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We study the relationship between the physics of topology and zero modes in frustrated systems and
metamaterials. Zero modes that exist in topological matters are distinct from the ones arising from symmetry
breaking. Incidentally, a prominent aspect of frustrated systems and metamaterials also is to harbor such kinds
of zero modes in the form of an accidental degeneracy. Taking cues from these two apparently different
phenomena, we ask a simple question: are the robust features of frustration topologically protected and if
so can we classify different types of frustration using topology? In answering these questions we invoke
the tools of topological mechanics to identify the key agent at play, namely the rigidity matrix, which is a
non-Hermitian matrix and decides the topology of spin-wave zero modes in a frustrated magnet or phonon
modes in metamaterials. Further developments of the theory rely on combining the recent developments in
our understanding of Maxwell constraint counting and generalizing the tenfold way classification of Hermitian
matrices to non-Hermitian matrices. The result is a threefold way classification for each Maxwell counting index.
We illustrate the classification by demonstrating the existence of a vortex-like invariant for real rigidity matrices
using random matrices and through example frustrated spin models. So by classifying all the rigidity matrices,
we answer the question of the origin of frustration (i.e., zero modes in the form of accidental degeneracy) in a
wide class of frustrated magnets and metamaterials by linking it to topological invariants.
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I. INTRODUCTION

A remarkable aspect of frustrated systems and metamate-
rials is the vast accidental degeneracy of ground states [1–3]
which manifests as zero modes that are not associated with
any symmetry breaking, in other words, distinct from the
Goldstone modes. Notable examples, for instance on the mag-
netism side, include the magnon flat band in the ideal kagome
Heisenberg antiferromagnet (KHAF) for which candidate ma-
terials are plentiful. Besides the flat band, there exist other
forms of zero modes such as line nodes in anisotropic kagome
materials [4], nodal points in mechanical lattices [5,6], and
two-dimensional surfaces of zero modes in diamond lattice
spinels [7]. Surprisingly, these zero modes are immune to
classes of perturbations counterintuitively implying a mani-
fold of zero modes signifies a robust nature of frustration.

Consider the distorted kagome antiferromagnet
Cs2CeCu3F12. In Ref. [4], we predicted nodal lines in
their spin-wave band structures at experimentally determined
exchange interactions. This prediction was not an accident.
Assuming spin dynamics in these materials are dominated
by nearest neighbor (nn) exchanges we could map their
ground states onto exotic spin origami analogs. Building on
the modern theory of topological mechanics associated with
origami [8], we were able to show these line nodes came from
a change in a Z2 topological invariant across the Brillouin
zone (BZ). The situation is vividly reminiscent of one we
encounter in Weyl semimetals with topologically protected
bulk zero modes [9–11]. The difference is that more than
symmetry is needed to protect the topological invariant. The
resemblance encourages the question, are zero modes in

frustrated systems demanded by a change in some topology?
If so, perhaps a classification of the underlying topology can
enable us to explore new varieties of frustration.

The past decade has already witnessed the laudable
achievements of a topological classification adding novelties
to the simple band theory of electrons and prophesying new
states of quantum matter as consequences. In a succinct
form, it is the table of the tenfold way that captures different
topologies of band structures in electronic insulators and su-
perconductors and provides an exhaustive list of free fermion
topological phases [12–16] (for more relevant references and
a review of the tenfold classification, see Ref. [17] and the
references therein). These phases arise in the absence or
presence of certain symmetries of the Hamiltonian which lay
the cornerstone of the classification problem.

The tenfold way has successfully enabled the unveiling of
new topological states of matter several of which were elusive
prior to the inception of classification; of notable mention
are topological superconductors [14–16,18]. By virtue of this
classification, we have now found the existence of five distinct
topological insulators/superconductors in every dimension,
some of which have also nucleated experimental activities.
Spirited with a similar ideology, we attempt to classify the
topology of zero modes in frustrated systems and metama-
terials and illuminate the origin of frustration in the form of
accidental degeneracy by linking it to topological invariants
with the hope that this classification will also lead to new
experimental activities.

In two seminal papers [19,20], Moessner and Chalker
presented an elementary understanding of frustration in spin
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systems using Maxwell counting that can shed some light on
the robust nature of the degeneracy. The key idea is to group
the terms in the Hamiltonian into constraints following which
a naive degeneracy estimate ν is obtained by having fewer
constraints K than the degrees of freedom (DOFs) D, i.e.,
ν = D − K , which we call the Moessner-Chalker-Maxwell
(MCM) index in this paper. The index also caters a perspective
on the problem of lifting the degeneracy by perturbations. If
the perturbations do not introduce new constraints but only de-
form them, the degeneracy should persist. But this understand-
ing is incomplete; it relies on a naive estimate that ignores
linear dependence among the constraints. So this needs to be
taken into account. For example, the ideal classical KHAF has
many zero modes. But its spin Hamiltonian can be written as

H = J
∑
〈i,j〉

Si · Sj = J

2

∑
�

S2
� + const., (1)

where S� = Si + Sj + Sk is the total spin in the triangle ijk

and each unit cell has two such triangles. So there are six
constraints per unit cell but also six degrees of freedom (three
spin unit vectors) leading to ν = 0 per unit cell. But the same
model on the pyrochlore lattice leads by the same argument to
ν = 2 per unit cell. So it would seem distortions that preserve
the number of constraints could lift all the degeneracy of
the kagome antiferromagnets by rendering them linearly
independent but could not lift all the degeneracy of the
pyrochlore lattice. In this way, Moessner-Chalker-Maxwell
counting can predict a kind of topologically protected set
of zero modes in some systems: if ν > 0 a set of zero
modes exists so long as perturbations change the form of the
constraints and not their number.

Remarkably, the ν = 0 point has enticed much attention
following the seminal work of Kane and Lubensky who
discovered the possibility of topological protection of zero
modes in mechanical systems [21] even in this case. A number
of further studies have emerged making further advancements
in that field [6] including the ones involving metamaterials for
their exotic properties owing to these same zero modes [22–
25]. In essence, these “isostatic” systems have both an energy
gap and ν = 0 for periodic boundary conditions. Then for
open boundary conditions ν > 0 and a zero mode such as
an edge state arises. Kane and Lubensky further related this
observation to a topological invariant through a mapping to a
fermion-like band structure. However, these results at ν = 0
seem like a special case and it is not obvious whether there is
any extension to ν > 0 or ν < 0. But there are many frustrated
magnets in this latter group both since it has been a goal of the
field to find magnets which are as highly frustrated as possible
(ν > 0) and because in the search for such magnets, many are
found which are less frustrated (ν < 0) but still show signs
of frustration such as those whose frustration arises not from
the geometry of the underlying lattice but as a consequence
of competing exchange interactions between the spins. So
while we search for topological protection of frustration in
special ν = 0 antiferromagnets, if similar underlying ideas
imply topological protection of frustration in the vast majority
of frustrated magnets, we are bound to understand the exper-
imental significance of frustration from topology as it applies
to solid state systems.

Here we solve the problem of identifying topology in zero
modes of mechanical systems and frustrated magnets at any ν

including ν �= 0. We do so by classifying the rigidity matrix
(R) that characterizes the constraints. In the example of the
ideal kagome Heisenberg model above, this matrix is related
to the nonlinear constraint functions S� simply by linearizing
them in a spin-wave expansion

S�α = R�α,iμxiμ, R�α,iμ = ∂S�α

∂xiμ
, (2)

were xiμ are the spin-wave coordinates with i labeling the
sites, μ the polar or azimuthal components, and R is the
non-Hermitian rigidity matrix. The spin-wave coordinates xiμ

consist of pairs of canonically conjugate DOFs qi, pi with
{qi, pi} = 1 which specify a spin of unit magnitude as Si =
(cos(qi )

√
1 − p2

i , sin(qi )
√

1 − p2
i , pi ) retaining the spin alge-

bra {Siα, Siβ} = ε
γ

αβSiγ . Any change in the Hamiltonian which
preserves the number of constraints therefore just deforms R.
But any spin wave xiμ which lives in the null space of this
matrix is a zero mode. So a classification of these matrices
directly addresses the question of how frustration could be
preserved by perturbations. We show such a classification
can indeed be constructed by extending some of the methods
used to construct the tenfold way classification of electronic
systems from Hermitian matrices to non-Hermitian matrices.
The results maps rigidity matrices onto either classical Lie
groups or Stiefel manifolds which are well studied topological
spaces whose homotopy groups are all worked out in the
mathematics literature [26–32]. They are also reminiscent of
the topology discovered recently in self-energies also viewed
as non-Hermitian matrices [33]. These homotopy spaces re-
produce the Kane and Lubensky ν = 0 topological invariants
but also show there are plenty of other such invariants both for
ν = 0 and ν �= 0. We then demonstrate this latter discovery
by taking this mathematics and apply it to several exam-
ples, including even the J1-J2 square lattice antiferromagnet.
These examples suggest nontrivial topological invariants exist
in essentially all models of frustrated magnetism, that zero
modes related to this frustration are likely a manifestation
of when the topological invariant changes, and perhaps most
importantly, that there are perturbations which would preserve
their frustration broadening our search for exotic phases of
matter in frustrated magnets.

The paper is organized as follows. In the following section
(Sec. II), we discuss the scope of exploring the topology by
means of rigidity matrices in metamaterials/frustrated systems
whose classification constitutes the theme of the present work.
In Sec. III, we sketch the concepts of the previously known
symmetry-based classification of Hamiltonian matrices and
mention its limitations in the study of the topology of frus-
tration. This brings us to introduce our scheme of obtaining
an appropriate classifying space of rigidity matrices whose
topology is the sought for object to explain the origin of
frustration. We present the mathematical details in Sec. IV.
The topology of this space is explored in detail (in Sec. V)
and discussed in the form of classification tables using the
examples of random matrices for both ν = 0 and ν �= 0
systems. In Sec. VI, we illustrate our classification tables fur-
ther by exemplifying a variety of frustrated magnets in which
the zero modes are demanded from topology. We also depict
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the explicit constructions of different topological invariants
for those models before we finally conclude in Sec. VII
summarizing the important results on the classification of
magnetic frustration from topology.

II. FINE-TUNING FROM SOLID STATE PHYSICS TO
METAMATERIALS

We define frustration as an accidental degeneracy arising
from fine-tuning. Largely, the study of frustrated systems
has focused on a limited set of models, but, many systems,
such as the distorted kagome antiferromagnets and diamond
lattice spinels mentioned above, exhibit frustration over a
range of parameters in the model. As such, frustration is both
delicate and robust. Here we are proposing a classification of
frustrated systems. For concreteness, let us focus on quadratic
spin Hamiltonians common in solid state systems that can be
written in the form

Hspin = 1
2SiαJ iα;jβSjβ, (3)

where J iα,jβ is an exchange matrix and α ∈ {x, y, z} denotes
the spin components. It is known [19,20,34] that Hspin can
be recognized as a sum of positive definite terms such as
(Siα + Sjβ )2 on bond ij if we reorganize terms in the Hamil-
tonian and add a constant shift to the energy. In systems with
short-range interactions, these terms can act like constraints
on a set of spins which are localized over small clusters
of the lattice when they are satisfied individually. In this
case, they are “frustration-free” in the technical sense that
all terms when organized in this fashion are satisfied in the
ground state. For example, the ideal triangular Heisenberg
antiferromagnet can be understood as imposing a vanishing
total spin on each triangle. A simultaneous minimization of
all the constraints, however, can still lead to an accidental
degeneracy of zero modes (i.e., an underconstrained system).
For some systems, this degeneracy is even extensive growing
with the system size. But it is hard to classify systems by these
constraints because it is not yet established when or how terms
in Hamiltonians can be reorganized into constraints outside of
examples from model systems.

Remarkably, mechanical metamaterials could offer clues to
the classification problem. They are also among the systems
that are exclusively known to foster such a vast degeneracy of
zero modes. This is because the underlying Hamiltonian also
contains frustration-free constraint functions as mentioned
above which often leave them underconstrained. They are
engineered to have the degeneracy. Since this is really a
defining characteristic of a metamaterial, we call the class of
Hamiltonians with the specific form

Hmeta = 1
2LmKmnLn (4)

“metamaterial Hamiltonians,” where Lm denotes a constraint
which could be, for example, an extension of a spring, a
momenta that should vanish at zero energy or other constraints
on the degrees of freedom. The matrix K should be positive
definite to ensure Lm = 0 in the ground state. As a result,
some solid state systems, those whose Hamiltonians can be
reorganized into constraints, are naturally occurring metama-
terials.

FIG. 1. A conceptual picture of the space of classical spin models
projected onto a two-dimensional space of parameters. The class of
metamaterial Hamiltonians defined in Eq. (4) is a fine-tuned case of
the generic spin model in Eq. (3). The ideal model [with isotropic nn
exchanges as in Eq. (1)] stands as an isolated point in the space of
metamaterial Hamiltonians. In the projected picture, perturbations
along the perpendicular directions drive a system away from the
concerned space. A model of a spin glass which cannot be written
as a set of constraints on the ground state (i.e., the form Hmeta) lies
outside the space of metamaterial Hamiltonians.

Let us then return to frustration in a solid state system
and how it is a delicate phenomenon involving fine-tuning. In
terms of the above discussion, this fine-tuning is in the sense
that rearranging the terms of the spin Hamiltonian Hspin such
that it acquires a form like Hmeta (with Lm as functions of
Siα) limits Hmeta to a subset of Hspin (Fig. 1). For example,
such a fine-tuning enables one to express the nn spin model in
an ideal KHAF in terms of the constraint functions given by
S� [Eq. (1)]. But, provided couplings on each triangle obey
a certain triangle inequality condition, we can also write the
entire space of nearest-neighbor KHAFs in this form [4]. So
the engineering associated with metamaterials suggests there
is a space of Hamiltonians all sharing similar characteristics
and so define a class of frustration and that these classes arise
naturally in solid state physics by the locality of interactions
in insulators.

The simplest possible model of a mechanical metamaterial
can be regarded as a collection of coupled oscillators. The
normal modes of the oscillation are obtained by solving the
equation of motion ẍ = −D · x, where x lists the displace-
ments of the mass points. The matrix D is known as the “dy-
namical matrix” whose eigenvalues, when square-rooted and
scaled appropriately, yield the normal mode frequencies. An
example could be the system of classical phonons represented
by vibrational modes of balls connected by Hookean springs.
Assuming the balls of unit mass and the springs having unit
spring constant, the Hamiltonian of the system is

HB = 1

2

⎛
⎝∑

j

p2
j +

∑
m

e2
m

⎞
⎠, (5)

where pj is the momentum of the j th ball and em is the exten-
sion of the mth spring. The spring extensions are related to the
displacements of the balls from their equilibrium positions as

e = A · x + O(x2). (6)

The matrix A is known as the “compatibility matrix” (AT

is known as the “equilibrium matrix”) [21]. In a harmonic
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approximation, only the leading linear term contributes
yielding

HB = 1
2 [p2 + (A · x)2], (7)

where p is the column vector consisting of the momenta of
the mass points. The Lagrangian equation of motion for x
then implies D = AT A; in other words, A is the square root
matrix of D. For the model system described above, the DOFs
are p and x while the constraints are that in the ground state,
p = 0 and A · x = 0 [34]. So the rigidity matrix (R) defined
in Eq. (2) will be of the form R = diag(1, A).

Let us now view the situation in a frustrated magnet. A fine-
tuning depending on the structure of the underlying lattice and
the ranges of the interactions may enable us to write Hspin in
Eq. (3) as

Hspin = 1
2S�αJ�α,�′βS�′β, (8)

where S�α is the constraint on a simplex � of the lattice
involving the spin component α. If J�α,�′β = Jδ��′

δαβ , the
model represents the nn Heisenberg model on a geometrically
frustrated lattice. For a triangular simplex, it is the KHAF;
for a crisscross square simplex, it is the checkerboard lat-
tice Heisenberg model; for a tetrahedral simplex, it is the
pyrochlore magnet as first identified in Refs. [19] and [20].
For the sake of categorization, we term the models with this
particular type of Hamiltonian the “ideal models” which are
specified by a diagonal J matrix proportional to identity, so
it represents an isolated point in the space of metamaterial
Hamiltonians (Fig. 1).

Unfrustrated spin models can also have a Hamiltonian
expressed as a quadratic function of constraints as in Eq. (8).
A simple example could be the case of the nn Heisenberg
model on a square lattice with the Hamiltonian

H = J
∑
〈i,j〉

Si · Sj ≡ 1

2
LmαJmα,nβLnβ, (9)

with Jmα,nβ = Jδmnδαβ ; m labels the nn bonds 〈i, j 〉 and
α the spin vector components. Evidently the constraints for
the ground state are Lmα ≡ Siα + sgn(J )S(i+x̂ )α = 0 on each
horizontal bond and Lmα ≡ Siα + sgn(J )S(i+ŷ )α = 0 on each
vertical bond. Up to global spin rotations, this uniquely selects
the ground state to be the uniform state (Néel state) for J < 0
(J > 0). Later we will include other spin systems in which
the Hamiltonian can be expressed to have a similar form to
Eq. (4). They all represent magnetic analogs of mechanical
metamaterials to which one can apply the theory of rigidity
matrix to analyze the (linearized) zero modes. As argued
before, these zero modes reside in the null space of the rigidity
matrix. It also provides important clues to unfurl the topologi-
cal aspects of the zero modes over a broad range of solid state
systems from spin waves in microscopic spin models [4,34] to
phonons in macroscopic metamaterial systems [5,6].

The MCM index ν in terms of the rigidity matrix R
reads [21,34]

ν = Cols[R] − Rows[R]

= Rank[R] + null[R] − Rank[RT ] − null[RT ]

= null[R] − null[RT ]

= N0 − Ns, (10)

where we have used Rank[R] = Rank[RT ] by the fundamen-
tal theorem of linear algebra. From the definition in Eq. (10)
it is evident that the index ν remains invariant as long as
the dimensions of R are unaltered. Although the inputs to
calculate ν have information about the topology of the lattice,
it should not be regarded as a true topological invariant that
could differentiate between various forms of zero modes such
as nodal points, lines, or surfaces or could characterize them.
It certainly provides an estimate of them but is incapable
of revealing any insight into their topological nature. These
properties rely on the structure of the space of R, and not
merely its shape. Our study emphasizes the fact that the
topology of frustration is intimately linked to that of the
classifying space of R; to appreciate the former, the latter is
the key agent to inspect.

Symmetries play a central role to classify random (Her-
mitian) matrices as argued in previous studies concerning
disordered fermionic [13] and bosonic systems [35]. Dif-
ferent symmetry classes have distinct implications on the
energy level statistics of a fermionic Hamiltonian [36] and
the observables derived from that, or scaling of the density of
low-energy excitations in a disordered bosonic medium [35].
This motivates us to develop a symmetry-based classification
of rigidity matrices which explains the manifestation of the
accidental degeneracy of ground states in different forms of
zero modes in different frustrated systems. The remaining task
is to identify the topology that characterizes these distinct
forms. This is what the tenfold way has achieved in the
electronic problems. As our method bears similarities to the
homotopy group analysis that leads to the compact table of the
tenfold way, reviewing some of the important mathematical
concepts of that classification would help us set the stage in
the following section. We will then illuminate the topological
aspects of non-Hermitian matrices by considering ensembles
of random rigidity matrices under symmetry imposition which
determines the topology of the zero modes associated with
them.

III. A REVIEW OF THE TENFOLD WAY

Classification and characterization of phases have al-
ways been a major theme of solid state research. Initiated
with Dyson’s pioneering work on the threefold classifica-
tion of random matrices [36], recent developments have
now achieved a complete tenfold classification of disordered
fermionic Hamiltonians [12,13]. The ten distinct classes,
named Altland-Zirnbauer (AZ) classes, belong to Cartan’s list
of classical compact symmetric spaces which characterize the
time-evolution operator eiHt for a random Hamiltonian H .
An extension of Altland-Zirnbauer classification (based on a
set of discrete symmetries) to random non-Hermitian matrices
was also attempted [37]; however, the topological aspects of
those matrices were not illuminated.

Shortly after those developments, the relevance of sym-
metry classes to understand the generic aspects of a random
bosonic model was emphasized in a study by Gurarie and
Chalker [35]. Drawing parallels to specific AZ classes in
the electronic problems, the authors could evince discerning
properties of the low-energy excitations of a random quadratic
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bosonic Hamiltonian:

HB = RTR. (11)

The excitation frequencies (ω), eigenvalues of the non-
Hermitian equations of motion matrix σ2HB , as they argued,
can be derived from an auxiliary fermionic problem with a
chiral (Hermitian) Hamiltonian matrix:

HF = Rσ2RT , σ2 =
(

0 −i

i 0

)
. (12)

This foreshadowed the supersymmetry associated with a sys-
tem described by a rigidity matrix exploited in recent studies
[21,34]. For a range of bosonic models, R can be identified
in a continuous or discrete form. The spectral properties of
HF [38] can then be exploited directly to observe distinct
features in the scaling of the density of excitations ρ(ω) of
both Goldstone and non-Goldstone types.

A few years later, at the wake of topological insulators
spreading huge excitements in the community, a complete
classification of gapped and gapless topological matters was
brought into existence exploiting the homotopy theory of
topological equivalence [14,15,18]. Remarkably, the topology
is found to have ten distinct classes as discovered earlier by
Altland and Zirnbauer, and can be compactly described in a
periodic table [14], popularly called the “tenfold way.”

The tenfold way classification of electronic band struc-
tures defines two Hamiltonians as equivalent if they can be
smoothly deformed into each other without closing the energy
gap between occupied and unoccupied bands. A violation of
this topology then demands the gap must close. One way to
understand this is to flatten the bands which is well defined
only if the bands are separated and violations relate directly
to the gap closing. Specifically, without closing the excitation
gap, one can smoothly deform H (k), the Bloch Hamiltonian,
to the spectrally flattened Hamiltonian H̃ (k) = sgn[H (k)]
[17,39] defined as

H̃ (k) = U (k)

(
1M 0
0 −1N

)
U†(k), (13)

with M (N ) bands above (below) the chemical potential. The
space of these matrices, which depends on the symmetries of
H̃ (k), is then a manifold which is either topologically trivial
or nontrivial. If the manifold has a nontrivial topology, it then
remains to determine how this topology can be broken and
where the energy gap closes as a consequence.

In Ref. [15], it was argued that the only relevant symme-
tries to classify a quantum mechanical Hamiltonian include
two antiunitary symmetries: time reversal (T ) and charge con-
jugation or particle-hole transformation (C) and an anticom-
muting unitary symmetry: chiral or sublattice symmetry (S =
T · C). In the absence of any symmetry, the space of H̃ (k) is in
one-to-one correspondence with the set of all N -dimensional
sub-Hilbert spaces (each spanned by the occupied states)
arising in the full (M + N )-dimensional Hilbert space. This
is a complex Grassmannian manifold GM (CM+N ) (its real
analog is shown in Fig. 2) whose homotopy maps πd in a
given dimension d reveals the topology of H (k). These are
all known since the complex Grassmannian is equivalent to
the coset space U (M + N )/[U (M ) × U (N )]. Upon applying
the symmetries individually or in different combinations to

FIG. 2. Left: A conceptual picture of the real Grassmannian
manifold GM (RN ) which is a set of all M-planes in RN (two of them
are shown). Right: The same for the real Stiefel manifold VM (RN )
which is a set of all M-frames in RN (two of them are shown). To
each point in GM (RN ), i.e., a specific M-plane, there corresponds in
VM (RN ) the set of all orthogonal bases (formed by M orthonormal
real vectors) for that plane.

H (k), the structure of the Grassmannian changes as H̃ (k)
acquires additional structures under those operations leading
to a tenfold classification of the topology. In other words,
there exist ten topologically distinct classes of Hamiltonians
that completely characterize the (noninteracting) electronic
systems [17].

Symmetry-based topological classification is now a mature
subject, thanks to the extensive work that has addressed the
topic using a variety of methods pertinent to different quantum
mechanical systems (both interacting and noninteracting). Ex-
amples include symmetry protected topological phases [40–
46], Kitaev’s Majorana models [47], and spin systems, espe-
cially various models of spin liquids [48–52]. Furthermore,
of note for its relation to the present work, Ref. [53] was
able to study the topology of a wide spectrum of classical
mechanical models by transforming the eigenvalue problem
to a Hermitian matrix (interpreted as a Bloch Hamiltonian)
that retains the structure of the phonon eigenvectors but
expressed in terms of auxiliary variables. They could then
predict topological features at finite frequencies where a gap
between lower frequency bands and upper frequency bands
collapses. However, despite this maturity, the fundamental
building block in all cases is a space of Hermitian matrices
which is not of direct use to characterize the zero modes
in metamaterials and frustrated magnets. The reason is that
frustration is nothing but an accidental degeneracy (of ground
states) which cannot be attributed to the symmetries of a
Hamiltonian. It, therefore, is important to seek additional
structures beyond a Hermitian operator, a gap between two
sets of its eigenvalues and the symmetries.

IV. CLASSIFICATION OF METAMATERIALS

In order to understand whether zero modes in a meta-
material are stabilized by topology, we explore the space
of R associated with the Hamiltonian Hmeta by including
distortions to R without changing its dimension, i.e., ν, and
ask what is the topology of this space in the presence of the
symmetries of the problem.

We will consider the most general form of the rigidity
matrix R obtained from expanding about a specific config-
uration of a metamaterial system as in Eq. (2) as a complex
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matrix. Thus we will view classical systems with no symmetry
and real R as a higher symmetry case of a more general
system described by a complex matrix. The complex form
is also a useful starting point for the case when we write
R in a momentum space basis (obtained from the Fourier
transformation of the real space basis).

Now, with a complex non-Hermitian matrix as a starting
point, the eigenvalues of R in general are complex numbers
and the spectral flattening technique used in the tenfold way
is inapplicable. We need an alternative way to encode the gap
condition of a topological space.

Remarkably, a simple solution is to spectrally flatten the
singular values of R, which are always real and non-negative.
This is a gap condition for systems described by a rigidity
matrix because the number of nonzero singular values is the
rank of the matrix and the only way a zero mode can be
introduced and a gap closed is to reduce this rank. With this
gapping condition in hand, we can proceed with the homotopy
analysis of the space formed by the resultant flattened singular
value matrices containing the singular vectors.

A. Threefold way for ν = 0 systems

For a generic ν = 0 system, the rigidity matrix is a complex
square M × M matrix [from Eq. (10)]. Its singular value
decomposition (SVD) then reads

R = U�RV†, (14)

where U ,V ∈ U (M ) and �R is a diagonal matrix containing
M singular values which are all positive provided R is of full
rank. The singular vectors contained in V are the eigenvectors
of R†R, the singular vectors contained in U are the eigenvec-
tors of RR†, and the singular values are the square roots of
the eigenvalues of either R†R or RR†. Like in the tenfold
classification of electronic systems where eigenvalues are
flattened, flattening the singular values, �R → �̃R = IM×M ,
produces a new matrix

Q = U�̃RV† = UV† (15)

analogous to H̃ (k) in Eq. (13). We call Q to be the SVD
flattened matrix of R. Since U and V are unitary matrices, so
is Q. It implies the bosonic and fermionic Hamiltonians HB =
R†R [in Eq. (11)] and HF = Rσ2R† are diagonalizable by
unitary matrices and the topology of R can be classified by
studying the homotopy groups of unitary matrices.

The above is the case when R has no particular symmetry.
Enforcing symmetries on R alters the structure of Q. The
simplest case is a “commuting” unitary symmetry with trans-
formation law

U : R → UFRU†
B, (16)

where the UF matrix describes the action of this symmetry
on the fermion Hamiltonian HF and the UB matrix describes
its action on HB . As in the case of a Hermitian matrix, the
eigenbasis of this symmetry block-diagonalizes HB , HF , R,
and Q. As far as classification is concerned, then, we can
follow the tenfold way example by assuming we work in the
block-diagonal basis and focus just on a sub-block of R. So
while a unitary symmetry changes the structure of Q, it does
not change its class.

It then remains to consider antiunitary symmetries (like
the time-reversal symmetry and particle-hole symmetry in the
tenfold way) and unitary symmetries which “anticommute”
(like the chiral symmetry in the tenfold way) with R. Consider
first time-reversal symmetry (T ) with T 2 = 1. Mathemati-
cally, it acts on R like

T : R → TFRT −1
B , (17)

where TF = UF K , TB = UBK , UF and UB are unitary,
UF U ∗

F = I , UBU ∗
B = I , and K is complex conjugation. TF

is then time reversal for the HF problem and TB is time
reversal for the HB problem. Following Dyson [36], we can
then find a basis where UF and UB are identity matrices and
so time reversal demands that R is real instead of complex.
Thus HB (HF ) is a real symmetric (imaginary antisymmetric)
matrix diagonalizable by orthogonal matrices, in other words,
orthogonally similar to a diagonal matrix. Also, since a real
matrix has the same singular value decomposition as Eq. (14)
but with the unitary matrices U and V replaced with orthogo-
nal matrices,

Q = UVT (18)

is also an orthogonal matrix which has distinct homotopy
maps compared to the complex case.

We can also realize the case with T 2 = −1. Here UB

and UF satisfy UBU ∗
B = −I and UF U ∗

F = −I . We can then
choose to work in the standard representation where we can
write UB = ıσ2 and UF = ıσ2. To understand the structure of
R under the action of this T symmetry, let us introduce the
following notation,

R# ≡ (ıσ2)R∗(ıσ2)−1, R$ ≡ (ıσ2)RT (ıσ2)−1, (19)

so that (R$)† = R#. Now, the action of the T symmetry
[Eq. (17)] implies R# = R, H #

B = HB , and H #
F = HF = H $

F .
Hamiltonians of this type are symplectically similar to a diag-
onal matrix, i.e., diagonalizable by real symplectic matrices
W ∈ Sp(M,R) : W $ = W−1 [54]. Consequently, the SVD
flattened matrix in this class obeys

Q = UVT ∈ Sp(M,R). (20)

Like the orthogonal case, symplectic Q matrices also have
distinct homotopy maps compared to both complex and real
matrices. Indeed all three, unitary, orthogonal, and symplectic,
are topologically distinct manifolds.

Among commuting symmetries, we need to consider only
one antiunitary symmetry because the collection of all such
symmetries can be factored into the unitary set and a set
that has products of a unitary symmetry and T [36]. So the
above completes a discussion of antiunitary symmetries that
commute with R.

Turning to “anticommuting” unitary symmetries, they act
on R like

S : R → −SFRS†
B. (21)

The square of S is a commuting symmetry and working in
a basis where this symmetry is diagonal, we see that S is
also block diagonal in this basis for [S2,S] = 0. So we can
restrict ourselves to working within a block where S2 = eiφI

and then further restrict ourselves to the case where φ = 0
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by just multiplying S by e−iφ/2. Hence, for the purposes of
classification, we can focus on S2 = I . The eigenvalues of
S are then ±1 and in its eigenbasis we can write SF = σF

3 ,
SB = σB

3 , where the σ3’s could have a different number of 1s
than −1s on its diagonal.

Now, an R matrix satisfying an S symmetry of the above
form is block off-diagonal. The bosonic Hamiltonian HB , on
the other hand, is block diagonal for it commutes with SB .
The fermionic Hamiltonian HF is also block off-diagonal as-
suming σF

3 σ2σ
F
3 = −σ2 is canonical up to a swap of position

and momentum variables. This suggests we can reexpress the
bosonic problem in terms of a new rigidity matrix R′ with the
same HB but where S is a commuting symmetry. Indeed, such
a map follows from

R =
(

0 B

C 0

)
=

(
0 I

I 0

)(
C 0
0 B

)
≡ σF

1 R′. (22)

Only the auxiliary fermion Hamiltonian changes under this
map for HF = σ1H

′
F σ1 where H ′

F is the fermion Hamiltonian
for a system with rigidity matrix R′. So we can always
replace an anticommuting symmetry S with a commuting
version and it does not represent a different class of symmetry
transformations on rigidity matrices.

Finally, turning to anticommuting antiunitary symmetries
(i.e., chiral symmetries) C with C2 = ±1, we see we can
always write C = ST where S is an anticommuting unitary
symmetry of the type discussed above and T is a commuting
antiunitary symmetry also of the type discussed above. Then,
following the above discussion for S , we can map to a
rigidity matrix that commutes with S and for it C becomes
another commuting antiunitary symmetry. So again, we have
not found another class of symmetries and we conclude that
rigidity matrices follow a threefold way rather than the full
tenfold way classification.

The three cases discussed above are summarized in the
following table:

Case Symmetry T 2 = Action on R Space of Q

Complex T = 0 0 R = R U (M )
Real T = K +1 R = R∗ O(M )
Symplectic T = ıσ2K −1 R = R# Sp(M,R)

The topological invariants associated with the rigidity ma-
trices belonging to the three classes are given by the homo-
topy maps of the classifying spaces of Q which we note
down below. From the Bott periodicity theorem on classical
groups [55] we obtain the following table till the seventh
homotopy group:

Case T 2 = π0 π1 π2 π3 π4 π5 π6 π7

Complex 0 0 Z 0 Z 0 Z 0 Z

Real +1 Z2 Z2 0 Z 0 0 0 Z

Symplectic −1 0 0 0 Z Z2 Z2 0 Z

after which the elements repeat. In the latter sections, by
exemplifying certain frustrated magnets, we will illustrate

the implications of some of these invariants in regard to un-
derstanding the robust nature of frustration from topological
concepts.

B. Threefold way for ν �= 0 systems

In distinction to the ν = 0 systems discussed above, the
classifying space of the rigidity matrices for a |ν| �= 0 system
is a member of the Stiefel manifold (both the ν and −ν cases
belonging to the same manifold) and naturally falls beyond the
tenfold classification of Hamiltonian matrices. The homotopy
groups of different Stiefel manifolds are quite exotic [26–
31] supporting invariants other than Z or Z2 rendering an
exclusive topology to the ν �= 0 frustrated systems.

For any ν �= 0 system, there are three different structures
of the Stiefel manifold defined over either a real, complex,
or quaternionic (symplectic) space. For example, the com-
plex Stiefel manifold VM (CN ) is the set of all M-tuples
(x1, . . . , xM ) of orthonormal vectors in CN . While the defi-
nition translates to other vector spaces as well (the real analog
is explained in Fig. 2), we start with the complex case first.

For a generic ν �= 0 system, R is a random complex rect-
angular matrix. There exist a couple of different definitions
of SVD of a rectangular matrix. We adopt the one where the
SVD of an M × N complex matrix implies R = U�RV† with
U ∈ U (M ), V ∈ U (N ) and �R is a diagonal M × N matrix.
For example, if M < N , i.e., ν ≡ N − M > 0 (N DOFs and
M constraints), flattening the elements of �R yields

�R → �̃R =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 1 0 · · · 0

⎞
⎟⎟⎟⎟⎠.

︸ ︷︷ ︸
M

︸ ︷︷ ︸
N−M

In this case, Q = U�̃RV† changes when the transformation
is a nontrivial element of [U (M ) × U (N )]/[U (M ) × U (N −
M )] ∼= U (N )/U (N − M ), namely the complex Stiefel mani-
fold VM (CN ) whose homotopy groups dictate the topology of
frustration described by R.

For ν = 1, i.e., M = N − 1, the space VN−1(CN ) is dif-
feomorphic to the classical group SU (N ) whose homotopy
maps πd are isomorphic to that of U (N ) for d � 2 (which
is the same as the ν = 0 case) while π1[SU (N )] = 0. For
other ν � 2, we take note of the homotopy exact sequence
πd−1[VN−ν (CN )] ∼= πd−1[S2ν+1] which leads to the following
table:

ν π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

1 0 0 Z 0 Z 0 Z 0 Z 0
2 0 0 0 0 Z Z2 Z2 Z24 Z2 Z2

3 0 0 0 0 0 0 Z Z2 Z2 Z24

4 0 0 0 0 0 0 0 0 Z Z2

5 0 0 0 0 0 0 0 0 0 0

Note there is no particular periodicity like the ν = 0 case.
So we continue the table until for a given ν, all homo-
topy maps are trivial in dimension d = 0 to d = 10. One
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pronounced implication of the table is that complex rigid-
ity matrices corresponding to ν �= 0 systems have nontrivial
topological features only in a close neighborhood of the ν = 0
point (this is also true for the real and the symplectic cases as
we will see soon). This is one of the important results of this
paper which we interpret in the following way. So far topology
has been explored mostly in ν = 0 systems; however, ν �= 0
systems as well can display discerning topological signatures
and indeed there exist ample examples of frustrated magnets
which advocate for the statement.

In the presence of the T symmetry which makes R real, the
classifying space of Q = U�̃RVT is the real Stiefel manifold
VM (RN ). Like the complex case, for ν = 1, VM (RN ) is dif-
feomorphic to the classical group SO(N ). Since SO(N ) is the
identity component of O(N ), all their homotopy groups after
π0 match with π0[SO(N )] = 0 and π1[SO(2)] = Z [32].
The homotopy exact sequence πd−1[VN−ν (RN )] ∼= πd−1[Sν]
implies πd [VN−ν (RN )] = 0 if d < ν, using which we obtain
the following table:

ν π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

1 Z2 0 Z 0 0 0 Z Z2 Z2 0
2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

4 0 0 0 Z Z2 Z2 Z2 × Z12 Z2
2 Z2

2 Z24 × Z3

5 0 0 0 0 Z Z2 Z2 Z24 Z2 Z2

6 0 0 0 0 0 Z Z2 Z2 Z24 0
7 0 0 0 0 0 0 Z Z2 Z2 Z24

8 0 0 0 0 0 0 0 Z Z2 Z2

9 0 0 0 0 0 0 0 0 Z Z2

10 0 0 0 0 0 0 0 0 0 Z

11 0 0 0 0 0 0 0 0 0 0

For the T symmetry with T 2 = −1, a quaternionic (sym-
plectic) Stiefel manifold VM (HN ) describes the classifying
space of Q. When ν = 0, we recover the ν = 0 case as
VN (HN ) ∼= Sp(N ). For other ν, the homotopy exact sequence
πd−1[VN−ν (HN )] ∼= πd−1[S4ν+3] leads to the following table:

ν π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

1 0 0 0 0 0 0 Z Z2 Z2 Z24

2 0 0 0 0 0 0 0 0 0 0

In this case, the homotopy groups of Q and the topology
of R become trivial starting from ν = 2 and onward in
dimensions up to d = 10.

When R is a square matrix, flattening of the singular values
leads to �R → �̃R = I only if all the singular values are
nonzero; in other words, R has a full rank. If the dimension of
R is N while its rank is M < N , there will be N − M zero di-
agonal entries in �R . In that case, the matrix �̃RVT will have
only M linearly independent vectors. We can then add N − M

random vectors to �̃RVT and make all of them orthonormal
by following the Gram-Schmidt process to transform Q into
the appropriate class of matrices based on the symmetries of
R. This way, the topology of a ν = 0 system with M zero

modes per unit cell (i.e., M zero diagonal entries in �R) is
effectively described by that of a ν �= 0 system with |ν| = M .
Later we will illustrate this situation by exemplifying certain
types of kagome antiferromagnets which host a flat band of
zero modes by virtue of a high degree of frustration.

Finally, we emphasize an important mathematical point
that underlies the classification. The rigidity matrices need to
be defined continuously across the parameter space of interest.
For example, in the case of periodic ground states, the rigidity
matrix should be a continuous function of k. Only when this
continuity is present does it make sense to talk about the
topology of the rigidity matrices. In general, starting from a
bosonic Hamiltonian HB = R†R and taking its square root
would not lead to a rigidity matrix R that is continuous in
its parameter space. We achieve continuity in our examples
by writing the Hamiltonian as a set of constraints of the form
Hmeta [in Eq. (4)] and only then deriving the rigidity matrix by
expanding about a ground state. Regardless of the approach,
the classification applies whenever the rigidity matrices vary
continuously across their parameter space.

Having realized the classification table of non-Hermitian
matrices under the action of time-reversal symmetry, we
now elucidate the topological invariants that characterize the
topology of the zero modes arising from the low-dimensional
homotopy groups up to π2. This includes nodal points, lines,
or surfaces of zero modes realized in certain frustrated magnet
spin-wave band structures that are describable within the
theory of rigidity matrices presented above. Perhaps, a simpler
starting point is to consider the ensembles of random unitary
and orthogonal matrices as the spaces generically feature
topologically protected zero modes of the above-mentioned
forms. The nodal points or the Weyl points are protected by
an integer winding number while the nodal lines similar to the
Fermi surface of a metal are characterized by a Z2 invariant
at each point in the space of matrices. In the orthogonal
ensemble, we further find a vortex-like invariant manifesting
as Z2 strings.

V. EXAMPLES OF TOPOLOGICAL INVARIANTS

In this section, we provide the details of constructing
the topological invariants which characterize the zero modes
in both ν = 0 and ν �= 0 systems. The forms of the zero
modes of our concern typically include points, lines, or two-
dimensional surfaces for which the appropriate homotopy
map to look at is π0, π1, and π2 respectively. We consider
the ensembles of random unitary, orthogonal, or symplectic
matrices as the representatives of those systems and construct
the appropriate topological invariant for each of these classes.

A. ν = 0 systems

For complex rigidity matrices, the corresponding SVD
flattened matrix Q is unitary. According to the table, a
nontrivial topology associated with U (N ) can only arise in
odd dimensions, starting from π1. As the determinant of a
unitary matrix is unimodular, the argument of Det(Q) can
have nontrivial winding in the space of unitary matrices. Such
winding guarantees the existence of zero modes in the form
of Weyl points. The homotopy group π1 encodes the topology
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FIG. 3. (a) A contractible loop on the SO(3) sphere. (b) A
noncontractible loop on the SO(3) sphere. (c) The Dirac string
emanating from a Z2 vortex which lies on the line node. The vector
n (described in the text) flips across the string.

of loops in this space giving rise to an invariant in the form of
winding number [21]

w = 1

2π

∮
�

d arg[Det(Q)] ∈ Z, (23)

where � is a close contour surrounding a Weyl point. So,
π1 of U (N ) implies the possibilities of realizing topological
zero modes characterized by a Z invariant in ν = 0 systems
described by a complex rigidity matrix. A simple example
of this kind is the ball-spring systems discussed in Ref. [21]
where the boundary modes are protected by a nonzero value
of the winding number w.

The SVD flattened matrix Q corresponding to a real
rigidity matrix is orthogonal and hence has determinant ±1.
The table for O(N ) suggests that each point in the space of
orthogonal matrices has a nontrivial topology given by π0

which we can characterize by a topological invariant

η = Det(Q) ∈ Z2. (24)

In the space of O(N ) there are regions of determinant with
1 and −1 separated by lines of zero modes across which
η changes sign. These are similar to the Fermi surface of
metals in two dimensions. One encounters this situation in
certain classes of KHAFs where the line nodes are protected
by a Z2 topology [4]. Later we will furnish other examples
of frustrated magnets where frustration is protected by the
topology of real rigidity matrices.

Besides π0, the homotopy group π1 of O(N ) is also Z2.
To demonstrate π1 which encodes the topology of loops in
these spaces, we consider the well known example of SO(3),
the rotation group in three dimensions. The meaning of
π1[SO(3)] = Z2 is that all closed loops in the space of SO(3)
fall into two homotopy classes: those that are contractible
[Fig. 3(a)] and those that are not [Fig. 3(b)]. Composing two
paths from the second class yields a path from the first class.
The origin of the noncontractibility in the second class can be
understood as the following. Each element of SO(3) can be
specified geometrically by an axis n (a three-dimensional unit
vector) and a rotation angle θ about n with the redundancy
that rotations of θ = π around n and −n are identical. So, we
can visualize the situation as a solid sphere of radius π with
a one-to-one correspondence between the points in the sphere
and the elements of SO(3); the position vector of any point
P is specified by the direction set by n and the magnitude
set by θ . Having said that, the sphere has the antipodal points
on the surface identified; thus, for θ larger than π , the point

FIG. 4. (a) When R is a random complex matrix, its SVD
flattening yields Q ∈ U (N ) [Eq. (15)], and so a plot of arg[Det(R)]
reveals Weyl points with winding number w ∈ Z in the parameter
space specified by a and b [defined in Eq. (26)] which are marked by
dashed black circles. Here we consider Q ∈ U (3). (b) When R is a
random real matrix, the SVD flattening yields Q ∈ O(N ) [Eq. (18)].
Line nodes arise when the determinant of Q changes. The yellow and
the blue regions in the parameter space represent η [in Eq. (24)] to
be +1 and −1, respectively, separated by line nodes (shown in dark
red). The green line represents a Dirac string as a signature of the
associated Z2 topology that emanates from a point on the line node
and across the string the vector n (its x and y components are shown
by black arrows) explained in the text flips.

P appears on the other side of the sphere. Accordingly, the
vector n flips its direction as it hits any antipodal point.

Now consider a closed path in the space of real R matrices
or equivalently the orthogonal matrices obtained from the
SVD flattening of R. If we trace n on the sphere as one
traverses along the closed path, and observe it to flip sign, we
have found a Dirac string. The matrices R changed smoothly
but our description of Q changed abruptly. If this closed path
is noncontractible, this must happen an odd number of times.
The topological invariant that characterizes a close path � in
the space of SO(3) matrices is then given by

ζ = (−1)N ∈ Z2, (25)

where N is the number of times � crosses the Dirac string(s)
[i.e., number of times n changed sign as in Fig. 3(c)]. The
arguments carry mutatis mutandis to other SO(N ) matrices
with N > 3 for which n becomes a N (N − 1)/2-dimensional
unit vector [since an SO(N ) matrix can be parametrized by a
set of N (N − 1)/2 independent parameters].

The above results reveal the topology of ν = 0 systems
which we further illustrate by performing numerical simula-
tions over ensembles of square rigidity matrices. In doing so
we consider four random matrices R(1,2,3,4) as the four corners
of a square grid specified by two variables a, b ∈ [0, 1]. Any
point on this square grid is given by

R = (1−a)(1−b)R1 + (1−a)bR2 + abR3 + a(1−b)R4.

(26)
For the complex case, the plot of arg[Det(R)] over the square
evidences the existence of Weyl points with integer winding
w arising from π1 [Eq. (23)] as shown in Fig. 4(a). A similar
plot for the real case [Fig. 4(b)] features line nodes owing to
π0 [Eq. (24)] and Dirac strings associated with π1 [Eq. (25)].
Figure 4(b) further suggests that the Dirac strings emanate
from a Z2 vortex that lies on the line nodes [see also Fig. 3(c)].
In the symplectic case, the determinant of the SVD flattened
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FIG. 5. (a) When R is a random real matrix with ν = 1 and has
1 × 2 structure, its topology is decided by the parameter θ in Eq. (27)
a plot of which reveals Weyl points with winding number w ∈ Z in
the parameter space specified by a and b [defined in Eq. (26)]; one
such point is located and marked by dashed black circles. (b) When
R is a random real matrix with ν = 1 but has 2 × 3 structure, its
SVD flattening yields an SO(3) matrix, so like the ν = 0 case shown
in Fig. 4 we plot the corresponding vector n (its x and y components
shown in black arrows) to reveal the presence of Z2 vortices. These
vortices emerge from or terminate wherever the lowest singular value
of R touches 0 which we show in the density plot.

matrix Q [see Eq. (20)] associated with R in Eq. (4) is 1 [56];
hence, the topology is trivial for both π0 and π1.

B. ν �= 0 systems

So far we have discussed the topology of the ν = 0 systems
but an extension to ν �= 0 ones is straightforward. For further
elucidation on the topology in the latter class of models let us
take the |ν| = 1 systems as an example. The classifying spaces
of the SVD flattened matrices Q for |ν| = 1 are the subgroups
of the corresponding classical groups as mentioned before.
The real case is of specific interest to us for there are frustrated
magnets belonging to this class in which the zero modes are
protected by the topology coming from π1 and also that the
lower homotopy groups for the complex and the symplectic
cases are trivial for |ν| = 1 systems.

To illustrate the topology in |ν| = 1 systems, we first
consider the class of real 1 × 2 matrices. The SVD flattening
of R belonging to this class leads to

Q =
(

cos θ sin θ

− sin θ cos θ

)
∈ SO(2), (27)

whose first nontrivial homotopy group is π1 and that
π1[SO(2)] = Z which features Weyl points arising from the
winding of θ in the parameter space. We can plot the result
in Fig. 5(a) for a random ensemble of real 1 × 2 matrices as
done previously for the ν = 0 case. Later we will illustrate this
situation with a classic model of a frustrated system in which
the full rigidity matrix decouples into small 1 × 2 blocks each
featuring such Z topology that protects the zero modes in that
system.

Next we consider the ensemble of real 2 × 3 matrices.
The SVD of R belonging to this ensemble implies that
U ∈ O(2), V ∈ O(3), while flattening of the singular values
yields �̃R = (1 0 0

0 1 0). A triad of three vectors q(1,2,3) can
be formed first by orthonormalizing the two rows of Q =
U�̃RVT to form two vectors q1 and q2, and then construct
q3 = (q1 × q2)/|q1 × q2|. This way we can map Q to an

SO(3) matrix whose rows are given by q(1,2,3). The rest of
the analysis of topology then follows from the arguments
presented in the previous subsection regarding SO(3) which
yields the plot presented in Fig. 5(b). So, ζ [in Eq. (25)]
is defined for this system and allows for Z2 vortices, but
η = Det[Q → SO(3)] = 1 and so there are no line nodes.
An important feature to note here is that the Z2 vortices, in
this case, emanate from or terminate to wherever the lowest
singular value of R touches 0 [see the density plot in Fig. 5(b)]
reducing its rank further by 1 at that particular point.

In passing, let us also briefly mention the scenario for |ν| =
2 systems. The ensemble of real matrices that have dimensions
3 × 1 (or 1 × 3) forms the simplest possible example. In this
case, the SVD flattened matrix Q represents a unit vector (d̂)
in three dimensions. The first nontrivial topology in this case
comes from π2 which is the homotopy maps of closed surfaces
and characterized by the integer-valued topological invariant
given by the Chern-Pontryagin index [39]

P = 1

4π

∫∫
d̂ · (∂xα d̂ × ∂xβ d̂)dxαdxβ ∈ Z. (28)

As in the ν = 0 case, here we show the existence of
zero modes associated with the ν �= 0 topology using random
matrices. Again, generating complex, real, and symplectic
varieties, we generate two-dimensional images as shown in
Fig. 5. These demonstrate the above topological invariants
and show without requiring an understanding of homotopy
groups that the ν �= 0 cases also have zero modes demanded
by topological invariants.

VI. EXAMPLES OF FRUSTRATION
BY TOPOLOGICAL INVARIANTS

In order to investigate how signatures of frustration acquire
robustness owing to topology, we consider two classic exam-
ples of frustrated magnetic systems:

(1) the J1-J2 Heisenberg model on a square lattice and
(2) kagome Heisenberg antiferromagnets with a flat band.
The robustness is verified by introducing perturbations that

break the spin rotation symmetry at various levels. While the
former has found much significance in the study of high-TC

superconductivity in certain cuprates and iron-based com-
pounds [57–59], the latter offers a fertile ground of realizing
new exotic states of matter such as spin liquids [1,2,60].

A. The J1- J2 model on a square lattice

The J1-J2 Heisenberg model on a square lattice is specified
by the Hamiltonian [61,62]

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj , (29)

where 〈i, j 〉 and 〈〈i, j 〉〉 denote the spin pairs of nearest and
next-nearest neighbors (nnn) with antiferromagnetic interac-
tion J1 and J2, respectively (J1,2 > 0). An extensive amount
of work can be found in the literature depicting the phase
diagram (see Fig. 6) of the model at low temperatures (see
Ref. [62] for a review and the references therein). Following
the Luttinger-Tisja (LT) theorem [63] (see also Ref. [64] and
the references therein), the classical energy can be minimized
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FIG. 6. (a) A typical ground state spin configuration of the J1-J2

model in the frustrated regime which occurs for J1/J2 < 2 [shaded in
the phase diagram in (b)]. The ground state decouples into two sub-
lattices (one with red spins and the other with blue spins) each having
a Néel order; however, the relative angle θ between the spins in each
of them can be arbitrary. For J1/J2 > 2, a Néel state preponderates
over the entire lattice as shown in (c). The constraints in the model
live on the small square plaquettes one of which is shown in (d) with
the spins enumerated on which the LT transformation described in
the text applies.

by a helical spin texture Si = ê1 cos(q · ri ) + ê2 sin(q · ri ),
where the wave vector q minimizes the Fourier transform
J (q) of the coupling in Eq. (29). For J2 < J1/2, the minimum
of J (q) is achieved at q = (π, π ) featuring a Néel ordering of
the spins. At the critical point J2 = J1/2 the model is highly
frustrated as J (q) has lines of minima around the edges of the
square BZ. For J2 > J1/2, the minima localize to q = (π, 0)
and q = (0, π ). This is also a frustrated state (however, the
degree of frustration is less than the critical point) resulting
from a decoupling of the two sublattices each having a Néel
order; however, the relative angle (θ ) between the spins in
each of them can be arbitrary. The result is a degenerate
manifold of ground states parametrized by the continuous
angle θ (see Fig. 6). At the critical point, this entire manifold
becomes degenerate with the Néel state.

In order to identify the constraints associated with this
model it is useful to reexpress the Hamiltonian in Eq. (29)
as

H =
{∑

� H+
� , if g > 0,∑

� H−
� , otherwise,

(30)

where

H±
� = J1

4
[(S1 + S2 + S3 + S4)2

+ 2|g|{(S1 ± S3)2 + (S2 ± S4)2}], (31)

with g = (J2/J1 − 1/2), and � indexing a square plaquette
comprising four spins S1,2,3,4 in a counterclockwise direction
(see Fig. 6). Without loss of generality, we can assume the
direction of the collinear order along +x axis in the spin space
so that we can linearize the fluctuations around Si = (1, 0, 0)
and to linear order, write Si = (1, qi, pi ). Now we are all set
to construct the rigidity matrix of the problem; however, its
shape depends on the sign of the dimensionless parameter g.
Let us address the three different cases for g < 0, g = 0, and
g > 0 separately to make clear distinctions. They correspond
to the Néel ordered state (for g � 0) and the frustrated region
(for g > 0).

1. The Néel state for g < 0

For g < 0, the energy is minimized by the Néel state
(Fig. 6). Following the condition in Eq. (30), we need to
consider the Hamiltonian H−

� in Eq. (31) which has a total
of nine constraints per unit cell in the ground state. They
are Lα

1 ≡ ∑
i∈� Sα

i = 0, Lα
2 ≡ Sα

1 − Sα
3 = 0, and Lα

3 ≡ Sα
2 −

Sα
4 = 0 with α ∈ {x, y, z} which we expand around a Néel-

ordered state. For the particular spin configuration we choose
for the Néel state, all constraints corresponding to α = x

contribute only to vanishing rows of R, making it effectively
a 6 × 2 matrix.

To obtain a translation-invariant Bravais lattice correspond-
ing to the Néel pattern for which the LT theorem applies, we
perform the following transformation on the spins in one of
the sublattices, namely

S
x,y

2,4 → −S̃
x,y

2,4 , Sz
2,4 → S̃z

2,4. (32)

We call this transformed basis the LT basis, in which the
rigidity matrix R takes the desired 6 × 2 form. In other words,
in each unit cell we have the LT basis: τ1 = [q1, p1]T and
τ2 = [Ly

1, L
y

2, L
y

3, L
z
1, L

z
2, L

z
3]T , such that τ2 = R · τ1 with

the Hamiltonian [Eq. (29)] in the transformed basis written
as

HLT = −J1

∑
〈i,j〉

(Sx
i S̃x

j + S
y

i S̃
y

j − Sz
i S̃

z
j ) + J2

∑
〈〈i,j〉〉

Si · S̃j .

(33)
In the momentum space, R acquires a block-diagonal form

as

R(k) =

⎛
⎜⎜⎜⎜⎜⎝

1 − zx − zy + zxzy 0
1 − zxzy 0
zx − zy 0

0 1 + zx + zy + zxzy

0 1 − zxzy

0 zx − zy

⎞
⎟⎟⎟⎟⎟⎠.

(34)
Two antiunitary symmetries T1 ≡ KC1 and T2 ≡ KC2 (K de-
notes the complex conjugation) with

C1(k) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠ (35)

and C2(k) = zxzyI2×2 satisfy T †
1 (k)R(k)T2(k) = R(k)

which serves as a symmetry of R in the momentum space
(the unitary parts correspond to a C̃2-rotation symmetry, i.e.,
rotation of 180◦ around the center of the square plaquette
in the Néel state). So in the basis of these antiunitary
symmetries, R has real elements as

R(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4f1 sin kx

2 sin ky

2 0

2
∣∣∣sin kx+ky

2

∣∣∣ 0

−2f2 sin kx−ky

2 0

0 4f1 cos kx

2 cos ky

2

0 2
∣∣∣sin kx+ky

2

∣∣∣
0 −2f2 sin kx−ky

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)
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where f1 = sgn(cos kx+ky

2 ) and f2 = sgn(sin kx+ky

2 ). Denot-

ing R(k) ≡ (R1(k) 0
0 R2(k)), both the blocks represent systems

with ν = 2 for which the lowest homotopy group with a non-
trivial topology is π2. Both of them have vanishing elements
at certain points in the BZ, however, not simultaneously;
namely, R1(k) vanishes at k = (0, 0) while R2(k) vanishes
at k = (±π,±π ). For this reason, it is not possible to define
the Chern-Pontryagin index for any of them that could reveal
the topology of π2 in this case. This leads us to conclude that
the unfrustrated Néel state for g < 0 is not topology protected.

2. The critical point at g = 0

At the critical point (g = 0), we have only three constraints
in the problem, namely Lα ≡ ∑

i∈� Sα
i = 0 with α ∈ {x, y, z}

in the ground state. Again we expand these constraints around
a Néel-ordered state which qualifies as one of the many
ground states at the this point. Translated to the momentum
space, R assumes the following form written in the LT basis
τ1 = [q1, p1]T and τ2 = [Lx,Ly, Lz]T ,

R(k) =
⎛
⎝ 0 0

1 − zx − zy + zxzy 0
0 1 + zx + zy + zxzy

⎞
⎠,

(37)
where zx,y = eikx,y . By using the symmetries of the spin
pattern together with the crystal symmetries as in the previous
subsection, one can find appropriate antiunitary symmetries
T1 = K and T2 = zxzyT1 such that T †

1 (k)R(k)T2(k) = R(k),
and R expressed in the basis of these antiunitary symmetries,
has real elements as

R(k) =
⎛
⎝ 0 0

−4f sin kx

2 sin ky

2 0
0 4f cos kx

2 cos ky

2

⎞
⎠, (38)

where f = sgn(cos kx+ky

2 ), and the vanishing row corresponds
to the constraint Lx . We find that J (k) corresponding to HLT

has lines of minima at kx,y = 0 and ±π [Fig. 7(a), top panel],
and the quantity sgn[Det(R̃)], where R̃ is the diagonal matrix
derived from R by eliminating the vanishing row, changes
sign across the lines [Fig. 7(a), bottom panel]. Thus, the zero
modes in this case are protected by the Z2 invariant

η = sgn[Det(R̃)] (39)

[compare with Eq. (24)] which arises from π0 of the real case
in the table of ν = 0 systems. This is reminiscent of the line
nodes observed in Ref. [4] protected by a Z2 topology.

3. The frustrated state for g > 0

For g > 0, frustration is attributed to the two sublattices
individually conceiving Néel order and the energetics of the
model being insensitive to the relative angle (θ ) between
them (Fig. 6). So the accidental degeneracy of the ground
states is specified by the continuous parameter θ . The LT
transformation for such a spin pattern with a given value of

θ would be

S
x,y,z

1 → S̃
x,y,z

1 ,

Sx
2 → cos θS̃x

2 + sin θS̃
y

2 ,

S
y

2 → − sin θS̃x
2 + cos θS̃

y

2 , Sz
2 → S̃z

2,

S
x,y

3 → −S̃
x,y

3 , Sz
3 → S̃z

3,

Sx
4 → − cos θS̃x

4 − sin θS̃
y

4 ,

S
y

4 → sin θS̃x
4 − cos θS̃

y

4 , Sz
4 → S̃z

4,

(40)

using which it is straightforward to construct HLT (the com-
plicated expression is not provided here). For further analysis,
we resort to this LT-transformed basis only. Considering the
Hamiltonian H+

� in Eq. (30) and Eq. (31) for g > 0, we
find a total of nine constraints per unit cell in the ground
state which are Lα

1 ≡ ∑
i∈� Sα

i = 0, Lα
2 ≡ Sα

1 + Sα
3 = 0, and

Lα
3 ≡ Sα

2 + Sα
4 = 0 with α ∈ {x, y, z}. Evidently, not all of

them are linearly independent. After a careful elimination of
all the dependent constraints we find R reduced to a 4 × 2
matrix which, in the momentum space, assumes the form

R(k) =

⎛
⎜⎝

1 − zxzy 0
zx − zy 0

0 1 + zxzy

0 zx + zy

⎞
⎟⎠. (41)

The antiunitary symmetries T1,2 ≡ KC1,2 which constitute the
symmetry of R as T †

1 (k)R(k)T2(k) = R(k) have C1(k) =
I4×4 and C2(k) = zxzy (−1 0

0 1). The corresponding real form
of R is

R(k) =

⎛
⎜⎜⎜⎜⎜⎝

2
∣∣∣sin kx+ky

2

∣∣∣ 0

−f2 sin kx−ky

2 0

0 2
∣∣∣cos kx+ky

2

∣∣∣
0 f1 cos kx−ky

2

⎞
⎟⎟⎟⎟⎟⎠, (42)

where f1 = sgn(cos kx+ky

2 ) and f2 = sgn(sin kx+ky

2 ). Let us

denote R(k) ≡ (R1(k) 0
0 R2(k)). The SVD flattening of R1,2(k)

leads to two SO(2) matrices

Q1,2 =
(

cos θ1,2 sin θ1,2

− sin θ1,2 cos θ1,2

)
(43)

for which the lowest homotopy group with a nontrivial topol-
ogy is π1, and that π1[SO(2)] = Z. This is evident from the
plots of θ1,2 over the BZ shown in Fig. 8 in which we observe
Weyl points at k = (0, 0) and k = (±π,±π ) for θ1 and at
k = (±π, 0) and k = (0,±π ) for θ2. Thus, the frustrated state
for g > 0 in the J1-J2 model is actually protected by a Z
topology.

4. Inclusion of diagonal anisotropies

The topologically protected zero modes are immune to
certain classes of perturbations made to the Hamiltonian in
Eq. (29). One of them is the diagonal anisotropies in which
one of the diagonal interactions (J2) is stronger than the other.
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FIG. 7. Top row shows the plots of the LT spectrum over BZ for various values of the diagonal anisotropy λ defined in Eq. (44) where
λ = 1 implies the absence of such anisotropies and reduces Eq. (44) to Eq. (29). The bottom row displays the plots of the topological invariant
η = sgn[Det(R̃)] [defined in Eq. (39)] for λ = 1 (no anisotropies) in (a) and η = sgn[r1r2] [defined in Eq. (48)] for other values of λ in (b)–(d).
The yellow and the blue region have η = +1 and η = −1, respectively. The plots evince how Weyl line nodes tend to pairwise merge to Dirac
line nodes [4] for large anisotropy.

The model has the following Hamiltonian,

H = J1

∑
〈i,j〉

Si · Sj + λJ2

∑
〈〈i,j〉〉d1

Si · Sj + J2

λ

∑
〈〈i,j〉〉d2

Si · Sj ,

(44)
where 〈〈i, j 〉〉d1 and 〈〈i, j 〉〉d2 denote the two diagonal inter-
actions weighted by a dimensionless factor of λ and λ−1,
respectively (note the symmetry λ ↔ 1/λ). We can cast this
Hamiltonian in an analogous form to Eq. (30) where

H±
� = J1

4
[(S1 + λS2 + S3 + λS4)2/λ

+ 2|g|{(S1 ± S3)2/λ + λ(S2 ± S4)2}], (45)

obtaining constraints the same as before except that Lα
1 mod-

ifies to Lα
1 ≡ Sα

1 + λSα
2 + Sα

3 + λSα
4 = 0. The effects of this

FIG. 8. A plot of (a) θ1 and (b) θ2 defined in Eq. (43) over the BZ
(with the zone boundary marked in dashed black lines) for g = 0.1
(with J1 = 1) and a particular spin configuration with θ = 1. The
Weyl points located at k = (0, 0) and k = (±π,±π ) for θ1 and at
k = (±π, 0) and k = (0,±π ) for θ2 signify the feature of topology
protected frustration for g > 0.

perturbation at different parts of the phase diagram are the
following:

(1) For g < 0, we need to consider all the constraints
given by Lα

1,2,3 acting on the Néel state; consequently Eq. (36)
modifies to

R(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 0

2
∣∣∣sin kx+ky

2

∣∣∣ 0

−2f2 sin kx−ky

2 0

0 r2

0 2
∣∣∣sin kx+ky

2

∣∣∣
0 −2f2 sin kx−ky

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

For λ away from 1, the Chern-Pontryagin index (P) is well de-
fined for R1 and R2. However, we only get P = 0 indicating
a trivial topology associated with the unfrustrated Néel state.

(2) At the critical point, i.e., g = 0, only Lα
1 with α ∈

{y, z} contribute. The rigidity matrix takes the form

R =
(

r1 0
0 r2

)
, (47)

where

r1 = 2f

(
cos

kx + ky

2
− λ cos

kx − ky

2

)
,

r2 = 2f

(
cos

kx + ky

2
+ λ cos

kx − ky

2

)
,

(48)

with f = sgn[cos kx+ky

2 ]. As we tune λ away from 1 (the two
ranges 0 < λ < 1 and λ � 1 are mappable by λ → 1/λ), we
observe changes in the locations of the lines of zero modes
which are characterized by the Z2 invariant η = sgn[r1r2]
[Figs. 7(b)–7(d)]. For a high value of λ, pairwise merging
of the lines leads to doubly degenerate line nodes along the
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kx − ky = ±π lines in the BZ. These are Dirac type of line
nodes, distinct from the singly degenerate Weyl type of line
nodes. Both the kinds were earlier reported in Ref. [4]. The
Dirac line nodes are also protected by a Z2 topology, however,
with a new topological invariant which is η = sgn[r1] or η =
sgn[r2].

(3) For g > 0, the scenario does not change from the
unperturbed case of λ = 1 since λ does not enter in the
expression of R. We can conclude that the frustrated state is
robust against this kind of diagonal perturbation. For large λ,
we effectively get a triangular lattice which in fact favors the
frustrated state keeping its topology invariant.

5. Inclusion of spin rotation symmetry breaking terms

Perturbations that can induce new constraints to the model
can potentially alter the topology of frustration. Let us inves-
tigate the effects of certain spin rotation symmetry breaking
terms added to the Hamiltonian in Eq. (29). These are easy
axis anisotropies in the spin space which tend to align the
spins in a preferred direction, this way, relieving the frustra-
tion and destroying its topology. We consider the following
Hamiltonian,

H = J1

∑
〈i,j〉

Si · Sj + J̃1

∑
〈i,j〉

Sx
i Sx

j + J2

∑
〈〈i,j〉〉

Si · Sj . (49)

The second term can be reexpressed as the following,

Sx
i Sx

j = 1
2

(
Sx

i + Sx
j

)2 + 1
2

(
S

y

i

)2 + 1
2

(
Sz

i

)2

+ 1
2

(
S

y

j

)2 + 1
2

(
Sz

j

)2 − S2, (50)

which introduces new constraints L4
h ≡ Sx

i + Sx
j = 0 (on the

horizontal nn bond), L4
v ≡ Sx

i + Sx
j = 0 (on the vertical nn

bond), L6 ≡ S
y

i = 0, and L7 ≡ Sz
i = 0 in each unit cell in the

ground state. Inclusion of this new set of constraints shifts the
system further away from the ν = 0 point for which we do
not have any nontrivial topology in π0, π1, or π2. In effect,
these perturbations destroy the topology of the frustration in
the model and gap out the zero modes.

B. The spin-wave flat band in kagome antiferromagnets

Kagome antiferromagnets (Fig. 9) form a quintessential
example of frustrated systems. They can support zero modes
in various forms from line or point nodes to flat bands.
Let us start with the simplest example of ideal KHAF. The
spin Hamiltonian is given in Eq. (1) and the zero-energy
configurations can be visualized by folding patterns of a
triangulated origami sheet [65–68]. One prominent candidate
for the ground states of the model is the q = 0 coplanar state
[the 120◦ configuration shown in Fig. 9(a)] which represents
a flat sheet in the origami language. The spin-wave spectrum
around this state features a flat band of zero modes [Fig. 10(a),
top] which turns out to be characterized by a topological
invariant ζ defined in Eq. (25).

The unit cell of the q = 0 spin pattern has three spins, i.e.,
six DOFs, and two vector constraints specified by S�α = 0
with α ∈ {x, y, z} representing a ν = 0 system. The rigid-
ity matrix (R) that encodes the fluctuations around the
coplanar spin order is a square matrix of dimension six. An

FIG. 9. (a) Isotropic kagome Heisenberg model (spin exchanges
given by J ) with constraint S1 + S2 + S3 = 0. The spins are ori-
ented in a 120◦ configuration forming an equilateral triangle.
(b) Anisotropic kagome Heisenberg model (spin exchanges given by
J1, J2, J3) with constraint a1S1 + a2S2 + a3S3 = 0. The coefficients
a1,2,3 are determined by J1,2,3 which in turn decide the spin configu-
rations obeying the constraints. The modifications aj → ajMj allow
for both scalar and spin-orbit type spin exchanges.

explicit construction of R follows from invoking Eq. (2)
and considering the basis τ1 = [q1, q2, q3, p1, p2, p3]T cor-
responding to the three spins S1, S2, S3 in the unit cell
and τ2 = [�x

1,�x
2,�y

1,�y

2,�z
1,�z

2]T corresponding to the six
constraints on the two faces �1 and �2 in the unit cell such
that τ2 = R · τ1. In this basis, R has a block-diagonal form
R = (R1 0

0 R2
) where R1 and R2 are 4 × 3 and 2 × 3 matrices

representing two systems of ν = −1 and ν = 1, respectively.
So the topology of a ν = 0 system (R with ν = 0) in this case
hinges upon that of the two systems (R1,2) with ν = ±1 (both
having the same topology). In the momentum space, R1 takes
the form

R1(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 −
√

3
2

√
3

2

0 −
√

3
2

√
3

2 eik1

1 − 1
2 − 1

2

eik2 − 1
2 − 1

2eik1

⎞
⎟⎟⎟⎟⎟⎠, (51)

and R2 takes the form

R2(k) =
(

1 1 1

eik2 1 eik1

)
, (52)

where kj = k · aj with a1 = (1, 0) and a2 = (1/2,
√

3/2)
being the lattice vectors of the ordering pattern (see Fig. 9).
Existence of a flat band in the spin-wave dispersions implies
that one of the singular values of R(k) is always 0 at any k,
i.e., a rank reduction of R(k) by 1 which effectively makes
it describable in terms of ν = ±1 block matrices as explained
previously in Sec. IV.

The q = 0 coplanar order has a C̃2 rotation symmetry (a
rotation of 180◦) about each of the lattice sites in the unit
cell which, in the momentum space, acts as R(k) → R(−k).
Since the complex conjugation K also does so, a combination
of these two T ≡ C2K is a symmetry of R(k) where T is
a antiunitary operator with T 2 = 1. Consequently, expressed
in a T -invariant basis, R1,2 have real elements in the entire
BZ. The classifying space of the SVD flattened matrices for
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FIG. 10. Effects of spin-orbit coupling on the rigidity of kagome spin waves. (a) Isotropic kagome Heisenberg model, (b) anisotropic
kagome Heisenberg model, (c) spin-orbit coupled kagome antiferromagnets with SO(2) symmetry [Eq. (53)], and (d) generic spin-orbit
coupled kagome antiferromagnets [Eqs. (54) and (55)]. The top panel shows the spin-wave band structures in all the four varieties (with
parameters mentioned in the text) along a path shown in white lines in the bottom panel of (a). The spin-wave frequency ω is measured in
units of spin exchange J set to 1. The bottom panel is a plot of the gap between the lowest two singular values of the rigidity matrix R in the
BZ which closes at the � point from which Dirac strings emanate [green and blue respectively for R1 and R2 in Eqs. (51) and (52)]. For the
most generic model in (d), the spin-orbit exchanges destroy the block structure of R and so the nontrivial topology associated with the blocks
leaving us with ζ = 1.

R1 and R2 are SO(4) and SO(3), respectively, both having
a Z2 topology as suggested by the table of ν �= 0 systems.
As a result, we observe Dirac strings in the BZ emanating
from the � point, and the topological invariant ζ [Eq. (25)]
for any closed loop surrounding the � point is −1 [Fig. 10(a),
bottom]. The robust nature of the zero modes in the form of
such a flat band for the q = 0 coplanar state has a topological
origin typified by the Z2-valued invariant ζ .

1. Inclusion of anisotropic scalar exchanges

The flat band of zero modes persists even in anisotropic
kagome Heisenberg models as long as the q = 0 state has an
analog of a flat sheet origami. There are examples of kagome
materials of this kind [4]. The simplest one is a J1-J2-J3 type
Heisenberg model for which the q = 0 spin pattern has the
same unit cell as the lattice [Fig. 9(b)]. The spin Hamiltonian
is given in Eq. (8) with S�α = a1S1α + a2S2α + a3S3α in each
unit cell and J�α,�′β = Jδ��′

δαβ for all the interactions are
between nn only and that J1 = Ja2a3, J2 = Ja3a1, J3 =
Ja1a2. The isotropic limit is simply given by a1 = a2 = a3 =
1. When we vary the ratios a2/a1 and a3/a1 away from 1,
we alter the strength of the anisotropic exchanges in the
model. The spin-wave dispersions for this model are plotted in
Fig. 10(b), top, with a1 = 1, a2 = 2, and a3 determined by the
constraint a1S1 + a2S2 + a3S3 = 0 where S1, S2, and S3 are
unit vectors forming an equilateral triangle. Remarkably the
effects are only to change the locations of the Dirac strings
while the value of ζ (= −1) remains invariant [Fig. 10(b),
bottom]. This explains the immunity of the flat band of zero
modes against certain anisotropic scalar perturbations and
thus signifies the role of topology in rendering robustness to
frustration as emphasized in this article.

2. Inclusion of spin-orbit coupling

A further generalization of the constraint functions
allows for various kinds of symmetric and antisymmetric
spin-orbit exchanges to be incorporated into the spin
Hamiltonian in Eq. (1). However, given a generic spin
model specified by a Hamiltonian Hspin, including all such
interactions may not be cast in terms of constraints like S�,
such that Hspin = S2

� + constant. Investigating this issue
is beyond the reach of the present work to bypass which
we rather tweak the constraint functions first and then
illustrate what kinds of interactions they do generate that
preserve the flat band in the spin-wave dispersions. The
modification is to multiply the scalars a(1,2,3) by orthogonal
matrices M(1,2,3) and write the constraint functions as
S� = a1M1 · S1 + a2M2 · S2 + a3M3 · S3. Evidently, the
trace of a term like MT

i Mj would lead to the anisotropic
scalar exchanges, while the traceless symmetric part and
the antisymmetric part of MT

i Mj would contribute to the
symmetric spin-orbit exchanges and the Dzyaloshinskii-
Moriya (DM) type interactions between the spins,
respectively.

To this end, we distinguish between two different types of
M matrices for reasons to be clear soon. The first class of
matrices add only anisotropic scalar exchanges and antisym-
metric DM terms to the Hamiltonian and can be parametrized
as

Mj =
⎛
⎝ cos θj sin θj 0

− sin θj cos θj 0
0 0 1

⎞
⎠, (53)

implying the DM vector pointing along the z axis and that the
SO(3) spin rotation symmetry of the Hamiltonian is broken
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down to SO(2). Such perturbations retain the block-diagonal
form of R. To study their effects on the topology of R1,2,
we consider a1 = a2 = 1, M1 = I, and vary θ2 away from 0,
while the constraint S� = 0 decides the values of a3 and M3.
The top panel of Fig. 10(c) shows the spin-wave dispersions
for θ2 = π/5. We observe that such variations only alter the
locations of the Dirac strings and thus preserve the topology
of R as seen in the bottom panel of Fig. 10(c).

The second class of matrices are taken as generic orthog-
onal matrices which add all sorts of interactions (anisotropic
scalar exchanges, antisymmetric DM terms, and symmetric
spin-orbit exchanges) to the Hamiltonian and break the SO(3)
spin rotation symmetry completely. We consider the following
parametric form of such matrices,

Mj = Exp[θjωj · L], (54)

where ωj is a unit vector specified as

ωj = (cos ηj sin ξj , sin ηj sin ξj , cos ξj ), (55)

and La
bc = εabc (the completely antisymmetric Levi-Civita

tensor) are the generators of the SO(3) group. Such types
of perturbations mix the blocks R1 and R2, and in that
case we must analyze the topology of an SO(6) matrix
corresponding to a ν = 0 system. Nevertheless, we observe
Dirac strings that protect the flat band of zero modes even
in the presence of all different kinds of spin exchanges. The
top panel of Fig. 10(d) shows the effects of such perturba-
tions on the spin-wave dispersions for the parameters a1 =
a2 = 1, θ1 = η1 = ξ1 = 0, η2 = ξ2 = 1, θ2 = π/10 while a3

and M3 are decided by the constraint S� = 0 as before.
However, the topological invariant ζ = 1 for this model
is calculated along any close contour around the � point
[Fig. 10(d), bottom]. In summary, all these perturbations
retain the flat band (although they modify the frequencies
of the nonflat bands) and its topology which evidences the
robust nature of zero modes in certain classes of frustrated
magnets.

C. Other examples of ν �= 0 frustrated systems

Some of the other examples of ν �= 0 frustrated systems in-
clude the pyrochlore magnets [19,69] and their projected ver-
sions onto two dimensions which are the checkerboard mag-
nets (Heisenberg model on a checkerboard lattice [70,71]),
both of which have been thoroughly studied in the past for
their fame of harboring exotic states of matter as a conse-
quence of high frustration. The constraints in the spin Hamil-
tonian are that the total spin vanishes in each tetrahedra in the
former and in each checkerboard in the latter. The MCM index
for them is ν = 2 and ν = 1, respectively, which envisage,
following our tables, that the degeneracy of zero modes in
these systems is also protected by a similar topology discussed
above. In a recent work [72], some of the metamaterial
systems with higher ν have been shown to be characterized by
topological invariants (of Z type) that fit our table of complex
rigidity matrices.

VII. CONCLUSIONS

In conclusion, we explore a fundamental connection be-
tween magnetic frustration and topology, namely, how dif-
ferent forms of zero modes in a frustrated system can be
topologically classified. The frustrated models of our concern
share features with metamaterial Hamiltonians, and so, in
uncovering their topological aspects, recent developments in
the field of topological mechanics turn out to be extremely
useful. Specifically, all the zero modes (zero to linear order)
in a frustrated model/metamaterial can be explained in the
framework of rigidity matrices (whose kernel contains the
zero modes) R and the (linearized) Hamiltonian can be cast
in a bilinear form in terms of R. The key to decode the
topology that protects the degeneracy of the zero modes in
the form of either isolated points (like Weyl points) or line
nodes or surfaces (like flat bands) is to study the classifying
spaces of these matrices in the presence of various unitary
and antiunitary symmetries of the problem. In this context,
we present the striking result that even nonsquare rigidity
matrices (i.e., nonisostatic systems) with a nonzero Maxwell
index ν exist in a nontrivial topological space. Thus our results
introduce classes of topological mechanical systems beyond
the original Kane and Lubensky [21] isostatic class.

To summarize our specific results, we present a clas-
sification of rigidity matrices guided by the tenfold way
of electronic band insulators and superconductors. This
provides an explanation of zero modes in frustrated sys-
tems/metamaterials from topology. The class depends only
on the absence or presence of the antiunitary time-reversal
symmetry T in contrast to the tenfold way that includes
particle-hole symmetry and chiral symmetry in addition to T
and is thus a threefold way. However, unlike the tenfold way
which deals with Hamiltonian matrices, the key element in
our discussion is the rigidity matrix which is non-Hermitian.
To classify such non-Hermitian matrices we employ SVD
flattening of rigidity matrices under the presence or absence
of T (instead of spectral flattening of Hamiltonians) which
leads us to the rich structures of the Stiefel manifold in
distinction to the Grassmannian manifold of the tenfold way.
We further study the different homotopy groups of the Stiefel
manifolds which are endowed with intriguing topological
structures revealing topological invariants beyond those in
the tenfold classification table. Thus we expect new forms
of zero modes will be found that are yet to be discovered
in frustrated spin systems/metamaterials. We illustrate our
claims by providing a number of emblematic examples of
frustrate spin models that include the flat band in kagome
Heisenberg systems and the J1-J2 Heisenberg model on a
square lattice. We demonstrate how the physics of frustration
in those nonisostatic ν �= 0 systems can be captured by real
rigidity matrices and associated zero modes demanded by a
vortex-like topological invariant.

We believe these results are so general that this classifica-
tion of rigidity matrices will elucidate the origin of frustration
in the form of accidental degeneracy in a wide class of
frustrated magnets by relating it to topological invariants that
protect the robust nature of their zero modes. Perhaps the
most promising application of these results is the explanation
of accidental degeneracy found in the spin wave spectra of
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a magnetic insulator derived from neutron scattering data.
Our example calculations suggest such spin waves arise from
an ordering pattern which is characterized by a set of local
constraints. These in turn create a rigidity matrix upon lin-
earization and through it a set of topological invariants (of
either the Z2, Z variety or more exotic Z24, Z12 × Z2, etc.,
variety), whose changes demand the discovered accidental
degeneracy. Such an explanation would then produce a predic-
tion on how to control the degeneracy via perturbations which
either keep or destroy the topological invariants. Finally, these
predictions, beyond illuminating new properties of magnetic

phases, would enable the search for exotic phases of matter
that naturally arise from frustration such as spin ices and
quantum spin liquids.
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