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Interatomic orbital magnetism: The case of 3d adatoms deposited on the Pt(111) surface
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The orbital magnetic moment is still surprisingly not well understood, in contrast to the spin part. Its
description in finite systems, such as isolated atoms and molecules, is not problematic, but it was only recently
that a rigorous picture was provided for extended systems. Here we focus on an intermediate class of systems:
magnetic adatoms placed on a nonmagnetic surface. We show that the essential quantity is the ground-state
charge current density, in the presence of spin-orbit coupling, and set out its first-principles description. This is
illustrated by studying the magnetism of the surface Pt electrons, induced by the presence of Cr, Mn, Fe, Co,
and Ni adatoms. A physically appealing partition of the charge current is introduced. This reveals that there is
an important interatomic contribution to the orbital moments of the Pt atoms, extending three times as far from
each magnetic adatom as the induced spin and atomic orbital moments. We find that it is as sizable as the latter
and attribute its origin to a spin-orbital susceptibility of the Pt surface, different from the one responsible for the
formation of the atomic orbital moments.
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I. INTRODUCTION

Magnetic impurities bridge real and reciprocal space, en-
dowing their nonmagnetic host materials with new proper-
ties built from the scattering of the itinerant electrons. The
itinerant electrons are best understood in reciprocal space,
while many of the effects due to impurity scattering are best
understood in real space. The oscillations of the electron
density predicted by Friedel [1] are a classic embodiment of
this paradigm, with the giant magnetic moments induced in
Pd and Pt attesting to it [2–8]. Friedel oscillations lead to
long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
actions [9,10]. These stabilize helical magnetic chains, which
might host Majorana states on superconductors [11–14], and
affect the Kondo screening cloud [15]. Other examples, such
as the anomalous Hall effect [16–18], Dzyaloshinskii-Moriya
interactions [19–21], and large magnetic anisotropy ener-
gies [7,22–25], highlight the importance of spin-orbit cou-
pling (SOC) for the impurity-driven physics. The induced
magnetism of the itinerant electrons plays an important role
in all of this, but important aspects remain to be explored.

The interplay between spin and orbital degrees of free-
dom also underlies one of the most fundamental magnetic
properties, the orbital moment [26–30]. It can be quantified
through the Einstein–de Haas effect (see, e.g., Ref. [31]) or
with x-ray magnetic circular dichroism (XMCD) [32–34].
The classic picture of the orbital moment is based on a
superposition of atomiclike swirling charge currents [35]. For
extended systems this picture is incomplete, as explained by
the modern theory of orbital magnetization [36–41], with
important extensions and clarifications developed more re-
cently [42–44]. In Ref. [38] a separation of the orbital moment
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into local circulation and itinerant circulation was discussed.
However, the interpretation of the latter contribution to the
orbital moment remains subtle in bulk magnets. It is then
insightful to bring the physics from reciprocal to real space
by considering magnetic impurities on a nonmagnetic surface
with strong SOC and the orbital magnetism they induce on the
surrounding itinerant electrons.

In this paper, we formulate the orbital magnetic moment
in real space in terms of the ground-state charge current
density, partitioned into atomic and interatomic contributions.
While the former corresponds to the often-studied atomi-
clike orbital angular momentum, the latter is unknown for
magnetic nanostructures. Using first principles, we systemat-
ically study transition-metal single adatoms deposited on the
Pt(111) surface. We find that the interatomic orbital moment
is as large as the atomic one and, surprisingly, extends much
farther into the substrate. This defines an interatomic orbital
magnetization cloud three times larger than the previously
found spin-polarization cloud hosted by the Pt atoms in the
vicinity of magnetic atoms [7,8,45]. The moments induced in
the substrate can be rationalized as different types of response
of the surface to the presence of the magnetic adatom. In
this way, we also prove that the separation into atomic and
interatomic contributions is meaningful and that they have
distinct physical origins. The interatomic contribution to the
orbital moment is thus shown to be as important as the atomic
one, which may have consequences for fundamental studies
and possible technological applications.

II. METHODS

In classical electrodynamics, the net orbital moment mo

arises from the charge current density j(r) [46],

mo = 1

2

∫
dr r × j(r). (1)
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FIG. 1. Paramagnetic charge current created by an Fe adatom on the Pt(111) surface. (a) Atomic structure. The red sphere represents the
adatom, and the gray ones show the Pt surface atoms. The magnetic moment of the adatom is sketched as a red arrow. The adatom is in
the fcc-stacking position with the vertical distance to the surface reduced to 75% of the bulk interlayer distance. The cut planes for (b) and
(c) are marked in purple and green, respectively. (b) Current within the Fe adatom. The color scale is logarithmic in atomic units. (c) Net
charge currents jnet

i in the surface layer of Pt(111). These yield the interatomic contribution to the orbital moment [see Eq. (5)]. (d) Giant
cluster consisting of a small central cluster (green sphere) with a radius of 2.8 Å, and a large outer one (blue hemisphere) with a radius of
Rh = 27.2 Å, comprising 2685 Pt atoms.

This formula holds as long as j(r) decays quickly enough
towards the boundaries of some enclosing volume. Micro-
scopically, we can employ the quantum-mechanical ground-
state current density, which has three contributions: param-
agnetic, diamagnetic, and spin orbit [47]. The paramagnetic
contribution is given by

j(r) = −i μB{�†(r)[∇�(r)] − [∇�†(r)] �(r)}, (2)

where μB is the Bohr magneton and �(r) is the ground-state
wave function (written for a single electronic coordinate for
brevity), which can be written in a Green’s function form-
alism as

j(r) = −i μB lim
r′→r

(∇ − ∇′)Tr ρ(r, r′), (3)

where

ρ(r, r′) = 1

2πi

∫
dE f (E)[G†(r′, r; E) − G(r, r′; E)] (4)

is the density matrix (a 2 × 2 matrix in spin space, Tr is
its trace), f (E) is the Fermi-Dirac distribution function, and
G(r, r′; E) is the retarded single-particle Green’s function.
The diamagnetic current is absent (no external magnetic
fields), and the relativistic correction to the current is found to
be small [48], so it is also neglected. However, SOC itself is
very important, as it lifts the orbital degeneracy of the surface
(needed for a finite ground-state current) via the lifted spin
degeneracy due to the presence of the magnetic adatom.

The ground-state paramagnetic current is thus the key to
quantify the orbital magnetism induced by the adatom on the
surface. The interpretation is facilitated by partitioning the
geometry illustrated in Fig. 1(a) into regions centered around
each atom, located at Ri and with volume Vi . The orbital
moment can then also be split,

mo =
∑

i

1

2

(
Ri × jnet

i +
∫
Vi

dr (r − Ri )× j(r)

)

=
∑

i

(
mia

o,i + ma
o,i

) = mia
o + ma

o. (5)

Equation (5) is independent of the choice of origin (see
Appendix A). The atomic contribution ma

o,i captures the
swirling of the current around the ith atom [see Fig. 1(b)],

which maps the atomic orbital angular momentum. The in-
teratomic contribution mia

o,i is due to the net currents jnet
i =∫

Vi
drj(r) that flow through the atoms [Fig. 1(c)]. With Eq. (5)

we gain access to the spatial dependence of the interatomic
contribution through mia

o,i .
To quantify the ground-state current in a realistic system,

we first obtained a realistic geometry for the adatom on the
surface with QUANTUM ESPRESSO supercell calculations [49],
as explained in Appendix B. Then we employed a different
calculation method based on a real-space embedding tech-
nique, which is possible with the Korringa-Kohn-Rostoker
Green’s function method [50–52]. In this way we avoid possi-
ble spurious effects due to the periodicity implied by supercell
calculations and are able to reach much larger system sizes.
The following steps were followed: First, the electronic struc-
ture of the pristine Pt(111) surface is obtained using a thick
slab with open boundary conditions in the stacking direction.
Then clusters of different sizes are self-consistently embedded
in the pristine surface, taking into account the relaxation of the
adatom towards the surface [see Fig. 1(d) for an example]. For
this we utilize the Dyson equation

G(r, r′; E) = G0(r, r′; E)

+
∫

dr1 G0(r, r1; E)�V (r1)G(r1, r′; E),

(6)

where G(r, r′; E) is the Green’s function of the surface in-
cluding the magnetic adatoms, G0(r, r′; E) is the Green’s
function of the unperturbed surface, and �V (r) is the po-
tential perturbation arising from the presence of the adatoms.
Equation (6) can be reexpressed by replacing the potential
perturbation by the respective scattering matrix �T (r, r′; E),
yielding

G(r, r′; E) = G0(r, r′; E)

+
∫

dr1

∫
dr2 G0(r, r1; E)

×�T (r1, r2; E)G0(r2, r′; E). (7)

The induced currents and the associated orbital moments
arise from the presence of the magnetic adatoms and so are
described by the second part of Eq. (7). This term has the
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structure of a generalized response function of the surface,
G0G0 ∼ χ , to the perturbation due to the adatoms �T . All
quantities can then be systematically converged with respect
to the cluster size. Further computational details can be found
in Appendix B.

III. RESULTS

We first consider the generic features of the paramag-
netic charge current, taking an Fe adatom on the Pt(111)
surface as an example. The atomic structure is depicted in
Fig. 1(a). Figure 1(b) illustrates the current distribution within
the adatom. The current is localized near the nuclear position
and swirls mostly in the xy plane, generating an atomic orbital
moment parallel to the spin moment of the adatom. The
adatom also induces a paramagnetic current in the surface.
Part of it swirls around each Pt atom (not shown) and forms
the atomic orbital moments ma

o,i . The remainder leads to a
net current through each Pt atom [Fig. 1(c)], resulting in the
interatomic contributions mia

o,i . The direction of the swirl of
the net currents is seen to alternate with distance, similar
to the well-known Friedel oscillations of the charge and
spin moment [1,8,53], so mia

o,i also changes orientation with
increasing distance to the adatom. The oscillations are due
to the product of the unperturbed Green’s functions G0 in
Eq. (7). These should then decay with a specific power law
depending on the dimensionality of the host material, and a
spatial anisotropy of the induced currents can arise depending
on the shape of the constant-energy surfaces characterizing its
electronic structure. Motivated by our ab initio results, we ad-
dressed recently [54] the case of magnetic impurities in a two-

dimensional Rashba electron gas using a phenomenological
model and showed that the decay of the paramagnetic current
in the asymptotic limit should go as 1/r with oscillation
wavelengths defined by the Rashba parameter, i.e., the spin-
orbit coupling strength, and the Fermi-energy wavelength.

Next, we investigate the range of the induced magnetic
moments, considering various adatoms. Fixing the spin mo-
ment of the adatom to be normal to the surface, C3v symmetry
ensures that the net induced moments are also collinear with it.
Figure 2(a) plots the net spin moments ms and the net atomic
orbital moments ma

o against the size of the cluster, showing
that they are well converged beyond a hemispherical radius
of Rh ∼ 7.5 Å (55 Pt atoms). Surprisingly, the net interatomic
orbital moment mia

o has a much longer range than the other
two [see Fig. 2(b)], going beyond the largest computationally
feasible cluster (vertical dashed line). We tested a physical
assumption to overcome the computational limitations: Is the
response of a far-away Pt atom to the presence of the magnetic
adatom independent of how its nearby Pt atoms respond?
Working with a smaller cluster augmented by a far-away Pt
atom and performing calculations for all possible positions of
this extra atom, we obtain the response equivalent to that of a
giant cluster with 2685 atoms, sketched in Fig. 1(d). We found
that the interatomic orbital moments do follow the previous
assumption (see Appendix D), validating the results shown
in Fig. 2(b) beyond the vertical dashed line. mia

o is converged
only beyond Rh ∼ 21 Å, showing that it extends about three
times as far as the other two contributions to the net induced
magnetic moment.

The giant cluster approach can also be used to study the
spatial distribution of the interatomic orbital moments. These

FIG. 2. Net induced magnetic moments on the Pt(111) surface due to several adatoms as a function of the hemispherical cluster radius
Rh. (a) Net spin and atomic orbital moments, ms and ma

o. (b) Net interatomic orbital moments mia
o . The vertical dashed line at 11 Å marks the

largest computationally feasible cluster (169 Pt atoms). The method described in the main text was utilized to obtain an effective hemispherical
cluster with Rh = 27.2 Å (2685 Pt atoms). Both methods lead to the same results for mia

o (see Appendix D). (c) Spatial distribution of the
interatomic orbital moments on the Pt surface layer, induced by various adatoms. The maps show the component of mia

o,i normal to the surface.
The values are scaled by the square of the distance d between a Pt atom and the adatom, showing that they decay faster than 1/d2.
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TABLE I. Magnetic moments (in units of μB) generated by
different adatoms on Pt(111). mad

s and mad
o are the spin and orbital

moments of each adatom, and P ad
s is the relative spin polarization

at the Fermi energy of each adatom. ms, ma
o, and mia

o are the spin,
atomic orbital, and interatomic orbital moments of Pt, induced by
each adatom.

Cr Mn Fe Co Ni

mad
s 2.83 3.90 3.46 2.26 0.59

mad
o 0.05 0.07 0.13 0.24 0.05

P ad
s −0.77 −0.51 0.58 0.83 0.32

ms −0.87 −0.41 0.70 0.98 0.38
ma

o −0.27 −0.18 0.05 0.15 0.06
mia

o −0.32 −0.16 0.02 0.14 0.13
mia

o
mad

o +ma
o

145% 145% 11% 35% 118%

are mapped in Fig. 2(c) for the Pt surface atoms, showing
Friedel-like oscillations with a fast decay with the distance
to a magnetic adatom. The nonmonotonic dependence of mia

o
on the cluster radius [see Fig. 2(b)] originates from these
oscillations. They are most pronounced for the Fe adatom:
The alternating signs of the Pt contributions with increasing
distance to the adatom almost cancel each other out when
added together. Surveying the maps for the other adatoms,
we see that Ni (Cr) generates mostly positive (negative)
contributions to mia

o , while the oscillations are still present for
Co and Mn, although the net contribution is clearly positive
for Co and negative for Mn.

The spin and orbital magnetic moments are collected in
Table I. The spin and orbital moments of the adatoms fol-
low from the filling of their d orbitals. Although those two
quantities are not our primary interest, we note that their
values might be underestimated and could be improved by a
more sophisticated description of the intra-atomic electronic
correlations [22,55]. The net spin, atomic, and interatomic
orbital moments induced in Pt are seen to increase when
going from Cr to Ni, with an antiparallel alignment for Cr
and Mn with respect to the spin moment of the adatom. The
simple Rashba model provides a qualitative explanation for
this trend: The induced orbital magnetization in the Rashba
model mR

o is found to be proportional to the magnetic part
of the impurity potential and can be roughly approximated
by mR

o ∝ Re
∫ EF dE �t (E)√

E
[54], where �t = t↑ − t↓ is the

difference of the scattering matrices for majority and minority
impurity spin channels. Changing the chemical and magnetic
nature of the adatom modifies �t (E), in particular its sign
(see Fig. 3 in Ref. [54]), leading to the observed trend in the
induced orbital moments.

The atomic and interatomic orbital moments induced in Pt
are of similar magnitude. Furthermore, the interatomic orbital
moment is a substantial part of the net orbital moment for
all adatoms and is even the largest contribution for Cr, Mn,
and Ni.

As argued in connection with Eq. (7), all the different
induced magnetic moments can be seen as a response of the
surface to the perturbation caused by the deposited adatoms,
although the explicit connection is extremely complicated.
Keeping the spirit of the argument, we will now show that

FIG. 3. Relations between the induced surface magnetic mo-
ments and the magnetic properties of the adatoms. (a) Spin (ms),
atomic (ma

o), and interatomic (mia
o ) orbital moments (in units of

μB) and relative spin polarization at the Fermi energy P ad
s of each

adatom. (b) Same as in (a), but with all quantities divided by the
corresponding spin moment of each adatom mad

s [see Eq. (8a)]. The
dashed lines are linear fits to the data.

the induced magnetic moments can be related to the local
properties of the adatom in a simple way. Only two properties
are required: the local spin moment mad

s and the relative
spin polarization at the Fermi energy of each adatom, P ad

s =
ρ↓(EF )−ρ↑(EF )
ρ↓(EF )+ρ↑(EF ) , with ρ↓(EF) and ρ↑(EF) being the minority
and majority spin-projected local densities of states of each
adatom (see Appendix F), evaluated at the Fermi energy. The
latter quantity is closely related to the induced spin moments,
as made apparent in Fig. 3(a). We find that all the induced
magnetic moments mind are linear in both mad

s and P ad
s ,

mind = χmmad
s + χP P ad

s (8a)

or

mind

mad
s

= χm + χP

P ad
s

mad
s

, (8b)

as shown in Fig. 3(b) with the fitted values of χm and χP

given in Table II. The surface responds not only to the overall
strength of the magnetic perturbation caused by each adatom
mad

s but also to the spin asymmetry at the Fermi energy P ad
s .

We interpret the former as the Fermi sea and the latter as the
Fermi-surface part of an effective magnetic susceptibility of
the surface.

Both ma
o and mia

o arise from the combination of the strong
SOC of Pt with the breaking of spin symmetry due to a mag-
netic adatom. Pt is well known to have a large Stoner enhance-
ment of its spin susceptibility, which should be important not
just for ms but also for ma

o and mia
o , through its strong SOC.

However, we verified that for mia
o the response of a far-away Pt

TABLE II. Values of χm and χP as obtained from the fits in Fig. 3.

χm χP (units of μB)

Spin moment 0.010 1.04
Atomic orbital moment −0.026 0.21
Interatomic orbital moment −0.024 0.32
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atom is independent of how its nearby Pt atoms respond, while
this is false for ma

o and ms (see Appendix D). This proves that
mia

o represents a spin-orbital response of the surface which is
distinct from the one leading to ma

o, which could be suspected
from their very different spatial ranges. A simple explanation
is to imagine that each Pt atom responds to the magnetic
adatom partly by generating a swirling current centered on
it. This contributes locally to ma

o but averages out for the local
net current by superposing the contributions generated by the
surrounding Pt atoms, leaving mia

o unaffected.

IV. CONCLUSIONS

We presented a theory of the interatomic orbital magnetism
caused by magnetic nanostructures on a nonmagnetic surface,
rooted in knowledge of the induced paramagnetic ground-
state current density. Our detailed study of the magnetism of
the Pt(111) surface induced by 3d adatoms uncovered several
interesting properties of the interatomic orbital moment: It is
long ranged, displays Friedel-like oscillations, and arises in a
different way than the atomic orbital moment. The interatomic
contribution to the orbital moment is as important as the
atomic one and cannot be neglected. This is in stark contrast
to the case of the elemental bulk ferromagnets, where the
interatomic contribution was found to be small [39,41,56].

It remains to be explored whether XMCD measurements
employing the sum-rule analysis can detect the full orbital
moment of Pt or just part of it, as was argued in a dif-
ferent context in Ref. [38]. Detecting the magnetic stray
field produced by the induced magnetic moments may be a
viable alternative, exploiting the sensitivity of electron spin
resonance via nitrogen-vacancy centers in diamond or proxy
magnetic adatoms [57–59].

The type of surface and the size, shape, and dimension
of the magnetic nanostructures will matter in defining the
magnitude and the decay of the interatomic orbital moments.
We found that on the Pt(111) surface the interatomic orbital
moments extend three times farther than the atomic orbital and
spin moments. This has the following important implication:
Two nanostructures assumed to be decoupled based on the
spatial range of the atomic orbital and spin moments might
actually still be coupled via the interatomic orbital moments.
This should be kept in mind when interpreting experimental
findings. On the other hand, it might mediate new long-range
interactions of the RKKY type through the orbital degrees of
freedom, a point that requires further investigations and could
be of potential interest for spin-orbitronics applications.
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APPENDIX A: PROOF THAT THE TOTAL ORBITAL
MOMENT IS INDEPENDENT OF THE CHOICE OF ORIGIN

In the following, we will show that the choice of origin
does not influence the total orbital moment as defined in
Eq. (5) in the main text or its decomposition into atomic
and interatomic parts. Consider a fixed partition of space into
cells surrounding each atom i, with volume Vi . If we redefine
the origin of each cell, Ri → Ri + T, we easily see that the
atomic contributions to the orbital moment are unaffected
by this shift. The interatomic part of the orbital moment
transforms as follows:

mia
o = 1

2

∑
i

(Ri + T) × jnet
i (A1)

= 1

2

∑
i

Ri × jnet
i + 1

2
T × jtotal, (A2)

where jtotal = ∑
i jnet

i . Time-reversal-invariant surfaces do not
host finite ground-state currents on their own, so the induced
charge currents will be bound to swirl around the nanos-
tructure. It follows that the total current vanishes, so it also
vanishes for an arbitrary partition of space:

0 =
∫

dr j(r) =
∑

i

∫
Vi

dr j(r) = jtotal. (A3)

This shows that the total interatomic orbital magnetic moment
is independent of the choice of origin [see Eq. (A2)].

APPENDIX B: COMPUTATIONAL DETAILS
FOR STANDARD CLUSTER CALCULATIONS

We performed density functional theory calculations
with the Korringa-Kohn-Rostoker (KKR) Green’s function
method, with the potential in the atomic sphere approximation
but with full charge density [50]. Exchange and correlation
effects are treated in the local-spin-density approximation as
parametrized by Vosko et al. [60], and SOC is added to the
scalar-relativistic approximation [51]. The pristine surface is
modeled by a slab of 40 Pt layers with the experimental lattice
constant, 3.92 Å, with open boundary conditions in the stack-
ing direction, and surrounded by two vacuum regions, each
9.06 Å thick. No relaxation of the surface layer is considered,
as it was shown to be negligible [61]. We use 150 × 150 k

points in the two-dimensional Brillouin zone, and the angular
momentum expansions for the scattering problem are carried
out up to �max = 3. In the next step, each adatom is placed
in the fcc-stacking position on the Pt(111) surface, using an
embedding method. Since the KKR method is not capable of
structural relaxations, we used the plane-wave code QUANTUM

ESPRESSO [49] to calculate the relaxation of an Fe atom
towards the Pt surface. Using a 4 × 4 supercell with five layers
of Pt and one k point, we found that the distance between the
adatom and the surface layer is approximately 75% of the bulk
interlayer distance. For the sake of comparison, we assume the
same vertical distance for each adatom, as well as an out-of-
plane spin moment, as depicted in Fig. 1(a). The embedding
region consists of a spherical cluster with a radius of 2.8 Å
around each magnetic adatom, augmented with a hemisphere
of Pt atoms with a radius of 11.0 Å. This is a smaller version
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of the cluster sketched in Fig. 1(d). The current density is
efficiently evaluated by utilizing a minimal spdf basis built
out of regular scattering solutions evaluated at two or more
energies by orthogonalizing their overlap matrix [52]. This is
discussed in more detail in the following.

APPENDIX C: GROUND-STATE CURRENTS WITHIN
THE KKR GREEN’S FUNCTION METHOD

The ground-state charge currents can be expressed in a
Green’s function formalism as shown in Eq. (3). Within our
KKR implementation, we employ a set of basis functions
designed for efficient calculations of response functions [52].
This basis is composed of normalized radial scattering so-
lutions for each atomic cell i, with orbital (�) and spin (s)
angular momentum indices and basis index b, computed at
several energies Eb within the range of the valence states,

φi�bs (r ) = Ri�s (r; Eb )∫
dr r2 Ri�s (r; Eb )2

. (C1)

The basis construction is completed by orthogonalizing the
overlap matrix and keeping the linear combinations with
eigenvalues close to unity. The Green’s function is expressed
in the projection basis as (r̂ = r/r)

G(r + Ri , r′ + Rj ; E)

=
∑
Lb

L′b′

YL(r̂)φi�b(r ) GiLb;jL′b′ (E) φj�′b′ (r ′)YL′ (r̂′), (C2)

where YL(r̂) are real spherical harmonics with the combined
index L = (�,m) and GiLb;jL′b′ (E) is the energy-dependent
Green’s function matrix element. Evaluating the energy inte-
gral of the Green’s function matrix element, one obtains the
density matrix in the projection basis,

ρ(r + Ri , r′ + Rj )

=
∑
Lb

L′b′

YL(r̂)φi�b(r ) ρiLb;jL′b′ φj�′b′ (r ′)YL′ (r̂′). (C3)

The action of the gradients in Eq. (3) on a basis consisting of
spherical harmonics and a radial basis function can be sim-
plified by utilizing the definition of the momentum operator,
p = −i∇, and the angular momentum operator, L = r × p,

r × L = r × (r × p) = r2(r̂ · p)r̂ − r2 p (C4)

=⇒ ∇ = r̂ ∂r − i
r̂ × L

r
, (C5)

which yields

∇φi�b(r )YL(r̂) = r̂(∂rφi�b(r ))YL(r̂) − i
φi�b(r )

r
r̂ ×[LYL(r̂)].

(C6)

For computational reasons, we want to obtain the gradient in
terms of new radial basis functions and spherical harmonics.
Therefore, the remaining angular dependences in Eq. (C6)
have to be rewritten in terms of spherical harmonics. Ex-
pressing the direction cosines in terms of spherical harmon-

ics, r̂α =
√

4π
3 Y�α

(r̂), with �x = (1, 1), �y = (1,−1), and

�z = (1, 0), and employing the Gaunt coefficients C
L1
LL′ ,

which convert products of two spherical harmonics (L,L′)
into a sum over single spherical harmonics (L1), one finds for
the vector components of the first term in Eq. (C6)

r̂α (∂rφi�b(r )) YL(r̂) =
√

4π

3
[∂rφi�b(r )]

∑
L1

C
L1
�αLYL1 (r̂).

(C7)

The action of the angular moment operator on spherical
harmonics, which is needed for the second term in Eq. (C6),
is given by the matrix elements of the angular momentum
operator,

L̂αY�m(r̂) =
∑
m′

Y�m′ (r̂) Lα
�,m′m. (C8)

For the second term in Eq. (C6) one then finds

− i
φi�b(r )

r
{r̂ ×[L YL(r̂)]}α

= −i
φi�b(r )

r

√
4π

3

∑
βγ

εαβγ

∑
m′L1

C
L1
�β ,�m′ L

γ

�,m′m YL1 (r̂).

(C9)

Here εαβγ is the Levi-Civita symbol. Combining this scheme
with Eqs. (3) and (C3), the ground-state charge current can
be straightforwardly calculated.

FIG. 4. Illustration of the cluster used for the giant hemispherical
calculations. (a) The adatom (red sphere) is embedded on an arbitrary
surface (light and dark gray spheres). The cluster used for each small
calculation contains a hemisphere around the adatom (dark gray
spheres) and one additional isolated host atom (dark gray sphere).
(b) Three-dimensional visualization of the Pt(111) cluster used here.
(c) Total giant hemispherical cluster containing 2685 Pt atoms, which
is used for the calculation of the interatomic orbital moment.
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FIG. 5. Illustration of the induced net currents between Pt atoms.
(a) A Pt atom (gray hexagon) induces net currents to its neighboring
atoms, which are indicated by arrows and assumed to follow a
clockwise swirling direction. (b) The net current induced from all the
neighbors (gray hexagons) to the central Pt atom is shown as arrows.

APPENDIX D: COMPUTATIONAL DETAILS FOR GIANT
CLUSTER CALCULATIONS

The interatomic orbital magnetic moments are obtained
using a giant hemispherical cluster containing up to 2685 Pt
atoms. In the following, we explain the construction of the
giant cluster and the applicability of the method. The starting

point is a self-consistent calculation for a small connected
spherical cluster, which contains the adatom, 15 Pt atoms, and
9 vacuum sites, summing up to a total of 25 sites. One isolated
Pt atom is then added to the previous cluster, as depicted in
Figs. 4(a) and 4(b). Performing a single non-self-consistent
iteration, we obtain the net ground-state charge current of the
isolated Pt atom. Repeating this construction and utilizing the
symmetry of the surface, we obtain the giant hemispherical
cluster with 2685 Pt atoms shown in Fig. 4(c).

This approach does not account for the influence of the lo-
cal environment of the isolated Pt atom on its net ground-state
charge current, but it turns out that this is negligible. We veri-
fied this numerically but also found a qualitative explanation:
Every Pt atom induces net currents into its neighboring atoms
with a certain swirling direction, as sketched in Fig. 5(a). For a
given atom, the sum of the contributions from all its neighbors
will then tend to cancel, as indicated in Fig. 5(b), so that
the contribution of the local environment of the atom to its
net current will be negligible. We thus expect that the giant
cluster approach should work well for the interatomic orbital
moments since they depend only on the net charge currents.

This reasoning does not apply to the spin moment and the
atomic orbital moment. Imagine a situation similar to the one
depicted in Fig. 5 but for the spin moment: Now the

FIG. 6. Net magnetic moments as a function of the size of the cluster for the five adatoms, Cr, Mn, Fe, Co, and Ni, deposited on the
Pt(111) surface: (a) spin moment, (b) atomic orbital moment, and (c) interatomic orbital moment. Each row pertains to the adatom indicated
to the left of it. The results of the two different methods are shown: a connected hemispherical cluster (red line) and the method using isolated
Pt atoms as described in the main text (blue curve). The deviations between the two methods for the spin moment and the atomic orbital
moment are small but noticeable, while for the interatomic orbital moment both methods agree very well, with a small deviation of less
than 2%.
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FIG. 7. Spatial distribution of the interatomic orbital moments for Cr, Mn, Fe, Co, and Ni deposited on the Pt(111) surface. Each row
pertains to the adatom indicated to the left of it. (a) Interatomic orbital moment of the Pt atoms comprising the surface layer scaled by r2.
The red (30◦) and blue (90◦) dashed lines indicate two high-symmetry lines. (b) Directional dependence of the interatomic orbital moment in
the surface layer of Pt(111) for the two high-symmetry directions scaled by r2. The data points shown go beyond the clusters shown in (a).
The oscillatory decay is faster than r2. (c) Sum of the interatomic orbital moment over the full hemispherical cluster with a radius of 27.2 Å
containing 2685 Pt atoms as a function of the distance to the adatom (blue solid line). The sum reaches a plateau at a distance of approximately
21.0 Å for all adatoms. The interatomic orbital moment from a connected cluster containing 169 Pt atoms (as discussed in the main text) is
shown as a dashed red line. The results from both methods match, e.g., with a deviation of approximately 2% at a distance of 11.0 Å for the Fe
adatom.
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neighboring atoms of a given Pt atom will contribute to
its induced spin moment. In contrast to the case of the
net currents, there is no symmetry argument to suggest that
the contributions from the neighbors should cancel out. The
atomic orbital moment will also be affected, as it is connected
to the local spin moment via spin-orbit coupling. Therefore,
the spin moment and the atomic orbital moment might not be
well described by our giant hemispherical cluster approach.

For a more quantitative picture, Fig. 6 shows the spin mo-
ment, the atomic orbital moment, and the interatomic orbital
moment as a function of the hemispherical cluster size for the
two different methods. The blue curves are the results of using
isolated Pt atoms to scan a giant hemispherical cluster. The
red curves correspond to a connected cluster with up to 169
Pt atoms, including all the effects of the local environment
of each atom. For the spin moment [Fig. 6(a)] as well as
the atomic orbital moment [Fig. 6(b)] one finds deviations of
approximately 10% between the two methods for the Cr and
Mn adatoms. For the other adatoms the deviation is below
5% but still noticeable. For the interatomic orbital moment
[Fig. 6(c)] both methods agree very well, with deviations of
less than 2%.

APPENDIX E: LONG-DISTANCE BEHAVIOR
OF THE INTERATOMIC ORBITAL MOMENT

We next explore the distance dependence of the interatomic
orbital moment for the five different adatoms deposited on
the Pt(111) surface. Figure 7(a) shows the interatomic orbital
moment in the Pt atoms comprising the surface layer. The red
and blue dashed lines indicate two high-symmetry directions,
which are used in Fig. 7(b) to show the long-distance behavior
of the interatomic orbital moment. The decay does not depend
on the chemical nature of the adatom, but it is an intrinsic
property of the surface, as it is similar for all the different
adatoms. Furthermore, the decay is faster than r2, ensuring
convergence of the net interatomic orbital moment. The giant
hemispherical cluster calculations reach up to cluster sizes of
27.2 Å. From the line cuts we can estimate that enlarging the

FIG. 8. Local density of states of the different adatoms deposited
on the Pt(111) surface. Positive (negative) values correspond to the
majority (minority) channel.

clusters would have minor effects, which lets us conclude that
the values in Fig. 7(c) are converged.

APPENDIX F: LOCAL DENSITY OF STATES
OF THE ADATOMS

Figure 8 shows the local density of states of the five dif-
ferent adatoms deposited on the Pt(111) surface. The positive
values show the majority spin channel, whereas the negative
values indicate the minority spin channel. The spin polariza-
tion at the Fermi level as described in the main text can be
obtained from the local density of states. From Fig. 8 we see
that the majority spin channel is strongly hybridized with the
surface electronic states, leading to a broad energy distribution
of the d states of the adatoms, while the minority d states of
the adatoms are less hybridized.
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[61] P. Błoński and J. Hafner, Density-functional theory of the mag-
netic anisotropy of nanostructures: An assessment of different
approximations, J. Phys.: Condens. Matter 21, 426001 (2009).

094428-11

https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1103/PhysRevB.91.075405
https://doi.org/10.1103/PhysRevB.91.075405
https://doi.org/10.1103/PhysRevB.91.075405
https://doi.org/10.1103/PhysRevB.91.075405
https://doi.org/10.1103/PhysRevLett.108.207202
https://doi.org/10.1103/PhysRevLett.108.207202
https://doi.org/10.1103/PhysRevLett.108.207202
https://doi.org/10.1103/PhysRevLett.108.207202
http://arxiv.org/abs/arXiv:1806.02158
https://doi.org/10.1088/0953-8984/20/01/015002
https://doi.org/10.1088/0953-8984/20/01/015002
https://doi.org/10.1088/0953-8984/20/01/015002
https://doi.org/10.1088/0953-8984/20/01/015002
https://doi.org/10.1209/epl/i1997-00502-1
https://doi.org/10.1209/epl/i1997-00502-1
https://doi.org/10.1209/epl/i1997-00502-1
https://doi.org/10.1209/epl/i1997-00502-1
https://doi.org/10.1080/00018732.2012.668775
https://doi.org/10.1080/00018732.2012.668775
https://doi.org/10.1080/00018732.2012.668775
https://doi.org/10.1080/00018732.2012.668775
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1126/science.aac8703
https://doi.org/10.1126/science.aac8703
https://doi.org/10.1126/science.aac8703
https://doi.org/10.1126/science.aac8703
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1088/0953-8984/21/42/426001
https://doi.org/10.1088/0953-8984/21/42/426001
https://doi.org/10.1088/0953-8984/21/42/426001
https://doi.org/10.1088/0953-8984/21/42/426001



