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Dynamical structure factors in the nematic phase of frustrated ferromagnetic spin chains

Flávia B. Ramos,1 Sebas Eliëns,1 and Rodrigo G. Pereira1,2

1International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova,
Natal, Rio Grande do Norte 59078-970, Brazil

2Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal,
Rio Grande do Norte 59078-970, Brazil

(Received 28 May 2018; published 28 September 2018)

Frustrated spin systems can show phases with spontaneous breaking of spin-rotational symmetry without the
formation of local magnetic order. We study the dynamic response of the spin-nematic phase of one-dimensional
spin-1/2 systems, characterized by slow large-distance decay of quadrupolar correlations, by numerically
computing one-spin and two-spin dynamical structure factors at zero temperature using time-dependent density
matrix renormalization group methods. We interpret the results in terms of an effective theory of gapped
magnon excitations interacting with a quasicondensate of bound magnon pairs. This employs an extension of the
well-known Tomonaga-Luttinger liquid theory which includes the magnon states as a mobile impurity. A good
qualitative understanding of the characteristic thresholds and their intensity in the structure factors is obtained
this way. Our results are useful in the interpretation of inelastic neutron scattering and resonant inelastic x-ray
scattering experiments.
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I. INTRODUCTION

Most open problems in quantum magnetism relate to the
search for phases of interacting spin systems that depart from
the paradigm of long-range magnetic order [1]. One exam-
ple is the spin-nematic phase, characterized by a quadrupo-
lar order parameter [2,3]. For spin-1/2 systems, a bond
spin-nematic order parameter is defined from the traceless
symmetric rank-2 tensor Qab

ij = Sa
i Sb

j + Sb
i S

a
j − 2

3δabSi · Sj ,
where a, b ∈ {x, y, z} and i, j label nearest-neighbor spins.
In contrast with dipolar magnetic order, where 〈Si〉 �= 0 in the
ground state, a nonzero expectation value of any component
of Qab

ij breaks spin-rotation invariance but preserves time-
reversal symmetry.

Theoretically, it is well established that a one-dimensional
(1D) version of the bond spin-nematic phase exists in the
frustrated ferromagnetic spin-1/2 chain in a magnetic field
[4–17]. This model describes a quantum spin chain with
ferromagnetic nearest-neighbor exchange coupling J1 < 0
and antiferromagnetic next-nearest-neighbor exchange J2 >

0. Since in one dimension the continuous spin-rotational sym-
metry cannot be spontaneously broken, the 1D spin-nematic
phase has to be understood in terms of quasi-long-range
order of quadrupolar correlations, which decay algebraically
with distance and more slowly than dipolar correlations. The
quadrupolar nematic phase appears in the parameter regime
α = J1/J2 � −2.72 at sufficiently high magnetic field [6–9].
Decreasing the field leads to a crossover to a spin-density
wave (SDW) regime, in which the staggered part of the
longitudinal spin correlation function decays more slowly
than the quadrupolar correlation. At even lower fields, there
is a transition to a vector-chiral phase that breaks bond-parity
symmetry [8]. In addition, higher-order multipolar phases
exist in the range −4 < α � −2.72 [8,9].

Both the spin-nematic and SDW regimes are described in
the low-energy limit as a Tomonaga-Luttinger (TL) liquid
with one gapless bosonic mode and gapped single-spin-flip
excitations [8,10,16]. The effective low-energy theory can
be derived using bosonization in the limit of two weakly
coupled Heisenberg chains |α| � 1. For |α| of order 1, one
can alternatively consider the limit of large magnetic fields,
just below the saturation field, and regard the TL liquid in the
nematic regime as a quasicondensate of bound magnon pairs
treated as hard-core bosons [4,8,18].

The frustrated ferromagnetic spin chain model finds a
nearly ideal realization in the quasi-1D material LiCuVO4

[19–24]. The estimates for the value of α in this material
range from α ≈ −0.4 [20] to α ≈ −2 [12]. Remarkably, a
recent nuclear magnetic resonance experiment [24] provided
compelling evidence for the spin-nematic phase in a narrow
window of magnetic field between the SDW phase and the
fully polarized state.

The purpose of this work is to analyze the dynamics of
the frustrated ferromagnetic spin chain. It is well known that
dynamical structure factors (DSFs) provide direct information
about the excitation spectrum. For instance, they can demon-
strate the existence of fractional elementary excitations, such
as spinons in the antiferromagnetic Heisenberg chain [25].
Spinons have been observed by inelastic neutron scattering
experiments in LiCuVO4 at zero magnetic field [21]. The
dynamical spin structure factor in this case has been cal-
culated numerically using a time-dependent density matrix
renormalization group (tDMRG) algorithm [12]. In the ne-
matic phase, however, the spectrum of the frustrated chain
is organized in terms of gapped magnons and gapless bound
magnon pairs. The low-energy features of the spin DSF in the
nematic phase have been studied within the TL liquid theory
[10]. The finite-energy spectrum was investigated using the
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dynamical density matrix renormalization group (DDMRG)
method in Ref. [15], but the full intensity plots in the energy-
momentum plane were restricted to a low magnetization in the
SDW regime.

Here we use state-of-the-art tDMRG methods [26] to cal-
culate the DSFs of various one-spin and two-spin operators
inside the nematic phase. While one usually focuses on the
dynamics of one-spin operators due to their relevance for
inelastic neutron scattering, two-spin excitations can also be
probed by the fast-developing techniques of resonant inelastic
x-ray scattering (RIXS) [27,28]. We interpret our numerical
results in light of the current understanding of dynamical
correlations of critical 1D systems beyond the low-energy
regime described by TL liquid theory [29,30]. Our high-
resolution results clearly show a small single-magnon gap
directly in the transverse spin DSF. The corresponding mo-
mentum is, however, not at the minimum of the magnon
band but at shifted momenta where furthermore clear replicas
are observed. This is explained within a description in terms
of magnons interacting with the condensate of bound states
as a direct consequence of the effective hard-core repulsion
between single magnons and the bound magnon pairs. Based
on an effective impurity model, we compute the theoretical
threshold exponents that allow us to understand the quali-
tative features observed in the tDMRG data. Furthermore,
we compute DSFs associated with flipping two spins on
neighboring sites. In contrast to the single-magnon excita-
tions, the spectrum of two-spin-flip operators is gapless. From
the effective description, this is natural as these operators
probe the creation or annihilation of bound magnon pairs
in the condensate. We argue that the computed two-spin
structure factors behave qualitatively like one-spin structure
factors in XXZ spin chains.

This paper is organized as follows. In Sec. II, we define the
model and main quantities of interest. In Sec. III, we discuss
the nature and spectra of excitations as one lowers the field
from above the saturation field. This outlines how the physics
can be understood in terms of an effective model of bound
magnon pairs and single magnons. In Sec. IV, we discuss
how the excitation spectrum relates to the thresholds of the
different DSFs. For the DSFs probing single magnons, we
formulate the effective impurity model that is used to derive
the threshold exponents. In Sec. V, we present our numerical
results along with the interpretation in terms of magnons in-
teracting with the bound-state condensate. Finally, we provide
concluding remarks in Sec. VI. The appendices contain details
of the calculation of the bare pair-magnon interaction poten-
tial in the effective model and of the threshold exponents.

II. MODEL AND DYNAMICAL STRUCTURE FACTORS

The Hamiltonian for the frustrated ferromagnetic spin
chain is

H =
L∑

j=1

(
J1Sj · Sj+1 + J2Sj · Sj+2 − hSz

j

)
, (1)

where Sj are spin-1/2 operators, J1 < 0 and J2 > 0 are
exchange coupling constants, and h is the external magnetic
field. Here we consider periodic boundary conditions Sj+L =
Sj . This model has a global U(1) symmetry corresponding
to the conservation of the total longitudinal magnetization
Sz

tot = ∑
j Sz

j . The ground-state phase diagram as a function
of α = J1/J2 and magnetization m = 〈Sz

j 〉 can be found in
Refs. [8,9]. In this work, we set α = −1 and consider two
values of magnetization: m = 0.4 in the spin-nematic regime
and m = 0.2 in the SDW regime.

We are interested in dynamical correlation functions for
one-spin operators Sa

j and two-spin operators Sa
j Sb

j+1, where
a, b ∈ {x, y, z}. In order to select excitations with well-
defined quantum numbers of Sz

tot, it is convenient to choose
instead a, b ∈ {+,−, z}, with S±

j = Sx
j ± iS

y

j . The DSFs for
one-spin operators are defined as

Sāa (q, ω) =
∫ +∞

−∞
dt eiωt

∑
r

e−iqr〈gs|Sā
j+r (t )Sa

j (0)|gs〉,

(2)

where |gs〉 is the exact ground state, Sa
j (t ) = eiHtSa

j e−iH t is
the operator evolved in real time, and we use the notation
ā = −,+, z for a = +,−, z, respectively, such that Sā

j =
(Sa

j )†. The expression in Eq. (2) is equivalent to the Lehmann
representation

Sāa (q, ω) = 2π

L

∑
α

∣∣〈α|Oa
q |gs〉∣∣2

δ(ω − Eα + Egs ), (3)

where Oa
q = ∑

j eiqj Sa
j and |α〉 are exact eigenstates of H

with energy Eα . Thus, the support of Sāa (q, ω) corresponds
to the region of the (q, ω) plane where there are excitations
created by the action of Sa

j on the ground state that carry
momentum q and energy ω.

For two-spin operators, we define

Sāb̄ab(q, ω) =
∫ +∞

−∞
dt eiωt

∑
r

e−iqr

×〈gs|Sā
j+rS

b̄
j+r+1(t )Sa

j (0)Sb
j+1(0)|gs〉, (4)

which is equivalent to

Sāb̄ab(q, ω) = 2π

L

∑
α

∣∣〈α|Oab
q |gs〉∣∣2

δ(ω − Eα + Egs ), (5)

where Oab
q = ∑

j eiqj Sa
j Sb

j+1. Note that the set of two-spin
operators includes not only the components of the quadrupole
moment Qab

j,j+1, but also the antisymmetric part of the two-
spin tensor εabcSb

j S
c
j+1. For the Heisenberg chain (J2 = 0), the

antisymmetric part of the two-spin tensor is related to the spin
current between sites j and j + 1. The integrability of the 1D
Heisenberg model allows one to compute DSFs exactly using
the algebraic Bethe ansatz, including the case of two-spin
operators [31,32]. In Sec. V, we will show results for DSFs
for the nonintegrable model with J2 �= 0 in the nematic/SDW
phase obtained numerically using tDMRG.
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III. GENERAL PROPERTIES OF THE
EXCITATION SPECTRUM

A. Spectrum above the saturation field

To understand the excitation spectrum of the spin-nematic
phase beyond the low-energy regime, we start from the limit
of large magnetic fields. For a fixed value of α, there is
a saturation field hsat(α) such that the exact ground state
for h > hsat is the fully polarized state, |⇑〉 = ⊗

j |↑〉j . The
excitations in this phase are gapped magnons and magnon
bound states. The single-magnon state with momentum k is
given by

|k〉 = 1√
L

L∑
j=1

eikjS−
j |⇑〉. (6)

Periodic boundary conditions quantize the momenta as k =
2πn/L, with n = 1, . . . , L. The magnon dispersion,

ε(k) = J1[cos(k) − 1] + J2[cos(2k) − 1] + h, (7)

has minima at k0 = cos−1(|J1|/4J2) and k̄0 = 2π − k0. The
wave number k0 is related to the pitch angle of the helical
order in the classical model [8]. The value of k0 is in general
incommensurate, but it approaches k = π/2 in the limit J2 �
|J1| treated by weak-coupling bosonization [8]. The magnon
gap is

� = ε(k0) = − J 2
1

8J2
− J2 + h. (8)

The two-particle subspace is spanned by the basis
S−

j1
S−

j2
|⇑〉, 1 � j1 < j2 � L, with dimension L(L − 1)/2.

Equivalently, we can use the notation

|l, r〉 = S−
l S−

l+r |⇑〉, (9)

where l = 1, . . . , L and r = 1, . . . , (L − 1)/2; here we re-
strict ourselves to odd values of L for simplicity. The coor-
dinate r can be interpreted as the relative distance between
the two magnons. A two-magnon state with center-of-mass
momentum p can be written as

|p, r〉 = 1√
L

L∑
l=1

eip(l+r/2)|l, r〉, (10)

where p = 2πn/L with n = 1, . . . , L. The matrix elements
of the Hamiltonian in the basis of Eq. (10) take the form

〈p′, r ′|H |p, r〉 = δpp′hp(r ′, r ), (11)

where

hp(r ′, r ) = eip(r−r ′ )/2
L∑

n=1

e−ipn〈n, r ′|H |0, r〉. (12)

The nonzero matrix elements are

hp(r, r ) = J1(δr,1 − 2) + J2(δr,1 cos p + δr,2 − 2),

hp(r, r + 1) = hp(r + 1, r ) = J1 cos(p/2),

hp(r, r + 2) = hp(r + 2, r ) = J2 cos p. (13)

We find the two-magnon spectrum by diagonalizing the
matrix hp(r ′, r ) numerically following Ref. [7]. Figure 1
shows the two-magnon spectrum for α = −1 and h > hsat.

p/π

ω
/J

2

FIG. 1. One- and two-magnon spectrum for α = −1 and h =
1.26, slightly above the saturation field hsat ≈ 1.25. The red lines
show the dispersion of the bound magnon pair present both below
and above the two-magnon continuum (shaded area). The dashed
blue line represents the single-magnon dispersion.

The main feature is the presence of a two-magnon bound state
both below and above the two-magnon continuum. The bound
state dispersion below the continuum, which we denote by
Eb(p), has a minimum at p = π . The bound-state dispersion
merges with the continuum for |p − π | � Qc, where Qc ≈
0.27π for α = −1. The wave function �(p, r ) for the relative
coordinate of the two-magnon bound state is illustrated in
Fig. 2. The corresponding state in the Hilbert space is

|b, p〉 =
(L−1)/2∑

r=1

�(p, r )|p, r〉. (14)

Note that the bound-state wave function for p ≈ π has dom-
inant weight at odd values of r . Exactly at p = π , the wave
function vanishes at even distances. This indicates that bound
magnon pairs contribute more to the DSF of odd-distance
two-spin operators, such as S−

j S−
j+1, than to even-distance

ones like S−
j S−

j+2.
As h approaches the saturation field from above, the min-

imum energy Eb(π ) of bound magnon pairs becomes lower

r

Ψ
(p

,r
)

FIG. 2. Wave function of the two-magnon bound state for α =
−1 and center-of-mass momentum p = 0.95π .
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than the minimum energy of a single magnon (see Fig. 1). The
physical reason is that the ferromagnetic exchange coupling
J1 < 0 amounts to an attractive interaction between magnons
[4]. For −2.72 � α � −2.67, the minimum in the bound state
dispersion moves to an incommensurate value of momentum
[6,7]. In the range −4 < α � −2.72, the interaction becomes
strong enough that multimagnon bound states have even lower
energy than the magnon pair. In this work, we focus on the
regime −2.67 � α < 0, in which the gap in the two-magnon
bound-state dispersion closes at p = π as h → h+

sat.

B. Spectrum below the saturation field

1. Tomonaga-Luttinger liquid theory and static correlations

The quadrupolar spin-nematic phase arises for h < hsat

when the gap in Eb(p) closes and bound magnon pairs
condense before single-magnon excitations. Since each pair
carries spin eigenvalue Sz = −2, the average density of pairs
in the ground state, ρ0, is related to the magnetization m by

ρ0 = 1
2

(
1
2 − m

)
. (15)

In the vicinity of the saturation field from below, we can treat
the system as a dilute liquid of bound magnon pairs, ρ0 � 1,
with repulsive interactions [8].

Within a phenomenological harmonic-fluid approach, the
large-distance behavior of correlation functions of a 1D Bose
liquid is described by the TL model [33,34]

HTL = v

2

∫
dx

[
K (∂xθ )2 + 1

K
(∂xφ)2

]
, (16)

where v is the sound velocity, K is the Luttinger parameter,
θ (x) is the phase field operator, and ∂xφ is associated with
density fluctuations. The bosonic fields obey the commutation
relation [φ(x), ∂x ′θ (x ′)] = iδ(x − x ′). In the limit h → h−

sat,
we have K → 1, the value for hard-core bosons. In the 1D
liquid of bound magnon pairs, the correlation functions that
have the slowest decay at large distances are [8]

〈
Sz

j+rS
z
j

〉 ∼ cos(2πρ0r )

r2K
, (17)

〈S+
j+rS

+
j+r+1S

−
j S−

j+1〉 ∼ (−1)r

r1/(2K )
. (18)

The spin-nematic regime is defined as the region in the critical
phase corresponding to K > 1/2, in which the quadrupolar
correlation in Eq. (18) decays more slowly than the dipolar
correlation in Eq. (17). For K < 1/2, the system is in the
SDW regime in which the longitudinal spin correlation domi-
nates at large distances. On the other hand, the transverse spin
correlation decays exponentially:

〈S+
j+rS

−
j 〉 ∼ e−r/ξ . (19)

The correlation length ξ is of the order of the inverse gap for
single-magnon excitations.

2. Beyond the linear dispersion approximation

We now wish to write down an effective model that cap-
tures the support of DSFs beyond the low-energy approxima-
tions of the TL model. Our approximations will be justified in
the low-density limit ρ0 � 1. In this limit, we assume that the

effective Hamiltonian contains only two-particle interactions
and we can neglect three-particle scattering processes. Here,
two particles can mean two magnons, two bound magnon
pairs, or a magnon and a bound magnon pair. Note that the
model in Eq. (1) has only one U(1) symmetry and only Sz

tot is
a good quantum number. Thus, strictly speaking, the number
of magnons and the number of bound magnon pairs are not
separately conserved. However, it is known that the vicinity
of thresholds of spectral functions of critical 1D systems
can be described by considering a small, fixed number of
elementary excitations at finite energies which interact with
the low-energy modes of the TL liquid [29]. In the following
we will apply the same rationale to the spin-nematic phase.

We start with the effective Hamiltonian for gapped
magnons. The scattering of magnons at low densities is
known to be approximately described by an effective Hamil-
tonian that includes one-body and two-body operators in the
form [35]

Hm =
∑

k

ε(k)a†
kak

+ 1

2L

∑
k,k′,q

Vm(k, k′, q )a†
k+qa

†
k′−qak′ak, (20)

where ak annihilates a magnon with momentum k and energy
ε(k). The effective scattering amplitude can be extracted
from the original spin Hamiltonian by computing the matrix
element [35]

Vm(k, k′, q ) = L〈k + q, k′ − q|δHmm(k, k′)|k, k′〉, (21)

where |k, k′〉 are two-magnon states [tensor product of states
in Eq. (6)] and δHmm(k, k′) = H − E0 − ε(k) − ε(k′). Here
E0 is the energy of the fully polarized state, which plays the
role of the vacuum. The subtraction of the energy of the two
free magnons in δHmm(k, k′) is equivalent to dropping the
disconnected Feynman diagrams in the four-point function;
it is necessary because the scattering states |k, k′〉 and |k +
q, k′ − q〉 are not orthogonal for finite size L [35]. We recall
that magnons have to be treated as hard-core bosons. The
expression in Eq. (21) accounts for the regular, finite-range
part of the interaction potential.

Let us now consider the effective Hamiltonian for bound
magnon pairs, of which we have a finite but low density in the
ground state. The Hilbert space of a single pair is spanned by
the states |b, p〉 in Eq. (14). In analogy with Eq. (20), we write
down the effective Hamiltonian with one-body and two-body
operators,

Hb =
∑

p

Eb(p)b†pbp+ 1

2L

∑
p,p′,q

Vb(p, p′, q )b†p+qb
†
p′−qbp′bp,

(22)

where bp annihilates a bound magnon pair with momentum p

and energy Eb(p), and Vb(p, p′, q ) is the effective scattering
amplitude,

Vb(p, p′, q ) = L〈b, p+q; b, p′−q|δHbb(p, p′)|b, p; b, p′〉,
(23)
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with δHbb(p, p′) = H − E0 − Eb(p) − Eb(p′). We note that
all momenta of bound magnon pairs must be restricted to the
interval [π − Qc, π + Qc].

For h > hsat, the pair dispersion in the vicinity of p = π

can be written as

Eb(p ≈ π ) = Eb(π ) + (p − π )2

2M
+ · · · , (24)

where M = [(d2Eb/dp
2)|p=π ]−1 is the effective mass of the

bound magnon pair. We can interpret μ ≡ −Eb(π ) as the
chemical potential for the magnon pairs. For h < hsat, these
bosonic excitations condense, and the pair-pair interaction
is responsible for changing the low-energy dispersion from
quadratic to linear. In spatial dimensions higher than one,
the linear dispersion of a superfluid phase is qualitatively
described by the Bogoliubov approximation. However, the as-
sumptions of Bogoliubov theory break down in one dimension
[34]. To understand how the linear dispersion develops in the
1D liquid of bound magnon pairs, let us consider the asymp-
totic low-density limit ρ0 � 1 and focus on single-particle
states with momentum |p − π | � Qc. In this limit, the av-
erage distance between two pairs, d ∼ ρ−1

0 , is large compared
to the size of the bound state,  ∼ [Qc − |p − π |]−1. We can
then introduce the pair field operator in the continuum limit as

b(x) = 1√
L

∑
|q|�1

eiqxbπ+q . (25)

Furthermore, if we approximate the interaction potential by
a contact interaction, Vb(p, p′, q ) ≈ Vb(π, π, 0) ≡ U0, the
effective Hamiltonian becomes simply

Hb ≈
∫ L

0
dx

(
− 1

2M
b†∂2

x b

)
, (26)

where we dropped s-wave scattering amplitude U0 due to
the hard-core constraint [b(x)]2 = 0. As a consequence, in
the low-density limit the 1D liquid of bound magnon pairs
becomes equivalent to a Tonks-Girardeau gas [36], i.e., the
Lieb-Liniger model with infinitely strong repulsion [37,38].
This model can be mapped to noninteracting spinless fermions
by defining the new fields

bF (x) = b(x) cos

[
π

∫ x

−∞
dx ′ b†(x ′)b(x ′)

]
. (27)

Here we used the cosine function to keep the Jordan-Wigner
string manifestly Hermitian in the continuum limit. While
the field bF (x) anticommutes with itself at different posi-
tions, the local density is invariant, b†(x)b(x) = b

†
F (x)bF (x).

Since the fermionic wave function vanishes when two par-
ticles occupy the same position, the hard-core constraint is
automatically satisfied for bF (x).

The spectrum of the Tonks-Girardeau gas has two types of
elementary excitations: a particle-type excitation, which is the
1D analog of the Bogoliubov quasiparticle in a superfluid, and
a hole-type excitation [37,38]. The corresponding dispersion
relations are illustrated in Fig. 3. For |p − π | → 0, the dis-
persions of particle-type and hole-type modes become linear,
with a slope that defines the sound velocity in the TL model
in Eq. (16). In the limit ρ0 → 0, the velocity approaches
the Fermi velocity v → vF = πρ0/M . Moreover, multiple

p/π

(p)

(h)ω
/
J

2

FIG. 3. Approximate bound-magnon-pair spectrum in the vicin-
ity of p = π for m = 0.4 (ρ0 = 0.05). The red and blue lines
represent the dispersion of particle-type and hole-type excitations,
respectively. The latter define the lower threshold of the continuum
(shaded area) for excitations with �Sz

tot = ±2 (no single magnons).
Here we used v = πρ0/M for the sound velocity in the limit ρ0 � 1.

“replicas” of particle-type and hole-type dispersions are gen-
erated by adding particle-hole excitations with zero energy
and momentum 2πρ0n, with n ∈ Z. The gapless excitations
at p − π = 2πρ0n correspond to the series of harmonics
in the bosonization formulas for bosons [33,39]. However,
the linear-dispersion approximation is valid only at energy
scales ω � vF ρ0 ∼ ρ2

0/M . For general p, the dispersion of
the hole-type excitation determines the lower threshold of the
continuum for excitations that create or annihilate a bound
magnon pair. The picture here is qualitatively similar to the
spectral functions for the Lieb-Liniger model [40–42].

Going beyond the approximations in Eq. (26), the effective
model for bound magnon pairs at low but finite density can
be mapped to spinless fermions with a momentum dependent
scattering amplitude Vb(p, p′, q ). In fact, the eigenstates of
the hard-core boson Hamiltonian are in one-to-one correspon-
dence with those of a Fermi system with the same interaction
potential [36]. In this case, we expect the nonlinear lower
threshold in Fig. 3 to remain qualitatively valid but deviate
from the quadratic momentum dependence implied by the
Galilean invariance of Eq. (26). The gapless points at mo-
menta |p − π | = 2πρ0n, n ∈ Z, are still fixed by the density
of bound magnon pairs. For reference, one can think of the
XXZ spin chain for which the relation to the Lieb-Liniger gas
of bosons in a scaling limit can be made exact [43].

Finally, we must consider the interaction between magnons
and bound magnon pairs:

Hb-m = 1

L

∑
p,k,q

Vb-m(p, k, q )b†p+qbpa
†
k−qak. (28)

The relative wave function of magnons and bound magnon
pairs also obeys a hard-core constraint in the sense that the
single magnon cannot occupy the same position as one of the
flipped spins in the bound state; cf. Eq. (14). The regular part
of the scattering amplitude is given by

Vb-m(p, k, q ) = L〈b, p + q; k − q|δHb-m(p, k)|b, p; k〉,
(29)
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FIG. 4. Interaction potential Vb-m(p, k0, 0) (with momentum
transfer q = 0) of a magnon with momentum k0 (corresponding to
the minimum of the magnon band) and a bound magnon pair with
momentum p.

where δHb-m(p, k) = H − E0 − Eb(p) − ε(k). The complete
effective Hamiltonian in the low-density limit is

Heff = Hb + Hm + Hb-m. (30)

One immediate effect of the pair-magnon interaction is to
renormalize the magnon dispersion once there is a finite
density of pairs in the ground state. Within a Hartree-
Fock approximation, the renormalized magnon gap is �̃ ≈
� + ρ0Vb-m(π, k0, 0). For repulsive pair-magnon interactions,
Vb-m(π, k0, 0) > 0, the effective single-magnon dispersion
ε̃(k) can remain gapped despite the lowering of the magnetic
field; cf. Eq. (7). Furthermore, the interaction of a single
magnon with the low-energy modes of the 1D liquid of bound
magnon pairs is important to interpret the lower threshold of
the DSF for excitations with �Sz

tot = ±1, as we shall discuss
in Sec. IV. For this reason, we have calculated the scattering
amplitude in Eq. (29). The detailed calculation is presented
in Appendix A. Figure 4 illustrates the dependence of the
two-particle scattering amplitude on the momentum of the
incoming bound magnon pair. We expect this nonuniversal
interaction potential to be strongly renormalized in the case
of a finite density of bound states. For instance, we find
that the result is sensitive to the wave function of the bound
states �(p, r ) (see Appendix A). Nonetheless, the result in
Fig. 4 indicates that the magnon-pair interaction is remarkably
strong and momentum dependent for the range of parameters
in which we are interested.

IV. EDGE SINGULARITIES

Spectral functions of critical 1D systems exhibit power-
law singularities along special lines in the (q, ω) plane that
determine the thresholds of the support at finite energies.
These edge singularities can be described by effective mobile
impurity models, first put forward in Ref. [44] and reviewed in
[29]. The exponents of the edge singularities are nonuniversal,
as they depend on phase shifts for the scattering between

finite-energy elementary particles and the low-energy modes
of the TL liquid. These phase shifts can be either fixed
exactly for integrable models [45] or expressed in terms of
phenomenological relations for generic models [46].

Here we are interested in the edge singularities of DSFs
in the spin-nematic phase. Identifying these singularities will
be useful to interpret the numerical results in Sec. V. Even
though the edge exponents are nonuniversal and depend on
phenomenological parameters, we shall take advantage of the
low-density limit ρ0 � 1 to simplify our discussion.

A. Excitations with �Sz
tot = ±1

We start with the edge singularities that involve single-
magnon excitations. As discussed in Sec. III, magnons are
gapped particles that interact with the 1D Bose liquid of bound
magnon pairs. Let us first discuss the excitations with �Sz

tot =
−1. The lowest-energy excited states that couple to the ground
state via the operator S−

j contain a magnon with energy close
to the renormalized gap �̃. Thus, we can represent the spin-
flip operator in the field theory as

S−
j=x ∼ 1√

L

∑
k

e−ikxa
†
k

≈ e−ik0xa†(x), (31)

where a†(x) = L−1/2 ∑
|q|�k0

e−iqxa
†
k0+q represents the

slowly varying components of the magnon with momentum
near k0.

In terms of the slowly varying fields a(x) we can approx-
imate the corresponding term in the effective Hamiltonian as

Hm ≈
∫

dx a†
(

�̃ − ∂2
x

2m̃

)
a, (32)

where m̃ is the effective mass for magnons with momentum
k ≈ k0. The magnon-magnon interaction is dropped because
we only consider single-magnon configurations. The ground
state of the effective field theory is a vacuum of magnons,
a(x)|�0〉 = 0.

Recall that all the particles are hard-core bosons. To take
care of the corresponding scattering phase shift in the effective
description, we switch to a “fermionic” representation by
attaching Jordan-Wigner strings to the field operators as done
in Eq. (27) for the b fields. Similarly, for the magnons we take

a(x) = aF (x) cos

[
π

∫ x

−∞
dx ′ b†(x ′)b(x ′)

]
. (33)

The density operators are invariant under this transformation.
The effective Hamiltonian in terms of aF and bF has the same
form as in Eqs. (26) and (32). However, the hard-core con-
straint is now automatically satisfied and the s-wave scattering
amplitudes have no effect on the aF and bF particles.

To obtain the mobile impurity model, we project the ef-
fective Hamiltonian onto a magnon subband with cutoff scale
� � Mv2

F and bosonize the low-energy modes. The uniform
part of the density of bound magnon pairs becomes

b†(x)b(x) ∼ ρ0 + 1√
π

∂xφ(x). (34)
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The spin-lowering operator is then represented by

S−
j=x ∼ e−ik0xa

†
F (x) cos[πρ0x + √

πφ(x)]. (35)

The single magnon plays the role of the mobile impurity in
the model Himp = ∫

dx Himp(x) with Hamiltonian density

Himp = vK

2
(∂xθ )2 + v

2K
(∂xφ)2 + a

†
F

(
�̃ − ∂2

x

2m̃

)
aF

+ v√
π

(γ1∂xφ + γ2∂xθ )a†
F aF , (36)

where γ1,2 are phenomenological coupling constants. They
descend from the interaction Vb-m and represent the coupling
between the magnon with momentum k0 and the local density
or current of bound magnon pairs. For now, let us consider the
asymptotic low-density limit, which corresponds to putting
K = 1; let us also set γ1,2 = 0. In this limit we can calculate
the time-dependent correlation

〈S+
x (t )S−

0 (0)〉 ∼ ei(k0±πρ0 )x〈aF (x, t )a†
F (0, 0)〉

× 〈e±i
√

πφ(x,t )e∓i
√

πφ(0,0)〉

∼ ei(k0±πρ0 )x−i�̃t G(x, t )

|x2 − v2t2|1/4
, (37)

where

G(x, t ) =
√

m̃

2πit
eim̃x2/(2t ) (38)

is the propagator for the free particle with mass m̃. Note
the momentum shift ±πρ0 in the spatial oscillation of the
correlation in Eq. (37). This means that the minimum energy
in the corresponding DSF, S+−(q, ω), does not occur at the
momentum k0 = arccos(|J1|/4J2). Instead, the edge singular-
ity is split into two. Taking the Fourier transform with either
momentum yields the threshold behavior:

S+−(q = k0 ± πρ0, ω)

∼
∫

dxdt eiωt e−i(k0±πρ0 )x〈S+
x (t )S−

0 (0)〉

∼ �(ω − �̃)(ω − �̃)−1/2, (39)

where �(x) denotes the Heaviside step function. Allowing for
K �= 1 or γ1,2 �= 0 leads to a similar threshold behavior but
the exponent of the power law changes as an effect of inter-
actions. The full effective field theory result reads S+−(q =
k0 ± πρ0, ω) ∼ �(ω − �̃)(ω − �̃)μ

+−
± with the exponent

μ+−
± = 1

2

(
γ1

√
K

π

)2

+ 1

2

(√
K ∓ γ2

π
√

K

)2

− 1, (40)

(see Appendix B). The important feature to note is the asym-
metry between μ+−

± (where the lower index corresponds to the
threshold at q = k0 ± πρ0, respectively) when the coupling
constant γ2 is nonzero.

Now let us discuss the excitations with �Sz
tot = +1. Since

we cannot annihilate a single magnon in the ground state, the
simplest possible excitation with the proper quantum number
must involve the creation of a magnon and annihilation of
a bound magnon pair. Thus, we represent the spin-raising

operator by

S+
j=x ∼ e−ik0x (−1)xa†(x)b(x), (41)

where the factor of (−1)x reflects the momentum π carried by
the low-energy bound magnon pair; cf. Eq. (25). We bosonize
the pair operator as [33,34]

b(x) ∼ e−i
√

πθ (x). (42)

Together with the Jordan-Wigner string for the magnon op-
erator, this leads to the representation for the time-dependent
correlation

〈S−
x (t )S+

0 (0)〉 ∼ ei(π+k0±πρ0 )x〈ei
√

π[θ (x,t )±φ(x,t )]aF (x, t )

× a
†
F (0, 0)e−i

√
π[θ (0,0)±φ(0,0)]〉. (43)

The computation of the threshold behavior of the struc-
ture factor follows the same lines as before and leads
to the result S−+(q = π + k0 ± πρ0, ω) = �(ω − �̃)(ω −
�̃)μ

−+
± with exponent

μ−+
± = 1

2

(
1√
K

+ γ1

√
K

π

)2

+ 1

2

(√
K ∓ γ2

π
√

K

)2

− 1.

(44)

This exponent vanishes in the low-density limit: μ−+
± = 0

when K = 1 and γ1,2 = 0. The threshold behavior in this case
is thus strongly dependent on interaction effects. In particular,
note that the γ1, which encodes density-density interactions
between the magnon and the bound state, is expected to be
positive for repulsive interactions. As such, it cannot render
the singular behavior divergent. The γ2 interaction, which
encodes the asymmetry in the coupling of the magnon to the
right and left moving modes of the Luttinger liquid, can lead
to divergent behavior in one of the thresholds at, say, q =
π + k0 + πρ0, but that would imply that the structure factor
is convergent at the other threshold at q = π + k0 − πρ0.

B. Excitations with �Sz
tot = ±2

We continue by considering the two-particle structure fac-
tors S±±∓∓(q, ω). These are associated with operators flip-
ping two spins on neighboring sites for which the simplest
low-energy excitation in the effective field theory is a single
bound state created on top of, or annihilated from, the conden-
sate of bound magnon pairs. We represent the two-spin-flip
operators therefore as

S−
x S−

x+1 ∼ (−1)xb†(x), (45)

S+
x S+

x+1 ∼ (−1)xb(x). (46)

The representation for the structure factors becomes

S++−−(q, ω) ∼
∫

dxdtei(ωt−qx)(−1)x〈b(x, t )b†(0, 0)〉,
(47)

S−−++(q, ω) ∼
∫

dxdtei(ωt−qx)(−1)x〈b†(x, t )b(0, 0)〉.
(48)
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In this language, these two-spin DSFs are equivalent to the
particle and hole spectral function of hard-core bosons. The
analogs of these functions in the integrable XXZ model would
be the transverse structure factors S±∓(q, ω). Even in the
simplest case where the mapping to free fermions is exact,
such as for the XX chain, these are not easy to calculate
because of the nontrivial appearance of the Jordan-Wigner
string. The function S−+(q, ω) has been computed numeri-
cally for XXZ by Bethe ansatz based techniques [47]. Field
theory methods similar to those in the previous subsection can
give considerable insight into these functions as demonstrated
in Refs. [29,48].

In contrast with the DSFs for �Sz = ±1, the lower
threshold of the support now extends down to zero fre-
quency at q = π + 2πρ0n, n ∈ Z. At these values of q and
for ω → 0, bosonization predicts S±±∓∓(π + 2πρ0n, ω) ∼
ω2(n2K−1)+1/(2K ). Thus, divergent behavior is expected at
q = π . Away from the gapless points, the nonlinear thresh-
old is determined by hole-type excitations as discussed in
Sec. III B 2. The phenomenological parameters of the effec-
tive mobile impurity model can vary continuously along this
threshold and depend on the interaction between the hole-type
excitation and the low-energy modes of the TL liquid.

V. NUMERICAL RESULTS

In this section, we show the numerical results of DSFs
for the frustrated ferromagnetic spin chain described by the
Hamiltonian in Eq. (1). In order to obtain the time-dependent
correlations, we have used the adaptive tDMRG method de-
veloped by Feiguin and White [26]. This method is most effi-
cient to investigate chains with nearest-neighbor interactions.
For systems with short-range interactions, such as narrow
ladders and the J1-J2 Heisenberg chain, it is convenient to
use the supersite version of the adaptive tDMRG. The central
idea of this version is to combine single sites into a supersite
such that the Suzuki-Trotter decomposition of the time evolu-
tion operator can be applied exactly in the non-renormalized
DMRG sites.

To investigate the DSFs, we have considered open chains
with system size L = 400. All the numerical results were
obtained by setting J1 = −1 and J2 = 1. We take magne-
tizations m = 0.2 and m = 0.4 to represent the SDW and
and quadrupolar nematic regimes, respectively. Equivalently,
these magnetizations correspond to magnetic fields h = 0.95
(m = 0.2) and h = 1.238 (m = 0.4). We determine the single-
magnon gap using DMRG by computing the energy differ-
ences

�E±(m,L) = Egs (M = mL ± 1) − Egs (M = mL), (49)

where Egs (M ) is the lowest energy in the sector with Sz
tot = M

of the chain with length L. The magnon gap is given by

�̃(m) = lim
L→∞

�E+(m,L) = lim
L→∞

�E−(m,L). (50)

We obtain the values �̃ ≈ 0.13 for m = 0.4 and �̃ ≈ 0.14 for
m = 0.2.

In order to compute the two- and four-point time-
dependent correlations, we kept up to 400 states to represent
the restricted Hilbert space of each DMRG block. Typically,

the error associated with the truncation procedure is smaller
than 10−7. The time evolution was carried out with second-
order Suzuki-Trotter decomposition of the time evolution
operator with time step δt = 0.05. As is well known, the
Trotter error depends on the order n of the Suzuki-Trotter
decomposition. For the order n, the Trotter error is of order
(δt )n+1. It is worth mentioning that we have checked our code
by reproducing results for the integrable XXZ chain [31,40]
and for the J1-J2 Heisenberg chain at zero magnetization [12].

As shown in Eqs. (2) and (4), the DSFs can be acquired
by performing the Fourier transform of the time-dependent
correlations computed in the space and time domains. Since
we only have numerical results for finite time, the tempo-
ral Fourier transforms were performed in the time interval
−tmax < t < tmax, where tmax is the maximum time obtained
by tDMRG. In our computations we have considered tmax in
the interval tmax ∈ [35, 60]. In the following, we present our
numerical results and interpret them in terms of the effective
theory of gapped magnons and gapless bound magnon pairs.

A. One-spin structure factors

The tDMRG result for the structure factor S+−(q, ω) in the
nematic phase is presented in Fig. 5. Note that the intensity
is concentrated on curves that (at least qualitatively) follow
the shape of the magnon dispersion. The lower edge of the
support are the thresholds for which the effective theory in
terms of a single gapped magnon interacting with the bound-
state condensate was formulated. The magnetization m = 0.4
corresponds to a bound-state density of ρ0 = 0.05 according
to Eq. (15).

Above the saturation field, the magnon dispersion has
a minimum at k0 = cos−1(1/4) ≈ 0.42π . According to the
discussion in Sec. IV A, we expect to find minima of the
thresholds at q = k0 ± πρ0 ≈ (0.42 ± 0.05)π for 0 < q < π

(the domain π < q < 2π can be obtained by reflection over
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FIG. 5. The dynamical structure factor S+−(q, ω) in the nematic
phase with J2 = −J1 = 1 and m = 0.4 computed by tDMRG. The
lower threshold is associated with the creation of a single magnon
in the effective theory. The two copies at low energies are associated
with momentum shifts ±πρ0 due to the hard-core repulsion between
the magnon and the pairs in the condensate. The inset shows a zoom-
in on the minima located in the interval 0.2π � q � 0.6π .
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FIG. 6. The dynamical structure factor S−+(q, ω). The lower
threshold is associated with the creation of a magnon and the
annihilation of a bound magnon pair. In this case only one threshold
is visible.

q = π ). In Fig. 5, we see that this is indeed close to where
the threshold minima are found. We note that there is a clear
asymmetry between the two minima, which we interpret as
due to the momentum dependence of the magnon-pair interac-
tion which accounts for a nonzero γ2 coupling in the effective
model of Eq. (36). Strictly speaking, the threshold exponents
only make sense in the thermodynamic limit and with infinite
energy resolution. However, we expect that the thresholds
characterized by more negative exponents and thus stronger
divergences appear with greater intensity in the tDMRG re-
sults, as indeed verified in simpler models [45]. In fact, for
γ2 > 0, the result in Eq. (40) predicts μ+−

+ < μ+−
− , thus a

brighter threshold at q = k0 + πρ0 than at q = k0 − πρ0.
Let us turn attention to the DSF S−+(q, ω), associated with

the creation of a magnon in conjunction with the annihilation
of a bound magnon pair. The tDMRG result is shown in Fig. 6.
In contrast with S+−(q, ω), one immediate observation is that
there is no clear sign of the two replicas of the threshold. This
is exactly what should be expected in light of the expression
for the exponent μ−+

± in Eq. (44): At one threshold we find
divergent behavior visible as a high intensity peak in the
tDMRG data, while the other threshold has a positive expo-
nent corresponding to a vanishing intensity at the threshold,
which means the threshold becomes invisible in the tDMRG
data. To see whether we indeed find consistent results with
the foregoing discussion, let us check the expected position
and qualitative behavior of the threshold. First of all, note
that the momenta of the minima are now at π + k0 ± πρ0,
in agreement with the effective theory. Let us discuss the
minima in the domain π < q < 2π (the domain 0 < q < π

can be obtained by reflection in q = π ). A comparison of
the exponents μ−+

± and μ+−
± shows that the parameter γ2

gives a stronger divergence at the momentum associated with
the same shift for S−+(q, ω) as for S+−(q, ω). This means
that, for γ2 > 0, the visible threshold in the tDMRG data is
expected at q = π + k0 + πρ0 ≈ 1.47π . Inspection of Fig. 6
shows that this is indeed the case (the invisible threshold
would be around q ≈ 1.37π ). Furthermore, one can inspect
what happens with the intensity at the threshold away from
the minimum. The intensity shows a stronger increase as one
goes to q � π + k0 + πρ0 in Fig. 6. In Fig. 5, we see that this
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FIG. 7. One-spin-flip dynamical structure factors in the SDW
phase with m = 0.2. Compared to the spin-nematic phase, we see a
larger splitting ±πρ0 in S+−(q, ω) (top). In S−+(q, ω) (bottom), the
lower threshold associated with hole-type excitations of the bound-
state condensate is now visible.

also happens for q � k0 + πρ0 in the case of S+−(q, ω). This
asymmetry can be attributed to the dependence of the effective
pair-magnon interaction on the magnon momentum k �= k0.

For comparison, we have also computed the one-spin struc-
ture factors in the SDW phase with magnetization m = 0.2
(Fig. 7). In this case, the density of bound states is ρ0 = 0.15,
leading to an appreciably larger split 2πρ0 of the band minima
observed in the DSFs. This higher bound-state density in the
SDW is also expected to lead to much stronger deviations
from the low-density limit. Nevertheless, many features of the
DSFs remain qualitatively the same. We recall that there is no
true phase transition between the spin-nematic and the SDW
“phases,” which are different regimes of the same TL phase.
The biggest difference from the nematic phase is visible in the
S−+(q, ω) structure factor. In this case one still sees the mini-
mum at q = π + k0 + πρ0 associated with a gapped magnon
and a zero-energy bound state. But emanating from this point,
one sees arcs defining the lower threshold of the magnon-pair
continuum. This lower threshold is distinguished from the
magnon dispersion in the momentum range where the magnon
velocity [defined from the renormalized dispersion as ∂kε̃(k)]
becomes larger than the sound velocity v. Figure 8 illustrates
the two-particle continuum constructed from the dispersion
relations ε(k) and Eb(p). If we include the momentum shift
±πρ0, the edge of this continuum can be identified with the
lower threshold of S−+(q, ω) seen in Fig. 7.
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ω

Δ̃

qπ + k0

FIG. 8. Schematic representation of the two-particle continuum
E(k, q ) = ε(k) + Eb(q − k). Near q = π + k0 + 2πρ0n, with n ∈
Z, the lower threshold coincides with the renormalized magnon
dispersion. As we deviate from these points and the magnon velocity
increases beyond the sound velocity v of the condensate, the lower
threshold becomes defined by a magnon and a hole-type excitation
with the same velocity, such that the energy of the two-body state is
minimized.

B. Two-spin structure factors

The two-spin DSFs S±±∓∓(q, ω) computed by tDMRG are
shown in Figs. 9 and 10. In terms of the effective field theory,
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FIG. 9. Two-spin dynamical structure factors S++−−(q, ω) in
the spin-nematic phase (top) and SDW phase (bottom). The low-
energy spectrum is associated with a particle-type excitation of the
condensate.
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FIG. 10. Two-spin dynamical structure factor S−−++(q, ω) in the
SDW phase (bottom). The low-energy spectrum is associated with
the hole-like excitation of the condensate.

we can view S++−−(q, ω) as the particle spectral function of
the b particles, while S−−++(q, ω) is analogous to the hole
spectral function [cf. Eqs. (45) and (46)].

The spectral function for hard-core bosons is more com-
plicated than for dual fermions due to the Jordan-Wigner
string. Yet, focusing on the function S++−−(q, ω) in Fig. 9,
we see lines of intensity starting from momentum q = π and
energy ω = 0 as a clear signal of the gapless dispersion of the
particle-type excitation of the condensate; cf. Fig. 3. Replicas
are found at q = π ± 2πρ0, associated with a particle-type
excitation of momentum π dressed by an additional Umklapp-
like particle-hole excitation with momentum ±2πρ0. The
highest intensity is observed at q = π and ω → 0, where the
TL theory predicts a divergent power-law singularity.

Turning to S−−++(q, ω), we have observed that in the ne-
matic phase the spectral weight of this DSF is rather small and
highly concentrated near q = π and ω = 0. This is somewhat
expected because S−−++(q, ω) is dominated by the creation
of a hole in the condensate of bound magnon pairs, which can
be pictured as a shallow Fermi sea with a small energy scale
(∼ρ2

0/M) at the low density ρ0 = 0.05. The concentration at
momentum close to q = π and low frequencies implies that
our numerical tDMRG result in this case suffers from strong
finite-size and finite-time effects. On the other hand, in the
SDW phase with m = 0.2 we observe a clear continuum in the
(q, ω) plane, as shown in Fig. 10. This result is reminiscent of
transverse structure factor S−+(q, ω) for the XXZ spin chain
computed in Ref. [47]. In contrast with the XXZ chain, where
the elementary excitations are single particles and holes in the
ground state configuration of the Bethe ansatz solution, here
the gapless excitations that define the low-energy continuum
in S−−++(q, ω) are bound magnon pairs. Despite the differ-
ent �Sz quantum number of the “elementary” excitations,
these two DSFs are qualitatively similar as both of them
can be interpreted as hole spectral functions of hard-core
bosons.

VI. CONCLUSION

We have investigated dynamical structure factors of the
one-dimensional spin-nematic phase using the adaptive time-
dependent density matrix renormalization group. The main
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features of the excitation spectrum can be understood in terms
of gapped single-magnon excitations and a gapless quasicon-
densate of two-magnon bound states, in which elementary
particle-type and hole-type excitations carry spin quantum
numbers �Sz = ±2 and have nonlinear dispersion.

The nonzero magnon gap can be discerned in both dynam-
ical structure factors that involve a single spin flip, namely
S+−(q, ω) and S−+(q, ω). However, the simplest excitations
(in the sense of minimum number of elementary particles)
are different for these two structure factors. While S+−(q, ω)
is dominated by single-magnon excitations, S−+(q, ω) in-
volves the creation of a magnon and a hole-type excitation.
Remarkably, S+−(q, ω) shows a doubling of the low-energy
threshold due to momentum shifts ±πρ0, where ρ0 is the
density of bound magnon pairs in the condensate. This effect
is captured by an effective field theory that goes beyond the
TL liquid theory by describing the interaction between the
single magnon and the low-energy modes of the condensate,
taking into account the hard-core constraints. The asymme-
try in the intensity of the doubled threshold in S+−(q, ω) can
be attributed to the momentum dependence of the effective
pair-magnon interaction. This shows that a simple picture of
hard-core bosons that neglects the finite-range part of the in-
teraction potentials is not sufficient to describe the dynamical
properties of the spin-nematic phase even at rather low values
of ρ0. We have also studied the same structure factors in the
SDW regime (at lower magnetization) and found qualitatively
similar behavior in the finite-energy spectrum. One notable
feature is that the lower threshold of the multiparticle contin-
uum, which depends on the dispersion of hole-type excitations
of the condensate, becomes clearly visible in S−+(q, ω) in the
SDW regime.

The dynamical structure factors that involve two spin flips,
S++−−(q, ω) and S−−++(q, ω), can be interpreted as spectral
functions of bound magnon pairs. In these cases, the lower
threshold of the multiparticle continuum extends to zero en-
ergy, as the excitations do not necessarily involved gapped
magnons. Besides momentum q = π , gapless points can be
seen at q = π ± 2πρ0, showing a dependence on the density
of bound magnon pairs in the condensate.

Several possible directions for future research present
themselves. Sticking to the one-dimensional case, an ob-
vious next step would be to study the structure factors at
finite temperatures. In principle this is possible by a finite-
temperature generalization of the tDMRG method [49] and
of the impurity model [50]. The particular interest would
be to extract the NMR spin-lattice relaxation rate connected
to the experiments [24] on LiCuVO4. Finally, we envision
using the one-dimensional results as a basis for studying two-
or three-dimensional structures composed of coupled chains
or ladders where the interchain coupling is treated using chain
mean-field theory. For instance, one can extend on the ideas
in Ref. [14] in studying the low-energy excitations. Further-
more, the tDMRG data can serve as input for computation
of the structure factors in higher dimensions in a random
phase approximation similar to Refs. [51,52]. It would be
interesting to compare this approach with the results of other
approximations for the dynamics of the spin-nematic state on
the square lattice [53–55].
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APPENDIX A: INTERACTION MATRIX ELEMENTS

Here we show the computation for the pair-magnon inter-
action Vb-m(k, p, q ) with q = 0. We are interested in estimat-
ing the magnitude of the interaction potential, as well as its
dependence on the momentum of the bound state when the
magnon momentum is close to k0.

The scattering amplitude Vb-m(k, p, q ) is defined in
Eq. (29). The states with one magnon and one bound magnon
pair have the form

|b, p; k〉 = 1

L

∑
j,l;r>0

eikj eip(l+r/2)�(p, r )S−
j S−

l S−
l+r |⇑〉.

(A1)

We consider the scattering problem on the infinite lattice,
which allows an analytic calculation of Vb-m(p, k, q ) in terms
of �(r ).

1. Setup

We introduce a basis in the N -magnon subspace with total
momentum P denoted

|P ; r1, . . . , rN−1〉 =
∑

l

eiP [l+(N−1)r1/N+(N−2)r2/N+···+rN−1/N]

× S−
l S−

l+r1
S−

l+r1+r2
· · · S−

l+r1+···+rN−1
|⇑〉,
(A2)

with ri > 0 for all i = 1, . . . , N − 1. We define
|P, r1, . . . , rN−1〉 = 0 when any ri < 1. For instance, in
this notation the bound-magnon-pair state (N = 2) with mo-
mentum p is expressed as |b, p〉 = 1√

L

∑
r>0 �(p, r )|p; r〉.

It is also convenient to consider the transformation of the
state in Eq. (A2) under site inversion, I : Sj �→ S−j . One can
verify that

I : |P ; r1, . . . , rN−1〉 �→ | − P ; rN−1, . . . , r1〉. (A3)

Taking the composition with complex conjugation, K : i �→
−i, we obtain

KI : |P ; r1, . . . , rN−1〉 �→ |P ; rN−1, . . . , r1〉. (A4)

For an arbitrary state |ψ〉, we shall refer to the state KI|ψ〉 as
the parity conjugate (p.c.) of |ψ〉.

Let us write the Hamiltonian

H = J1H1 + J2H2, (A5)

with

Hn =
∑

j

[
1

2
(S+

j S−
j+n + S−

j S+
j+n) + Sz

jS
z
j+n − 1

4

]
, (A6)
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for n = 1, 2. In the calculation of effective scattering ampli-
tudes, we omit the magnetic field term in Eq. (1) because we
work in a sector with fixed Sz

tot. The action of the Hamiltonian
is readily understood in the basis of Eq. (A2). The terms that
hop magnons (stemming from the transverse part of the ex-
change interaction) lead to a phase determined by the change
of the total center-of-mass momentum as well as a shift of the
relative coordinates. Note that to hop a magnon to the right
(left) one should increase (decrease) its relative coordinate
with respect to the previous magnon but one should also
shift the subsequent coordinate in the opposite direction. The
interaction terms stemming from the longitudinal part Sz

jS
z
j+n

simply count the number of magnons separated by n sites. For
the J1 terms, the hopping is straightforwardly implemented by
ri → ri + 1 and ri+1 → ri+1 − 1 and the interaction is simply
counting the number of ri = 1. For the J2 terms, the basic
processes are similar but with steps of two. However, there are
now two complications to take note of: first, in considering
the hopping term we have the possibility that magnons hop
over each other. This leads to a hopping process when ri = 1
and ri−1 > 1 that switches the relative coordinates ri and ri−1.
The net effect is to shift ri−1 → ri−1 + 1, ri+1 → ri+1 − 1
for hopping to the right over the magnon at l + ∑

l�i rl , and
the opposite for hopping to the left. Second, for the interaction
term one also needs to account separately for the case when
three magnons are all adjacent, i.e., ri = ri+1 = 1, since then
the two outer magnons are two lattice spacings apart and
hence interact via J2.

The computation of the matrix element allows a significant
simplification: The result will be of the form

V = J1V1 + J2V2. (A7)

Here we can compute the parts V1,2 as if J2,1 =0 while J1,2 =1
as long as we keep the bound-state wave function as a formal
function in all the equations.

2. The V1 term

Since the total momentum P = p + k is a good quantum
number, hereafter we omit the dependence on P and adopt the
shorthand notation |P ; r1, . . . , rN−1〉 ≡ |r1, . . . , rN−1〉. We
also omit the momentum dependence of the bound-state wave
function and write �(p, r ) ≡ �(r ). We write the scattering
state of a magnon and a bound magnon pair as

|b, p; k〉 = 1

L
(|ψ1〉 + |ψ2〉 + |ψ3〉), (A8)

where

|ψi〉 =
∑

r1,r2>0

|ψi (r1, r2)〉, (A9)

with

|ψi (r1, r2)〉 = ψi (r1, r2)|r1, r2〉. (A10)

The index i = 1, 2, 3 corresponds to configurations with the
free magnon on the right, left, and in the middle, respectively,

given by the wave functions

ψ1(r1, r2) = ei(2k−p)(r1+2r2 )/6�(r1), (A11)

ψ2(r1, r2) = ei(p−2k)(2r1+r2 )/6�(r2), (A12)

ψ3(r1, r2) = ei(2k−p)(r1−r2 )/6�(r1 + r2). (A13)

We compute the action of H̃1 = H1 − ε(1)(k) − E (1)
b (p) where

ε(1)(k) = cos(k) − 1 is the term in the magnon dispersion
with coefficient J1 [i.e., the function ε(k) that we would obtain
if we set J1 = 1 and J2 = h = 0] and

E (1)
b (p) = −1 + cos(p/2)

�(2)

�(1)
(A14)

is the analogous term coming from the bound-state dispersion.
The other pieces of the dispersion relations that will be in-
cluded in the V2 term are ε(2)(k) = cos(2k) − 1 and E (2)

b (p) =
cos(p)[1 + �(3)/�(1)] − 2. The latter is such that J1E (1)

b (p)
and J2E (2)

b (p) add up to Eb(p) (with h = 0) provided that
�(r ) is the wave function that makes |b, p〉 an eigenstate of
H in the N = 2 sector. This follows from 〈p; 1|H |b, p〉 =
Eb(p)�(1). In the following, we will treat �(r ) as an input,
but note that it depends nontrivially on J1 and J2. For r > 1,
we have

E (1)
b (p)�(r ) = −2 + cos

(
p

2

)
[�(r + 1) + �(r − 1)].

(A15)

The result after subtraction of the dispersion-related terms is
readily understood if we keep the picture of the free magnon
and the bound state as two distinct particles in mind: the terms
that survive are either due to the interaction (longitudinal part
of the Heisenberg exchange) between the free magnon and
one of the magnons in the bound state or correspond to hops
obstructed by the presence of the other particle (the latter
appearing with a minus sign). This gives us

H̃1|ψ1〉 =
∑
r>0

[
1− eip/2

2

�(r + 1)

�(r )
− e−ik

2

]
|ψ1(r, 1)〉,

(A16)

H̃1|ψ3〉 =
∑
r>0

[
1− e−ip/2

2

�(r )

�(r + 1)
− eik

2

]
|ψ3(r, 1)〉 + p.c.,

(A17)

where p.c. denotes the parity conjugate. The terms from |ψ2〉
are given by H̃1|ψ2〉 = KI (H̃1|ψ1〉). From these expressions
the computation of V1 is tedious but straightforward. We
obtain

V1 = 8 sin

(
k

2

)
sin

(
k

2

) ∞∑
r=2

�(r )�(r ) + 8 sin

(
k

2

)

× sin

(
p − k

2

) ∞∑
r=1

cos
[(p

2
− k

)
r
]
�(1)�(r )

+ 8 sin

(
k

2

)
sin

(
p − k

2

) ∞∑
r=1

�(r )�(r + 1). (A18)
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3. The V2 term

Following the same lines as for V1, we compute the action
of H̃2 on the |b, p; k〉 state of a bound magnon pair and a
free magnon. As in the V1 case, a physical picture allows
us to write down the result immediately. The states |ψ1,2,3〉
correspond to the cases where the free magnon is on the right,
on the left, or in the middle of the bound magnon pair. Thus,
interpreting these states as a configuration of two particles
in this way and acting with the Hamiltonian, we find that
the presence of the other particle can obstruct some possible
moves or add additional interactions in comparison with a
situation in which the other particle would not be present.
For instance, if the free magnon particle is two sites away
from one of the magnons in the bound magnon pair, as is
the case in, e.g., |ψ1(r, 2)〉, the magnon cannot hop to the
left and the rightmost magnon in the bound state cannot
hop to the right. Furthermore, there is now an interaction
between the two particles. This leads to a term [1 − 1

2e−i2k −
1
2eip�(4)/�(2)]|ψ1(r, 2)〉 in H̃2|ψ1〉. The first term on the
right-hand side stems from the interaction between the free
magnon and one magnon in the bound magnon pair. The
momentum-dependent phases in the second and third terms
can be identified from the obstructed hopping processes: e−i2k

corresponds to the hopping of the magnon two sites to the
left, while eip corresponds to the bound-state center of mass
hopping one site to the right if one of its constituent magnons
hops two sites to the right. The ratio �(4)/�(2) corresponds
to changing the separation between the magnons in the bound
magnon pair from two to four sites. In this way, all terms in
H̃2|ψi〉 are straightforward to write down. We then compute
the appropriate inner products to obtain the result

V2 = [8 sin(k)2 + 4 sin(k) sin(p − k)]�(1)�(1)

− cos(5p/2 − 3k)�(1)�(2) + cos(p)�(1)�(3)

+ cos(p/2 − 3k)�(2)�(3)

+ 8 sin(k) sin(k)
∞∑

r=3

�(r )�(r )

+ 8 sin(k) sin(p − k)
∞∑

r=1

�(r )�(r + 2)

+ 8 sin(k) sin(p − k)
∞∑

r=1

cos
[(p

2
− k

)
r
]
�(2)�(r ).

(A19)

Note that this reduces to the result for V1 in Eq. (A18) if we
put (r, k, p) → (2r, k/2, p/2) and declare �(r ) = 0 for odd
r . This corresponds to the decoupling of the J1-J2 spin chain
upon putting J1 = 0 in terms of two independent Heisenberg
chains with doubled lattice spacing living on the even and odd
sublattices.

4. The Vb-m result

For the final result, we evaluate

Vb-m(p, k, 0) = J1V1(p, k) + J2V2(p, k). (A20)

The bound-state wave function �(r ) can be obtained numer-
ically by solving the Hamiltonian in the N = 2 subspace of
momentum p. We set k = k0 to compute the interaction with
the free magnon at the minimum of the magnon dispersion.
The result is shown in Fig. 4. We note that, as mentioned in
the main text, the precise value is rather sensitive to the details
of the wave function �(r ). Thus, we expect the interaction in
the effective model of Eq. (28) to be strongly renormalized for
a finite density of bound magnon pairs.

APPENDIX B: EXPONENTS FROM THE MOBILE
IMPURITY MODEL

We outline the calculation of the exponents from the mo-
bile impurity model for the reader’s convenience. We refer to
Ref. [29] and references therein for further details.

The starting point is the mobile impurity model Eq. (36)
and an expression of a space and time dependent correlator
such as

C(x, t ) = 〈ei
√

πφ(x,t )aF (x, t )a†
F (0, 0)e−i

√
πφ(0,0)〉. (B1)

There are two important steps in evaluating this expression:
decoupling the impurity mode (magnon) from the low-energy
modes and rescaling the bosonic fields (equivalent to a Bo-
goliubov transformation diagonalizing the TL liquid Hamil-
tonian). We start by decoupling the impurity by the unitary
transformation

U = exp

[
i
√

π

∫
dx(κ1θ + κ2φ)a†

F aF

]
. (B2)

For any field f , we define the transformed field f̄ = U †f U .
This gives the following relations:

∂xφ = ∂xφ̄ − √
πκ1a

†
F aF ,

∂xθ = ∂xθ̄ − √
πκ2a

†
F aF ,

aF = āF e−i
√

π (κ1θ+κ2φ). (B3)

Choosing

κ1 = γ1K

π
, κ2 = γ2

πK
, (B4)

we see that the interaction term cancels. Additional terms
which are generated are less relevant (the impurity model
only contains marginal terms and the magnon mass term) or
correspond to magnon-magnon interactions neglected because
we only consider configurations with a single magnon. On
the level of the correlator, we see that the unitary decoupling
means we have to attach a vertex operator of the bosonic
modes to each magnon operator. The expression for the cor-
relator (B1) factorizes in terms of the propagator G(x, t ) of a
free particle, see Eq. (38), multiplying a correlator expressed
only in terms of the bosonic fields. This correlator can be
evaluated in the standard way within TL liquid theory. For
the example in Eq. (B1), we find

C(x, t ) = G(x, t )[i(vt − x) + 0+]−μR [i(vt + x) + 0+]−μL,

(B5)
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where

μR,L =
(√

K

2
− γ2

2π
√

K
± γ1

√
K

2π

)2

. (B6)

Taking the Fourier transform leads to the expression of the
threshold exponent in the frequency domain, S(q, ω) ∼ (ω −

vq )μ, with

μ = μR + μL − 1. (B7)

This example gives the expression for μ+−
+ ; see Eq. (40). In

a similar calculation for μ+−
− , we find the result with γ2 →

−γ2 responsible for the asymmetry between the minima at
q = k0 ± πρ0 in S+−(q, ω). The calculation of the exponents
μ−+

± associated with the threshold S−+(q, ω) is similar but in
this case one must use the representation of the spin operator
in Eq. (41).
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Berthier, M. Horvatić, and T. Giamarchi, Phys. Rev. B 83,
054407 (2011).

[52] D. Blosser, N. Kestin, K. Y. Povarov, R. Bewley, E. Coira,
T. Giamarchi, and A. Zheludev, Phys. Rev. B 96, 134406
(2017).

[53] R. Shindou, S. Yunoki, and T. Momoi, Phys. Rev. B 87, 054429
(2013).

[54] A. Smerald, H. T. Ueda, and N. Shannon, Phys. Rev. B 91,
174402 (2015).

[55] A. Smerald and N. Shannon, Phys. Rev. B 93, 184419 (2016).

094431-15

https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.96.134406
https://doi.org/10.1103/PhysRevB.96.134406
https://doi.org/10.1103/PhysRevB.96.134406
https://doi.org/10.1103/PhysRevB.96.134406
https://doi.org/10.1103/PhysRevB.87.054429
https://doi.org/10.1103/PhysRevB.87.054429
https://doi.org/10.1103/PhysRevB.87.054429
https://doi.org/10.1103/PhysRevB.87.054429
https://doi.org/10.1103/PhysRevB.91.174402
https://doi.org/10.1103/PhysRevB.91.174402
https://doi.org/10.1103/PhysRevB.91.174402
https://doi.org/10.1103/PhysRevB.91.174402
https://doi.org/10.1103/PhysRevB.93.184419
https://doi.org/10.1103/PhysRevB.93.184419
https://doi.org/10.1103/PhysRevB.93.184419
https://doi.org/10.1103/PhysRevB.93.184419



