSICAL SPIN ANALYSIS

In this Appendix we give details of the classical spin
analysis. Linearizing Eq. (18) with respect to fluctuation δSk =
Sk(t ) − S0

k [δH (t ) = H k(t ) − H0
k], we obtain

d

dt
δS‖k = −1

2
δHy + H 0

k δSyk, (B1)

d

dt
δSyk = 1

2
δHx cos ϕk − H 0

k δS‖k. (B2)

Here we decompose the spin fluctuation into the two orthogo-
nal directions as δSk = δSyk ŷ + δS‖kϕ̂k. ŷ is the unit vector in
the y direction and ϕ̂k = cos ϕk x̂ − sin ϕk ẑ is the unit vector
illustrated in Fig. 4.

We note that

δHx = 2gδSx = 2g
∑

k

δS‖k cos ϕk, (B3)

δHy = 2gδSy = 2g
∑

k

δSyk. (B4)
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x

z

φ
k

φ
k

y

FIG. 4. Illustration of the unit vectors φ̂k and ŷ.

Using Eqs (B2) and (B1) we obtain

d

dt
δSz = −

∑
k

d

dt
δS‖k sin ϕk

= 1

2
δHy

∑
k

sin ϕk − 2�0

∑
k

δSyk = 0. (B5)

Since δSz = 0 at the initial moment, Eq. (B5) shows that the
fermion number is conserved (δSz = 0) through the dynamics.

If the gap function is constant in time, setting δHx = δHy =
0 in Eqs. (B1) and (B2), each pseudospin undergoes precession
independently with frequency ω = 2Ek. It represents a pair of
bogolons arising from a broken Cooper pair.

We consider collective dynamics of pseudospins involving
nonzero δHx and/or δHy . Assuming δSk(t ), δH (t ) ∝ e−iωt in
Eqs. (B2) and (B1), we obtain

δS‖k = − ξk

4E2
k − ω2

δHx + iω/2

4E2
k − ω2

δHy, (B6)

δSyk = − iω cos ϕk/2

4E2
k − ω2

δHx + Ek

4E2
k − ω2

δHy. (B7)

Substituting the above equations into Eqs. (B3) and (B4), we
obtain the coupled equations for δHx and δHy as

[1 − 2gχxx (ω)]δHx + 2gχxy (ω)δHy = 0, (B8)

2gχyx (ω)δHx + [1 − 2gχyy (ω)]δHy = 0, (B9)

δSz = χzx (ω)δHx − χzy (ω)δHy, (B10)

where χs are given by Eqs. (21), (22), and (25). Equations (19),
(20), and (24) can be readily derived from Eqs. (B8), (B9), and
(B10) by rewriting them in terms of δ� and δθ .

If we set ω = 0 in Eqs. (B8) and (B9), since χxy (0) =
χyx (0) = 0, δHx and δHy are uncoupled. Using 1 −
2gχyy (0) = 0 that reduces to the MF gap equation and 1 −
2gχxx (0) �= 0, we obtain the solution for the NG mode: δHx =
0 and δHy �= 0 (δ� = 0 and δθ �= 0). Equation (B10) indicates
that the NG mode solution fulfills the number conservation
δSz = 0, because χzy (0) = 0. From Eqs. (B6) and (B7) one
obtains

δS‖k = 0, δSyk = 1

4Ek
δHy. (B11)

FIG. 5. Illustration of pseudospin oscillation induced by the NG
mode (a) and the MG mode (b) in a system with p-h symmetric ξk.
(a) The NG mode induces in-phase oscillation of δSyk and δSyk. (b)
The MG mode induces out-of-phase oscillation of δS‖k and δS‖k, as
well as δSyk and δSyk.

The NG mode thus induces oscillations of pseudospins in the
y direction as illustrated in Fig. 5(a). Since δSyk = δSyk, the
NG mode induces in-phase oscillation of δSyk and δSyk.

In a p-h symmetric system, if we set ω = 2�0 in Eqs. (B8)
and (B9), since χxy (2�0) = χyx (2�0) = 0, δHx and δHy are
uncoupled. Using 1 − 2gχxx (2�0) = 0 that reduces to the MF
gap equation and 1 − 2gχyy (0) �= 0, we obtain the solution for
the MG mode: δHx �= 0 and δHy = 0 (δ� �= 0 and δθ = 0).
Equation (B10) indicates that the MG mode solution fulfills
the number conservation δSz = 0, because χzx (2�0) = 0 if ξk

satisfies Eq. (7). From Eqs. (B6) and (B7), one obtains

δS‖k = −1

4ξk
δHx, δSyk = i�0

4Ekξk
δHx. (B12)

The MG mode thus induces oscillations of pseudospins both in
the y direction and the direction of φ̂k as illustrated in Fig. 5(b).
Since δS‖k = −δS‖k and δSyk = −δSyk, the MG mode induces
out-of-phase oscillation of δS‖k and δSyk.

APPENDIX C: HOLSTEIN-PRIMAKOFF THEORY

In this Appendix we develop the Holstein-Primakoff theory
for the pseudospin Hamiltonian (2) to derive the creation and
annihilation operators of the MG and NG modes.

Substituting Eq. (A1) into Eq. (2), one obtains

H =
∑

k

2ξk(− cos ϕkS
′
zk + sin ϕkS

′
xk )

− g
∑
k,k′

(cos ϕk cos ϕk′S ′
xkS

′
xk′ + sin ϕk cos ϕk′ {S ′

zk, Sxk′ }

+ sin ϕk sin ϕk′S ′
zkS

′
zk′ + S ′

ykS
′
yk′ ). (C1)

Spin fluctuation can be quantized by the Holstein-Primakoff
transformation [50]:

S ′+
k = α

†
k

√
1 − α

†
kαk, S ′−

k = (S ′+
k )†, (C2)

S ′
zk = −(

1
2 − α

†
kαk

)
, (C3)

where α
†
k and αk denote, respectively, the creation and annihila-

tion operators of a boson that represents spin fluctuation. They
satisfy the usual commutation relations [αk, α

†
k′] = δk,k′ and
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[αk, αk′] = [α†
k, α

†
k′] = 0. When fluctuation is small α

†
kαk �

1, S ′+
k � α

†
k and S ′−

k � αk and therefore αk and α
†
k reduce to

the annihilation and creation operators of a pair of bogolons,
respectively.

We expand Eq. (C1) in terms of αk and α
†
k. The zeroth and

first order terms read

H0 = −
∑

k

ξ 2
k

Ek
− �2

0

g
, (C4)

H1 =
∑

k

(ξk sin ϕk + �0 cos ϕk )(αk + α
†
k ). (C5)

The first order term vanishes in the ground state H1 = 0 using
sin ϕk = �0/Ek and cos ϕk = −ξk/Ek. The second order term
reads

H2 = 2
∑

k

Ekα
†
kαk + g

4

∑
k,k′

{(1 − cos ϕk cos ϕk′ )

× (αkαk′ + α
†
kα

†
k′ ) − (1 + cos ϕk cos ϕk′ )

× (αkα
†
k′ + α

†
kαk′ )}. (C6)

We diagonalize H2 by a Bogoliubov transformation

βλ =
∑

k

(X∗
λkαk + Y ∗

λkα
†
k ), (C7)

β
†
λ =

∑
k

(Xλkα
†
k + Yλkαk ), (C8)

where λ labels the excited states. The bosonic operator βλ

satisfies the commutation relations

[βλ, β
†
λ′ ] =

∑
k

(X∗
λkXλ′k − Y ∗

λkYλ′k ) = δλ,λ′ , (C9)

[β†
λ, β

†
λ′ ] =

∑
k

(−XλkYλ′k + YλkXλ′k ) = 0. (C10)

From Eqs. (C7) and (C8), one can easily derive the inverse
transformation

αk =
∑

λ

(Xλkβλ − Y ∗
λkβ

†
λ), (C11)

α
†
k =

∑
λ

(X∗
λkβ

†
λ − Yλkβλ). (C12)

Assuming that the second order term is diagonalized as
H2 = ∑

λ ωλβ
†
λβλ + const., we obtain

[αk,H2] =
∑

λ

ωλ(Xλkβλ + Y ∗
λkβ

†
λ). (C13)

On the other hand, using Eq. (C6), one obtains

[αk,H2] =
∑

λ

{(
2EkXλk − g

2

∑
k′

(cos ϕk cos ϕk′ + 1)Xλk′

+ g

2

∑
k′

(cos ϕk cos ϕk′ − 1)Yλk′

)
βλ

+
(

−2EkY
∗
λk − g

2

∑
k′

(cos ϕk cos ϕk′ − 1)X∗
λk′

+ g

2

∑
k′

(cos ϕk cos ϕk′ + 1)Y ∗
λk′

)
β
†
λ

}
. (C14)

Comparing Eqs. (C13) and (C14), one obtains sets of equations
for Xλk and Yλk as

2EkXλk − g

2
{(aλ − cλ) cos ϕk + (bλ + dλ)} = ωλXλk,

(C15)

−2EkYλk − g

2
{(aλ − cλ) cos ϕk − (bλ + dλ)} = ωλYλk,

(C16)

where the coefficients aλ, bλ, cλ, and dλ are given by

aλ =
∑

k

cos ϕkXλk, bλ =
∑

k

Xλk, (C17)

cλ =
∑

k

cos ϕkYλk, dλ =
∑

k

Yλk. (C18)

Equations (C15) and (C16) can be formally solved as

Xλk = g

2

(aλ − cλ) cos ϕk + (bλ + dλ)

2Ek − ωλ

, (C19)

Yλk = −g

2

(aλ − cλ) cos ϕk − (bλ + dλ)

2Ek + ωλ

. (C20)

We omit λ below.
If the p-h symmetric condition (7) is satisfied, Eqs. (C15)

and (C16) can be decoupled by introducing the even and odd
components as

Xe
k = (Xk + Xk )/2, Y e

k = (Yk + Yk )/2, (C21)

Xo
k = (Xk − Xk )/2, Y o

k = (Yk − Yk )/2, (C22)

where the former two are even as Xe
k = Xe

k and Y e
k = Y e

k , while
the latter two are odd as Xo

k = −Xo
k and Y o

k = −Y o
k .

The equations for odd components read

2EkX
o
k − g

2
(a − c) cos ϕk = ωXo

k, (C23)

−2EkY
o
k − g

2
(a − c) cos ϕk = ωYo

k , (C24)

a =
∑

k

cos ϕkX
o
k, c =

∑
k

cos ϕkY
o
k . (C25)

If a − c �= 0, the formal solutions of Eqs. (C23) and (C24) are
given by

Xo
k = g

2

(a − c) cos ϕk

2Ek − ω
, Y o

k = g

2

(c − a) cos ϕk

2Ek + ω
. (C26)

Setting Xe
k = Y e

k = 0, we obtain Xk = Xo
k and Yk = Y o

k . The
condition b + d = 0, which is obtained from Eqs. (C19)
and (C20), reduces to∑

k

ωξk

Ek
(
4E2

k − ω2
) = 0. (C27)
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Since Eq. (C27) is equivalent to χxy (ω) = 0, it ensures the
uncoupled phase and amplitude fluctuations.

Substituting Eq. (C26) into Eq. (C25), we obtain

1 − 2g
∑

k

ξ 2
k

E2
k

Ek

4E2
k − ω2

= 0. (C28)

The above equation is equivalent to 1 − 2gχxx (ω) = 0 and
therefore has the MG mode solution ω = 2|�0| for which it
reduces to the MF gap equation. We thus obtain

Xo
k = − A cos ϕk

2|�0| − 2Ek
, Y o

k = − A cos ϕk

2|�0| + 2Ek
, (C29)

where A is the normalization constant. A is determined by the
normalization condition (C9) as

A = 1√∑
k

|�0|
Ekξ

2
k

. (C30)

The creation operator of the MG mode is thus obtained as

β
†
H = A

∑
k

ξk

Ek

(
1

2|�0| − 2Ek
α
†
k + 1

2|�0| + 2Ek
αk

)
.

(C31)

The equations for even components read

2EkX
e
k − g

2
(b + d ) = ωXe

k, (C32)

−2EkY
e
k + g

2
(b + d ) = ωY e

k , (C33)

b =
∑

k

Xe
k, d =

∑
k

Y e
k . (C34)

If b + d �= 0, the formal solutions of Eqs. (C32) and (C33) are
given by

Xe
k = g

2

b + d

2Ek − ω
, Y e

k = g

2

b + d

2Ek + ω
. (C35)

Setting Xo
k = Y o

k = 0, we obtain Xk = Xe
k and Yk = Y e

k . The
condition a − c = 0, which is obtained from Eqs. (C19) and
(C20), reduces to Eq. (C27).

Substituting Eq. (C35) into Eq. (C34), we obtain

1 − 2g
∑

k

Ek

4E2
k − ω2

= 0. (C36)

The above equation is equivalent to 1 − 2gχyy (ω) = 0 and
therefore has the NG mode solution ω = 0, for which it reduces
to the MF gap equation. We thus obtain

Xe
k = Y e

k = A′/Ek, (C37)

where A′ is the normalization constant. However, Eq. (C37)
does not fulfill the normalization condition (C9). This anomaly
is typical for zero energy modes. It can be avoided by in-
troducing a small fictitious external field in the Hamiltonian
(2) [51]. The creation operator of the NG mode is thus
obtained as

β
†
NG = A′ ∑

k

1

Ek
(α†

k + αk ). (C38)

In the limit of small fluctuation α
†
kαk � 1, using α

†
k � S ′+

k
and αk � S ′−

k , the creation operators for the Higgs mode and
the NG mode can be obtained as Eqs. (27) and (28).
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