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Spontaneous edge current in higher chirality superconductors
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The effects of finite temperature, Meissner screening, and surface roughness on the spontaneous edge current for
higher chirality quasi-two-dimensional superconductors are studied in the continuum limit using the quasiclassical
Eilenberger equations. We find that the total spontaneous current is nonzero at finite temperature T and maximized
near T = Tc/2, where Tc is the transition temperature, although it vanishes at T = 0. In the presence of surface
roughness, we observe a surface current inversion in the chiral d-wave case that can be understood in terms
of a disorder-induced s-wave pairing component in the rough surface regime. This conclusion is supported by
a Ginzburg-Landau analysis. However, this current inversion is nonuniversal beyond the continuum limit, as
demonstrated by self-consistent lattice Bogoliubov-de Gennes calculations.
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I. INTRODUCTION

Chiral superconductors spontaneously break time-reversal
symmetry and support chiral Majorana edge modes [1–3]. As a
consequence, there are spontaneous supercurrents generated at
edges. Although the number of chiral edge modes is protected
by topology [4], the edge currents are not topologically pro-
tected and can strongly depend on microscopic details [5–8],
since charge is not conserved in a superconducting state, in
contrast to a quantum Hall state.

Edge currents, as well as the related total orbital angular
momentum of Cooper pairs, have been studied extensively for
chiral p-wave superconductors [5–9]. The major motivation
is to reconcile the theoretical prediction of a large edge
current [10] with the null result observed in scanning probe
measurement on Sr2RuO4 [11–13], which is believed to be
a chiral p-wave superconductor [2,3,14]. Theoretical studies
have shown that, in the absence of Meissner screening, the
integrated current is substantial at T = 0 [6,15–18] and de-
creases rapidly as T increases [16,18]. Previous studies [5,7,8]
have shown that spontaneous supercurrents in higher chirality
superconductors are different from the chiral p-wave case. In
particular, the integrated edge currents of the higher chirality
superconductors vanish in the semiclassical continuum limit,
in stark contrast to the chiral p-wave case [5]. These studies
focused on T = 0 and neglected Meissner screening. More
recently, Ref. [19] studied finite temperature and screening
effects on edge currents for higher chirality superconductors
in a mesoscopic system (a very narrow cylinder).

In this paper, we generalize the study in Ref. [19] to
a half-infinite system, where these effects can be separated
from finite size effects and also examine more closely the
explanation for and robustness of current inversion due to
disorder. Following Refs. [10,19], we study the edge currents in
the continuum limit for a quasi-two-dimensional chiral super-
conductor using the quasiclassical Eilenberger equations [20].
Interestingly, we find that, without Meissner screening, the
integrated edge currents for higher chirality superconductors
are nonzero at finite T , unlike at T = 0, although they are much

smaller than the current of the chiral p-wave case. This finite
temperature current is a consequence of the superconducting
order-parameter variations near a surface.

In Refs. [21–24], it has been shown that surface roughness,
together with band structure effects, can lead to substantial
suppression of the edge current in a chiral p-wave super-
conductor and potentially account for the null result of edge
currents in Sr2RuO4 experiments. Here we study rough surface
effects on higher chirality superconductors by introducing an
impurity self-energy in the quasiclassical Green’s function. As
in Ref. [19], we find the edge current direction is reversed
due to strong surface roughness for chiral d-wave pairing in
the continuum limit. However, our calculations together with
a Ginzburg-Landau (GL) analysis, suggest a physically more
transparent explanation for the current inversion. We ascribe
the inversion to a strong disorder induced subdominant s-wave
component near the interface between the rough surface regime
and the bulk. Near the interface, the original dx2−y2 and idxy

components have almost identical spatial variation, due to the
surface and disorder, and their contribution to the current is
almost zero. On the other hand, the induced s-wave component
is real and can combine with the idxy component to give a
sizable current near the interface if the s-wave channel is not
too repulsive. The current resulting from the s + idxy pairing
is opposite in direction to that near the specular surface.

However, the current inversion is nonuniversal beyond the
continuum limit. This is supported by self-consistent lattice
Bogoliubov-de Gennes (BdG) calculations, where we explic-
itly show that the existence of the current inversion depends
on edge orientation and chemical potential or band structure
effects.

The rest of the paper is organized as follows: In Sec. II
we outline the self-consistent Eilenberger formalism. Then
we present our results of the edge currents for a specular
surface without and with Meissner screening in Secs. III
and IV, respectively. Section V contains the results with
surface roughness. Section VI contains the discussion and
conclusions.
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II. FORMALISM

We consider a semi-infinite (x > 0) quasi-2d superconduc-
tor with a cylindrical Fermi surface independent of kz. The
system is described by the following Eilenberger equation [20]:

−ivFx

d

dx
ĝ(θk, x; ωn) = [Ĥ (θk, x; ωn), ĝ(θk, x; ωn)], (1)

valid if the characteristic length scale considered is much
longer than the Fermi wavelength. Here, ĝ(θk, x; ωn) is the
quasiclassical Green’s function, θk is defined by the direction
of the quasiparticle momentum, k = kF (cos θk, sin θk ), and
ωn = (2n + 1)πT is the Matsubara frequency. The Green’s
function does not depend on the magnitude of the momentum
k as all high-energy information involving |k| �= kF has been
integrated out. Furthermore, since there is no variation along
z, this coordinate is not shown in ĝ. As usual, in the Nambu
particle-hole space, ĝ(θk, x; ωn) is a 2×2 matrix

ĝ(θk, x; ωn) =
(

g(θk, x; ωn) if (θk, x; ωn)
−if̄ (θk, x; ωn) −g(θk, x; ωn)

)
, (2)

where g and f are the normal and anomalous parts, re-
spectively. The two components satisfy the normalization
relation g2(θk, x; ωn) + f (θk, x; ωn)f̄ (θk, x; ωn) = 1, which
is a consequence of ĝ2(θk, x; ωn) being a position independent
constant along the quasiparticle trajectory within the Eilen-
berger quasiclassical formalism. On the right hand side of
Eq. (1), Ĥ (θk, x; ωn) is given by

Ĥ (θk, x; ωn) =
(

iωn − evFy
Ay (x) −�(θk, x)

�∗(θk, x) −iωn + evFy
Ay (x)

)
,

(3)

where, Ay (x) is the y component of the vector potential
satisfying ∇×A = Bz(x)ẑ. Bz(x) is the local magnetic field,
which can either be generated by the spontaneous edge current
or applied externally. Here, we only consider the spontaneous
field and a gauge is chosen such that Ax (x) ≡ 0. The Fermi
velocities in Eqs. (1) and (3) are defined as vF = (vFx, vFy ) =
vF (cos θk, sin θk ).

The off-diagonal component �(θk, x) in Eq. (3) is the chiral
superconducting order parameter. For chiral m-wave pairing,
it is given by �(θk, x) = �1(x) cos(m θk ) + �2(x) sin(m θk ).
We choose �1(x) to be real and �2(x) to be purely imaginary
in the bulk such that the order parameter is chiral. �1 and
�2 are determined self-consistently from the following gap
equations:

�1(x) = πT NF V
∑

|ωn|<ωc

〈2 cos(mθk )f (θk, x; ωn)〉, (4a)

�2(x) = πT NF V
∑

|ωn|<ωc

〈2 sin(mθk )f (θk, x; ωn)〉. (4b)

〈. . . 〉 = 1
2π

∫ π

−π
dθk(. . . ); ωc is the pairing energy cutoff;

NF is the normal state density of states at the Fermi energy;
and V is the pairing interaction strength. The dimensionless
attractive interaction strength NF V is connected to the super-
conducting transition temperature Tc by

1

NF V
= log

T

Tc

+
∑

n,|ωn|�ωc

1

n − 1/2
, (5)

which becomes T independent in the weak coupling limit T �
Tc � ωc. We will use this equation for NF V in terms of Tc and
ωc and rescale all energy quantities by Tc. In this way, we do
not need to explicitly specify the value of NF V .

We use the Riccati parametrization [25] to solve for the
Green’s function matrix, ĝ. The current density Jy (x) is

Jy (x) = −evF NF T
∑

|ωn|<ωc

(−iπ )〈sin(θk )g(θk, x; ωn)〉. (6)

The spontaneous current, Jy (x), gives rise to a local field,
Bz(x), which can be calculated from the Maxwell equation:

dBz(x)

dx
= −μJy (x), (7)

where the permeability, μ, is related to the penetration depth
λL =

√
m/e2μn, n is the normal state electron density and

m (−e) is the electron mass (charge). To include Meissner
screening in a self-consistent manner, we solve the Eilenberger
equation together with the above Maxwell equation simulta-
neously.

Lastly, we consider the effect of surface roughness modeled
by adding a disorder-induced self-energy, �̂, to Ĥ in Eq. (1).
Then �̂ can be calculated within the self-consistent Born
approximation from the Green’s function,

�̂(x; ωn) = i

2τ (x)
〈ĝ(θk, x; ωn)〉. (8)

Here τ (x) is the local x-dependent mean free time. As a model
of roughness near the surface, we take 1/τ (x) to be maximum
at x = 0 and to decay to zero into the bulk. Note that �̂(x; ωn)
does not depend on the angle θk, which is a consequence of
the assumption that locally the disorder scattering is isotropic.

We solve the above coupled equations for the Riccati
parameters, �1, �2, Ay , and �̂ simultaneously by iteration
until a stable self-consistent solution for all parameters is
achieved.

III. EDGE CURRENTS WITHOUT MEISSNER SCREENING
AND SURFACE ROUGHNESS

We first consider the edge currents without Meissner screen-
ing and surface roughness and focus primarily on the finite
temperature results.

The spatial profiles of the T = 0 edge currents are similar
to those obtained in Ref. [19], although not identical because
of the finite system size in Ref. [19], and can be found in
Appendix A. From Figs. 7(e) and 7(f), we see that the edge
current Jy (x) is finite for the chiral d- and f -wave pairings,
although the integrated current is zero. At first glance, this
seems to contradict the weak coupling GL result [5]:

Jy (x) ∝ k3 (�2∂x�
∗
1 − c.c.) − k4 (�∗

1∂x�2 − c.c.), (9)

where k3 = k4 = 0 for all non-p-wave chiral pairing. However,
there is no contradiction since Eq. (9) only accounts for the
lowest order contribution in the GL expansion. Higher order
terms, such as �∗

1∂
3
x�2 − c.c., can lead to a small current
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FIG. 1. Temperature dependence of the integrated edge current,
Iy (T ), for chiral d- (red open circles) and f - (green triangles) waves
with the self-consistently determined superconducting order parame-
ter. The black dots (open circles) are numerical results for chiral d (f )-
wave with a uniform order parameter �1(x ) = �2(x ) ≡ �(bulk). Iy

is scaled by J0ξ0, where J0 = evF NF Tc and ξ0 = vF /π�(bulk) is
the zero temperature coherence length.

density. Note that Eq. (9) implies a current along y when the
order parameter, �(θk, x), has a spatial phase variation along
x. This transverse response results from the two-component
chiral nature of the order parameter, as discussed in detail in
Refs. [6,26].

At finite T , the total integrated current (or more precisely,
the current per-unit length along the z direction for the quasi-2d

system), Iy ≡ ∫ ∞
0 Jy (x)dx, for a chiral p-wave superconduc-

tor decreases monotonically with T and vanishes at the super-
conducting transition temperature Tc [16,18]. The temperature
dependence for chiral d- and f -wave superconductors is quite
different, as shown in Fig. 1. Although Iy (T ) = 0 at both
T = 0 and T = Tc, it is nonzero at 0 < T < Tc and reaches
its maximum just below T = Tc/2. By contrast, as found in
Ref. [5], for a uniform superconducting order parameter, i.e.,
�1(x) = �2(x) ≡ �(bulk), Iy (T ) ≡ 0 for any T . This result
can be derived from an analytical treatment of the Eilenberger
equation (see Appendix B) and a semiclassical BdG analysis.
The spatially varying order parameter is crucial for the nonzero
Iy at finite T .

To understand the above results, we first consider the case
of a uniform superconducting order parameter. In this case,
the edge state dispersion can be obtained from a semiclassical
BdG analysis, as given in Refs. [5,27]. It is determined by
the enhanced component of the order parameter and for our
geometry given by the following piecewise function [5]:

E(j )(θk ) =
{

(−1)(j−1)�0 cos(mθk ), if m = even,

(−1)j�0 sin(mθk ), if m = odd,
(10)

for −π/2 + (j − 1)π/m � θk < −π/2 + jπ/m, where the
edge state branch number j = 1, 2, . . . , m. For the chiral
d-wave case there are two edge state branches (see Fig. 2) and
their dispersions, in terms of ky = kF sin θk, are E(j )(ky ) =
±�0(k2

F − 2k2
y )/k2

F . At T = 0, only the states with E(j )(θk )

-0.1

-0.05

0

0.05

0.1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
/t

ky/π

uniform
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FIG. 2. Edge state energy dispersion for chiral d-wave pairing
obtained from BdG calculations with a self-consistently determined
superconducting order parameter (solid red lines) and a uniform order
parameter (dashed black lines). The shaded regimes represent dense
bulk energy spectra, whose details are not shown here. Inside the
bulk superconducting gap, there are two edge state energy dispersions
crossing E = 0 at ky = ±kF /

√
2.

� 0 are occupied and their contribution to the edge current
is [5]

Iy (T = 0) ∝
m∑

j=1

∫
�(−E(j )(θk )) ky dky (11a)

∝
∫

�(−E(1)(θk ))

⎧⎨
⎩

m∑
j=1

sin

(
2θk + (j − 1)

2π

m

)⎫⎬
⎭dθk

(11b)

= 0, (11c)

where �(x) is the Heaviside step function and from the first
line to the second we have used the periodicity of E(j )(θk ),
E(j )(θk ) = E(j+1)(θk + π/m).

The last equality comes from the fact that the { · · · } factor in
Eq. (11b) vanishes identically for any |m| �= 1. Hence the zero
Iy (T = 0) is a consequence of the exact cancellation between
the m branch contributions. Notice that the cancellation is
between m different ky states, one from each of the m edge
state branches for any allowed energy E, and it is independent
of the zero-temperature occupation number �(x). At finite T ,
Iy (T ) is still given by the above integral in Eqs. (11a) and (11b)
except that �(x) is replaced by the Fermi-Dirac distribution,
nF (x) = 1/(ex/T + 1), and the gap magnitude is T dependent.
Since the factor {· · · } ≡ 0 in Eq. (11b) is independent of T ,
we reach the conclusion that Iy (T ) ≡ 0 for any |m| �= 1, if the
order parameter is uniform, in agreement with the results in
Fig. 1. We should emphasize that the edge currents not only
come from edge states but also from bulk scattering states. In
the following, for qualitative understanding, we only focus on
the edge state contributions. However, in Appendix B, we show
that if the order parameter is uniform, the bulk contribution of
Iy (T ) also vanishes at all T .
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Next we consider the case with �1 and �2 determined self-
consistently. When the x-dependence of the superconducting
order parameter near the surface is taken into account, E(j )(θk )
is no longer given by Eq. (10) and Iy (T = 0) cannot be
expressed as Eq. (11b). However, the m integrals in Eq. (11a)
still cancel at T = 0 because they only depend on the lower
and upper ky limits of each integral but not the details of
E(j )(θk ). These ky values remain the same as in the uniform
order parameter case and only depend on kF or m, because
the lower ky limit is determined by the starting θk point
of each branch dispersion, E(j )(θk ), while the upper limit
by E(j )(θk ) = 0.1 This is also confirmed for the chiral d-
wave case by self-consistent BdG, as shown in Fig. 2. As a
consequence, from Eq. (11a), Iy (T = 0) = 0 remains. This
result is consistent with Refs. [5,7], where Iy (T = 0) was
shown to be of order O(�/EF ) for chiral d- or f -waves; in
the semiclassical approximation, �/EF → 0 (implicit in the
Eilenberger formalism), and, consequently, Iy (T = 0) = 0.

At finite T , edge states with E(j )(θk ) > 0 also contribute to
the current due to thermal population and the entire E(j )(θk )
dispersion matters. Since E(j )(θk ) is no longer given by
Eq. (10) and Iy (T ) cannot be written in the form of Eq. (11b),
the exact cancellation between them branches breaks down and
gives rise to the nonzero Iy at finite T in Fig. 1. As T → Tc, one
approaches equal occupation of all edge states, which results
in zero current. The competition between the two factors,
the imbalance between the m different edge state branches
and the thermal degradation of currents as one approaches
Tc, results in the Iy (T ) peak around T = Tc/2 in Fig. 1.
These results could have implications for future experiments on
possible higher chirality superconductors, as discussed in the
conclusions.

We also note that in Fig. 1, as T → Tc, Iy (T ) vanishes
faster than Iy (T ) ∝ Tc − T , in stark contrast to the chiral
p-wave case [16,18]. The difference comes from the fact
that the lowest order nonzero contribution to the edge current
density for higher chirality superconductors comes from terms,
which involve higher order spatial derivatives than those in
Eq. (9) for chiral p-wave. For example, for chiral d-wave,
two of these terms are �∗

1∂
3
x�2 − c.c., which predict a scaling

of the current density Jy ∝ �(T )2/ξ (T )3 for T � Tc. Here
�(T ) and ξ (T ) is the temperature-dependent gap magnitude
and coherence length, respectively. This leads to Iy (T ) ∝
Jyξ (T ) ∝ (T − Tc )2 for T near Tc.2

Although we have focused on higher chirality supercon-
ductors in the above, the same conclusion that the self-
consistency of the order parameter does not change the

1At these ky (or θk) points, edge states for positive chirality are de-
generate in energy with those of negative chirality, which occurs when
one component of the order parameter,�(θk, x ) = �1(x ) cos(mθk ) +
�2(x ) sin(mθk ), vanishes for a general x. Therefore, the degenerate
ky (or θk) points are completely fixed by the pairing symmetry of the
two components, either cos(mθk ) = 0 or sin(mθk ) = 0, regardless of
whether �1 and �2 are uniform or self-consistently determined.

2In Fig. 1, the T dependence of Iy (T ) for chiral d-wave may slightly
deviate from the quadratic prediction at T ≈ Tc due to the finite θk-
and x-grid sizes used in numerics and the diverging ξ (T ) as T → Tc.

-0.05

0

0.05

0.1

0.15

(a)

-0.008

0

0.008

0.016

(b)

-0.003

0

0.003

0.006

0 5 10 15
x/ξ0

(c)

Jy
Bz
Ay

Jy
Bz
Ay

Jy
Bz
Ay

FIG. 3. (a)–(c) Spatial dependencies of the edge current density,
Jy (x ), induced magnetic field, Bz(x ), and vector potential, Ay (x ),
with Meissner screening taken into account for chiral p-, d- and f -
wave pairings, respectively. GL ratio κ ≡ λL/ξ0 = 2.5. Jy (x ), Ay (x )
and Bz(x ) are scaled by J0 = evF NF Tc, �(bulk)/evF and Bc =
�0/2

√
2πξ0λL, respectively, where �0 = h/2e and T = 0.02Tc.

Iy (T = 0) but has an effect on the finite temperature Iy (T )
applies to the chiral p-wave case as well. Since, for the
chiral p-wave case, Iy (T ) is already large for a uniform order
parameter, the self-consistency of the order parameter only
changes the finite temperature result by a relatively small
amount.

Finally, in a more general lattice model with anisotropy,
Iy (T = 0) does not need to vanish for higher chiralities.
The above argument breaks down, since the ky positions of
E(j )(ky ) = 0 are not protected by any bulk band topology.

IV. MEISSNER SCREENING EFFECT
ON THE EDGE CURRENTS

Meissner screening is included by solving the Eilenberger
equations and the Maxwell equation simultaneously and self-
consistently. The results are shown in Fig. 3. As expected,
the induced magnetic field Bz(x) vanishes into the bulk in
all cases. Comparing Figs. 3(a)–3(c) with Figs. 7(d)–7(f)
(in Appendix A) we see that, although screening reduces
the edge current magnitude by a significant fraction in the
chiral p-wave case, the magnitude of the edge currents in the
higher chirality cases is much less affected. This is expected
since the unscreened edge currents for higher chirality have
contributions from different edge state branches with different
signs as well as spatial variations at different length scales
(see Appendix A, Fig. 8). The resulting oscillating (with
sign changes) unscreened current is, effectively, partially self-
screened. Screening also introduces one additional node in the
spatial dependence of Jy (x) for all chiral pairing channels due
to the different length scales of the diamagnetic current (λ) and
the spontaneous current (ξ0).
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FIG. 4. (a)–(c) Spatial dependence of �1 and Im(�2) in the
presence of surface roughness for chiral p-, d- and f -waves, respec-
tively. (d)–(f) Spatial dependence of the edge current Jy (x ) and the
induced Bz(x ) in the presence of surface roughness for different chiral
pairing channels. The effective rough regime with width W = 5ξ0 is
shaded in grey. The strength of the roughness is characterized by
the shortest mean free path, 
p ≡ vF τ (x = 0), in the rough regime,
which is ξ0/
p = 1.0 for the results shown. The two order parameter
components have been already scaled by their bulk values. Meissner
screening is not taken into account. T = 0.02Tc.

V. ROUGH SURFACE EFFECT

We now discuss the effect of the surface roughness on
the edge currents. The surface roughness is modeled with a
spatially dependent local scattering rate given by

1

τ (x)
= 1

τ (0)

(
1 − tanh[(x − W )/ξ0]

2

)
, (12)

which is maximal at x = 0 and decays into the bulk. W is the
effective width of the rough regime.

To simplify the discussion, we first ignore Meissner screen-
ing. The order parameter and edge current density computed
are shown in Fig. 4 for different pairing channels and strong
surface roughness with a local mean free path 
p ≡ vF τ (x =
0) = ξ0. The superconductivity is completely suppressed at
the vacuum-superconductor interface and is nonzero in the
rough regime only near x = W , where the surface roughness
gradually disappears.

Aside from a suppression of the edge current, the most
prominent feature in Fig. 4(e) is that the edge current for
the chiral d-wave pairing case flows in a direction opposite
to that of the specular surface [see Fig. 7(e)], while the
edge current direction of odd-angular momentum channels
remains unaltered in the presence of the surface roughness.
The edge current inversion for the chiral d-wave pairing has
been observed and discussed in Refs. [19,28] previously. The
explanation there is that the outer edge current of the clean
system, the positive part of Jy (x) in Fig. 7(e), is suppressed by
surface roughness because it is closer to x = 0, while the inner
current, the negative part of Jy (x) in Fig. 7(e), survives. The net
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J
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FIG. 5. Comparison of Jy (x ) obtained with (solid black line)
and without (dashed red line) the off-diagonal impurity self energy,
�o.d., discussed in the text. The current from the GL free-energy
analysis in Eq. (18) (blue open circles) is plotted. Green line with
dots shows that the inverted current is greatly reduced when an
s-wave repulsive interaction Vs = −5Vd is present. Here Vd is the
bulk d-wave attractive interaction.

result is then a current direction inversion. In the following, we
provide an alternative explanation for the current inversion near
x = W for the chiral d-wave pairing and analyze the robustness
of this effect.

We ascribe the currents near x = W in Fig. 4(e) to
a disorder-induced s-wave pairing self-energy. Namely,
�̂(x; ωn) defined in Eq. (8) has a nonzero component off-
diagonal in particle-hole space. Let us denote it as �o.d.(x; ωn).
�o.d. has s-wave symmetry and is independent of θk. Nu-
merically if we set �o.d.(x; ωn) ≡ 0 by hand, i.e., drop the
off-diagonal term in calculating �̂ from Eq. (8), then the
current near x = W is almost completely suppressed, as shown
in Fig. 5.

Effectively, we can interpret �o.d. as an additional s-wave
“order parameter”, �s , induced by the disorder. This is possible
because, although �o.d. depends on the Matsubara frequency,
ωn, it is even in ωn in the even parity d + id pairing case; on
the contrary, if the bulk pairing has an odd parity, then �o.d.

is an odd function of ωn. The s-wave pairing self-energy term
is allowed to mix with the original order parameter, which is
non-s-wave, because the edge breaks inversion symmetry.

From Eq. (8), we see that the s-wave �o.d. comes from
the anomalous Green’s function f (θk, x; ωn) having a nonzero
s-wave component. This s-wave component is subdominant to
the bulk d + id pairing and induced by the suppression of the
d + id pairing near x = W , which is in turn due to the edge
and the disorder. In weak-coupling GL theory, this can be seen
from the following mixed gradient term [29,30] in free energy:

+4A4(Dx�
∗
s Dx�1 + c.c.), (13)

derived in Appendix D. Here A4 > 0, Dx ≡ vF

2 ∂x and �s is
the subdominant s-wave order parameter induced near x = W .
This term favors a nonzero �s where �1 has a spatial variation,
which is most significant near x = W . The sign of �s can be
determined by minimizing Eq. (13). Given that �1 is real and
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∂x�1 > 0 near x = W (see Fig. 4), �s is real as well and also
∂x�s < 0, which leads to �s > 0 since �s = 0 in the bulk. In
other words, the sign of �s is the same as that of �1.

Using �s , we can now understand the spontaneous current
Jy (x) near x = W in Fig. 5. Since the spatial variations of
�1 and �2 are almost identical near x = W , the spontaneous
current due to the original d + id components is greatly
suppressed. As a consequence, the current mainly comes from
the s + idxy pairing components. This current can be derived
from another mixed gradient term [29,30] in the GL free
energy:

Fmix ≡ +A4 v2
F {∂x�2∂y�

∗
s + ∂y�2∂x�

∗
s + c.c}. (14)

For the half-infinite geometry, the spontaneous current is along
y direction. Jy can be obtained by minimal coupling Fmix to
the vector potential Ay and taking a functional derivative of
Fmix with respect to Ay . The result is

Jy ∝ −2e i {�2∂x�
∗
s − �∗

s ∂x�2 − c.c.}, (15)

with a positive proportionality constant. e > 0 is the magnitude
of an electron charge. To a good approximation, the spatial
variation of �s follows that of the local scattering rate since
�s ∼ �o.d. ∝ 1/τ (x). So we can take

�s (x) = �s sgn(�1)
τ (0)

τ (x)
, (16)

where �s > 0 is the overall magnitude and we have made
the sign dependence of �s on sgn(�1) explicit. Here �1 is
the bulk value of the dx2−y2 component order parameter. The
spatial variation of the idxy in Fig. 4(b) can be approximated
by

�2(x) = i Im(�2)
tanh[(x − W )/
h] + 1

2
, (17)

where 
h is the healing length of the idxy component near
x = W and it can be roughly taken as the maximal local mean
free path: 
h ≈ 
p = ξ0. Then from the expression of Jy in
Eq. (15) we have

Jy (x) = −J0 sgn(�1 Im(�2)) sech2 x − W

ξ0
, (18)

where J0 > 0 is a constant that sets the maximal |Jy (x)|
magnitude. Using J0 ≈ 0.04, this gives a current profile in
Fig. 5 (open circles) very similar to that from the numerical
Eilenberger solution (black solid line). Note that Jy (x) is
still odd in the chirality of the d + id order parameter, as
expected. The dependence on sgn(�1) is inherited from the
disorder-induced �s (x).

The GL explanation presented here, as well as the lattice
BdG results, depends only on frequency-independent order
parameters and their spatial derivatives, but in the Eilenberger
calculation the spontaneous current can also be related to
odd-frequency pairing components of the anomalous Green’s
functions [19]. The odd-frequency pairing appears as deriva-
tives of an order parameter in the GL analysis after the
frequency is integrated over. So the two, GL and Eilenberger
odd frequency pairing, are connected, but the GL analysis is
physically more transparent. For instance, the GL formulation
shows that the current inversion depends not only on the
presence of �s but also on the relative phase between �s

-0.08

0

0.08

0.16

(a)

-0.06

-0.04

-0.02

0

0.02

(b)

-0.002

-0.001

0

0.001

0.002

0 5 10 15
x/ξ0

(c)

Jy
Bz
Ay

Jy
Bz
Ay

Jy
Bz
Ay

FIG. 6. Spatial dependencies of Jy (x ), Bz(x ), and Ay (x ) with
Meissner screening for chiral p-, d- and f -wave pairing (from top
to bottom), in the presence of a rough surface in a region of width
W = 5ξ0 and with 
p = ξ0.

and the bulk d + id order parameter components. The phase
is determined in GL by minimizing the free-energy term in
Eq. (13). Also, for a spontaneous edge current discussion the
frequency independent GL analysis seems more natural.

The noninversion of current in the chiral p-wave case
[Fig. 4(d)] can also be understood within the GL framework.
In the chiral p-wave case, without strong surface roughness,
the GL current is dominated by Jy ∝ k3(�2∂x�

∗
1 − c.c.) −

k4(�∗
1∂x�2 − c.c.) with coefficients k3, k4 > 0 [5]. This re-

mains true in the presence of strong surface disorder as disorder
does not introduce any new frequency-independent order
parameters since �o.d.(ωn) is completely odd in frequency.
Disorder enhances the order parameter derivative term ∂x�1,
that also has an s-wave symmetry. Due to this enhancement,
the magnitude of k3 and k4 become different (k3 = k4 without
surface disorder) such that k3(�2∂x�

∗
1 − c.c.) dominates the

current. Then, with the spatial profiles of �1 and �2 given in
Fig. 4(a), it is easy to see thatJy remains positive in the presence
of strong surface roughness, so there is no current inversion.
The current in the chiral f -wave case can be understood
similarly, but the analysis is more involved as order parameter
derivatives higher than the first order are needed and therefore
we do not elaborate on this here.

However, we should emphasize that the edge current
inversion seen for chiral d-wave pairing in the continuum
limit is not universal. Away from the continuum limit, the
direction of the current can depend on surface orientation and
microscopic details. For example, for chiral d-wave pairing on
a triangular lattice, with the edge along the zigzag direction
and the chemical potential near half-filling (see Appendix C),
the current in the absence of disorder is opposite to that in the
continuum limit. In this case, there is no current inversion due
to the surface disorder. Furthermore, since the current inversion
requires an induced s-wave component, even in the continuum
limit with strong edge disorder, the effect is reduced if the s-
wave channel is repulsive. In physical systems, unconventional
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pairing is usually accompanied by a sufficiently strong short-
range Coulomb interaction that leads to repulsive interactions
in the s-wave channel. In Fig. 5 (green line with dots), we show
the result of including s-wave repulsion self-consistently.

Finally, we discuss the effect of Meissner screening, which
so far has been neglected. Figure 6 shows the Jy (x), Bz(x),
and Ay (x) obtained in the presence of Meissner screening. The
major effect of the Meissner screening is to induce an additional
sign change in Jy (x) due to the diamagnetic current such that
the total integrated current

∫ ∞
0 Jy (x)dx ∝ Bz(x = ∞) = 0, as

required by Eq. (7).

VI. CONCLUSION

To summarize, we have considered the effects of finite
temperature, Meissner screening, and surface roughness on the
spontaneous edge current for higher chirality superconductors
in the continuum limit using the quasiclassical Eilenberger
formalism. We find that the integrated edge current for higher
chirality superconductors is finite at finite T , although it
vanishes at T = 0 [5]. It achieves its maximum near T = Tc/2.
The self-consistency of the superconducting order parameter
was found to be crucial for understanding this temperature
dependence. We also find that Meissner screening effects on
the edge current are much weaker for the higher chirality
superconductor, compared with that for the chiral p-wave
case.

Furthermore, we have studied the rough surface effects on
the edge current by modeling the surface roughness as an
effective disorder scattering. Similar to Ref. [19], we have
found that the edge current direction is inverted by the surface
roughness in the chiral d-wave case. We ascribe the inverted
edge current to a disorder induced subdominant s-wave pairing
“order parameter” in the rough surface regime and explain the
current inversion using the GL analysis.

However, we find that this current inversion is not universal
beyond the continuum limit and can depend on microscopic
details, such as the surface orientation and the filling level
of the sample, as seen from our self-consistent lattice BdG
calculations. Furthermore, since the current inversion requires
the presence of an induced s-wave order parameter, the effect
is suppressed by any repulsion in the s-wave channel. In
general, s-wave repulsion is expected to be quite large for most
unconventional superconductors. Consequently, the primary
feature of edge currents in disordered chiral d-wave (as well
as higher chirality) superconductors is that they are expected
to be quite small, relative to the analogous chiral p-wave case,
and the direction of the current is sensitive to microscopic
details.

Experimentally, a direct study of the edge currents has
been conducted only for the chiral p-wave superconductor
candidate material Sr2RuO4 so far. However, as more and more
candidate materials for higher chirality superconductivity, such
as SrAsPt, doped Graphene, UPt3, and URu2Si2, become avail-
able, similar searches for edge currents may be undertaken.
Our results, especially the finite temperature behavior of the
integrated current Iy (T ) and the nonuniversal aspect of the
current inversion in the presence of disorder in the chiral
d-wave pairing case, could be important for understanding
these materials.
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APPENDIX A: SPATIAL PROFILE OF THE EDGE
CURRENT WITHOUT MEISSNER SCREENING

In this Appendix, we show the spatial profiles of the T =0
spontaneous edge currents for different pairing channels. Since
at T = 0, the number of Matsubara frequencies in the numer-
ical calculation diverges, we use T = 0.02Tc to approximate
T = 0. Unless specified otherwise, the pairing energy cutoff
is chosen to be ωc = 10Tc. The spatial profile of the pairing
components are shown in Figs. 7(a)–7(c). In all cases, the
pairing component that is odd under kx → −kx drops to zero at
the edge while the other component (even under x inversion),
is enhanced near the edge [10].

Figures 7(d)–7(f) show the spatial profile of the spontaneous
edge current density and the induced local magnetic field.
For chiral m-wave pairing, the current density changes sign
|m| − 1 times along the x direction [the second sign change
for the chiral f -wave can not be resolved in Fig. 7(f) because
the current magnitude is too small]. This results from the
|m| branches of edge states carrying the edge current with
different signs and different length scales (see Fig. 8 for the
chiral d-wave pairing, for example). Since chiral p-wave has
a single edge mode, its edge current does not change sign and
the integrated edge current can be sizable; while for higher
chirality, the integrated edge current is negligible due to the
multiple sign changes and vanishes at T = 0. This fact has
been emphasized in previous studies [5,7]. The edge currents
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the two blue solid lines are edge state dispersions while the grey
shaded regime represent the bulk state energy spectrum.

are carried not only by the chiral Majorana edge modes but also
by the bulk scattering states, which partially cancel the edge
mode current [17]. However, for a qualitative understanding
of the edge current, one often can focus on the edge mode
contributions only.

Figures 7(d)–7(f) also shows that the bulk magnetic field
induced by the edge current vanishes at T = 0 for chiral d- and
f -waves. This is consistent with the total current integrating
to zero at T = 0.

APPENDIX B: INTEGRATED EDGE CURRENTS
FOR A UNIFORM SUPERCONDUCTING ORDER

PARAMETER AND NO SCREENING

For a uniform superconducting order parameter and
no vector potential A, the Eilenberger equation can be
solved analytically [6,10,18,31–33]. Decomposing the qua-
siclassical Green’s function matrix ĝ in terms of Nambu
particle-hole Pauli matrices, we can write ĝ = g1τ̂1 + g2τ̂2 +
g3τ̂3, with [6,18,32]

g3(θk, x; ωn) = ωn

λ
+ �1

λ

ωn�1 − isλ�2

ω2
n + �2

2

e
−2 λ

|vFx
| x, (B1)

where s ≡ sgn(vFx
) = sgn(cos θk ), and λ = √

ω2
n + �2, �1 ≡

�1(θk ) and �2 ≡ �2(θk ) are the vanishing and enhanced
superconducting order parameter components, respectively.
For example, for chiral p-wave, �(θk ) = �(cos θk + i sin θk ),
�1 = � cos θk, and �2 = � sin θk; while for chiral d-wave,
�(θk ) = �(cos 2θk + i sin 2θk ), �1 = � sin 2θk while �2 =
� cos 2θk. Note that the definitions of �1 and �2 here are
different from those used elsewhere in the paper.

The local current density Jy (x, T ) can be computed from
Eq. (6) with the energy cutoff ωc sent to infinity and the
integrated current is Iy (T ) = ∫ ∞

0 Jy (x, T )dx. In Ref. [5],
it was shown that Iy (T = 0) = 0 for any nonchiral-p-wave

pairing. Here we give the expression of Iy (T ). This finite T

expression of Iy (T ) has been derived for the chiral p-wave
pairing in Ref. [18]. Our derivations parallel those and we only
give the final result here:

Iy (T )

eNF v2
F /8

= 2

〈
vFx

vF

vFy

vF

�1�2

{
π

tanh
( |�2|

2T

)
|�1||�2|

− 2
∫ ∞

0
dy

tanh
( |�|

2T
cosh y

)
�2

2 sinh2 y + �2
1 cosh2 y

}〉
θk

.

(B2)

Inside the { · · · }, the first term comes from a complex contour
integral around the pole on the complex ωn plane at ωn =
i|�2|, and represents the edge mode contribution; while the
second term originates from the branch cut on the complex
ωn plane running from ωn = i|�| to ωn = i∞. The branch
cut contribution comes from the bulk scattering states with
quasiparticle energies � |�|. In general, the two contributions
can both be nonzero.

In Eq. (B2), whether Iy (T ) = 0 or not is solely determined
by the rotational symmetry of the integrand with respect
to θk. For pairing with �k = �(cos mθk + i sin mθk ), in the
integrand of Eq. (B2), the combination of �1�2{ · · · } is
invariant under 2|m|−fold rotation of θk; on the other hand,
the velocity product vFx

vFy
is twofold rotation symmetric.

Hence, the entire integrand can be decomposed into a sum
of two terms which are invariant under either 2|m| + 2 or
2|m| − 2 fold θk rotation. Since the integral vanishes as long
as 2|m| + 2 �= 0 and 2|m| − 2 �= 0, we conclude that, for any
|m| �= 1, Iy (T ) ≡ 0 at any finite T , for the case of a uniform
superconducting order parameter.

Although the above results in this section are derived
for a uniform order parameter, we note that, at T = 0,
the bulk scattering state contribution of Iy (T = 0), I bulk

y ,
remains zero even when the order parameter is self-
consistently determined. This is because I bulk

y can be written

as I bulk
y ∝ ∫ π/2

−π/2 Qm(θk ) sin θk cos θkdθk [5], where the factor
sin θk cos θkdθk comes from kydky and Qm(θk ) is the accu-
mulated charge near the surface due to the phase shift of all
filled bulk scattering states at θk. As shown in Refs. [17,34],
Qm(θk ) only depends on the asymptotic phase of the order
parameter in the bulk, which is unaffected by the presence of
the surface. Therefore, I bulk

y (T = 0) = 0 remains even when
the spatial variations of the order parameter near the surface is
taken into account.

APPENDIX C: SELF-CONSISTENT BDG CALCULATION
OF EDGE CURRENT WITH SURFACE ROUGHNESS

FOR CHIRAL d-WAVE PAIRING

Here, we show that the current inversion due to the surface
roughness seen in the continuum limit for the chiral d-wave
pairing is nonuniversal and is not always present when lattice
effects are included. The existence of the current inversion
depends on microscopic details, such as the edge orientation,
band structure and carrier doping levels.
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We consider a two-dimensional triangular lattice with the
following BdG Hamiltonian

H =
∑
〈r,r′〉

[−tc†rcr′ + �r,r′c
†
r′c

†
r + h.c.] −

∑
r

μrc
†
rcr, (C1)

where 〈r, r′〉 means only nearest-neighbor (NN) hopping,
t , and pairing, �r,r′ , are considered and μr is the local
chemical potential. For the clean system without edges,
the normal state energy dispersion is given by εk =
−2t[cos kx + 2 cos(

√
3ky/2) cos (kx/2)], where the lattice

spacing is set to unity. We have chosen the x direction along
one of the three lattice bond directions.

The chiral d-wave superconducting order parame-
ter is defined on each NN bond, r+r′

2 , as �r,r′ =
�( r+r′

2 )ei 2 Arg[(x ′−x)+i(y ′−y)]. Without edges and disorder,
�( r+r′

2 ) ≡ �0 (a constant), and the order parameter in
k space is �k = �0[cos kx − cos(

√
3ky/2) cos (kx/2)] +

i�0

√
3 sin(

√
3ky/2) sin(kx/2). In the presence of edges, the

order-parameter magnitude �( r+r′
2 ) becomes position depen-

dent; however, we keep the phase ei 2 Arg[(x ′−x)+i(y ′−y)] the same
to ensure the pairing is chiral d-wave. �r,r′ is determined self-
consistently within BdG (details can be found in Refs. [6,23]).

Surface roughness is modeled by adding a random impurity
potential V

imp
r (μr = μ + V

imp
r ) to sites within a width W of

the edge. The impurity density in the rough regime is nimp =
0.2 per lattice site and V

imp
r is uniformly distributed in the

range [−V imp, V imp]. The current calculated is averaged over
different impurity configurations.

We consider two different types of edges of the triangular
lattice, straight and zigzag, and use periodic boundary condi-
tions for the direction parallel to the edges. The current along
each type of edge, denoted as J‖, is calculated for two different
filling levels, μ = 0 (half-filling) and μ = −3t ; the results are
shown in Fig. 9. For straight edges, there is an edge current
inversion due to the surface roughness at both μ = 0t and
μ = −3t ; while for zigzag edges, the current inversion is seen
only at μ = −3t , not at μ = 0. In the specular surface (right
edge of Fig. 9) case, the μ = 0 edge current of the straight
edge and that of the zigzag edge flow in opposite directions.
Similar results have been observed for chiral p-wave pairing
in Ref. [35]. Consequently, the direction of the current for an
ideal edge and the presence of current inversion due to disorder
both are sensitive to microscopic details.

APPENDIX D: GINZBURG-LANDAU ANALYSIS OF
dx2− y2 + i dx y WITH SUB-DOMINANT s-WAVE PAIRING

To understand the role in current reversal of subdominant
s-wave pairing �s induced near the surface of the dx2−y2 + idxy

superconductor, we derive the GL free energy from the anoma-
lous Green’s functions, f and f̄ , obtained from the Eilenberger
equations. For the half-infinite plane, the derivation closely
follows that for px + ipy pairing in Ref. [10]. Hence, in the
following, we only give key steps that are different from
Ref. [10].

The GL free energy is an expansion in terms of

|�|
T

≡ max{|�s |, |�1|, |�2|}
T

,
D

T
≡ |vFx |∂x

T
, (D1)
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FIG. 9. Edge currents for the chiral d-wave pairing obtained
from self-consistent BdG on a triangular lattice with different edge
directions and chemical potentials. The shaded regime on the left
has surface roughness, while the right surface is specular without
disorder. We choose the rough regime width to be W = 5 lattice sites.
A relatively larger temperature T = 0.1Tc has been chosen to reduce
the Friedel oscillations in the current. The impurity potential strength,
V imp = 15t , and the impurity density, nimp = 0.2 per site, are large
such that the effective local mean free path is short, same as in the
Eilenberger calculation, where current reversal is seen.

near T = Tc, where both ratios are small. However, we expect
qualitative features, such as the relative phase of �s , to survive
at low temperature. f and f̄ can be expanded in powers of
|�|/T and D/T and has been done up to the fifth order in
Eq. (A.6) of Ref. [10]. The derivation here becomes different
starting at the form of the order parameter

� = �s + �1 cos 2θk + �2 sin 2θk, (D2)

where �s ,�1, and �2 are the θk independent parts of the
s, dx2−y2 , and idxy order parameters. They are complex and
spatially dependent. They satisfy the following BCS gap
equations,

⎛
⎝�s

�1

�2

⎞
⎠ = πT

∑
0<ωn<ωc

∫ π

−π

dθk

2π

⎛
⎝ Vs

2Vd cos 2θk

2Vd sin 2θk

⎞
⎠[f (θk, x; ωn)

+ f̄ ∗(θk, x; ωn)], (D3)

where Vs > 0 and Vd > 0 are the attractive interactions for
s and d + id, respectively. Substituting the expressions of f

and f̄ from Eq. (A6) of Ref. [10] into the above BCS gap
equations, we obtain three coupled equations for �s ,�1, and
�2 up to third order in the total power of |�|/T and D/T .
These equations should be reproduced by the GL free-energy
F through a Euler-Lagrange equation [10].
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Omitting derivation details, the final results for F are F ∝ F2 + F4 with

F4 = +4A4
{|�s |4 + 3

8 (|�1|4 + |�2|4) + 2|�s |2(|�1|2 + |�2|2) + 1
2 |�1|2|�2|2

+ 1
2 (�∗

s )2
[
�2

1 + �2
2

] + 1
2�2

s [(�∗
1 )2 + (�∗

2 )2] + 1
8

[
�2

2(�∗
1 )2 + (�∗

2 )2�2
1

]
+ 2|Dx�s |2 + |Dx�1|2 + |Dx�2|2 + (Dx�

∗
s Dx�1 + Dx�sDx�

∗
1 )

}
, (D4a)

with Dx ≡ vF

2 ∂x and A4 ≡ 1
4

23−1
23

ζ (3)
(πT )2 . Here ζ (z) is the Rie-

mann zeta function. F2 is the second-order term which is not
shown, as it is irrelevant to our discussion. In F4, the last term
involves mixed gradients of �s and �1. This term has been
discussed in Refs. [29,30,36]. This term can induce a nonzero
�s where ∂x�1 �= 0 and determines the phase of �s relative
to �1 and �2. In addition to the mixed gradient term, there are
other terms in F4, such as �2

s (�∗
1 )2 + c.c., that can also affect

the phase of �s . However, they are higher order for a small,
spatially varying �s .

There are additional mixed gradients terms that are absent
for a y-translational invariant system. However, they enter

in the current and can be obtained from the one in F4 by
fourfold rotation symmetries or can be derived as in Ref. [36].
From Ref. [36], these additional mixed gradient terms
are

−4A4(Dy�
∗
s Dy�1 + Dy�sDy�

∗
1 ),

+ 4A4(Dx�
∗
s Dy�2 + Dy�

∗
s Dx�2 + c.c.). (D5)

The important terms for the spontaneous current discussion
in the main text are those from the second line. Other
mixed gradient terms do not contribute a spontaneous current
along the y direction for the half-infinite geometry that we
considered.
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