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First-principles study of the magnetic interactions in honeycomb Na2IrO3
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Honeycomb iridate Na2IrO3, a Jeff = 1/2 magnet, is a potential platform for realizing quantum spin liquid.
Many experiments have shown that its magnetic ground state is a zigzag antiferromagnetic order. However, there
is still a lack of consensus on the theoretical model explaining such order, since its second-nearest-neighbor
(NN) and long-range third-NN magnetic interactions are highly unclear. By properly considering the orbital
moments achieved through constraining their directions in first-principles calculations, we obtain that the relative
angle between orbital and spin moments is fairly small and in the order of several degrees, which thus validates
the Jeff = 1/2 state in Na2IrO3. Surprisingly, we find that the long-range third-NN Heisenberg interactions
are sizable, whereas the second-NN magnetic interactions are negligible. Furthermore, we show that sizable
long-range third-NN Heisenberg interactions closely correlate with the appreciable distribution of Wannier orbitals
of Jeff = 1/2 states over the three NN Ir atoms. Based on our study, we propose a minimal J1-K1-�1-J3 model in
which the magnetic excitations have an intensity peak at 5.6 meV, consistent with the inelastic neutron-scattering
experiment [Phys. Rev. Lett. 108, 127204 (2012)]. The present work demonstrates again that constraining orbital
moments in first-principles calculations is a powerful way to investigate the intriguing magnetism in Jeff = 1/2
magnets, and it paves the way toward gaining a deep insight into the novel magnetism discovered in the honeycomb
Jeff = 1/2 magnets.
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I. INTRODUCTION

Recently, iridium oxides had been increasingly studied both
experimentally and theoretically. Many novel and intriguing
phenomena have been put forward [1], such as topological
Mott insulators [2], Weyl semimetal and axion insulators
[3], unconventional high-temperature superconductivity [4,5],
etc. Among the iridium oxides, the honeycomb A2IrO3 (A =
Li,Na) are of particular interest because it has been theoret-
ically predicted [6,7] that they could realize the long-sought
Kitaev model, which has an exactly solvable quantum spin-
liquid ground state [8]. Many experimental studies on these
iridium oxides have also been inspired to discover the exotic
and interesting quantum spin liquid [9–14].

Experimentally, it has been shown that the prototypical hon-
eycomb iridium oxide Na2IrO3 has a zigzag antiferromagnetic
(AFM) order, and its magnetic easy axis is approximately
halfway between the cubic x- and y-axes [9,10,14,15]. The-
oretically, a general consensus among the models explaining
such order is still lacking, and there exist many diverse models
[7,11,12,16–24]. The most controversial issue focuses on the
second- and third-nearest-neighbor (NN) magnetic interac-
tions. First, models consisting of only the NN interactions
are proposed to give rise to the zigzag AFM order [7,17,21],
whereas it is urged that the second- and third-NN magnetic
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interactions should also be taken into account [11,12,18–20].
Secondly, the types and strengths of the second- and third-NN
magnetic interactions are strikingly disputed. Kimchi et al.
proposed that the zigzag AFM order could be explained by
the Heisenberg-Kitaev model only plus the second- and third-
NN Heisenberg interactions (HK-J1-J2 model) [18], but the
second-NN Kitaev interaction is also argued to be important
[19]. As for their strength, fitting the HK-J1-J2 model to the
experimentally measured spin wave shows J2/J1 = 0.78 and
J3/J1 = 0.9 [11], but theoretical calculations using nonper-
turbative exact diagonalization methods demonstrate that the
long-range third-NN Heisenberg interaction J3 is unexpectedly
strong while both the NN Heisenberg interaction J1 and the
second-NN Heisenberg interaction J2 are negligible [20].
These results are elusive because the bond distances of both the
second- and third-NN Ir-Ir pairs are nearly two times longer
than those of the NN Ir-Ir pairs.

To gain a deeper insight into the zigzag AFM order in
Na2IrO3, the key is to determine the magnetic interactions
fully, especially the disputed second NN and the long-range
third NN on the same footing. So far there are only several
first-principles calculations that estimated the second- and
third-NN magnetic interactions [23,24], although the NN
magnetic interactions have been thoroughly investigated by
different methods in many previous studies [19,22–25]. An
essential difficulty lies in the fact that orbital moments play
an important role in determining the magnetic interactions in
Jeff = 1/2 magnets. For Na2IrO3, the total magnetic moment
(1μB) of the Jeff = 1/2 state is composed of the dominant
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orbital moment (2/3μB ) and the spin moment (1/3μB ) [26].
Our previous study showed that the directions of the spin and
orbital moments in the Jeff = 1/2 magnets, including Na2IrO3,
α-Li2IrO3, and α-RuCl3, will seriously deviate from each other
in first-principles calculations if the directions of the orbital
moments are not constrained [27]. To extract the magnetic
interaction parameters of the Jeff = 1/2 magnet, it is necessary
to obtain the total energy of magnetic states with the given
directions of spin and orbital moments. Therefore, it is crucial
to constrain the direction of orbital moments in the Jeff = 1/2
magnets. Note that the widely used energy-mapping method,
which only accounts for spin, is obviously not applicable here.

In this work, we study the magnetic interactions of theJeff =
1/2 magnet Na2IrO3 by combining maximally localized Wan-
nier functions (MLWFs) with our newly developed method
[27], which constrains the directions of orbital moments.
Apart from the previously well-studied dominant NN mag-
netic interactions, we find that the long-range third-NN Ir-Ir
bonds have sizable AFM Heisenberg interactions, whereas the
second-NN Ir-Ir bonds have negligible magnetic interactions.
By projecting onto the Jeff = 1/2 Wannier orbitals, we show
that the third-NN hopping is much stronger than the second-NN
hopping, consistent with our calculated magnetic interaction
parameters, and that the sizable third-NN Heisenberg inter-
action J3 closely correlates with the appreciable distribution
of Wannier orbitals of Jeff = 1/2 states over the three NN Ir
atoms. Based on our calculated results, we propose a minimal
J1-K1-�1-J3 model for Na2IrO3, which well explains the fol-
lowing experimental observations: (i) Its magnetic excitations
have an intensity peak at 5.6 meV, consistent with the inelastic
neutron-scattering experiment [11]; (ii) the third-NN AFM
Heisenberg interaction J3 stabilizes the zigzag AFM order; and
(iii) the NN symmetric off-diagonal exchange �1 accounts for
the experimentally observed magnetic easy axis. The present
work not only shows that our newly developed method is
a powerful tool to study the magnetism of materials with
non-negligible orbital moments, but it also takes a significant
step toward understanding the novel magnetism of honeycomb
Jeff = 1/2 magnets.

II. COMPUTATIONAL METHODS

Our first-principles calculations based on density-
functional theory (DFT) are performed within the
generalized gradient approximation (GGA) according to the
Perdew-Burke-Ernzerhof (PBE) parametrization as implanted
in the Vienna Ab initio Simulation Package (VASP) [28]. We
use the projector-augmented wave (PAW) method [29] and an
energy cutoff of 500 eV. To describe the electron correlation
associated with the Ir 5d electron, we use the rotationally
invariant DFT+U method introduced by Liechtenstein [30].
The on-site Coulomb energy U = 3.0 eV and the Hund
coupling Jh = 0.6 eV [15] are adopted in the present work.
Because the Ir atom has a strong spin-orbit coupling (SOC)
ξSO ∼ 0.4 eV [26], SOC is included in our all calculations.
We use the experimental monoclinic crystal structure with the
space group C2/m [11].

Since Na2IrO3 is a Jeff = 1/2 magnet [14,16,19,22], we
adopt our recently developed methodology that constrains the
directions of orbital moments [27] so as to properly take into ac-

count the important effects of orbital moments. To gain a deep
insight into the magnetic interactions, hopping parameters are
extracted from the real-space Hamiltonian matrix elements in
the Jeff = 1/2 Wannier orbital basis [31,32], which are ob-
tained by employing the VASP2WANNIER90 interface combined
with the WANNIER90 tool [33]. To maintain the symmetry of the
Wannier functions we utilize one-shot Wannier construction,
in which the minimization of Wannier spread is not performed.
The magnetic transition temperature of Na2IrO3 is estimated
by performing efficient parallel tempering Monte Carlo (MC)
simulations [34–36]. A 40 × 20 × 1 supercell of the unit cell,
which contains 3200 magnetic ions, is used in these MC
simulations.

III. RESULTS

In this section, we first demonstrate that the optimal relative
angle between orbital and spin moments is fairly small, and
then we confirm by means of our newly developed method
that the experimentally observed zigzag AFM structure is truly
the magnetic ground state of Na2IrO3. Next, we show that the
sizable long-range third-NN AFM Heisenberg interaction has
its roots in the appreciable distribution of Wannier orbitals of
Jeff = 1/2 states over the three NN Ir atoms. Lastly, based
on our DFT calculated magnetic interaction parameters, we
propose a minimal J1-K1-�1-J3 model that well explains
experimental observations of Na2IrO3.

A. Theoretical reproduction of the zigzag AFM ground
state of Na2IrO3

Na2IrO3 is a layer honeycomb antiferromagnet. It crystal-
lizes in the monoclinic space group C2/m [11] and consists of
alternate stacking of Na1/3Ir2/3O2 and Na layers [Fig. 1(a)].
Na1/3Ir2/3O2 layers are composed of edge-sharing IrO6 octa-
hedrons, and Ir atoms form the honeycomb lattice with Na
atoms sitting at the center of the Ir6 hexagon. It has been
experimentally shown that Na2IrO3 has a zigzag AFM order
[Fig. 1(b)] below 18.1 K [10] and that its magnetic easy axis
is approximately along the [110] direction in the (x, y, z)
coordinates whose cubic x-, y-, and z-axes point along the
three NN Ir–O bonds in an octahedron [see Fig. 1(a)] [14].

We first evidence that the directions of the orbital and
spin moments of Na2IrO3 have a very slight deviation,
strongly supporting the commonly accepted fact that the
magnetism of Na2IrO3 is well described by the Jeff = 1/2 state
[14,16,19,22]. Due to the trigonal distortion, the Jeff = 1/2
state of Na2IrO3 is not pure and mixed with the Jeff = 3/2
state. In this case, orbital and spin moments are not necessarily
in exactly the same direction and deviate from each other.
Hence, the optimal relative angle between orbital and spin
moments itself is of fundamental importance. To figure out
this optimal relative angle, we fix the orbital moments along
four representative and important axes, namely, x-, y-, z-, and
[110] axes, and we rotate the spin moments slightly away from
the fixed orbital moments (for more details, see Appendix A).
As shown in Figs. 1(c)–1(f), the optimal relative angles giving
rise to the minima of the energy �E caused by the derivation
between orbital and spin moments are fairly small and on
the order of several degrees. More explicitly, they are 9°,
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FIG. 1. (a) Crystal structure of the honeycomb Na2IrO3. Na, Ir, and O atoms are represented by the small black, large purple, and dark
green medium-sized spheres, respectively. The cubic x-, y-, and z-axes are the same as those used in Ref. [14] and are shown by the red arrows.
The zigzag AFM order with magnetic moments along the [110] direction is shown by the black arrows. (b) The NN, second-NN, and third-NN
Ir-Ir paths in the Ir atoms sublattice are connected by the solid double-arrowed, dashed double-arrowed, and dashed-dotted lines, respectively.
The x-, y-, and z-bond Ir-Ir paths are distinguished by green, red, and blue. Black and white spheres have up and down spins, respectively.
Dependences of the energy �E are caused by the derivation between the orbital and the spin moments on the polar angle θ of spin moment
when the orbital moment is along the (c) [110], (d) x, (e) y, and (f) z axes.

9°, 6°, and 5°, respectively, when orbital moments are along
the x-, y-, z-, and [110] axes. Therefore, it is reasonable to
conclude that orbital and spin moments point along the same
direction in Na2IrO3, as required by the Jeff = 1/2 state [26].
This is consistent with a recent theoretical study that asserts
that Na2IrO3 is located in the relativistic Jeff = 1/2 Mott
insulating region [37]. Therefore, the directions of orbital and
spin moments are constrained to be exactly the same in our
calculations hereafter.

To examine the magnetic ground state of Na2IrO3 the-
oretically, we consider eight different important magnetic
orders. Four representative magnetic orders [Fig. 2(a)], namely
the FM, Neél AFM, stripe AFM, and zigzag AFM orders,
have been widely considered in previous studies [9,24,27].
Additionally, four more magnetic orders are also taken into
consideration [Fig. 2(a)]. The first one is armchair AF order,
in which the FM chain is propagating along the armchair
edge in the honeycomb lattice. The other three magnetic
orders are the zigzag-2 AFM, stripe-2 AFM, and armchair-2
AFM orders. These three magnetic orders are symmetrically
nonequal to the above-mentioned zigzag AFM, stripe AFM,

and armchair AFM orders because Na2IrO3 has the C2h

point space group rather than the C3v point space group.
Note that the zigzag-2 AFM structure is the same as the
reported zigzag (X) order in a recent study of Na2IrO3 [38].
To determine the magnetic ground state, we considered nine
different directions along which the magnetic moments align,
namely a, b, c, [100], [010], [001], [110], [101], and [011], for
each magnetic order. Figure 2(b) shows the energy differences
of the above-mentioned eight magnetic orders with respect to
the zigzag-[110] order. As can be seen, the zigzag-[110] order
has the lowest energy among them, as expected. Interestingly,
the zigzag-2-[101] order has a comparable total energy with
the ground-state zigzag-[110] order. To precisely determine the
magnetic easy axis of the zigzag AFM order, we performed
detailed investigations on its anisotropic energy. Here, the
direction of magnetic moments is distinguished by the polar
angle θ and azimuthal angle φ in the (x, y, z) coordinate
system, as shown in Fig. 1(a). By scanning θ and φ, we
find that θ =80◦ and φ = 225◦ have the lowest energy
[Fig. 2(c)], that is to say, magnetic moments are parallel
or antiparallel to the [441] direction. Actually, this direction
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FIG. 2. (a) FM, Neél AFM, stripe AFM, zigzag AFM, armchair AFM, zigzag-2 AFM, stripe-2 AFM, and armchair-2 AFM magnetic
orders. Black and white spheres have up and down spins, respectively. (b) The relative energies of the considered magnetic orders with magnetic
moments along various directions. The zigzag AFM order with magnetic moments along the [110] direction (zigzag-[110]) has the lowest
energy and is set as the energy reference, which is highlighted by the blue rectangle. (c) Energy dependence of the zigzag AFM order on the
polar angle θ and azimuthal angle φ in the (x, y, z)-coordinate system [see Fig. 1(a)]. The energy of the case (θ = 80◦, φ = 225◦) is set as the
energy reference. Because the cases of azimuthal θ ranging from 0◦ to 60◦ have relatively high energy, they are not shown here.

deviates slightly from the xy-plane and approximately points
along the [110] direction. The obtained magnetic easy axis,
therefore, is consistent with the experimentally observed one
[14]. Note that the conventional DFT calculations cannot find
the zigzag AFM in another Jeff = 1/2 magnet α-RuCl3 [27],
while it found the zigzag AFM with the moments aligned
along the local 110 direction in Na2IrO3 [24], indicating that
our method of constraining the direction of orbital moments
generally works well for the Jeff = 1/2 magnets.

B. Magnetic interaction parameters of Na2IrO3

To explore the nature of the zigzag antiferromagnetism of
Na2IrO3, we consider the general bilinear exchange Hamilto-
nian, which has been widely adopted in previous studies of
Jeff = 1/2 magnets [17,19,20,23,24,39] and has the form

H =
∑

ij∈αβ(γ )

[
Jij Si · Sj + KijS

γ

i S
γ

j +Dij

·(Si × Sj ) + Si · �ij · Sj

]
. (1)

In Eq. (1), i and j label Ir sites, and the pseudospin
operator Si is a Jeff = 1/2 state localized pseudospin op-
erator with components Sα

i (α = x, y, z). Parameters Jij ,
Kij , and Dij = (Dx

ij ,D
y

ij ,D
z
ij ) are the isotropic Heisen-

berg interaction, bond-dependent Kitaev interaction, and
Dzyaloshinskii-Moriya (DM) vector, respectively. The last
term is the generalized symmetric off-diagonal exchange [17],
which is

Si · �ij · Sj = �x
ij

(
S

y

i Sz
j + Sz

i S
y

j

) + �
y

ij

(
Sz

i S
x
j + Sx

i Sz
j

)
+�z

ij

(
Sx

i S
y

j + S
y

i Sx
j

)
. (1a)

In this model, we consider the magnetic interactions up to
the third-NN Ir-Ir pairs. Every Ir-Ir bond is labeled by one
pseudospin direction γ = (x, y, z) [see Fig. 1(b)] and two
other directions α and β [17]. For convenience, hereafter the
magnitude of the Jeff = 1/2 state localized magnetic moment
is absorbed into the magnetic interaction parameters Jij , Kij ,
Dij , and �ij so that the Jeff = 1/2 state localized pseudospins
Si and Sj are unit vectors.

Our calculated magnetic interaction parameters are listed in
Table I. These magnetic interaction parameters are calculated
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TABLE I. DFT calculated magnetic interaction parameters in units of meV of the general bilinear exchange Hamiltonian, Eq. (1). NNN and
NNNN denote the second NN and the third NN, respectively. The bond distances of the Ir-Ir pairs are evaluated based on the experimentally
measured crystal structure [11]. The last row shows the magnetic interaction parameters present in the minimal J1-K1-�1-J3 model.

J Path d (Å) J K �x �y �z Dx Dy Dz

NN x/y 3.129 1.37 − 9.56 − 1.07 1.00 − 1.22 0 0 0
z 3.138 2.16 − 11.00 − 0.80 − 0.89 0.66 0 0 0

NNN x/y 5.425 0.08 − 0.14 0.01 0.06 0.07 − 0.12 − 0.13 0.00
z 5.427 0.16 − 0.16 0.06 0.06 0.15 0.15 0.05 0.17

NNNN z 6.257 0.82 0.14 − 0.01 0.01 0.04 0.00 0.01 − 0.03
x/y 6.269 0.83 0.13 0.05 0.01 − 0.02 0.01 − 0.01 − 0.01

Minimal J1 K1 �1 J3

model 1.63 −10.00 0.90 0.83

by means of the variant from our previous four-state method
[40], and its details are given in Appendix B. We see that
the NN magnetic interactions are dominant. The NN Kitaev
interactions are FM, consistent with the previous ab initio study
result [22], and they dominate over other kinds of magnetic
interactions by almost one order in magnitude. Although the
NN x-/y-bonds and the NN z-bond have similarly strong FM
Kitaev interactions, their AFM Heisenberg interactions are
somewhat different. Our calculations indicate that the sym-
metric off-diagonal exchanges of the NN x-, y-, and z-bonds
have three sizable components. One of them is AFM while the
other two are FM. This is different from the originally proposed
one-component symmetric off-diagonal exchange in Ref. [17].
Note that it is assumed in Ref. [17] that the Ir2O10 cluster of
Na2IrO3 has D2h point symmetry, so that the symmetric off-
diagonal exchange has only one component. The IrO6 octahe-
drons in that cluster actually have tilts and rotations, however.
Therefore, the Ir2O10 cluster has C2h point symmetry, and DFT
calculated symmetric off-diagonal exchanges have three com-
ponents, which is indeed in agreement with the case discussed
in the supplementary material of Ref. [17]. In addition to the
above findings, we also find that the third-NN Heisenberg
interactions are unexpectedly sizable while the second-NN
magnetic interactions are extremely weak compared with the
NN ones. It is surprising that the third-NN AFM Heisenberg
interactions are even comparable to the NN ones since the bond
distances of the third-NN Ir-Ir pairs are about twice as long as
those of the NN Ir-Ir pairs (see Table I). The underlying phys-
ical reasons for such results will be discussed later. Lastly, the
NN Ir-Ir pairs have exactly vanishing DM interactions as they
have inversion symmetry. For second- and third-NN Ir-Ir pairs,
their DM interactions are all extraordinarily weak. Considering
those, DM interactions are not included further in the following
discussions.

Using our calculated magnetic interaction parameters,
we perform efficient exchange Monte Carlo (MC) [34–36]
simulation and well reproduce that the magnetic ground
state is the zigzag AFM order and its magnetic easy axis is
almost along the [110] direction, which is consistent with
experimental observations [14]. Moreover, our MC simulation
shows that the magnetic transition temperature is about 18.9
K, quite close to the experimentally measured TN = 18.1 K
[10]. This result, therefore, further rationalizes our calculated
magnetic interaction parameters using our newly proposed
methods.

C. Jeff = 1/2 Wannier orbitals of Na2IrO3

To reveal why the long-range third-NN Heisenberg interac-
tions are sizable but the second-NN magnetic interactions are
so weak in Na2IrO3, we construct four Jeff = 1/2 Wannier
orbitals in the primitive cell of Na2IrO3 [41]. In the cubic
crystal field, Jeff = 1/2 states are in the form of [25]

|Jeff = 1/2, 1/2〉 = 1√
3
|xy,↑〉 + i√

3
|zx,↓〉 + 1√

3
|yz,↓〉,

(2a)

|Jeff = 1/2,−1/2〉 = 1√
3
|xy,↓〉 + i√

3
|zx,↑〉− 1√

3
|yz,↑〉.

(2b)

According to Eq. (2a), the |Jeff = 1/2, 1/2〉 Wannier orbital
consists of three components, namely a real part of spin-up,
an imaginary part of spin-down, and a real part of spin-
down. Similarly, the |Jeff = 1/2,−1/2〉 Wannier orbital [see
Eq. (2b)] is composed of three components as well, namely
a real part of spin-down, an imaginary part of spin-up, and a
real part of spin-up. To construct the desired Wannier orbitals
using MLWFs, we chose an energy window from −0.3 to 0.2
eV in which four isolated bands are included, as shown in
the DFT+SOC calculated band structure [Fig. 3(a)]. The red
dashed-dotted lines are the Wannier-interpolated four bands,
which well reproduce the DFT calculated bands, indicating
that Jeff = 1/2 Wannier orbitals are well constructed.

The Jeff = 1/2 Wannier orbitals distribute appreciably over
the three NN Ir atoms. Figures 3(c)–3(e) show the spatial
distribution of the three components of the |Jeff = 1/2, 1/2〉
Wannier orbital for the reference Ir-0 atom. As expected, the
Wannier centers of the three components of this Wannier
orbital are located near the reference Ir-0 site. In addition,
appreciable tails show up distributing over the three NN Ir
sites of the reference Ir-0 atom [labeled by Ir-1, Ir-2, and
Ir-3 in Fig. 3(c)]. Consequently, for a specified third-NN Ir-Ir
pair, their two |Jeff = 1/2, 1/2〉 Wannier orbitals are closely
connected by their tails [see Fig. 3(b)]. Due to distortion of
the IrO6 octahedrons, the |Jeff = 1/2, 1/2〉 Wannier orbital is
slightly contaminated by the extra imaginary part of the spin-up
[Fig. 3(f)]. Likewise, The |Jeff = 1/2,−1/2〉 Wannier orbital
is widely distributed over the three NN Ir atoms, but is slightly
contaminated by the extra imaginary part of the spin-down.
Note that such a spatial distribution of the Jeff = 1/2 Wannier
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FIG. 3. (a) DFT+SOC calculated band structure (black line) of Na2IrO3 and Wannier-interpolated four bands (the red dashed-dotted lines)
near the Fermi level (EFermi = 0). (b) Real parts of spin-up of the two |Jeff = 1/2, 1/2〉 Wannier orbitals of the third-NN Ir-Ir pair (black and
blue labels “Ir-0”) in the 3 × 3 × 1 supercell of the Na2IrO3 primitive cell. (c) Real part of spin-up, (d) imaginary part of spin-down, (e) real
part of spin-down, and (f) imaginary part of spin-up of the calculated |Jeff = 1/2, 1/2〉 Wannier orbital on the Ir-0 atom. The three NN Ir atoms
of the Ir-0 atom are labeled by Ir-1, Ir-2, and Ir-3 as shown in (f). Wannier orbitals in (c)–(f) are viewed along the z axis, but they are viewed
along the crystallographic c axis in (b). The maximum (minimum) grid values are 7.2 (−7.0) in (c)–(e) and 0.9 (−0.9) in (f). The isosurface
value is 1.5 in (b)–(e) and 0.4 in (f).

orbitals is also reported in the previous study of the honeycomb
α-Li2IrO3 [42].

In the Jeff = 1/2 Wannier orbital manifold, the model
Hamiltonian is [42,43]

Heff =
∑
〈i,j〉σ

t
r ij

n1 c
†
i,σ cj,σ +

∑
〈〈i,j〉〉σσ ′

t
r ij

n2;σσ ′c
†
i,σ cj,σ ′

+
∑

〈〈〈i,j 〉〉〉σσ ′
t

r ij

n3 c
†
i,σ cj,σ . (3)

In Eq. (3), hopping parameters are represented in terms of Pauli
matrices [43], such as

t
r ij

σσ ′ = C0
r ij

δσσ ′ + C r ij
· τσσ ′ , (4)

where τ=(σ x, σ y, σ z) is the vector of the Pauli matrices, C =
(Cx,Cy, Cz), σ , σ ′ = ± represent the Jeff = 1/2 Wannier
orbitals, and the parameter r ij is the displacement vector
between two different Ir sites i and j . Considering the direct
exchange process between two different Wannier orbitals of
the Jeff = 1/2 state, magnetic interaction parameters can be
estimated directly by [43]

Jij = 4

U

(
C0

ijC
0
ji − C ij · Cji

)
, (5a)

Dij = −4I

U

(
C0

ji C ij − C0
ij Cji

)
, (5b)

�ij = 4

U
(C ij Cji+Cji C ij ). (5c)

In Eq. (5b), the italic letter I is the imaginary unit.
Surprisingly, the third-NN hopping is stronger than that

of the NN and second NN. It is shown in Table II that the

third-NN hopping parameters are about three times as large
as those of the second NN. Because the direct exchange
process dominantly contributes to the magnetic interactions
of the second- and third-NN Ir-Ir pairs, we can estimate, based
on Eq. (5a), that the Heisenberg interaction of the third-NN
Ir-Ir pairs should be stronger by approximately one order of
magnitude compared to those of the second-NN Ir-Ir pairs.
Such an estimation agrees with the DFT calculated NN and
third-NN Heisenberg interaction parameters (see Table I). In
addition, the second-NN Ir-Ir pairs have similarly small param-
eters C0

rij
and Crij

, so their symmetric off-diagonal exchanges
and DM interactions are weak, which is also consistent with
our DFT calculated results. Note that the NN Ir-Ir pairs have
strong magnetic interactions, although they have small hop-
ping parameters in the Jeff = 1/2 Wannier orbital manifold.

TABLE II. Hopping parameters in units of meV of the NN,
second-NN (NNN), and third-NN (NNNN) Ir-Ir paths in terms of
the Jeff = 1/2 Wannier orbital representation.

Ir-Ir bond C0
rij

−iCx
rij

−iCy
rij

−iCz
rij

NN x − 0.9
y − 0.8
z 9.8

NNN x − 5.8 11.4 6.3 − 5.3
y − 5.8 − 11.1 5.8 6.31
z − 7.3 3.7 − 11.2 11.6

NNNN x − 39.0
y − 38.8
z − 38.3
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The smaller NN hopping than the NNNN hopping is due
to the cancellation between different hopping contributions,
including d-d and d-p-d hopping processes [42]. Since the
NN Heisenberg interactions have rather different dependences
on their various hopping processes [21,43], we cannot estimate
them based on the hopping parameters between the Jeff = 1/2
Wannier orbitals.

Sizable long-range third-NN AFM Heisenberg interactions
closely correlate with the appreciable distribution of Wannier
orbitals of Jeff = 1/2 states over the three NN Ir atoms.
We have shown that the third-NN Ir-Ir pair has two closely
connected Jeff = 1/2 Wannier orbitals due to the appreciable
tails of Jeff = 1/2 Wannier orbitals distributing over the three
NN Ir atoms. Therefore, it is acceptable that the third-NN
Ir-Ir pair has a sizable magnetic interaction. If the tails of
these two Jeff = 1/2 Wannier orbitals were removed, they
would be far away from each other. In that case, the third-NN
Ir-Ir pair should have a weak magnetic interaction. To verify
this, we artificially removed the tails of the two Jeff = 1/2
Wannier orbitals of the third-NN Ir-Ir pair [see Fig. 3(b)] by
replacing the four bridging Ir atoms [the Ir atoms labeled by
the black and blue Ir-1 and Ir-2 in Fig. 3(b)] with isovalent Si
and Ti atoms. Our DFT calculations show that the third-NN
Heisenberg interaction significantly reduces to −0.11 meV in
the case of Si and to 0.04 meV in the case of Ti from the original
0.82 meV. Such a significant reduction indicates that the tails
of the Jeff = 1/2 Wannier orbital are indeed critical to give rise
to the sizable long-range third-NN Heisenberg interaction.

D. Minimal J1-K1-�1- J3 model of Na2IrO3

The general bilinear exchange model, Eq. (1), has many
magnetic interaction parameters, which masks the underlying
physics of the zigzag antiferromagnetism of Na2IrO3. Actually,
some of them are negligible and can be reasonably ignored,
and some can be reasonably merged, too. Consequently, a
simplified and concise model can be achieved by considering
the dominant magnetic interactions. To do this, we put forward
a minimal J1-K1-�1-J3 model based on our understanding and
the calculated magnetic interaction parameters. Our minimal
model is in the form of

H =
∑

〈ij〉∈αβ(γ )

[
J1 Si · Sj + K1S

γ

i S
γ

j + �1
(
Sα

i S
β

j + S
β

i Sα
j

− Sα
i S

γ

j − S
γ

i Sα
j − S

γ

i S
β

j − S
β

i S
γ

j

)]
+

∑
〈〈〈ij〉〉〉∈αβ(γ )

J3 Si · Sj . (6)

In this model, the second-NN magnetic interactions are not
taken into consideration since they are much weaker than
the NN and the third-NN ones. It is worthwhile noting that
the off-diagonal symmetric exchange �1 in our model has
three components, which is significantly different from the
previous theoretical models. Although the NN (the third-NN)
x-/y-bonds and z-bond are symmetrically nonequivalent, they
are considered to be symmetrically equivalent for simplicity.
As for the third-NN x-, y-, and z-bond Ir-Ir pairs, only
their Heisenberg interactions are involved in this model. The
magnitudes of the magnetic interaction parameters J1, K1, �1,
and J3 in this minimal model are obtained by averaging the

corresponding DFT calculated ones, which are listed in Table I.
Our MC simulations of the minimal J1-K1-�1-J3 model with
those parameters show that its magnetic ground state is the
zigzag AFM with the magnetic easy axis along the [110]
direction, and its magnetic transition temperature is 17.4 K,
very close to the experimentally observed TN = 18.1 K [10].
Thus, this model describes the experimentally observed zigzag
antiferromagnetism of Na2IrO3 well.

The magnetic excitations of the minimal J1-K1-�1-J3

model have an intensity peak at 5.6 meV, highly consistent
with the inelastic neutron-scattering experiment [11]. Because
of the breakdown of magnons in the strongly spin-orbital-
coupled magnet [44,45], we studied the magnons of Na2IrO3

by numerically calculating dynamical structure factors based
on the exact diagonalization (ED) computations. Here the
dynamical structure factor at zero temperature is defined as
[46]

Iαβ ( Q, ω) = − 1

π
Im

[
〈0|Oα† 1

ω + E0 + iε − H
Oβ |0〉

]
.

(7)
In Eq. (7), |0〉 is the ground-state wave function of H with the
energy E0 and the operator Oα = N−1 ∑

r Sα exp(−i Q · r ).
The ground-state wave function |0〉 and energy E0 are calcu-
lated by the Lanczos method [46], and the intensity I ( Q, ω) =∑

α=x,y,z I αα ( Q, ω) is obtained by a continued fraction ex-
pansion [45–47]. Similar to previous studies [44,45], we take
into account two different 24-site periodic clusters compatible
with the zigzag AFM order, namely the UC−3 × 2 [Fig. 4(a)]
and

√
3 × √

3 −2 × 2 [Fig. 4(b)] clusters. The energy scan
of the dynamical structure factor [Fig. 4(c)] shows that the
magnetic excitations of the UC−3 × 2 cluster has an intensity
peak at 5.6 meV, consistent with the experimentally measured
spin-wave intensity peak at 5.0 meV in the inelastic neutron-
scattering experiment [11]. Actually, the magnetic excitation of
the

√
3 × √

3 −2 × 2 cluster has an intensity peak at 2.6 meV
[Fig. 4(c)], which should be in accordance with the potential
spin-wave intensity peak near 2.0 meV in the inelastic neutron-
scattering experiment [11]. Note that the latter intensity peak is
not well-defined in the inelastic neutron-scattering experiment
because of the limitation of the instrumental energy resolution
[11]. Therefore, our theoretical result calls for further exper-
imental magnon measurement to clearly identify the possible
hidden intensity peak so as to comprehensively unveil the
nature of the zigzag antiferromagnetism in Na2IrO3.

The experimentally observed zigzag AFM structure is
cooperatively established by the NN symmetric off-diagonal
exchange and the third-NN AFM Heisenberg interaction. If
only the NN FM Kitaev interaction K1 and the NN AFM
Heisenberg interactions J1 are considered, MC simulations
show that the magnetic ground state is the stripe AFM, the
same as the previous study result [21]. To unravel why Na2IrO3

has [110]-oriented zigzag AFM order, we determined the
preferred magnetic orders in the �1-J3 plane by fixing the NN
Heisenberg interaction J1 and the Kitaev interaction K1. To
this end, we use the classical Luttinger-Tisza (LT) method in
which the pseudospins are considered to be classical moments,
and the constant length pseudospin vectors are replaced by
the unconstrained vector fields

−→
φ r . In this case, the classical

Hamiltonian written in the momentum space of the unit cell
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FIG. 4. (a) 24-site periodic UC − 3 × 2 and (b)
√

3 × √
3 − 2 × 2 clusters. (c) ED calculated energy-dependent magnetic excitation

intensity of the minimal J1-K1-�1-J3 model whose magnetic parameters are listed in Table I. A Gaussian broadening of 0.67 meV (FWHM),
same as the instrumental energy resolution in Ref. [11], has been adopted. The intensity peaks of the UC − 3 × 2 (blue) and

√
3 × √

3 − 2 × 2
(red) clusters are indicated by the black arrows. Classical (d) and quantum (e) phase diagrams of the minimal J1-K1-�1-J3 model in the �1-J3

plane. The NN Heisenberg J1 and Kitaev interactions K1 are 1.63 and −10.0 meV, respectively. The red stars highlight the specific position
(J3 = 0.83 meV, �1 = 0.90 meV) in the �1-J3 plane. The out-of-plane (OP) incommensurate (IC) and the in-plane (IP) IC phase regions can
be much richer than the standard coplanar helix states.

(containing four Ir atoms) of Na2IrO3 is

HLT (k) =
∑

k

φ
†
kμ�μν (k)φkν . (8)

In Eq. (8), the Hamiltonian �(k) is a 12-by-12 matrix that
is dependent on the magnetic interactions parameters J1, K1,
�1, and J3 (see the details in Appendix C). Figure 4(d) shows
the phase diagram obtained by numerically minimizing the
Hamiltonian �(k) in the first Brillouin zone. It is shown by
Fig. 4(d) that the third-NN AFM Heisenberg interaction J3

stabilizes the zigzag AFM order. This is reasonable, because
the third-NN AFM Heisenberg interaction is magnetically
satisfied in the zigzag AFM order [see Fig. 1(b)]. In addition,
the NN symmetric off-diagonal exchange can determine the
magnetic easy axis of the zigzag AFM order: (i) if it is FM,
magnetic moments will lie in the ab plane; (ii) if it is AFM, the
magnetic moments will be along the [110] direction, namely
the experimentally observed one. Hence it is the cooperation
between the NN symmetric off-diagonal exchange �1 and the
third-NN AFM Heisenberg interaction J3 that establishes the
experimentally observed zigzag AFM structure.

Quantum fluctuations have almost no significant effect on
the preferred magnetic orders obtained by the LT method,
except for the phase boundary. Because the Jeff = 1/2 state
is an analog to the S = 1/2 state [6], it would have strong
quantum fluctuations. To elucidate the effect of quantum
fluctuations, we additionally carried out an ED computation
on the 24-site UC−3 × 2 cluster [Fig. 4(a)]. We calculated the

static spin-structure factor

S( Q) =
∑
ij

〈Si · Sj 〉 exp[i Q · (r i − rj ). (9)

The dominant magnetic order is determined according to
the wave number Q = Qmax, which has a maximum in the
static spin-structure factor S(Q). Figure 4(e) shows the phase
diagram obtained in the ED study. By comparing the phase
diagram obtained by the LT method with that obtained by
the ED computation, one can see that all of the classical
magnetic orders obtained by the LT method are recovered
by the ED computation except that their phase boundary
positions are different. Most importantly, the ED computation
also shows that the NN symmetric off-diagonal exchange and
the third-NN Heisenberg interaction cooperatively establish
the experimentally observed zigzag AFM structure.

IV. DISCUSSION AND SUMMARY

It is possible that honeycomb Jeff = 1/2 magnets generally
have a sizable long-range third-NN Heisenberg interaction.
Here we underline that the sizable long-range third-NN
Heisenberg interaction in Na2IrO3 is robust and independent of
the choice of the on-site Coulomb energy U (see Appendix D),
similar to our previous results in the honeycomb Jeff = 1/2
magnet α-RuCl3 [27]. It has been reported that the honey-
comb α-Li2IrO3 also has relatively strong third-NN hopping
parameters [42], and its third-NN Heisenberg interaction is
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even stronger than the first-NN Heisenberg interaction [20].
We note that there are Ir-Ir pairs with bond distances of about
6.0 Å, which is close to the bond distance of the third-NN
Ir-Ir pairs in the honeycomb Na2IrO3, in the three-dimensional
hyper-honeycomb β-Li2IrO3 [48], and the stripe-honeycomb
γ -Li2IrO3 [49]. Therefore, these two three-dimensional iri-
dates are new platforms to investigate whether the long-range
third NN Heisenberg interaction is sizable, and they deserve
further study.

In summary, we have fully studied the magnetic interactions
of the honeycomb Na2IrO3 via our newly developed method
and the maximally localized Wannier functions. We find that
the long-range third-NN Ir-Ir pairs have sizable AFM Heisen-
berg interactions. We demonstrate that the sizable long-range
third-NN AFM Heisenberg interaction closely correlates with
the appreciable distribution of Wannier orbitals of Jeff = 1/2
states over the three NN Ir atoms. We propose a minimal
J1-K1-�1-J3 model for Na2IrO3 and further show that its
magnetic excitations have an intensity peak at 5.6 meV, highly
consistent with the inelastic neutron-scattering experiment
[11]. Our work shows that our newly developed method is
a powerful way to study the magnetism of materials with
non-negligible orbital moments, such as Jeff = 1/2 magnets,
and it is a significant step toward understanding the novel
magnetism of honeycomb Jeff = 1/2 magnets.
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APPENDIX A: THE OPTIMAL RELATIVE ANGLE
BETWEEN ORBITAL AND SPIN MOMENTS

To evaluate the optimal relative angle between orbital and
spin moments in Na2IrO3, we fix orbital moments along four
representative and important axes, namely, x-, y-, z-, and [110]
axes, and we rotate spin moments slightly away from the fixed
orbital moments. We define the derivation between orbital and
spin moments by a spherical coordinate system in which the
polar angle θ is inclined from the fixed orbital moments, and
the azimuthal angle φ lies on the plane perpendicular to the
fixed orbital moments. In such a definition, the relative angle
between orbital and spin moments is the polar angle θ . Note
that any angle θ has an extra degree of freedom, namely the
azimuthal angle φ. To obtain the correct energy �E caused by
the derivation between orbital and spin moments with a given
θ and φ, we should calculate the energies of two different
cases. For the first case with the energy E1(θ, φ), the orbital
moment is fixed at a given axis, for example the z axis, and
the spin moment is along the direction with the polar angle θ

and the azimuthal angle φ. For the second case with the energy
E2(θ, φ), the orbital and spin moments are both in the same
direction, which is along the vector sum of the orbital and
spin moments of the first case. Because the general bilinear
exchange Hamiltonian Eq. (1) in the main text is anisotropic
due to its anisotropic exchange interactions, the second case

FIG. 5. Dependences of the energy �E on the polar angle θ and the azimuthal angle φ of the spin moment when the orbital moment is
along the (a) x, (b) y, (c) z, and (d) [110] axes.
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is actually a reference of the first case. Altogether, the energy
�E is calculated by �E = E1(θ, φ) − E2(θ, φ).

The dependences of the energy �E on the polar angle θ

and the azimuthal angle φ of spin moment (Fig. 5) indicate that
the optimal relative angle between orbital and spin moments
should be found with the azimuthal angle φ equal to 45° when
the orbital moment is along the x-, y-, and z-axis. However,
when the orbital moment is along the [110] axis, the optimal
relative angle should be found with the azimuthal angle φ

equal to 90°. In the main text, we explore in detailed the
dependences of the energy �E with the specified azimuthal
angles φ according to the above-mentioned facts. We find that
the optimal relative angles between orbital and spin moments
are 9°, 9°, 6°, and 5°, respectively, when the orbital moments
are along the x-, y-, z-, and [110] axes. In principle, the orbital
moment should scan all the directions to assess the optimal
relative angle. Obviously, that is intractable practically. In any
case, we argue based on the four representative and important
directions of orbital moments that the optimal relative angle
between the orbital and spin moment is rather small and in the
order of several degrees.

APPENDIX B: VARIANT OF THE FOUR-STATE METHOD
FOR CALCULATING MAGNETIC INTERACTIONS IN THE

HAMILTONIAN EQ. (1)

Here are the details of the variant from our previous four-
state method [40] to calculate the magnetic interaction param-
eters in the general bilinear exchange Hamiltonian Eq. (1) in
the main text. Another form of the Hamiltonian Eq. (1) is as
follows:

H =
∑
ij

∑
αβ

J
αβ

ij Sα
i S

β

j . (B1)

In Eq. (B1), i and j are the indexes of magnetic sites, and α and
β run over x, y, and z. Note that the J

αβ

ij in the Hamiltonian
Eq. (B1) is a 3-by-3 matrix for a specific ij bond, and the
exchange parameters in the Hamiltonian Eq. (1) are obtained
by appropriate combinations of the elements of the matrix J

αβ

ij .
We take the ij bond belonging to the xy(z) type as an example.
In this case, we have

Jij = (
J xx

ij + J
yy

ij

)/
2, (B2a)

Kij = J zz
ij − (

J xx
ij + J

yy

ij

)/
2, (B2b)

�α
ij = (

J
βγ

ij + J
γβ

ij

)/
2, (B2c)

Dα
ij = (

J
βγ

ij − J
γβ

ij

)/
2. (B2d)

For the Jeff = 1/2 magnets, J xx
ij is equal to J

yy

ij theoretically
in Eq. (B2a). Now we show how to calculate any element of
the matrix J

αβ

ij for a specific ij bond. To this end, we rearrange
the items in the Hamiltonian Eq. (B1) as follows:

H =
∑
αβ

J
αβ

ij Sα
i S

β

j +
∑
k �=i,j

∑
αβ

J
αβ

ik Sα
i S

β

k +
∑
k �=i,j

∑
αβ

J
αβ

kj Sα
k S

β

j

+
∑

k �=i,j ;m�=i,j

∑
αβ

J
αβ

kmSα
k Sβ

m. (B3)

As a concrete example, we consider the element J
xy

ij . To
calculate this element, we set four different magnetic configu-
rations (we denote the magnetic direction of any magnetic site
as [Sx, Sy, Sz]), and we obtain their corresponding energy to
the Hamiltonian Eq. (B3) as follows:

(i) The magnetic directions of sites i and j are [1,0,0] and
[0,1,0], respectively, and the energy is

E1 = J
xy

ij +
∑
k �=i,j

∑
α

J
xβ

ik S
β

k +
∑
k �=i,j

∑
α

J
αy

kj Sα
k

+
∑

k �=i,j ;m�=i,j

∑
αβ

J
αβ

kmSα
k Sβ

m. (B3a)

(ii) The magnetic directions of sites i and j are [1,0,0] and
[0,−1,0], respectively, and the energy is

E2 = −J
xy

ij +
∑
k �=i,j

∑
β

J
xβ

ik S
β

k −
∑
k �=i,j

∑
α

J
αy

kj Sα
k

+
∑

k �=i,j ;m�=i,j

∑
αβ

J
αβ

kmSα
k Sβ

m. (B3b)

(iii) The magnetic directions of sites i and j are [−1,0,0]
and [0,1,0], respectively, and the energy is

E3 = −J
xy

ij −
∑
k �=i,j

∑
β

J
xβ

ik S
β

k +
∑
k �=i,j

∑
α

J
αy

kj Sα
k

+
∑

k �=i,j ;m�=i,j

∑
αβ

J
αβ

kmSα
k Sβ

m. (B3c)

(iv) The magnetic directions of sites i and j are [−1,0,0]
and [0,−1,0], respectively, and the energy is

E4 = J
xy

ij −
∑
k �=i,j

∑
β

J
xβ

ik S
β

k −
∑
k �=i,j

∑
α

J
αy

kj Sα
k

+
∑

k �=i,j ;m�=i,j

∑
αβ

J
αβ

kmSα
k Sβ

m. (B3d)

Based on Eqs. (B3a)–(B3b), we can obtain the element J
xy

ij in
the form of

J
xy

ij = (E1-E2-E3 + E4)/4. (B4)

Note that Eq. (B4) has the same form as Eq. (3) in Ref. [40].
After we obtain the nine elements of the matrix J

αβ

ij , we can
figure out based on Eqs. (B2a)–(B2d) the magnetic interaction
parameters Jij , Kij , Dij , and �ij as shown in the Eq. (1) in the
main text.

APPENDIX C: THE CLASSICAL LUTTINGER-TISZA
HAMILTONIAN IN MOMENTUM SPACE

In the momentum space of the unit cell of Na2IrO3, which
contains four Ir atoms, the classical Hamiltonian �(k) [see
Eq. (8) in the main text] obtained by the classical Luttinger-
Tisza approximation is a 12-by-12 matrix, which is of the form

�(k) =

⎡
⎢⎢⎣

0 H12 0 H14

H
†
12 0 H23 0

0 H
†
23 0 H34

H
†
14 0 H

†
34 0

⎤
⎥⎥⎦. (C1)
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TABLE III. DFT calculated magnetic interaction parameters in units of meV of the general bilinear exchange Hamiltonian, Eq. (1) in the
case of U = 2.5 and 3.5 eV.

J Path d (Å) J K �x �y �z Dx Dy Dz

U = 2.5 NN x/y 3.129 1.60 −10.73 −1.14 1.14 −1.29 0 0 0
z 3.138 2.48 −12.42 −0.83 −0.97 0.70 0 0 0

NNN x/y 5.425 0.08 − 0.18 − 0.02 0.07 0.05 − 0.12 − 0.15 − 0.05
z 5.427 0.20 − 0.22 0.05 0.07 0.15 0.21 0.07 0.17

NNNN z 6.257 1.02 0.15 0.01 0.01 0.07 − 0.02 0.02 0.00
x/y 6.269 1.03 0.15 0.07 0.01 0.01 − 0.01 − 0.01 0.02

J Path d (Å) J K �x �y �z Dx Dy Dz

U = 3.5 NN x/y 3.129 1.13 − 8.50 − 0.97 0.90 − 1.10 0 0 0
z 3.138 1.86 − 9.78 − 0.71 − 0.83 0.69 0 0 0

NNN x/y 5.425 0.07 − 0.11 − 0.00 0.06 0.03 − 0.08 − 0.11 − 0.02
z 5.427 0.13 − 0.12 0.04 0.05 0.10 0.13 0.04 0.12

NNNN z 6.257 0.66 0.13 0.01 0.01 0.07 − 0.01 0.01 0.00
x/y 6.269 0.68 0.12 0.06 0.01 0.02 − 0.00 − 0.00 0.01

In Eq. (C1), all elements are 3-by-3 matrices. The nonvanishing
matrices are

H12 = 1

2

⎡
⎣ J1 �1 −�1

�1 J1 −�1

−�1 −�1 J1 + K1

⎤
⎦e2πiky

+ 1

2
J3[1 + 2 cos(2πkx )e2πiky ]E3×3, (C2)

H14 = 1

2

⎡
⎣ J1 −�1 �1

−�1 J1 + K1 −�1

�1 −�1 J1

⎤
⎦

+ 1

2

⎡
⎣J1 + K1 −�1 −�1

−�1 J1 �1

−�1 �1 J1

⎤
⎦e2πikx , (C3)

H23 = 1

2

⎡
⎣ J1 −�1 �1

−�1 J1 + K1 −�1

�1 −�1 J1

⎤
⎦e2πikx

+ 1

2

⎡
⎣J1 + K1 −�1 −�1

−�1 J1 �1

−�1 �1 J1

⎤
⎦, (C4)

H34 = 1

2

⎡
⎣ J1 �1 −�1

�1 J1 −�1

−�1 −�1 J1 + K1

⎤
⎦

+ 1

2
J3[e2πiky + 2 cos(2πkx )]E3×3. (C5)

In Eqs. (C2) and (C5), E3 × 3 is a 3-by-3 unit matrix. Here we
set the lattice constants a and b to be unit, and (kx, ky ) is a point
in momentum space. The parameters J1, K1, �1, and J3 are the
magnetic interaction parameters of the minimal J1-K1-�1-J3

model [see Eq. (6) in the main text].

APPENDIX D: DEPENDENCE OF EXCHANGE
PARAMETERS OF Na2Ir3 ON THE ON-SITE

COULOMB ENERGY U

We show the dependence of exchange parameters of Na2Ir3

on the on-site U. From Tables I and III, one can obtain that,
although the magnitudes of the exchange parameters vary as
the Coulomb energy on-site U changes, the relative strengths
between the NN, NNN, and NNNN exchange parameters have
slight variations. All in all, the third-NN Heisenberg interac-
tions are sizable, whereas the second-NN magnetic interactions
are extremely weak compared with the NN interactions.
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