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Magnetic behavior of a 3d solute in a ferromagnetic lattice can be very sensitive to local environment, which
is the case of manganese in bcc Fe. Body-centered cubic iron-manganese alloys are studied by means of density
functional theory in order to elucidate properties of the lowest-energy magnetic states. Multiple magnetic minima
are determined even for the simplest case of an isolated Mn and a Mn dimer in bcc iron. The magnetoenergetic
landscape is analyzed within and beyond the collinear magnetic approximation. A direct correlation is identified
between the local electronic charge and the local magnetic moment of a Mn solute, being either isolated or
forming a small cluster. In particular, the presence of a vacancy near the Mn atom, inducing a local charge
decrease, tends to favor the antiferromagnetic Fe-Mn interaction while the presence of an interstitial impurity
with a strong electronic hybridization with Mn can favor a ferromagnetic Fe-Mn interaction. Energetic and
magnetic properties of Fe-Mn alloys are systematically investigated for a large range of Mn concentrations. An
unmixing tendency is clearly noted. A detailed magnetic analysis suggests the Mn-Mn magnetic interactions to
be generally dominant over the Fe-Mn interactions, both exhibiting an antiferromagnetic tendency. The average
magnetic moment of the Mn atoms in locally random alloys tends to be antiparallel (parallel) to lattice Fe
moments for Mn concentrations smaller (larger) than approximately 6 at. %. The transition concentration is
shown to be lowered if considering Mn clustering which is energetically favorable. The unsolved discrepancies
between experimental and theoretical predictions on the critical concentration for the Mn magnetic behavior
change in Fe-Mn solid solution are discussed in the light of the obtained results.
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I. INTRODUCTION

Magnetic interaction between a 3d solute and host atoms
in a ferromagnetic lattice is known to depend on the solute d-
band filling. It tends to be antiferromagnetic (AF) for the early
3d elements and ferromagnetic (FM) for the elements with a
large d-band filling. In between, magnetic properties of so-
lutes with around half d-band filled can be extremely sensitive
to local chemical and structural environment. Therefore, they
are often at the origin of discrepancies between various data
from both theoretical and experimental investigations. This is
for instance the case of Mn solutes in bcc iron [1] and Cr
solutes in fcc nickel [2,3]. In addition, metal alloys presenting
a magnetic competition between solute-solute and solute-host
atom interactions often exhibit complex magnetic structures.
The interplay between local magnetic order and structural and
chemical defects have been widely studied in the past few
years for Fe-Cr systems [4–11]. In particular, previous studies
have shown that magnetism in Fe-Cr alloys has a crucial im-
pact on various thermodynamic and kinetic properties [12,13].
Such behaviors remain poorly understood for Fe-Mn systems,
although it is known that pure bulk Mn shows a complex
magnetostructural phase diagram [14,15], and there is a strong
magnetoelastic coupling in Fe-Mn alloys [16].

From an application point of view, manganese is a common
alloying element in austenitic steels, because of its ability
to trap sulfur and its desoxidization properties. Depending
on its concentration, Mn may provide improved mechanical

properties, act against corrosion, and also increase the hot
workability of steels by preventing the formation of sulfides.
Also, ferritic/martensitic steels containing manganese are es-
pecially interesting as structural materials in nuclear applica-
tions due to their reduced activation properties. For instance,
they are used nowadays in pressurized water reactors vessels
(16MND5) and considered as promising candidates for future
nuclear fission and fusion technologies (EUROFER97). More
recently, manganese is also involved in the emerging field of
high entropy alloys (for instance Cr-Mn-Fe-Co-Ni [17]).

This work is focused on the body-centered cubic (bcc)
phase of Fe-Mn model alloys. According to the existing Fe-
Mn phase diagram [18], the bcc structure is the stable phase
at low Mn concentration (for instance up to 5 at. % at room
temperature). It was also shown that this bcc phase can be
extended up to 11 at. % of Mn at room temperature with cold
rolling [19]. On the theoretical side, density functional theory
(DFT) results suggest that the bcc phase is more stable than
face-centered cubic (fcc) and hexagonal close-packed (hcp)
phases at 0 K up to approximately 13 at. % Mn [20].

The magnetic behavior of Mn solutes in dilute Fe-Mn
systems, which is a first step towards the understanding of
properties in Fe-Mn alloys with various concentrations, is still
unclear despite previous efforts [21,22]. Existing theoretical
studies do not all agree on even the magnetic ground state of
a single substitutional Mn atom in bcc Fe. The reported Mn
magnetic moment ranges from −3.0 to 1.0 μB. Positive and

2469-9950/2018/98(9)/094426(17) 094426-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.094426&domain=pdf&date_stamp=2018-09-26
https://doi.org/10.1103/PhysRevB.98.094426


ANTON SCHNEIDER, CHU-CHUN FU, AND CYRILLE BARRETEAU PHYSICAL REVIEW B 98, 094426 (2018)

negative moments respectively denote an AF and a FM state
with respect to the lattice Fe moments. The value seems to be
very sensitive to the various DFT approximations such as the
parametrization of the GGA exchange-correlation functional
and the use of different types of pseudopotentials, as pointed
out by Olsson et al. [23]. The large discrepancy may also
arise from the presence of two collinear energy minima for
a Mn solute in bcc Fe, showing a moment either parallel or
antiparallel to the lattice Fe moments, as mentioned in an
early theoretical work [1]. These two minima must be taken
into account for an accurate description of Mn magnetism
in bcc Fe-Mn alloys. To the best of our knowledge, it is not
the case in most of previously published studies, which may
be a possible cause for many discrepancies described in the
following paragraphs.

Several DFT studies were focused on Mn interaction with
another Mn solute, and with point defects and impurities.
Systematic studies of 3d solutes in α-Fe including Mn show
some controversial results. DFT based calculations performed
with projector augmented wave (PAW) potentials reveal an
attractive behavior between two nearest-neighbors Mn atoms
[23,24], whereas another study performed using Vandebilt
ultrasoft pseudopotentials (USPP) showed the opposite [25].
As for the isolated Mn, these energetic results need to be
discussed considering different magnetic coupling possibili-
ties of the two Mn atoms. It was also shown that a vacancy
and a Mn solute exhibit an attractive behavior [23,24,26–29].
Concerning a Mn solute interacting with an interstitial impu-
rity, a DFT-USPP study reported an attraction, with a binding
energy between Mn and a first-neighbor C (N) interstitial
of 0.26 eV (0.19 eV) [30]. This attractive behavior for C is
confirmed by another DFT-PAW study which reports a lower
binding energy (0.12 eV) between Mn and a first-neighbor
C interstitial impurity [24]. However, these studies have not
explicitly discussed the magnetic state variation of the Mn
atom. Further investigation is required to address this feature
and magnetoenergetic interplay.

Concerning Fe-Mn alloys beyond the extremely dilute
limit, it has been shown via DFT that the heat of formation of
bcc Fe-Mn is always positive, in a study performed over the
whole range of concentration [20]. This finding agrees with
earlier data from tight binding-linear muffin tin orbitals (TB-
LMTO) calculations [21]. These results are consistent with
available experimental works [31,32] revealing an unmixing
tendency. However, a systematic concentration dependent
magnetic analysis is still missing.

Experimentally, some magnetic properties of Fe-Mn alloys
have been studied a few decades ago using Mössbauer spec-
troscopy [33–35], nuclear magnetic resonance (NMR) [36–
38], small angle neutron scattering [39], and magnetization
measurements [40]. The motivation of these studies was to
understand the linear decrease of the total magnetization of
Fe-Mn systems with increasing Mn concentration, follow-
ing closely the Slater Pauling curve, up to 11 at. % Mn,
before a sharp drop [22,41,42]. Considering the Fe moment
as a constant, it was deduced that the average Mn moment
ranges between 0.8 and 1 μB, parallel to the Fe moments.
This simple scenario could explain the linear decrease of
the total magnetic moment by a magnetic dilution effect.
On the other hand, more recent experiments on bcc Fe-Mn

by NMR and neutron diffuse scattering reported an average
Mn magnetic moment of −0.82 and −0.23 μB for respective
Mn concentrations of 0.8 and 1.8 at. %, whereas some other
experimental works showed moments between 0.6 and 1.0 μB

for a Mn concentration of 2–5 at. % Mn [43–46]. Compiling
these data seem to show a transition from an AF to a FM
Fe-Mn coupling tendency with increasing Mn concentration.
A quantitative conclusion is however difficult to draw because
the experimental methods and sample conditions may be
different from one study to another. None of these works offer
a systematic study over a large concentration range. Overall,
it is noticeable that low concentration results tend to show
AF Fe-Mn interactions while higher concentration studies
show a FM Fe-Mn coupling tendency. The transition between
these two regimes appears at approximately 2 at. % Mn, even
though it may depend strongly on the experimental details.

On the theoretical side, previous results on Fe-Mn mag-
netic interactions in the alloys also showed some discrepan-
cies. Some calculations performed using TB-LMTO showed
negative Mn moments going from −2.5 to −3.0 μB over the
5–20 at. % Mn concentration range [47]. The latter method
also predicted a transition between a large negative moment
and a smaller positive one (from −1.5 to 1 μB) [21], although
the critical concentration of this transition (6–8 at. % Mn) is
overestimated compared to experimental data (most authors
report positive values for Mn concentrations larger than 2
at. % Mn in experimental studies) [43–46]. Calculations were
also performed using the coherent potential approximation
with the Korringa-Kohn-Rostoker (KKR-CPA) method and
showed a transition between a strong AF state and a weaker
FM state at 12 at. % Mn [22]. However, CPA is known not to
be suitable for addressing properties depending on chemical
short range order (SRO), which is the case of Mn magnetism
in bcc Fe [46]. It is clear that theoretical results do not agree
with the experimental data on the AF to FM transition of the
Fe-Mn interaction [48]. One possible reason may be due to the
presence of multiple magnetic minima in the Fe-Mn alloys,
which are not all considered in the calculations. Also, all these
studies only considered random solutions while it was shown
that bcc Fe-Mn alloys show significant unmixing tendencies
[31,32]. It is then necessary to investigate the effects of Mn
clustering on the magnetic properties.

This work aims at elucidating the dependence of Mn
magnetism in various local environments in bcc Fe-Mn alloys,
namely a Mn solute, being isolated or forming a cluster, and
in the presence of vacancies or interstitial impurities, and
the dependence of Mn magnetism on the alloy concentration.
Based on the obtained results, we also attempt to provide ex-
planations for the existing discrepancies between theoretical
and experimental studies.

The paper is organized as follows: In Sec. II the compu-
tational details of the DFT calculations are described. The
results are reported and discussed in Sec. III. The first part
is focused on the behavior of isolated Mn solutes in a bcc iron
lattice. The second part concerns the magnetic structures of
bcc Fe-Mn solid solutions as a function of Mn concentration.
The third part deals with Mn clusters in bcc Fe. Finally,
the fourth and the fifth parts are devoted to the interaction
between Mn atoms and respectively vacancies and interstitial
impurities (C, N, O) and their impact on the Mn magnetism.
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II. COMPUTATIONAL METHOD

A. Density functional theory calculations

First-principles calculations were performed using den-
sity functional theory (DFT) with the projector augmented
wave (PAW) method [49,50] as implemented in the VASP
(Vienna ab initio simulation package) code [51–53]. The
results presented in this paper were obtained using the gen-
eralized gradient approximation (GGA) for the exchange-
correlation functional in the Perdew-Burke-Ernzerhof (PBE)
form [54]. All the calculations are spin polarized. 3d and 4s

electrons were considered as valence electrons. The plane-
wave basis cutoff was set to 400 eV. Electronic projected
densities of states (PDOS) and atomic magnetic moments are
obtained by a projection scheme based on the PAW method
as implemented in the VASP code. If using the projection on
spheres around atoms as a criterion, we checked that a 10%
variation of the sphere radius from half the nearest-neighbor
(1nn) interatomic distance induces at most a 1% change of
the local magnetic moments. The projection operators are
evaluated in the reciprocal space.

Supercell calculations were performed to simulate Mn
solutes in bcc ferromagnetic Fe with and without a vacancy
or impurities. Clusters containing up to 15 Mn atoms were
simulated using cubic supercells of 4 × 4 × 4, 5 × 5 × 5, and
6 × 6 × 6 times the lattice parameter of the cubic unit cell
(a0), containing respectively 128, 250, and 432 atom sites.
The solid solutions were represented by special quasirandom
structures (SQS) [55] in cubic supercells of 3 × 3 × 3 and
4 × 4 × 4 times a0, containing respectively 54 and 128 sites.
All the calculations were performed at constant volume. For
the SQS systems, the lattice parameters of such systems
were set according to Vegard’s law. The residual stresses
of every studied system were checked to remain lower than
10 kbar.

The k-point grids used in our calculations were adjusted
according to the size of the supercell. They were chosen to
achieve a k sampling equivalent to a bcc cubic unit cell with
a 16 × 16 × 16 shifted grid, following the Monkhorst-Pack
scheme [56]. The Methfessel-Paxton broadening scheme with
0.1 eV width was used [57]. The convergence threshold for
the electronic self-consistency loop was set to �E = 10−6 eV
and atomic relaxations at constant volume were performed
down to a maximum residual force of 0.02 eV/Å. We have
verified that the magnetic structures and cluster formation
energies are well converged with respect to the choice of
k-point grids and the cutoff conditions. The resulting error
bars for energy differences and magnetic moments of Fe and
Mn are, respectively, 0.02 eV, 0.01 μB, and 0.1 μB. These
are mainly associated with the convergence of the plane-wave
energy cutoff and the k-grid density.

Some of the calculations presented in this paper were per-
formed beyond the collinear magnetism approximation with
or without constrained local magnetism as implemented in the
VASP code. A modification was added to the code allowing
us to only constrain the local moment of certain atoms of
the system. In addition, constrained local magnetism was also
applied in the collinear approximation using our own modifi-
cation of the code. Each constrained local moment calculation
was performed incrementing the λ constraint parameter up to

TABLE I. Fe bulk elementary properties for each phase. �E

stands for the energy difference between the considered phase and
the ground state (GS) (bcc FM Fe), a0 is the optimized lattice
parameter, and μFe is the magnetic moment per atom. Values be-
tween parentheses were obtained by Herper et al. [58] using the
full potential linear augmented plane-wave method within the GGA
approximation and by Jiang et al. [59] using the PAW method within
the GGA approximation. Please note that some reference values
are deduced from figures if the precise numbers are not given in
Refs. [58,59].

Phase Mag. �E (eV) a0 (Å) μFe (μB)

0 (GS) 2.832 2.20
bcc FM (0.00) [58] (2.843) [58] (2.17) [58]

(0.00) [59] (2.83) [59] (2.20) [59]

bcc AFD 0.178 2.841 2.18

0.442 2.793 1.29
bcc AF (0.44) [58] (2.803) [58] (1.25) [58]

(0.44) [59] (2.79) [59] (1.22) [59]

0.475 2.757 0.00
bcc NM (0.47) [58] (2.771) [58] (0.00) [58]

(0.46) [59] (2.76) [59] (0.00) [59]

0.104 3.544 1.93
fcc AFD (0.10) [58] (3.538) [58] (1.80) [58]

(0.10) [59] (3.52) [59] (1.79) [59]

0.124 3.486 1.27
fcc AF (0.10) [58] (3.503) [58] (1.30) [58]

(0.11) [59] (3.48) [59] (1.23) [59]

0.154 3.625 2.57
fcc FM (hs) (0.15) [58] (3.643) [58] (2.57) [58]

(0.16) [59] (3.64) [59] (2.62) [59]

0.155 3.480 1.03
fcc FM (ls) (0.13) [58] (3.495) [58] (1.02) [58]

(0.14) [59] (3.47) [59] (0.94) [59]

0.163 3.446 0.00
fcc NM (0.15) [58] (3.464) [58] (0.00) [58]

(0.14) [59] (3.45) [59] (0.00) [59]

the obtaining of a satisfactory low penalty energy term (less
than one hundredth of the considered energy differences).

All the alloy concentrations given in the paper are ex-
pressed as atomic percent.

B. Bulk Fe and Mn properties: Validation of the approach

First, the described computational method was used to
calculate the relevant crystallographic and magnetic structures
of pure Fe and Mn bulks. The results were then compared with
existing literature data in order to validate our approach and
to give additional insights into the magnetic structures of bulk
Mn. All these results are obtained with collinear magnetism
calculations.

Pure iron is widely known to have a ferromagnetic body-
centered cubic ground state. It is correctly predicted by our
calculations which lead to a magnetic moment of 2.20 μB

per atom, at the optimal lattice parameter which is found to
be 2.832 Å. Elementary properties for other states are also in
excellent agreement with previous results [58–61]. A detailed
comparison is summarized in Table I.
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TABLE II. Mn bulk elementary properties for each phase. �E

stands for the energy difference between the considered phase and
the ground state (GS) (AFM α-Mn), a0 is the optimized lattice pa-
rameter, and μMn is the magnetic moment per atom. Values between
parentheses were obtained by Hobbs et al. [14] and Hafner et al. [15]
using the PAW method within the GGA approximation. Please note
that some reference values are deduced from figures if the precise
numbers are not given in Refs. [14,15].

Phase Mag. �E a0 (Å) μMn (μB)

0 (GS) 8.599 2.9/2.2/0.5/0.1
α AF

(0) [14] (8.668) [14] (2.8/2.2/1.0/0.0) [14]

0.024 8.538 0.00
α NM

(0.04) [14] (8.532) [14] (0.00) [14]

0.074 6.005 0.5/0.1
β FiM

(0.063) [14] (6.007) [14] (0.3/0.0) [14]

0.075 6.003 0.00
β NM

– (6.007) [14] (0.00) [14]

bcc AFD 0.128 2.850 1.89

0.145 2.815 1.49
bcc c(2 × 2)

(0.146) [15] (2.81) [15] (1.35) [15]

0.170 2.790 0.85
bcc FM

(0.17) [15] (2.80) [15] (0.9) [15]

0.188 2.777 0.00
bcc NM

(0.19) [15] (2.77) [15] (0.00) [15]

bcc AF 0.251 2.800 2.45

0.068 3.572 1.84
fcc AF

(0.067) [15] (3.55) [15] (1.60) [15]

0.106 3.495 0.00
fcc NM

(0.11) [15] (3.51) [15] (0.00) [15]

Pure manganese is known under various allotropic forms
with distinct magnetic orderings. The lowest energy and most
common structure is called α-Mn. Its 58-atom cubic unit cell
contains four sublattices, each one showing (with collinear
magnetism) an antiferromagnetic ordering, even though the
actual lowest energy state was predicted to exhibit a non-
collinear behavior, almost degenerate with the collinear AF
order [14]. β-Mn is the second most stable crystallographic
structure, found at higher temperatures, with 20 atoms per
cubic unit cell forming two sublattices. The magnetic struc-
ture of β-Mn is ferrimagnetic (FiM): each sublattice has
a ferromagnetic order, opposed to each other with distinct
magnitudes [15]. γ -Mn shows a face-centered cubic cell
whose magnetic order is antiferromagnetic [15]. And finally,
we predict the body-centered cubic δ-Mn to have a double-
layer antiferromagnetic (AFD) ground state, at variance with
the prediction from an earlier DFT study [15] of a c(2 × 2)
in-plane antiferromagnetic ordering. From our results, the
AFD magnetic state presents a magnetic moment of 1.89 μB

per atom at its optimal lattice parameter of 2.850 Å, and
the previously described c(2 × 2) in-plane antiferromagnetic
state is 0.02 eV per atom more energetic at its own optimal

lattice parameter (2.815 Å). The magnetic moment in this
case is found to be 1.49 μB. Since both these magnetic orders
tend to induce tetragonal deformation to the lattice, we have
checked that the AFD state remains lower in energy than
the c(2 × 2) state with full shape and volume relaxations of
the simulation cells (�E = 0.01 eV). The calculated lattice
parameters, relative energies, and magnetic moments for all
the considered phases, together with the comparison with
previous data, are shown in Table II. All our results are in
excellent agreement with previous DFT data findings [14,15],
the only exception being the lowest energy AFD state of the
δ-Mn phase for which no data was found in the literature.

III. RESULTS AND DISCUSSIONS

A. Mn solutes in bcc Fe

The magnetic properties of isolated single-atom Mn so-
lutes in bcc iron show an atypical feature, as described in a
previous theoretical study using LMTO Green’s functions [1].
Anisimov et al. have indeed noticed two energy minima with
distinct Fe-Mn magnetic interactions. The present calcula-
tions within a collinear approximation with constrained local
magnetism (see Sec. II A for details) confirm the presence
of these two energy minima, as shown in Fig. 1. For a Mn
concentration of 1.9 at. % (1 Mn atom in a 54-atom-site Fe
system), the lowest energy minimum is found with a Mn mo-
ment of −1.9 μB antiferromagnetically (AF) coupled with Fe
moments in the lattice (referred to as AF-Mn in the following).
The other rather flat minimum is found for FM coupled Mn
with Fe moments (referred to as FM-Mn in the following),
with a smaller magnitude of approximately 0.7 μB. In order to
verify if the used 54-atom cell is large enough for the Mn atom
to be considered isolated, we studied the convergence of the
relative energy between these two states and their respective
magnetic moment magnitude as functions of the simulation
supercell size. The results are given in Table III. We note from
this table that the energy differences between the AF-Mn and
the FM-Mn are all similar, the discrepancy being at most 0.03
eV, which is close to the estimated DFT error bar (0.02 eV, see

FIG. 1. Total energy as a function of the magnetic moment
magnitude of an isolated Mn atom in bcc Fe.
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TABLE III. Magnetic and energetic properties of an isolated Mn
solute in bcc Fe for various supercell sizes resulting in different
Mn concentrations. �E is the energy difference between AF-Mn
and FM-Mn magnetic states. μMn-AF and μMn-FM are the magnetic
moment magnitudes of the respective AF-Mn and FM-Mn.

System size Mn (at. %) k grid �E (meV) μMn-AF μMn-FM

54 1.9 5 × 5 × 5 50.7 −1.91 μB 0.72 μB

128 0.8 4 × 4 × 4 68.5 −1.98 μB 0.67 μB

250 0.4 3 × 3 × 3 52.7 −1.94 μB 0.85 μB

432 0.2 3 × 3 × 3 38.4 −1.86 μB 0.56 μB

Sec. II A). The change of the magnetic moment of the AF-Mn
is also close to the DFT error bar (0.1 μB, see Sec. II A), while
the moment of the FM-Mn shows a larger variation. The latter
may be due to the shape of the energy minimum, which is
rather flat, as shown in Fig. 1. Remaining in the collinear
approximation, the estimated energy barrier from the AF to
the FM-Mn state is 0.07 eV (Fig. 1).

Fe and Mn are close neighbors in the periodic table of
elements. As expected, only minor lattice distortion is induced
by the substitution of a Mn atom in bcc Fe. In the case of AF-
Mn, the Fe-Mn 1nn interatomic distance is very slightly larger
than the 1nn Fe-Fe distance in pure Fe (�d = 0.0025 Å)
while in the case of FM-Mn, the 1nn Fe-Mn distance is
shorter compared to the pure Fe bulk (�d = −0.0144 Å).
Consistently, AF-Mn has a slightly larger Voronoï volume

(11.37 Å
3
) than pure Fe (11.36 Å

3
) which itself has a higher

one than FM-Mn (11.20 Å
3
). Also, we notice that the local

charge density around the Mn atom is higher in the FM-Mn
state than in the AF-Mn state.

Concerning the electronic projected density of states
(PDOS), we observe in Fig. 2 that a NM Mn atom in bcc
Fe (from a constrained Mn moment calculation) has a sharp
peak on its spin-up PDOS at the Fermi level, indicating (as ex-
pected) an instability against the development of magnetism.
The spin-down states are mainly concentrated in two peaks
located respectively above and below the Fermi level. The
AF-Mn state appears by shifting a major part of the spin-down
states to lower energies, including some states initially located
above the Fermi level, while the main peak of the spin-up
band is shifted to above the Fermi level. The PDOS changes
are consistent with the high energetic stability of this AF-Mn
state. On the other hand, in the FM-Mn case, there is no
major difference between the NM and the FM PDOS on the
spin-up band, except a slight split of the peak at the Fermi
level, decreasing weakly the density of states at the Fermi
level. Concerning the spin-down band, a slight shift to higher
energies is noticeable, which explains the appearance of a
small magnetic moment. The FM-Mn state is only 5 meV
below the NM-Mn state.

Noncollinear (NC) magnetism calculations were also per-
formed to explore the possible presence of NC minima. For
a Mn concentration of 1.9 at. % (1 Mn atom in a 54-atom
Fe system), no other minimum was found besides the two
collinear solutions, as shown in Fig. 3. Instead, a signif-
icant barrier separates these two minima. One can notice
that the noncollinear energy barrier between the two minima
is slightly higher than the collinear barrier. Note that the

FIG. 2. Projected density of states on an isolated AF-Mn or a
FM-Mn, compared to the PDOS on an isolated nonmagnetic Mn
atom in bcc Fe.

difference between these barriers is close to the estimated
error bar (0.02 eV, see Sec. II A). To calculate this energy-
angle curve, the direction of the Mn magnetic moment was
constrained to certain angles, and we allowed the magnetic
moment magnitude to relax. The bottom plot of Fig. 3 shows
that, overall, the Mn moment magnitude gradually increases
from the FM-Mn state to the lowest energy AF-Mn state,
except for the case of 90◦ where two energetically degenerate
states are found, with a particularly small moment in one
of them. These noncollinear data are useful to parametrize
Heisenberg-like models for Monte Carlo simulations, in order
to describe the magnetic behavior of Fe-Mn alloys at finite
temperatures [10].

It is also worth mentioning that the impact of the Mn solute
on the local magnetic moment of surrounding Fe atoms is
rather limited. For a Mn concentration of 0.2 at. % (1 Mn
atom in a 432-atom-sites Fe system), the variation of Fe atoms
magnetic moment magnitude is at most 5%, similar to what
has been shown in Fe-Cr alloys [7].

B. Bcc Fe-Mn solid solutions

Most of the present study is devoted to properties of dilute
Fe-Mn alloys, because it is known that the bcc Fe-Mn phase
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FIG. 3. Total energy (top) and magnetic moment magnitude (bot-
tom) as functions of the angle between moments of an isolated Mn
and the lattice Fe atoms.

is thermodynamically stable only up to a few percent of
Mn, before entering in an α + γ dual-phase domain [18,20].
However, in order to have a thorough understanding of the
dependence of the magnetic behavior on the alloy concentra-
tion, it is interesting and relevant to perform a systematic study
for all concentrations. Special quasirandom structures (SQS)
[55], which have negligible short range order (SRO), are
adopted to mimic the random solid solution even with rather
small simulation cells. In the SQS systems, Fe and Mn atoms
were distributed in 54- and 128-atom cells. Mixing energy
of these configurations was calculated using the following
expression:

Emix(Fe-Mn) = Etot(nFe + pMn) − nE(Fe) − pE(Mn)

n + p
,

(1)

where Etot(nFe + pMn) is the total energy of the Fe-Mn solid
solution, E(Fe) is the energy per atom of pure bcc Fe (in its
lowest energy magnetic state: FM), and E(Mn) is the energy
per atom of pure bcc Mn (in the lowest energy magnetic state:
AFD). As can be seen in Fig. 4, the obtained mixing energies
are positive for all the concentrations, which reveals an un-
mixing tendency. Moreover, the shape follows well the regular
solution model (shown with the orange curve corresponding to

FIG. 4. Mixing energy as a function of Mn concentration (ex-
pressed in atomic percent) in bcc Fe-Mn SQS solid solutions and
systems composed of Mn clusters in bcc Fe, taking as references the
FM bcc Fe and the AFD bcc Mn.

the expression Emix = AxFexMn) with A = 192 meV (18 500
J/mol). It is in good agreement with earlier DFT results
showing A = 20 000 J/mol [20] and an experimental value
(A = 19 500 J/mol) [62]. A previous TB-LMTO calculation
also obtained a value of the same order of magnitude (A =
23 700 J/mol) [21]. In Fig. 4 there are noticeable energy
differences between systems at the same concentration with
the same atomic configuration but with different magnetic
states.

Concerning the magnetic properties, we rather focus on
bcc Fe-Mn alloys in the Fe-rich domain, up to 50 at. % of
Mn. Fe and Mn local magnetic moments are plotted in Fig. 5
for all the atoms in all the considered SQS configurations
up to 50 at. % Mn. We note a sharp peak for Fe moment
around 2.2 μB showing a very small perturbation of the
bcc-Fe moment due to the presence of Mn atoms. On the

FIG. 5. Distribution of Fe and Mn local magnetic moments in
Fe-Mn SQS alloys, up to 50 at. % Mn.
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FIG. 6. Average magnetic moment of Fe atoms, of Mn atoms,
and of all the atoms in Fe-Mn alloys either with a SQS structure
or containing a Mn cluster, as a function of Mn concentration
(expressed in atomic percent).

other side, Mn moment shows a large dispersion. The average
magnetic moment in these SQS solid solutions from Fig. 6
shows a linear decrease with increasing Mn concentration,
in agreement with available experimental studies. Indeed, it
was shown experimentally that the average magnetic moment
of Fe-Mn alloys tend to decrease linearly up to 11 at. % of
Mn, before a sharp drop. It was hypothesized that the linear
decrease is due to the magnetic dilution effect (Mn having a
constant magnetic moment lower than the Fe moment) and
that the sharp drop at higher Mn concentrations is due to the
emergence of nonferromagnetic phases [40], but none of these
studies led to a final conclusion. From the present results,
we suggest that the slope change should correspond rather
to a structural phase transition because if the bcc lattice is
theoretically kept up to 50 at. % of Mn as in this study, a linear
decrease of the average magnetic moment is observed for all
the concentrations, in very good agreement with the Slater-
Pauling curve. Although we may expect a slight deviation
from the linear behavior at low Mn concentration because of
the magnetic transition of Mn atoms (Fig. 6), the effect is not
visible.

Having a closer look on the magnetism of Mn atoms, Fig. 6
shows an average Mn moment antiparallel to Fe moments at
the lowest concentration, followed by a rapid decrease of the
moment magnitude with increasing Mn concentration. This
finally leads to a transition from AF to FM Fe-Mn coupling
tendency at approximately 6 at. % Mn (with the SQS systems
only), and then the average Mn magnetic moment stabilizes to
a value around 0.8 μB, parallel to Fe moments. As mentioned
above, most of Mn atoms at the dilute limit are isolated and
remain in an AF-Mn state. At a high concentration (above 10
at. % Mn) the rather constant value of 0.8 μB results from
the presence of an approximately constant fraction of 75%
FM-Mn and 25% AF-Mn atoms in each SQS configuration, as
can be seen in Fig. 7. Interestingly, both types of Mn present
an average moment magnitude of around 1.6 μB (indeed,
1.6*0.75–1.6*0.25 = 0.8). These features lead to a scenario

FIG. 7. Ratio of FM-Mn among Mn atoms in Fe-Mn random
solutions as a function of Mn concentration (expressed in atomic
percent). The fitted polynomial function (orange curve) aims at
illustrating the general trend.

compatible with the simple magnetic dilution model proposed
from experimental data, assuming a constant Mn moment
which is parallel and smaller than Fe moments. Of course
those experiments have only access to average (instead of
individual) magnetic moments [44–46].

If we focus on Mn magnetism in the dilute Fe-Mn alloys,
up to a few percent of Mn, some experimental data, summed
up in Table IV, tend to show that Mn is coupled FM with Fe
between 2 and 9 at. % of Mn concentrations while another
experimental study finds an AF Fe-Mn coupling at Mn con-
centrations below 2 at. %. By compiling these results, we
note that an AF-Mn to FM-Mn transition is also found in
experimental works but at a lower Mn concentration (around
2 at. % Mn) than our prediction based on SQS systems.
Previously, a theoretical study using TB-LMTO method also
predicted a transition concentration around 6–8 at. % Mn, in
good agreement with our DFT results [21].

This discrepancy between experimental data and the DFT
results may be due to various possible phenomena: For in-
stance, bcc Fe-Mn alloys have an unmixing tendency, the
formation of Mn clusters in Fe should be energetically fa-
vorable compared to random solid solutions. Indeed, a recent
Mössbauer based study [31] reported that bcc Fe-Mn alloys

TABLE IV. Experimental values of Mn average magnetic mo-
ment in dilute bcc Fe-Mn for various Mn concentrations.

Reference [Mn] Avg. μMn

Kajzar et al. [43] 0.8 at. % −0.82 μB

Kajzar et al. [43] 1.9 at. % −0.23 μB

Child et al. [45] 2 at. % 1.0 μB

Radhakrishna et al. [46] 3 at. % 0.8 μB

Radhakrishna et al. [46] 6 at. % 1.0 μB

Radhakrishna et al. [46] 9 at. % 0.8 μB

Nakai et al. [44] 5 at. % 0.7 μB
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tend to increase their short range order through clustering. De-
pending on the thermal treatments and the speed of quenching
applied to the experimental samples, the considered Fe-Mn
solutions may not be fully disordered. This may be a possible
source of discrepancy on the magnetic behavior based on
experimental and theoretical studies, if the latter account for
SQS solid solutions only. Also, recent DFT works [63] have
shown that the presence of carbon impurities in bcc Fe tend
to have significant effects on Mn solutes magnetism. The
presence of interstitial impurities (often found in iron based
alloys) in experimental samples could also affect the magnetic
moment of Mn atoms, even though it is not expected to be a
major cause because of the generally low impurity content. In
addition, the discrepancy may also be related to the presence
of structural inhomogeneities in the samples such as grain
boundaries and precipitates, but these features are out of the
scope of this study. In the following sections we will focus on
Mn clustering, vacancy, and impurities effects.

C. Mn clusters in bcc Fe

Before addressing Mn clusters, the interaction between
two isolated Mn solutes was investigated as a function of the
distance between them. It was found that as nearest neighbors
(1nn) or second-nearest neighbors (2nn), Mn atoms tend to
be AF with each other. One of them is therefore FM to the
lattice Fe atoms, at variance with the isolated Mn case. This
results from a dominance of Mn-Mn AF tendency over the
Fe-Mn antiferromagnetism at such short separation distances.
This behavior is opposite to the Fe-Cr alloy case, where Fe-Cr
AF interactions prevail over the Cr-Cr antiferromagnetism
[10]. The Mn local moments for the 1nn separation are
−1.7 μB (AF-Mn) and 1.4 μB (FM-Mn). For the 2nn case,
the corresponding Mn moments are −1.8 and 1.1 μB. Please
note that the FM-Mn within the dimer has a significantly
increased moment magnitude compared with an isolated FM-
Mn, especially for the 1nn case. At a larger Mn-Mn distance,
with the two Mn atoms as third-nearest neighbors (3nn) and
beyond, both of them prefer to couple AF with Fe moments
with magnetic moments converging towards the value of an
isolated Mn in bcc Fe. Figure 8 shows the binding energy
between two Mn atoms in bcc Fe as a function of the sepa-
ration distance for various collinear magnetic configurations.
The Mn-Mn binding energy is calculated as follows:

Ebind(Mn-Mn) = −Etot((n − 2)Fe + 2Mn) + 2Etot((n − 1)

Fe + 1Mn) − Etot(nFe), (2)

with Etot((n − 1)Fe + 1Mn) at the magnetic ground state (Mn
coupled AF with Fe). Using this expression, positive binding
energies stand for attractive behaviors, while negative binding
energies stand for repulsion. Figure 8 shows that, in the
lowest-energy magnetic state, the 1nn Mn dimer exhibits a
very slight attraction (0.012 eV), whereas there is a repulsion
from a 2nn to a 7nn distance. Note that the magnitude of
the attraction is within the error bar of the present DFT
calculations (0.02 eV). The binding energy converges to 0
from the 8nn, Mn atoms are then considered fully isolated.
At a 1nn distance, the dimer composed of two FM-Mn or
two AF-Mn atoms is respectively 0.045 or 0.062 eV higher
in energy than the magnetic ground-state dimer (AF-Mn +

FIG. 8. Binding energy between two Mn atoms in a 432-atom
bcc Fe supercell as a function of Mn-Mn separation distance, taking
isolated AF-Mn as the reference. Positive binding energies mean
attraction.

FM-Mn). The trend remains the same for a 2nn dimer. It
is worth mentioning that the dimer with two AF-Mn comes
to have even a slightly higher energy than the dimer with
two FM-Mn atoms (0.017 eV higher for the 1nn case). This
scenario may be understood assuming a dominant Mn-Mn AF
interaction, over the Fe-Mn antiferromagnetism at these short-
est separations: the two AF-Mn dimer (FM coupling between
the Mn atoms) exhibiting large Mn moments: −2.43 μB per
Mn for the 1nn case, is energetically penalizing, while the
two FM-Mn dimer develops a magnetically less unfavorable
situation by decreasing the moment magnitudes (0.18 μB per
Mn for the 1nn case).

Bakaev et al. [24] have noticed that among several sub-
stitutional solutes, Mn is the only one to show attractive
solute-solute interactions in bcc Fe at a 1nn distance. That
study leads to the conclusion that this specificity is mainly due
to the flexibility of the Mn magnetic moment, which means
an easy variation of the moment magnitude, to adapt different
local environments. Our study also reveals such flexibility, as
reflected by the existence of distinct moment magnitudes of
Mn in bcc Fe (Fig. 5). Furthermore, as mentioned above, two
minima (AF-Mn and FM-Mn) exist for a single Mn solute,
which provides an additional possible state for each Mn in the
dimer. To our knowledge, the possibility of a Mn dimer with
one AF-Mn and one FM-Mn was not considered in Ref. [24].
Also, the results from Bakaev et al. and the present ones may
not be directly comparable, as different parametrization of
GGA are used (PW91 in Ref. [24]).

In addition, noncollinear magnetism calculations were per-
formed in the case of 1nn Mn atoms to explore the possible
presence of noncollinear energy minima, which may provide
a compromise between the preference for a single Mn to
be AF to Fe, and the emergence of a FM-Mn in the dimer,
due to Mn-Mn interaction. From our NC calculations, no
configuration was found with a lower energy than the collinear
magnetic ground state. Figure 9 shows the binding energy
for some noncollinear configurations obtained, along with the
respective spin configurations. Calculations were performed

094426-8



LOCAL ENVIRONMENT DEPENDENCE OF Mn MAGNETISM … PHYSICAL REVIEW B 98, 094426 (2018)

FIG. 9. Binding energy (denoted by blue circles) of a 1nn Mn
dimer, with the AF-Mn as reference, for various shown collinear and
noncollinear magnetic configurations. Mn and Fe atoms are, respec-
tively, represented by blue and orange spheres, and orientations of
local magnetic moments are indicated with arrows.

with several different initial spin arrangements. All the cases
converged to either the collinear ground state (a) or the NC

(b) configuration, which seems to be the only stable NC state.
At variance, the (c), (g), and (e) configurations were obtained
using constrained local magnetism, by imposing the Mn spin
directions but relaxing the spin magnitudes. As can be seen
in Fig. 9, the NC metastable (b) state is higher in energy
than the collinear ground state (lower in binding energy), but
less energetic than other collinear states [(d) and (f)]. Also,
please note that these energy differences are rather close to
the estimated error bar of the calculation method or even
fall within it. Moreover, we may expect a non-negligible
occupation rate of the metastable states, including the NC-(b)
state at finite temperatures. It is in principle also relevant
to perform the study of various-sized Mn clusters beyond
the collinear approximation. However, such a systematic NC
magnetic study is significantly computationally demanding
and out of the scope of this paper. A full noncollinear study
will be considered in a future work. The following sections
only deal with collinear calculations.

Concerning the study of n-Mn clusters in bcc Fe with n =
3 to 15, we employed 250-atom supercells and various atomic
configurations (more or less compact) and magnetic arrange-
ments were considered for each cluster size. The lowest en-
ergy atomic and magnetic configurations of these clusters are
shown in Fig. 10. It was found that the average binding energy
of these clusters, calculated using the following equation:

Ebind
avg (pMn) = −Etot((n − p)Fe + pMn) + pEtot((n − 1)Fe + 1Mn) − (p − 1)Etot(nFe)

p
(3)

is all positive (energetically favorable) and increases with the
number of Mn atoms, as shown in Fig. 11. The attraction
between Mn atoms confirms the unmixing tendency showed
in the previous section on solid solutions. As can be seen in
Fig. 4, for Mn concentrations ranging from 1 to 12 at. %,
mixing energy of Fe-Mn systems containing clusters, in their
lowest-energy magnetic state, is indeed lower than the energy
of random Fe-Mn alloys with the same Mn content.

Regarding the magnetic ordering of the Mn clusters, it is
noticeable from the lowest energy magnetic configurations
(Fig. 10) that the Mn-Mn magnetic interaction is dominant
compared to Fe-Mn coupling, as already noted for the Mn
dimer. Indeed, these magnetic arrangements tend to satisfy in
priority the AF Mn-Mn 1nn and 2nn coupling. For example,
at least 50% of 1nn Mn-Mn pairs in a cluster show an AF
coupling. Some n-Mn clusters (n = 2, 3, 4, 6, 7) present
100% of AF 1nn Mn-Mn pairs. At variance, Fe-Mn magnetic
interaction does not show any clear tendency, the fraction of
1nn AF Fe-Mn pairs varies from 20% to 70%. Moreover,
switching every Mn atom magnetic moment (from AF-Mn
to FM-Mn and vice versa) changes significantly the number
of AF Fe-Mn pairs without changing any Mn-Mn magnetic
interaction. It induces rather small energy modifications (less
than 10 meV per Mn), and the sign of the energy variation
shows no dependence on the sign of number variation of
AF Fe-Mn pairs. However, switching some Mn magnetic
moments (changing the number of AF Mn-Mn pairs) gen-
erally leads to unstable states. A particular case is noted in

Fig. 10, the 8-atom cluster, where two atoms have a very
small magnetic moment (0.2 μB) which results certainly from
magnetic frustrations between several interactions which can-
not all be satisfied within the collinear approximation. Since
these clusters are small, they can obviously not develop the
AFD structure as in the lowest-energy state of pure bcc Mn,
because of finite size effects. However, we notice that in the
15-Mn cluster, the ratios of AF 1nn and 2nn interactions are,
respectively, 75% and 33%, which are not too far from the
values for pure bcc AFD Mn (respectively 50% and 33%).

Average magnetic moment magnitudes of the two types of
Mn atoms forming the clusters: the AF-Mn and the FM-Mn
are shown in Fig. 12. We note a generally larger moment
magnitude for the FM-Mn forming a cluster than isolated.
The opposite occurs for the AF-Mn atoms in the case of the
smallest clusters. The intermediate sized clusters between 7
and 9 atoms show some particular values, mostly lower than
the corresponding Mn moments in the considered clusters.
This behavior may be due to a transition between the very
small clusters (arranged within a cubic unit cell) in which
every Mn atom is an interface atom (mainly surrounded by Fe
atoms) and more extended clusters, in which Mn atoms have
a lot of Mn nearest neighbors.

Considering the average Mn magnetic moment of a cluster
in its lowest energy magnetic configuration, we observe that
the magnetic Fe-Mn coupling tendency shows the same trend
as in the random solutions, except that the transition point
appears at a lower concentration (around 3 at. % Mn in
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FIG. 10. Schematic representation of the lowest energy atomic
and magnetic configuration found for n-Mn clusters in a bcc Fe
lattice, for n = 2 to 15. Magnetic moment orientations are indicated
by arrows. In the case of negligible moment magnitudes, atoms are
represented without arrows.

Fig. 6). This feature may be one possible explanation of
the discrepancy between experimental and theoretical data
concerning the transition concentration of the average Mn
moment behavior, from an AF to a FM state with respect to
the Fe moments, in Fe-Mn alloys. Figure 6 shows that clusters
resulting average Mn moment is indeed FM at concentrations
for which Fe-Mn random solutions exhibit an AF Fe-Mn
average magnetic coupling (for Mn concentrations between
3 and 6 at. %). Indeed, the existing discrepancy comes from
data based on random solid solutions assumed in theoretical
calculations [21,22,47], whereas experimental samples may
contain Mn clusters in Fe which are more stable systems
at low temperatures. Of course the detailed composition of
the experimental samples is strongly related to the thermal
treatments such as the speed of quenching [43–46].

D. Mn interaction with vacancies in bcc Fe

Beyond the magnetic and energetic properties of idealized
Fe-Mn alloys, another focus of this study is the variation of

FIG. 11. Average binding energy (per atom) of lowest energy
atomic and magnetic configurations of Mn clusters versus the num-
ber of Mn atoms composing the cluster, taking the isolated AF-Mn
as reference. Positive values indicate an attraction.

these properties in the presence of point defects, for instance
vacancies. First, we have investigated the effects of a vacancy
on a single Mn solute in bcc Fe. To do so, a vacancy was
inserted in a 128-site bcc Fe lattice containing one Mn atom
(in either AF-Mn or FM-Mn state), at various distances from
the Mn atom, from 1nn to 6nn. The presence of the vacancy
increases the energy gap between the two energetic minima
of Mn from �E = 0.05 eV in the isolated case to �E =
0.28 eV for the 1nn Mn-vacancy case. This behavior may be
qualitatively understood by a local electronic redistribution.
The presence of a nearby vacancy induces a depletion of the
Mn charge (see Fig. 19), which is expected to favor further the

FIG. 12. Average magnetic moment magnitude of Mn atoms
coupled AF (FM) with Fe atoms as a function of the number of Mn
atoms composing the cluster. Solid lines are polynomials fitted on
the data points which follow a general trend (see text), in order to
evidence the behavior of the intermediate-size points which deviate
from this trend.
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FIG. 13. Binding energy between a vacancy and an isolated Mn
solute in bcc Fe as a function of their separation, taking the AF-Mn
as reference. Positive values mean attraction.

AF-Mn state compared to the FM-Mn state. In addition, lattice
distortion considerations can also contribute to rationalize the
same behavior, since the FM-Mn has a lower effective volume
than the AF-Mn (see Sec. III A). We estimated in both cases
the lattice distortion energy by replacing both the vacancy and
the Mn solute in the relaxed supercell by Fe atoms, without
further optimizing the atomic positions. The lattice distortion
energy is calculated as the difference between the resulting
supercell energy and the energy of a perfect bulk bcc Fe with
the same number of atoms. This energy is respectively 0.36
and 0.30 eV for the FM-Mn and AF-Mn case. In comparison,
the lattice distorsion energy for an AF-Mn and a FM-Mn,
without the vacancy is practically the same, differing in only
0.005 eV.

The binding energy between the vacancy and the Mn solute
was calculated with the following expression:

Ebind(V -Mn) = −Etot((n − 2)Fe + Mn + V )

+Etot((n − 1)Fe + 1Mn)

+Etot((n − 1)Fe + V ) − Etot(nFe), (4)

with Etot(nFe) being the total energy of a pure n-atoms Fe
system, Etot((n − 1)Fe + V ) the total energy of a n-atoms
Fe system with one of the Fe atoms replaced by a vacancy
(V ), Etot((n − 1)Fe + 1Mn) the total energy of a n-atoms
Fe system with one of the Fe atoms replaced by an AF-Mn
atom, and Etot((n − 2)Fe + Mn + V ) the total energy of a
n-atom Fe system containing both a Mn atom and a vacancy.
As shown in Fig. 13, there is a strong attraction between
the vacancy and the AF-Mn at a short range (from 1nn to
3nn) which decays to zero at longer distances except for the
5nn case. The relatively high value for the 5nn case may
be due to the fact that, in a bcc lattice, it is actually the
second-nearest neighbor in the densest (111) direction. This
feature is however not observed in the case of FM-Mn, which
has a smaller effective volume than Fe (see Sec. III A).

The insertion of a vacancy has a noticeable impact on
the interaction between two Mn solutes in bcc Fe. Our

TABLE V. Magnetic and energetic effects of a vacancy on a
Mn dimer. The first column shows the distance between two Mn
atoms and the second column shows their magnetic moments in the
presence of vacancy. The binding energies between Mn atoms with
and without vacancy are given respectively in the third and fourth
columns. Finally, the total and pairwise binding energies are given
respectively in the fifth and sixth columns. Pairwise binding energy
is calculated as the sum of Mn-Mn and Mn-V binding energies for the
two Mn atoms. Lowest energy magnetic states are taken as references
for every binding energy calculation.

Mn-Mn μMn Ebind Ebind

dist. (μB ) (MnV-Mn) (Mn-Mn) Etot
bind E

pair
bind

1nn −2.87/ 0.058 eV 0.012 eV 0.181 eV 0.287 eV
−2.29

2nn −2.63 0.108 eV −0.032 eV 0.261 eV 0.273 eV
3nn −2.74 0.208 eV −0.044 eV 0.361 eV 0.261 eV
5nn −2.67 0.171 eV −0.060 eV 0.324 eV 0.245 eV

calculations show that when the Mn atoms are surrounding a
vacancy, they tend to couple each AF with Fe atoms of the
matrix, regardless the distance between those solutes (2nn,
3nn, or 5nn). As expected, the magnetic moment magnitude
of these Mn atoms is significantly increased compared to
the corresponding configuration without the vacancy, due
to the magnetovolume effect (see Table V). One can also
notice that among the atomic configurations considered, two
Mn atoms located at the first-neighbor shell of a vacancy
prefer to arrange as 3nn to each other. The second lowest
energy configuration being as 5nn to each other, followed
by the 2nn case which is the worst arrangement in terms
of system energy. Although it is shown in Fig. 8 that 2nn
Mn are less repulsive than 3nn Mn in their respective lowest
energy magnetic configuration, the presence of the vacancy
stabilizes the AF-Mn state and thus 2nn Mn atoms become
more repulsive because they are constrained in a higher energy
magnetic configuration.

The binding energy between two Mn atoms was compared
with and without the presence of a vacancy as 1nn of both
Mn atoms. Except in the case of 1nn Mn atoms, where the
vacancy is inserted as respectively 1nn and 2nn of the Mn
solutes. In all the studied cases, the vacancy either promote or
enhance attraction between the Mn atoms (Table V). Also, the
comparison between the total binding energy and the pairwise
binding energy reveals a synergistic effect in the cases of 3nn
and 5nn Mn dimers. Pairwise binding energy is calculated as
the sum of Mn-Mn and Mn-V binding energies for the two Mn
atoms. The opposite trend is observed in the cases of 1nn and
2nn Mn atoms, which is consistent with a magnetic frustration
induced by the vacancy stabilizing both Mn atoms as AF-Mn,
while Mn-Mn interactions are favoring a different magnetic
state (AF-Mn + FM-Mn.)

In order to study the effect of a vacancy on Mn clusters
magnetic properties, further calculations were performed with
a vacancy in bcc Fe while replacing, atom by atom, its first
nearest neighbors by Mn atoms, as shown in Fig. 15. For
each number of Mn atoms, various atomic configurations
were studied and for each of them, several magnetic states
were considered. More open cluster configurations were also
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FIG. 14. Comparison of total binding energies of: (1) clusters
composed of one vacancy and n-Mn atoms. The corresponding
structures are shown in Fig. 15. (2) Clusters with the same Mn
arrangement and the vacant site replaced by a Fe atom. (3) The
lowest-energy n-Mn clusters found. The isolated AF-Mn is taken as
reference.

tested, that is, locating some Mn atoms on the 2nn shell of
the vacancy instead of being 1nn of it. The most compact
configurations are always found to be the most energetically
favorable.

The first observation is that the vacancy tends to stabilize
the AF coupling of Mn atoms with Fe atoms of the matrix.
Indeed, every atomic configuration tends to exhibit a full AF
Fe-Mn coupling while corresponding vacancy-free clusters
show more complex spin configurations (see Sec. III B).

Two complementary effects may explain this observation.
As previously shown in the case of a single Mn atom, the
vacancy tends to stabilize the AF-Mn state. It also acts as a
magnetic screener reducing the impact of the Mn-Mn interac-
tions described in Sec. III C. Such a behavior is also observed
in the case of Cr atoms near a vacancy in bcc Fe [64].

The total binding energy between the vacancy and every
Mn atom of the cluster is calculated for the lowest energy
atomic and magnetic configuration found for each number of
Mn atoms, using the following formula:

Ebind(V − pMn) = −Etot((n − p − 1)Fe + pMn + V )

+pEtot((n − 1)Fe + Mn)

+Etot((n − 1)Fe + V ) − pEtot(nFe),

(5)

with Etot(nFe) being the total energy of a pure n-Fe bcc
bulk, Etot((n − 1)Fe + V ) the total energy of the n-Fe sys-
tem with one of the Fe atoms replaced by a vacancy,
Etot((n − 1)Fe + Mn) the total energy of a n-Fe system
with one of the Fe atoms replaced by a Mn atom, and
Etot((n − p − 1)Fe + pMn + V ) the total energy of a system
containing p Mn atoms and a vacancy.

The results shown in Fig. 14 reveal that the total binding
energy is positive and increases with the number of Mn atoms
up to 4 Mn. Then it reaches a plateau and the binding energy

FIG. 15. Schematic representation of the lowest energy atomic
and magnetic configuration of Mn clusters in bcc Fe composed of a
vacancy surrounded by n Mn atoms.

remains constant between 6 and 8 Mn cases. We note a rather
small value for the 5-Mn case. It can be explained as follows:
Up to 4 Mn atoms on the 1nn shell of the vacancy, the lowest-
energy atomic configuration is such as the Mn atoms are 3nn
to each other (the most favorable state for two Mn atoms, see
Fig. 15). From the fifth Mn atom introduced to the 1nn shell,
such an arrangement is no longer possible and some Mn atoms
have to be a 2nn, which has a higher energy as seen in the case
of a Mn dimer around a vacancy.

Another relevant feature is that the binding energy is much
higher than in the corresponding vacancy-free Mn clusters,
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FIG. 16. Vacancy formation energy as a function of the number
of Mn atoms on its first-neighbor shell.

which indicates an enhancement of Mn clustering due to
the presence of vacancies, as also noticed in Fe-Cr alloys
[64]. This behavior may be relevant in Fe-Mn systems under
some extreme conditions with creation of large amounts of
vacancies.

The vacancy formation energy was also evaluated as a
function of the number of Mn atoms at the 1nn shell of the
vacancy. Figure 16 shows that the vacancy formation energy
decreases almost linearly with the number of Mn atoms up to
4 Mn atoms, then it oscillates around the value found in the
pure bcc AFD-Mn bulk. This decreasing trend suggests that
the vacancy formation is more favorable in a Mn-rich than
in a Fe-rich local environment in Fe-Mn alloys. In addition,
similarly to the bcc Fe-Cu alloys [65], the mobility of Mn
clusters may be significantly enhanced due to the preference
of vacancies to be located around a Mn cluster than in the
Fe matrix, dictated by the difference of respective vacancy
formation energies.

The present study is limited to the case of Mn atoms around
a single vacancy. The effects of multiple vacancies may also
be relevant, especially for the understanding of the Fe-Mn
alloys under extreme conditions such as plastic deformation
or irradiation. It is however beyond the scope of this paper.

E. Interstitial impurities and Mn in bcc Fe

Carbon, nitrogen, and oxygen atoms, neighbors in the
periodic table of elements, are highly common interstitial im-
purities in iron-based alloys. It is thus important to understand
the interaction between these elements and Mn solutes in bcc
Fe, in order to clarify the impact of these interstitial atoms on
magnetic properties of Mn solutes.

In this study we only consider the effect of a single
interstitial atom, located at the lowest energy octahedral site
[66], near a Mn atom. We first evaluated the interaction energy
between a single Mn solute and a foreign interstitial atom
(FIA = C, N, or O), at a 1nn distance. The binding energy
between the 1nn FIA and the Mn solute in the lowest-energy
magnetic configuration is attractive in the three cases (0.08 eV
for C, 0.21 eV for N, and 0.24 for O). Interestingly, in the

FIG. 17. Schematic representation of the lowest energy magnetic
configuration of a Mn atom in bcc Fe, with a X interstitial at its 1nn
octahedral site (X = C, N, O).

case of C and N atoms, the Mn magnetic moment tends to be
parallel to the Fe moments (opposite to the case of isolated Mn
solutes), whereas in the case of an O atom, Mn moment tends
to be antiparallel to the Fe moments, as shown in Fig. 17. The
results for the case of C are in good agreement with a previous
DFT study, on both Mn-C binding energy and Mn magnetic
moment [63,67].

Projected densities of states shown in Fig. 18 reveal a
strong hybridization between the p shell of C atom and the
d shell of Mn. As expected, with increasing p-band filling
of the FIAs, such hybridization is weaker in the case of the
N interstitial and negligible in the case of the O interstitial.
The right panel of the same figure shows differential charge
density maps obtained by subtracting the charge density of
the isolated C, N, or O atom and the Fe-Mn system without
interstitial defect, to the same Fe-Mn fully relaxed system
containing the FIA. Note that the atomic positions are kept
identical for the subtractions. The charge maps show that,
as expected, C exhibits a covalent bond with the Mn atom,
increasing the local charge density around the Mn atom,
whereas the charge density around the O impurity remains
very localized, which explains that O has no noticeable effect
on the magnetic coupling of the Mn atom. The N interstitial
shows an intermediate behavior. As stated in the Introduction
and in Sec. III A, the magnetic state of Mn is especially
flexible in bcc iron, reflected for instance by the presence
of two minima (AF-Mn and FM-Mn) for the single solute.
In order to adapt to different local environments, such as
in the Mn dimer, the solute may easily change its preferred
magnetic state. In the case of a Mn solute next to a C or a
N interstitial, the interstitial atom induces a p-d hybridization
which strongly increases the local charge density around the
Mn atom (Fig. 18), and leads to a significant change in
the PDOS of the Mn atom. Both up- and down-spin states
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FIG. 18. Projected density of states on Mn atom and X impurity, X being C, N, or O (left), and the corresponding differential charge
density maps (right). Further details are given in the text.

approach those of the isolated FM-Mn PDOS (Fig. 2). For
example, the up-spin PDOS of an isolated AF-Mn atom
(without the interstitial) shows a sharp peak just above the
Fermi level, which is shifted down toward the Fermi level
when the local charge increases (with the interstitial). Then,
in order to reduce the density at the Fermi level, the peak
becomes splited. As a consequence, the Mn magnetic state
switches to the FM-Mn energy minimum, which has a higher
local charge density.

The impact of the FIAs on the magnetic state of a Mn
solute is rather short ranged. If the FIA is inserted in the 2nn
octahedral site of a Mn atom, the magnetic moment of the
Mn atom remains antiparallel to the lattice Fe moments, the
impurity being C, N, or O. In this case, the Mn-FIA binding
energy is −0.20 eV in the case of C, −0.11 eV for N, and

0.04 for O. Clearly the hierarchy of these energies follows the
same trend as for the 1nn interactions. Here too, the results in
the case of C are consistent with the literature [67].

Due to the expected lattice distortion induced by the in-
terstitial atoms, all the presented results are also verified by
complementary fully relaxed calculations. We checked that
the relevant results present only minor changes compared to
the constant-volume results: variations are in any case lower
than 0.01 μB for the magnetic moment and lower than 10 meV
for the binding energy.

Based on the results presented in previous subsections, a
correlation can be identified between the magnetic moment
of a single Mn solute in bcc Fe and its local charge density.
Indeed, the presence of a vacancy, inducing a local charge
decrease, tends to favor the AF Fe-Mn magnetic coupling
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FIG. 19. Correlation between local magnetic moment (triangles)
on a Mn atom and its local charge density (circles) for various
chemical environments: isolated in Fe, 1nn of a vacancy, and 1nn
of a X interstitial (X = C, N, O).

while the presence of an interstitial impurity (particularly the
C) may favor the FM Fe-Mn coupling. This trend is illustrated
in Fig. 19 where the magnetic moment and the local charge of
the Mn solute are plotted for various local environments. Both
local charge and magnetic moment are obtained by integrating
the Mn PDOS, although the absolute values may depend on
the integration criterion chosen, the relative values show a
clear trend.

In the case of Mn clusters, the Mn-Mn interactions being
dominant over the Fe-Mn interactions, this trend is not gen-
eral. However, for the Mn dimer and the smallest sizes of
clusters (up to 4 Mn atoms), the local charge of an AF-Mn
is still lower than the charge of a FM-Mn, as shown in Fig. 20.
Indeed, Mn atoms in these small clusters have a majority of
Fe neighbors.

FIG. 20. Correlation between local magnetic moment (triangles)
on Mn and the corresponding local charge density (circles). Each
moment or charge value results from an average over all the Mn
atoms showing the same spin orientation in a n-Mn cluster. For
example “4-Mn (FM)” in the x axis means Mn atoms in a 4-Mn
cluster, showing a FM interaction with Fe atoms.

IV. CONCLUSIONS

Density functional theory calculations are applied to in-
vestigate magnetic and energetic properties of Mn in bcc
Fe-Mn alloys, as functions of the alloy concentration and local
chemical environment. Manganese, with a half-filled 3d band,
exhibits an atypical and complex magnetic behavior.

For the simplest case of an isolated Mn in bcc Fe, we
confirm the presence of two collinear energy minima, with
the Mn magnetic moment either parallel or antiparallel to
the Fe moments, named respectively the FM-Mn and the
AF-Mn state. The latter being the ground state. Interestingly,
the preference of the Fe-Mn magnetic interaction is highly
sensitive to minor changes of the Mn local environment, due
to the presence of a high Mn majority-spin electronic density
around the Fermi level.

A direct correlation is identified between the local elec-
tronic charge and the local magnetic moment on a Mn solute,
being isolated or forming a small n-Mn cluster (n = 2 to
4). For instance, the presence of a vacancy near the Mn
atom, inducing a local charge depletion, tends to favor the
antiferromagnetic Fe-Mn interaction. Also, common intersti-
tial impurities (C, N, and O) present an attraction with a
Mn atom if located at its 1nn site. C and N show a strong
electronic hybridization with Mn and stabilize the FM-Mn
state. At variance, an oxygen atom, with a rather ionic Mn-O
interaction and therefore a very localized charge distribution,
does not modify the magnetic ground state of an isolated
Mn.

Properties of small n-Mn clusters (n = 2 to 15) in dilute
Fe-Mn systems are analyzed. Clustering is found to be ener-
getically favorable, consistently with the unmixing tendency
found for the bcc Fe-Mn alloys. Various collinear and non-
collinear magnetic minima are found for the Mn dimer, which
are rather close in energy. It is relevant to point out that our
results suggest a dominance of Mn-Mn magnetic interactions
over the Fe-Mn interactions, both exhibiting an antiferromag-
netic tendency, especially for the 1nn and 2nn distances. This
behavior is opposite to the Fe-Cr alloy case, where Fe-Cr
AF interactions prevail over the Cr-Cr antiferromagnetism.
A vacancy is found to further stabilize the Mn clusters, by
increasing the clusters binding energies. Reciprocally, the
formation energy of a vacancy becomes smaller in a Mn-
rich than in a Fe-rich local environment. This behavior may
promote a rather fast diffusion of Mn nanoclusters, similar to
the case of bcc Fe-Cu alloys.

Locally random (SQS) Fe-Mn solid solutions are system-
atically investigated for a large range of Mn concentrations.
Consistently with experimental findings, the average magnetic
moment of the alloys decreases linearly with increasing Mn
content. In addition, the average Mn moment tends to be
antiparallel (parallel) to lattice Fe moments for Mn con-
centrations smaller (larger) than approximately 6 at. % Mn.
The same trend is observed experimentally, but the deduced
transition concentration is around 2 at. %. Various possible
reasons for this discrepancy are discussed. In particular, the
calculated transition concentration is lowered if considering
Mn clustering. Indeed Mn clusters may be present in the
experimental Fe-Mn samples, depending on the applied heat
treatment.
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