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Effects of non-Hermiticity on Su-Schrieffer-Heeger defect states
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We study the emergence and disappearance of defect states in the complex Su-Schrieffer-Heeger (cSSH)
model, a non-Hermitian one-dimensional lattice model containing gain and loss on alternating sites. Previous
studies of this model have focused on the existence of a non-Hermitian defect state that is localized to the
interface between two cSSH domains, and is continuable to the topologically protected defect state of the
Hermitian Su-Schrieffer-Heeger (SSH) model. For large gain/loss magnitudes, we find that these defect states can
disappear into the continuum, or undergo pairwise spontaneous breaking of a composite sublattice/time-reversal
symmetry. The symmetry-breaking transition gives rise to a pair of defect states continuable to nontopologically
protected defect states of the SSH model. We discuss the phase diagram for the defect states, and its implications
for non-Hermitian defect states.
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I. INTRODUCTION

The complex Su-Schrieffer-Heeger (cSSH) model [1] is a
non-Hermitian extension of the Su-Schrieffer-Heeger (SSH)
model [2], the simplest one-dimensional (1D) Hermitian lat-
tice exhibiting topological defect states [3]. It has been the
subject of recent interest in experiments [4–8] as a simple
testing ground for the interaction of topological states with
non-Hermiticity, i.e., the presence of loss and/or gain in the
underlying medium [9,10]. The standard topological invari-
ants used to characterize topological states of matter [3,11],
including the SSH model, assume Hermiticity; for instance,
Hermiticity guarantees the existence of a well-defined inner
product, which is used to calculate the Zak phases [12] for
characterizing the SSH model. Non-Hermitian generalizations
of topological concepts, such as the bulk-edge correspondence
principle, are thus of significant theoretical interest [13–24].
Moreover, non-Hermitian variants of topological states may
have applications in photonics, where topological protection
can be implemented by lattice engineering [25–29], and non-
Hermiticity can be introduced by introducing optical loss
and/or gain to the optical medium [30,31]. The robustness
of topological modes may be usefully exploited in amplifiers
[32,33], lasers [1,7,8,34–38], and other non-Hermitian pho-
tonic devices.

Previous studies of the cSSH model, starting with the work
of Schomerus [1], have focused on the existence of a defect
state that is exponentially localized to an interface between
different cSSH domains. In the Hermitian limit (no gain or
loss), this defect state is explicitly continuable to the well-
known topological mid-gap defect state of the SSH model [2].
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In the non-Hermitian case (gain and loss on alternating lattice
sites), the energy of the defect state can acquire a nonzero
imaginary part, but the real part remains pinned to the mid-gap
value. If the defect configuration is chosen appropriately, the
defect state can have a larger amplification rate than any of the
bulk states [1]; this has been demonstrated using microwave
resonators [4] and lasers [7,8]. Alternatively, if the gain and
loss are distributed in a parity/time-reversal (PT -) symmetric
pattern [9], the bulk and defect state energies can be purely
real [5,6].

These studies did not, however, look into whether SSH
defect states always have a counterpart in the cSSH model,
and, conversely, whether the defect states of the cSSH model
are always SSH like. This is a noteworthy omission because
non-Hermitian states are known to be able to exhibit behaviors
that have no Hermitian analog. PT -symmetric dimer eigen-
states, for example, can exhibit spontaneous PT symmetry
breaking [39], while some non-Hermitian lattices have been
shown to support defect states that seem to be topological but
have no evident Hermitian counterpart [15,40–43].

In this paper, we analyze the effect of non-Hermiticity
on cSSH defect states. We find that two interesting things
can happen to the SSH-like defect state as the gain and loss
magnitude is increased. First, the defect state can disappear
via a divergence in its localization length, which corresponds
to the merging of the defect state energy into the complex
continuum of bulk energies. Second, the SSH-like defect
state can interact with a second defect state that emerges
from the continuum. Both of these states satisfy a composite
sublattice/time-reversal (ST ) symmetry, which pins the real
parts of their energies to zero, and is the non-Hermitian
counterpart of the S symmetry that pins the energy of the SSH
mid-gap defect state to zero. The two states can coalesce in
a spontaneous ST -breaking transition (an exceptional point
[10]), breaking apart into two ST -broken defect states. The
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latter are continuable to the nontopologically protected defect
states of the SSH model, which have hitherto been ignored
but can exist as well in the cSSH model. Both methods
of destabilizing the SSH-like “mid-gap” defect state require
PT symmetry to be spontaneously broken in the bulk band
structure.

We thus find that the cSSH chain has two anomalous defect
state phases not present in the SSH model: (i) a phase with
two “mid-gap” states localized to the domain wall, rather than
one, and (ii) a phase with two “non-mid-gap” states but no
“mid-gap” state. Phase (ii) includes the special case where
the intersite couplings are uniform (so that the cSSH lattice
reduces to a lattice of gain/loss dimers with a defect in the
gain/loss pattern); in this limit, the two “non-mid-gap” states
appear abruptly when the gain/loss magnitude is increased
above a certain nonzero threshold, similar to the “intrinsically
non-Hermitian” defect states that have previously been seen
in other non-Hermitian lattice models [15,40,41,43].

II. COMPLEX SU-SCHRIEFFER-HEEGER (CSSH) MODEL

The bulk cSSH lattice, depicted in Fig. 1(a), consists of
a chain of dimers with alternating coupling strengths t ± δ

between adjacent a and b sites, and alternating onsite gain/loss
represented by imaginary onsite potentials ±iγ . The gain/loss
averages to zero over the lattice. The bulk Hamiltonian is

Hbulk =
∑

n

[(t + δ) |an〉 〈bn| + (t − δ) |an〉 〈bn−1| + H.c.]

+
∑

n

[iγ |an〉 〈an| − iγ |bn〉 〈bn|], (1)

where |an〉 and |bn〉 denote the state on sites a and b, respec-
tively, in the nth unit cell. The parameters t , δ, and γ are
all real; we set t = 1 as the energy unit. When γ = 0, Hbulk

reduces to the SSH Hamiltonian [2]. Performing a Fourier
decomposition yields the reduced Hamiltonian

Hk =
(

iγ Wk

W−k −iγ

)
, (2)

where Wk = (1 + δ) + (1 − δ)e−ik and k is the crystal mo-
mentum, with the unit of length chosen so that the lattice
constant is unity. The resulting eigenvalue spectrum

Ek,± = ±
√

2(1 + δ2) + 2(1 − δ2) cos k − γ 2 (3)

is shown in Figs. 1(c)–1(e) for different values of γ .
In the bulk, the SSH lattice has parity (P), time-reversal

(T ), and sublattice (S) symmetries. These symmetries are
described in detail in Appendix A. For γ �= 0, the cSSH model
breaks P , S , and T individually, but retains two composite
symmetries. First, it is ST symmetric [1,5,8], which implies
that if Ek is an eigenvalue, −E∗

−k is also an eigenvalue [41,42];
as discussed in Appendix A, this symmetry is responsible
for the flatness of the real part of the spectrum in the ST -
unbroken regime [41,42,44]. Second, it is PT symmetric,
which implies that if Ek is an eigenvalue, E∗

k is also an
eigenvalue [9,30,31]. The phase diagram for the cSSH chain’s
bulk band structure is shown in Fig. 1(b). It is divided into
three parts: (i) a PT -unbroken phase where the Bloch states
have real energies for all k, (ii) an intermediate phase where
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FIG. 1. (a) The bulk cSSH chain. Sites with gain (iγ ) and
loss (−iγ ) are, respectively, indicated by red and blue circles,
and couplings 1 + δ and 1 − δ are indicated by double and single
horizontal lines. (b) Phase diagram of the bulk cSSH chain, which
contains a PT -unbroken phase where all Bloch state energies are
real (yellow), an intermediate phase with both real and imaginary
energies (white), and an ST -unbroken phase with purely imaginary
energies (blue). (c)–(e) Complex bulk band structures for the cSSH
chain, for the parameters indicated in (b) by the points labeled c,
d , and e, respectively: δ = 0.5 and (c) γ = 0, (d) γ = 1.5, and
(e) γ = 2.5. Solid (dashed) curves show the real (imaginary) part of
the eigenenergy E. (f)–(h) cSSH chains with different lattice defects
(vertical dashes). (f) P-preserving defect. (g) PT -preserving and
P-breaking defect. (h) A defect that breaks both P and PT , while
reversing γ and δ across the interface.

the energies are real for some ranges of k and imaginary
elsewhere, and (iii) an ST -unbroken phase where the energies
are purely imaginary for all k.

It is well known that when the SSH model (γ = 0) is
gapped (δ �= 0), connecting two domains with opposite signs
of δ leads to the emergence of a topological mid-gap defect
state localized at the domain wall. The energy of the defect
state is pinned to exactly zero by the S symmetry [2]. In a
similar vein, we can consider putting domain walls or defects
in the cSSH model (γ �= 0). However, due to the presence of
both alternating coupling strengths and alternating gain/loss
in the cSSH model, there is some leeway in how the defect
is defined. Schomerus’ original study of the cSSH model [1]
used the configuration shown in Fig. 1(f), with gain applied
to the defect site. In this case, the defect site can also be
regarded as a domain wall, and the lattice is symmetric under
a P operation across the defect site, whereas PT is broken
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[1,4,8]. (Henceforth, we will let the bulk lattices on the two
sides of the defect have the same values of δ and γ .) This
configuration has the notable feature that the bulk lattices on
the two sides are “incompatible”: they have different patterns
of alternating δ and γ , and are related to each other by a
swap of either δ or γ . Subsequent studies [5,7] have also
considered the configuration shown in Fig. 1(g); without gain
or loss at the defect site, the overall lattice preserves PT ,
although P is broken. The lattices on either side of the defect
are “compatible,” in the sense that this configuration could
be generated by inserting an additional site and link into a
uniform cSSH lattice (similar to the original SSH case).

We will consider a third defect configuration, shown in
Fig. 1(h). This has also been employed in a recent study by
Yuce [45]. Unlike the previous two cases, the domain wall
can be regarded as lying between two lattice sites; this defect
configuration can be generated by inserting an additional gain
site and link with coupling strength 1 into a uniform cSSH
lattice, similar to the defect of Fig. 1(g) or the SSH model. The
motivation for studying this configuration is that in the δ → 0
limit, the lattice takes the form of a gain/loss dimer lattice
[42] with a missing-site defect, which can also be regarded
as a domain wall lying across a link. Such a lattice supports
“non-Hermiticity-induced” defect states, the implications of
which will be discussed later. As indicated in Fig. 1(h), we
label the unit cells by n = 1, 2, . . . to the right of the defect,
and n = −1,−2, . . . to the left. The cSSH sublattices on the
two sides are related by a simultaneous swap of δ and γ .
The defect breaks both P and PT , but the ST symmetry
of the underlying cSSH lattice is preserved. Consequently,
eigenstates of the lattice must be either ST symmetric, or
form pairs with eigenenergies (ED,−E∗

D ). For details, refer
to Appendix A. In the following, we focus on the case of
γ � 0; the γ � 0 case is just the time-reversed counterpart,
with complex-conjugated eigenenergies.

III. DEFECT STATES

We look for states that are exponentially localized to the
defect, having the form

|ψD〉 =
∑
±

∑
n>0

λn(α±|a±n〉 + β±|b±n〉), (4)

with undetermined complex constants λ, α±, and β±, con-
strained by |λ| < 1. The lattice is assumed to be infinite, so
the sum over n extends to infinity. The energy of the defect
state is related to λ by

E2
D + γ 2 = 2(1 + δ2) + (1 − δ2)(λ + λ−1). (5)

This ansatz is applied to the lattice configuration shown in
Fig. 1(h), with coupling strength 1 on the defect link. The
solution is detailed in Appendix B. The resulting phase dia-
gram for the defect states is shown in Fig. 2(a). (As previously
discussed, we consider only γ � 0.)

The left edge of this phase diagram (γ = 0) corresponds
to an SSH model with a domain wall through a link, and
topologically distinct configurations on either side. This sup-
ports three distinct defect state solutions. One of them is the
mid-gap defect state, which exists for all δ �= 0 and is pinned
to energy E0

D = 0 by the S symmetry [2,3] and topologically
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FIG. 2. (a) Phase diagram for defect states of the cSSH lattice
shown in Fig. 1(h). In the white regions (I), the lattice has one
defect state, in the green regions (III) it has three defect states, and
in the pink (II) and orange regions (IIA) it has two defect states.
The defect states in II are ST broken, and the defect states in IIA
are ST symmetric. The points labeled b, c, d , and e indicate the
parameters for the spectra plotted in (b)–(e). The gray dashes are the
phase boundaries of the bulk lattice band structure, corresponding
to Fig. 1(b). The blue dots indicate the critical line segment (δ = 0
and 0 � γ � 1) over which there are no localized defect states.
(b)–(e) Complex eigenenergy spectra, calculated numerically for
a finite lattice with 75 unit cells on each side of the defect, for
(b) γ = 0.5 and δ = 2, (c) γ = 0.5 and δ = 0.5, (d) γ = 1.5 and
δ = 0.5, and (e) γ = 2.5 and δ = 0. Defect states continuable to SSH
mid-gap states are shown as triangles, defect states continuable to
non-mid-gap states as squares, bulk states as black circles, and edge
states (due to the finite lattice size) as gray circles.

protected by a π difference in the Zak phases calculated for
two bulk lattices [12]. The other two defect states, which exist
for 0 < |δ| <

√
2, have eigenenergies

E±
D = ±

√
4 + δ4, (6)

which respectively lie above and below the bulk energy bands.
These defect states do not lie in a band gap, and are usually
regarded as being topologically trivial in the Hermitian sense,
because the Zak phases related to the non-mid-gap states have
no difference for the two configurations on both sides of
the domain wall. In the limit δ = ±1, the three defect states
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reduce to the eigenstates of a trimer with coupling strengths of
1 and 2 on its two links, whose eigenenergies are 0 and ±√

5.
Suppose 0 < |δ| <

√
2, for which the SSH chain has three

defect states. As we gradually increase γ from zero, all three
defect states evolve continuously into exponentially localized
defect states of the non-Hermitian lattice, and their energies
{E0

D,E±
D} become complex. The topological mid-gap state be-

comes an unpaired ST -symmetric defect state with imaginary
E0

D . The two non-mid-gap states become a pair of defect states
that individually break the ST symmetry, and map to each
other under ST , satisfying E+

D = −(E−
D )∗. Within the regions

labeled III in Fig. 2(a), the lattice supports three distinct and
well-defined defect states. Note that the boundary of these
regions lie close to, but outside, the phase boundaries of the
bulk band structure’s PT -symmetric phase [Fig. 1(b)]. Fig-
ure 2(c) shows a typical complex energy spectrum in domain
III, calculated for a large but finite lattice. [We emphasize,
however, that the phase boundaries in Fig. 2(a) were derived
for infinite lattices, with and without the domain wall.] Note
that the two ST -broken defect states (blue squares) have
values of Re(E±

D ) overlapping with the real bulk energy bands,
but are nonetheless exponentially localized to the defect. This
is reminiscent of the phenomenon of “bound states in the
continuum” in Hermitian systems [46,47], whose realization
in non-Hermitian systems has recently been discussed by
several authors [48–50].

As γ is further increased, the unpaired ST -symmetric
defect state abruptly disappears. In the domain labeled II in
Fig. 2(a), the system contains only two defect states (the ST -
broken pair). The disappearance of the ST -symmetric defect
state occurs via a divergence in its exponential decay constant
[i.e., |λ| � 1 in the solution to the Schrödinger equation with
the ansatz (4)], which coincides with the merging of E0

D

into the continuum of bulk state eigenenergies. Since E0
D is

imaginary, this can only happen outside the PT -symmetric
phase of the bulk band structure, where the bulk spectrum is
at least partially imaginary, hence, the relationship between
the defect state phase boundary and bulk phase boundary
in Fig. 2(a). Further details about the disappearance of the
ST -symmetric defect state are given in Appendix B.

Figures 2(d) and 2(e) show the complex energy spectra
at two points in domain II. In Fig. 2(d), the bulk is in the
intermediate phase, and its energies lie partly on the real line
and partly on the imaginary line; the defect state eigenenergies
E±

D stand apart from the bulk energies in the complex plane,
but their real parts can be embedded in the Re(E) continuum.
In Fig. 2(e), the bulk is in the ST -symmetric phase and all of
its energies are imaginary, whereas Re(E±

D ) �= 0.
The case of δ = 0 deserves special attention. For γ = 0,

this is just an undimerized chain, with no defect states. More
interestingly, there are no defect states over the finite range
0 � γ � 1. Only for γ > 1 do the pair of ST -broken defect
states appear, described by

α− = β+ = ±λ, α+ = β− = 1, (7)

λ = ±(
√

1 − γ 2 − iγ ). (8)

The corresponding eigenenergies are E±
D =

√
1 − γ 2 ± 1.

Within the range 0 � γ � 1, Eq. (8) states that |λ| = 1, so the

states are not localized. This results in a critical line segment
in the phase diagram, indicated by the blue dots in Fig. 2(a),
on which no localized defect states exist. The end of the
line segment (at δ = 0, γ = 1) is an exceptional point for
Eq. (8).

Malzard, Poli, and Schomerus [40] have recently drawn
attention to a class of intrinsically non-Hermitian defect states
that (i) are not present in the Hermitian limit, and (ii) appear
when a non-Hermiticity parameter exceeds a certain nonzero
magnitude. They argued that such defect states may be con-
sidered “topologically protected,” in the sense that they are
associated with non-Hermitian spectral phases bounded by
exceptional points related to PT symmetry breaking. The
defect states of our δ = 0 lattice behave similarly, and in fact
we show in Appendix C that the δ = 0 lattice is a particular
limit of the model in Ref. [40]. However, the present analysis
reveals qualifications to regarding these as topological defect
states. In the 0 � γ � 1 range, the defect states are indeed
absent for δ = 0, but instantly reappear when an infinites-
imal δ is introduced (which causes |λ| to drop below 1).
Moreover, the defect states themselves are continuable to the
non-mid-gap defect states of the SSH lattice, which are not
topologically protected in the Hermitian sense.

IV. ST BREAKING OF DEFECT STATES

Figure 3(a) shows a closeup view of the phase diagram
for δ ∼ √

2. For |δ| >
√

2 and γ = 0, the SSH lattice has a
single defect state (the mid-gap defect state). As we increase
γ from zero, keeping δ fixed, the eigenvalue E0

D moves up the
imaginary axis, as shown in Fig. 3(b).

As the system enters the region labeled IIA, another ST -
symmetric defect state emerges from the continuum, as shown
in the complex spectrum plotted in Fig. 3(c). Hence, in this
region there are two ST -symmetric states that are localized to
the defect, a phenomenon with no counterpart in the Hermi-
tian SSH model.

As the system moves from region IIA to region II, the
two imaginary energies approach each other, meet, then move
off the imaginary axis to either side, as shown in Fig. 3(d).
The transition line, shown as a thick brown line in Fig. 3(a),
signifies an ST -breaking transition. In region II, as we have
previously discussed, the system has two ST -broken defect
states, which are continuable to topologically trivial defect
states of the SSH chain.

Thus, there appear to be two distinct ways for the
SSH mid-gap defect state to disappear from the non-
Hermitian lattice. The first is to merge into the contin-
uum; the second is to undergo an ST -breaking transition
with another ST -symmetric defect state emerging from the
continuum.

Figure 4 shows the eigenstate magnitudes and phases of the
defect states on either side of the ST -breaking transition. On
one side of the transition, the two ST -symmetric states have
different intensity profiles with different localization lengths;
moreover, the phases in the gain and loss sites differ by π/2,
which is a characteristic feature of unbroken ST symmetry
(see Appendix B). On the other side of the transition, the
two ST -broken eigenstates have identical intensity profiles,
and the phases on the right (left) side of the domain wall are
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FIG. 3. (a) Closeup view of the defect state phase diagram near
the ST -breaking line. The region labels have the same meanings as
in Fig. 2(a). The points labeled b, c, and d indicate the parameters for
the spectra plotted in (b)–(d). (b)–(d) Complex eigenenergy spectra,
calculated numerically for a finite lattice with 500 unit cells on each
side of the defect, for (b) γ = 1.9 and δ = 1.5, (c) γ = 2.1 and δ =
1.625, and (d) γ = 2.1 and δ = √

2. The ST -symmetric defect states
are indicated by triangles; the ST -broken defect states are indicated
by squares. The arrows in (c) and (d) indicate the direction of motion
of the defect state eigenvalues as δ decreases from point c to point d

in (a).

symmetric with respect to 0 (π/2) for the gain sites and −π/2
(0) for the loss sites; these features arise from the fact that the
two states are related by the ST operation.

V. DISCUSSION

The cSSH model may be regarded as the simplest one-
dimensional non-Hermitian model with a clear link to Her-
mitian concepts of band topology. In this paper, we have
examined the conditions under which a cSSH lattice supports
exponentially localized defect states. Previous papers on the
subject have focused on the simplest case of a single non-
Hermitian defect state that is ST symmetric, whose energy
has exactly zero real part. Such a defect state has a clear
connection to the physics of topological states: it is continu-
able, in the Hermitian limit, to the SSH model’s well-known
topological defect state [1,4–8,35,38].

Our study has revealed a richer variety of behaviors. In
particular, the cSSH model has defect states that are ST
broken, with energies having nonzero real parts. Although
these are continuable to the SSH model’s “trivial” defect
states, they play an interesting role in the cSSH model. In
some parameter regimes, a pair of ST -broken defect states
can coexist with an ST -symmetric defect state. Alternatively,
an ST -symmetric defect state can coalesce with another
ST -symmetric defect state emerging out of the continuum,
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FIG. 4. Magnitudes and phases of the cSSH defect state wave
functions, before and after an ST -breaking transition. In (a) and
(b), the lattice parameters are γ = 2.1 and δ = 1.625, the same as
in Fig. 3(c); both eigenstates are ST symmetric. The up-pointing
triangles show the state that evolved from the SSH mid-gap defect
state; the down-pointing triangles show the additional ST -symmetric
defect state which emerged from the continuum. In (c) and (d), the
lattice parameters are γ = 2.1 and δ = √

2, the same as in Fig. 3(d);
both eigenstates are ST broken, and are related by ST operation.
The filled squares show the state with Re(E) > 0 and the hollow
squares show the state with Re(E) < 0. Red (blue) symbols indicate
gain (loss) sites. The gauge is fixed by setting the phase of the first
site to the right of the domain wall to zero.

turning into an ST -broken pair. This is an inherently non-
Hermitian phenomenon that lacks any analog in the SSH
model.

We have focused on the specific defect configuration of
Fig. 1(h), with coupling strength 1 on the defect link. If the
coupling strength is not 1, the phase diagram for the defect
states is qualitatively similar, though the positions of the
phase boundaries are shifted, and the critical line segment
at δ = 0 is not present. For the alternative configurations
shown in Figs. 1(f)and 1(g), there exist similar combinations
of ST -broken and ST -unbroken defect states, but the phase
diagrams are different. For the configuration of Fig. 1(f), a
single ST -unbroken defect state exists for δ > 0, whereas for
δ > 0 there are three defect states (one ST unbroken and two
ST broken, or three ST unbroken). For the configuration
of Fig. 1(g), there is a phase with no defect states, similar to
the critical line in Fig. 2(a); since this configuration is also
PT symmetric, its ST -broken defect state pairs have real
energies.
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APPENDIX A: SYMMETRIES OF CSSH MODEL

Consider a one-dimensional discrete lattice with unit cells
labeled by an integer n, and Ns sites in each unit cell. Let ψn

be a column vector consisting of the Ns annihilation operators
in unit cell n. In this general context, we can define the
time-reversal operator (T ), charge-conjugation operator (C,
also called the particle-hole operator), sublattice operator (S ,
also called the chiral operator), and parity operator (P) as
follows [11]:

T ψnT −1 = UT ψn, CψnC−1 = U ∗
Cψ†

n,

SψnS−1 = USψn, PψnP−1 = UPψ−n. (A1)

Here, UT ,C,S,P are unitary matrices, and the parity operation
is taken around the origin.

A system is said to be T , P , and S symmetric if its lattice
Hamiltonian H satisfies, respectively,

[T ,H] = 0, [P,H] = 0, {S,H} = 0. (A2)

These definitions apply to translationally invariant lattices as
well as lattices with defects.

The bulk SSH model satisfies all three symmetries, with
the matrix representations

UT = I, UP = σx, US = σz. (A3)

Using these same matrix representations, the bulk cSSH
model breaks T , S , and P individually, but preserves PT and
ST .

For any infinite translationally invariant one-dimensional
lattice, the Hamiltonian has the form

H =
∑

k

(ψ†
k )T Hkψk, (A4)

where ψk = N−1/2 ∑
k exp(−iknd )ψn. For simplicity, we set

the lattice constant d to unity. In terms of these Bloch state
operators, the above symmetry operators have the following
form:

T ψkT −1 = UT ψ−k, CψkC−1 = U ∗
Cψ

†
−k,

SψkS−1 = USψk, PψkP−1 = UPψ−k. (A5)

Thus,

T HT −1 =
∑

k

(ψ†
k )T (U †

T H ∗
−kUT )ψk, (A6)

CHC−1 = Tr(H) +
∑

k

(ψ†
k )T (±U

†
CH

T
−kUC )ψk, (A7)

SHS−1 =
∑

k

(ψ†
k )T (U †

SHkUS )ψk, (A8)

PHP−1 =
∑

k

(ψ†
k )T (U †

PH−kUP )ψk. (A9)

In Eq. (A7), ± hold for bosons and fermions, respectively.
Notably, the relation CHC−1 = Tr(H) ± H is always satis-
fied with UC = I (identity matrix); hence, HT

−k = Hk , which
implies the general eigenenergy pair (Ek,E−k ) at each crystal
momentum k, i.e., the band structure is mirror symmetric with
respect to k = 0.

For the bulk SSH lattice, Eqs. (A6)–(A9) lead, respectively,
to the relations

H ∗
−k = Hk, (A10)

σxH−kσx = Hk, (A11)

σzHkσz = −Hk. (A12)

Hence, the eigenenergies appear in pairs (Ek,E−k ) and
(Ek,−Ek ) for each k. The band diagram is mirror symmetric
around both k = 0 and E = 0.

In the bulk cSSH lattice, the PT and ST symmetries,
respectively, imply that

σxH
∗
k σx = Hk, (A13)

σzH
∗
−kσz = −Hk. (A14)

As a consequence, if there is a bulk state of energy Ek , there
must exist a bulk state of energy E∗

k (due to PT ), and a bulk
state of energy −E∗

−k (due to ST ). The former ensures that in
the PT -unbroken phase, the bands are purely real. The latter
can be combined with the definition of C to yield {H, ST C} =
∓1, and hence

σzH
†
k σz = −Hk. (A15)

This ensures that if there is a bulk state of energy Ek , there
must exist a bulk state of energy −E∗

k . In the ST -unbroken
phase, the bands are purely imaginary [8].

For the cSSH chains with domain walls discussed in the
main text, the overall PT symmetry is broken but ST is
preserved [using the representations (A3)]. Hence, defect
states must either be ST unbroken (and hence have purely
imaginary eigenenergies), or appear in pairs with eigenener-
gies {ED,−E∗

D} and eigenstates related to each other by ST :

H(ST |ψD〉) = −(ST )H |ψD〉 = −E∗
D (ST |ψD〉). (A16)

APPENDIX B: SOLVING FOR DEFECT STATES

We find defect state solutions by substituting the ansatz
(4) into the time-independent Schrödinger equation (H+ +
H−) |ψD〉 = ED |ψD〉, where H+ and H− are the Hamilto-
nians for semi-infinite lattices to the right (n > 0) and left
(n < 0) of the domain wall. This yields

H±ψ± = EDψ±, (B1)

(1 − δ)α− + α+ = (ED − iγ )β−, (B2)

(1 + δ)β+ + β− = (ED − iγ )α+, (B3)

where

H± =
( ±iγ W±δ (λ∓1)

W±δ (λ±1) ∓iγ

)
, (B4)

Wδ (λ) = (1 + δ) + (1 − δ)λ, (B5)

ψ± = (α±, β±)T . (B6)
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γGain/loss parameter
0 1 2 3

0

1

2

3

λ| |

0 1 2 3
0

1

2

3
δ = 2δ = 0.5(a) (b)

FIG. 5. Variation of |λ| with γ for (a) δ = 0.5 and (b) δ = 2.

From Eq. (B1), we derive Eq. (5). Without loss of generality,
we can take

ψ− =
(

ED − iγ

W−δ (λ−1)

)
, ψ+ = η

(
ED + iγ

Wδ (λ)

)
. (B7)

Equations (B2) and (B3) describe the wave-matching condi-
tions around the domain wall. Substituting Eq. (B7) into them,
and using Eq. (5), gives

E2
D + γ 2 = 2(1 + δ2) + (1 − δ2)(λ + λ−1),

λ = (ED − iγ )(1 − δ2)

ED + iγ
, η = 1

1 − δ
. (B8)

We then search analytically or numerically for solutions satis-
fying |λ| < 1, corresponding to exponentially localized defect
states. From (B8), we can see that if (ED, λ) is a solution,
(−E∗

D, λ∗) is also a solution. Specifically, the ST counterpart
satisfies

USK(ψ±λn) = σz(ψ±λn)∗, (B9)

where K is the complex-conjugation operator. This means that
if the ST -paired defect states are two distinct solutions, they
have the same intensity profiles and the phases are symmetric
with respect to 0 (π/2) for the left (right) sites in each unit
cell, which is precisely the behavior observed in Fig. 4.

The number of defect state solutions is determined by the
number of solutions with |λ| < 1. Eliminating ED in (B8)
yields a fourth-order polynomial in λ. In Fig. 5, we plot |λ|
versus γ for two different values of δ. If a root crosses the
|λ| = 1 line, it corresponds to a defect state appearing out of,
or disappearing into, the continuum.

Analytic solutions can be found for some special cases.
First, in the Hermitian limit (γ = 0), there is a mid-gap defect
state of the form

ψ− =
(−1

0

)
, ψ+ =

(
1 − δ

0

)
, λ = −1 + δ

1 − δ
(B10)

for δ < 0, and

ψ− =
(

0
1 + δ

)
, ψ+ =

(
0

−1

)
, λ = −1 − δ

1 + δ
(B11)

for δ > 0. The energy is pinned to ED = 0 by the S symmetry
[2,3], and the existence of this defect state is tied to the

h(a)

(b)

(c)

FIG. 6. Mapping between (a) a pair of coupled uniform-coupling
(δ = 0) cSSH chains and (c) the two-chain model of Ref. [40], where
the purple (white) sites represent counterclockwise (clockwise) res-
onator modes, and the red and blue arrows represent asymmetric
internal scattering processes.

topologically distinct configurations on both sides of the
domain wall as characterized by a π difference in Zak phases
[12]. Additionally, when 0 < |δ| <

√
2, there are two non-

mid-gap defect state solutions:

ψ− =
(±(1 − δ)

√
4 + δ4

2 − 2δ + δ2

)
, ψ+ =

( ±√
4 + δ4

2 − δ2 + δ3

)
,

λ = 1 − δ2, ED = ±
√

4 + δ4. (B12)

Another analytic solution can be obtained when the inter-
site couplings are uniform (δ = 0). In this case, there can be a
pair of defect state solutions of the form

ψ− =
(±λ

1

)
, ψ+ =

(
1

±λ

)
,

λ = ±(
√

1 − γ 2 − iγ ), ED =
√

1 − γ 2 ± 1. (B13)

This is valid only for γ > 1; for 0 < γ < 1, the defect state
is not localized since |λ| = 1. The two eigenenergies have the
same imaginary part and opposite real parts, due to the ST
antisymmetry.

Finally, for δ = ±1, there is an isolated trimer at the defect,
and we can determine the three eigenvalues

(ED + iγ )(ED − iγ )2 = 5ED − 3iγ . (B14)

In the Hermitian case, the roots are ED = {0, ±√
5}.

APPENDIX C: RELATION TO THE MODEL OF REF. [40]

In this Appendix, we show that the uniform-coupling (δ =
0) case of the cSSH lattice in the main text is related to the
two-chain model in Ref. [40].

Let us couple a δ = 0 cSSH lattice to its time-reversed
counterpart, transversely and site by site, to produce a two-
chain lattice, as shown in Fig. 6(a). The interchain coupling
is a new parameter denoted by h. Next, we exchange the
positions of even (odd) sites between two chains, as shown in
Fig. 6(b). This causes the unit cell to shrink to a single column.
We then perform the following pseudorotation in each unit
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cell:
(|u′

n〉
|v′

n〉
)

= U
(|un〉

|vn〉
)

, (C1)

where U = ei π
4 σx = 1√

2
(1 + iσx ), and |un〉 and |vn〉 are states

localized to sites in the upper and lower chains in the nth
unit cell. In this new basis, the model is identical to that of

Ref. [40], as shown in Fig. 6(c), with the parameter corre-
spondence

A = h + γ, B = h − γ, W = t, (C2)

where {A,B,W } are the parameters defined in Ref. [40].
The uniform-coupling model discussed in the main text

corresponds to h = 0, which is the diagonal line in the phase
diagram Fig. 2(c) in Ref. [40] (i.e., A = −B).
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