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Elastic quantum spin Hall effect in kagome lattices
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A mechanical analog to the quantum spin Hall insulator (QSHI) is implemented into a simple mass-spring
kagome lattice. The transition from the trivial state to the topological one is described by an invariant Chern
number function of a contrast parameter. The band diagram and helical edge states characteristic of QSHI are
obtained by a combination of numerical and analytical methods. In particular, these states are shown to be
Stoneley wave solutions to a set of asymptotic continuous motion equations. Last, scatterless propagation of
polarized topological edge waves around sharp corners is demonstrated and robustness is assessed through a

parametric study.

DOI: 10.1103/PhysRevB.98.094302

I. INTRODUCTION

Similarities between the equations governing the physics
of periodic lattices, whether acoustic, phononic, photonic, or
electronic, have allowed for establishing a sort of dictionary
whereby wave phenomena occurring in one type of lattices
can be translated, adapted, and observed in other types of
lattices as well [1-3]. Recently, based on an analogy be-
tween the Hamiltonian of an electron in a crystal and the
dynamical/stiffness matrix of a mechanical lattice, the concept
of mechanical topological insulators has emerged [4]. Like
their electronic predecessors [5,6], they exhibit an insulat-
ing bulk and conducting polarized edge states immune to
back-scattering by defects and corners. Edges of topological
insulators thus constitute a novel class of superior wave guides
with exceptionally robust transmission.

Phases of topological insulators are classified based on a
quantized invariant, namely the Chern number, attached to a
bulk band gap. As long as the gap remains open, perturbing
the constitutive and geometric parameters will have no influ-
ence on the qualities of the insulator, which will therefore
remain in the same phase with the same Chern number
[5,6]. Conversely, changing the phase of an insulator requires
closing the gap. Accordingly, lattices exhibiting Dirac cones,
whereby two bands touch along a single point, are in a critical
state: small perturbations that lift the degeneracy can toggle
the lattice between a trivial phase with a zero Chern number
and a topological phase with a nonzero Chern number. For
the specific class of quantum spin Hall insulators (QSHI),
the critical state exhibits, in fact, a double Dirac cone with
a quadruple degeneracy. This suggests that designing a QSHI
can be carried out in two steps: first, construct a lattice with a
double Dirac cone. Second, classify perturbations that lift the
degeneracy by their induced Chern numbers. It is noteworthy
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that QSHI-inducing perturbations must preserve time-reversal
symmetry. In contrast, quantum Hall insulators (QHI) neces-
sitate perturbations that break time-reversal symmetry and
thus include non-time-invariant active components [2,7-10].
Other topological phases such as the quantum valley-Hall
insulator (QVHI) are based on breaking or keeping other
spatial symmetries such as inversion, C3 or Cg symmetry
[11-17].

Starting with a lattice exhibiting two Dirac cones, a double
Dirac cone can be obtained by one of two ways. If the two
initial cones have different frequencies, then the geometric
and constitutive parameters of the lattice need to be opti-
mized so as to bring the two cones arbitrarily close to one
another [18,19]. Alternatively, if the two initial cones have
the same frequency, Brillouin zone folding techniques can be
used to superimpose the two cones [20-25]. In comparison,
the second technique is simpler to implement, especially in
hexagonal lattices that, due to symmetry, exhibit by default
two Dirac cones at K and K’ points which, by folding, end up
laying on top of one another at the I point.

In this letter, a mechanical analog of the QSHI is realized
in a hexagonal kagome lattice using the Brillouin zone folding
technique. Note that previous demonstrations of the mechan-
ical QSHI either used complicated bilayered unit cell designs
[4,26] or full plate models with coupled in-plane and out-
of-plane modes [18,19,25]. The virtue of the present design
resides in its simplicity: it is single-layered, has a limited
number of degrees of freedom (DOF) per unit cell and is gen-
uinely two-dimensional with no out-of-plane components. By
its simplicity, the used model is highly idealized as it features
massless linear springs connecting rigid masses. However,
there is a well-established equivalence between discrete and
continuum systems; thus, the characteristics of the suggested
lattice can guide the design of a more realistic system based
on beam lattices [13,15] or periodically textured plates [14].

In what follows, the QSHI, in terms of its bulk and edge
spectra, associated polarized edge states, their shapes and
decay speeds, is characterized using a continuum asymptotic
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FIG. 1. The perturbed kagome lattice (a) and a magnified view
of its unit cell (b). Edges are springs of constant k, if blue, k, if red.

homogenized model further consolidated by numerical simu-
lations. Of particular interest is the demonstrated ability of the
edge of the QSHI to propagate scatterless edge states around
corners and defects. Finally, we assess the robustness of the
QSHI. Most importantly, we show that the present QSHI is
superior to the QVHI analyzed in a previous paper [17]: when
the QVHI exhibits significant backscattering at corners of
specific angles, the QSHI remains immune.

II. COMPLETE MODEL

Consider the kagome lattice annotated in Fig. 1(a). It is
periodic invariant by translation along vectors ry, ry, r3,
and any integer combination thereof. Its dispersion diagram,
eigenfrequencies, and natural modes can be derived by ana-
lyzing the motion of one unit cell [Fig. 1(b)] under Floquet-
Bloch boundary conditions. Thus, let ¢ be a wave number
and u; be the displacement vector of mass number j, then
the boundary conditions are

u = Qsuy, (D

with Q; = €/@"). Accordingly, the motion equation of mass
1 for instance can be written as

up = Qiuy, up = Qoug,

2

—w'muy = ki(uy —uy, r)r| +ki(ue — uy, ry)r}

+ko(Qoug — uy, ri)r' + ka(us —uy, riy)ry, (2)

where k; and k; are spring constants and m is mass. In matrix
form, this reads

—o’muy = (ky + k) (r), + rhy)uy — kyrlus
—kirpus — karyyuys — ky Qoryug,  (3)
or more compactly
uj
—o’mlu] = ~Li| : |, @
ug

where L; is a 2 x 18 matrix whose entries can be deduced

from Eq. (3) with
N7 N

/ 1 / _1/2 / _1/2
o S v R A N

and finally

r . T
r;=rr;. 7)

By carrying similar calculations for the eight other masses, the
motion equation can be put in the form

u, Ll u)
—’m| == ] ®)
Ug Lg Ug
or, more symbolically,
o’m® = Hd. )

In a nondimensional form, this becomes

QPe=Hd, H=H/k, Q=w"m/k, (10)

with k = (k; + k)/2. Last, the associated dispersion diagram
is deduced from the zero-determinant condition

det(H — Q%1) =0, (11)

where [ is the 18 x 18 identity matrix.

Let B = (k; — k»)/(k1 + k») denote the relative contrast
between spring constants. For 8 = 0 and k; = k», a reduced
unit cell with only three masses and six DOFs can be chosen
as in Fig. 2(a). The resulting dispersion diagram is plotted
in Fig. 2(b) and exhibits two inequivalent Dirac cones with

the same normalized frequency 2, =+/3(3 + V5) /2 at the

corners K and K’ of the Brillouin zone. By folding the
Brillouin zone along the bisectors of 'K and I'K’, these two
Dirac cones will form together a double Dirac cone at the
I' point. The resulting folded diagram along with the folding
motion are shown on Fig. 2(c). The folding can be induced by
periodically perturbing the constants k; and k, of the springs
so that the choice of the unit cell highlighted on Fig. 2(d)
becomes necessary.

The folded dispersion diagram of Fig. 2(c) corresponds
to the case where g is infinitely close to 0. The fourfold
degeneracy of the double cone is partially lifted for nonzero
B values and breaks into two twofold degeneracies with
frequencies €2, for modes p;, and Q, for modes d;; see
Figs. 3(a) and 3(b). Modes d;, have zero displacements at
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FIG. 2. The kagome lattice: (a) homogeneous configuration, (b)
its dispersion diagram featuring two Dirac cones between the fifth
and sixth bands at K and K’, (c) folded dispersion diagram featuring
a double Dirac cone at the I' point, (d) the corresponding perturbed
configuration. Note that diagram (c) correspond to the lattice in (d)
only in the limit k; = k;.

the boundaries of the unit cell and have pairs of diametrically
opposed masses moving in phase. Conversely, modes pj»
have maximum displacements at the boundaries of the unit
cell and have pairs of diametrically opposed masses moving
in opposition of phase. Last, for § > 0, modes p;, have a
lower frequency 2, < 2,4 than modes d;, as they solicit
mainly the softer of the two springs with constant k,. As
decreases, however, and crosses 0, frequencies and modes
exchange places as the softer and stiffer springs exchange
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FIG. 3. Band inversion: dispersion diagrams for 8 = 0.1 (a)
and B = —0.1 (b). As B # 0, the fourfold degeneracy breaks into
two twofold degeneracies. The mass trajectories of the degenerate
eigenstates are illustrated in (c) along with their polarizations: a
solid green dot corresponds to the initial position of the mass and
an orange dot corresponds to the position at a later small time. Black
dots correspond to nonmoving masses.

places. This band inversion phenomenon illustrated in Fig. 3
is symptomatic of a topological phase transition occurring
between a trivial and a nontrivial state and is investigated next
in terms of an asymptotic model.

III. ASYMPTOTIC MODEL

When 8 is close to 0, g to 0 and 2 to the double Dirac
cone frequency €2,, the displacement field ® approaches the
space spanned by the degenerate eigenmodes (p1, p2, di, d>)
at (g =0, 2 = Q,). Accordingly, there exist four complex
numbers interpreted as generalized coordinates (&, &, &1, {2)
such that

P=&ip1+&Eapr+adi + 0dy + 5P, 6P L ([P,

12)
where §® gathers first-order corrections to the displacements

of the mode ®. Introducing the reduced coordinate vector ¢
and the projector matrix P given by

&
o= P=lm & p @l (3
¢}
one can write
O = P+ 5. (14)

In a similar manner, the dynamical matrix A can be Taylor
expanded as

H=H,+35H, (15)

with H, = H(q = 0, 8 = 0) being the leading order dynam-
ical matrix at zero contrast and at the double Dirac cone and

8H = BogH + q.0,, H + q,9,, H (16)

being its first-order correction composed of two terms: one
due to the presence of a small nonzero contrast 8, the other
due to a small nonzero wave number ¢ = (g., gy).

Substituting all expansions into the motion equation leads
to

(H, + SH)(Pp + @) = (2 + Q%) (Pp + @), (17
which simplifies into

SHP) + H,80 = Q25D + 6Q*Po. (18)

Applying the projector P to the above equation finally entails

PisSHPY = Q2P Py, (19)

where PP is the 4 x 4 identity matrix by orthogonality of the
eigenmodes and the effective dynamical matrix 4 = P8 H P

is evaluated to be
sn=["" -] (20)
with
sht — [—aﬂ b(8qx ; i(qu)]’ @1
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and

she — |:—a,3 —b*(&q);g— iaqy)}’ 22)

Here, a ~ 3.7 and b ~ 0.17 — 0.32i are nondimensional nu-
merical factors function of the geometry of the lattice.

Analytical approximations to the dispersion diagram near
the double Dirac cone can be derived thanks to the zero-
determinant condition now written in terms of 84 instead of
H (Fig. 3). It reads

1—a 1+a\?
(23)

and describes a cone in the case B =0. For B # 0, the
eigenfrequencies of the modes d; ; and p;, can be deduced
by letting g, = g, = O:
p ap

Qu=+—, Qp=Q,——. 24

d *toa, P 2Q, @4

The topological invariant, namely the Chern number, can
be calculated according to [18]

1
=5 || F@w . F@)=-iv,x w50
T BZ
25)

for B # 0. Therein, WV is the eigenmode of matrix §A™ with
the highest eigenvalue. We find ¢ = 0 for 8 > 0 and ¢ = +£1
for B < 0 confirming indeed the occurrence of a topological
phase transition from a trivial state (8 > 0) to a topological
one (B < 0) as B crosses 0 and the bands are inverted.

IV. EDGE AND INTERFACE STATES

A. Numerical analysis

By the bulk-edge correspondence principle, the total bulk
band gap for a topological lattice, i.e., with 8 < 0, will host
a pair of helical states localized at edges with opposite po-
larizations and opposite directions of propagation. To confirm
this behavior, the bulk and edge spectra for 8 positive and
negative are plotted on Fig. 4 for a finite slab under free
boundary conditions in the y direction and under Floquet-
Bloch boundary conditions in the x direction. It is then seen
that a pair of edge states populate the bulk band gap in
the case 8 < O confirming the predictions of the bulk-edge
correspondence principle and that the phase with 8 < O (resp.,
B > 0) is topological (resp., trivial). These edge states are
helical or elliptically polarized with opposite polarizations
and opposite propagation directions. It is worth mentioning
that these edge states are not completely gapless as would be
expected in a genuine QSHI. Here, due to the breaking of Cg
symmetry near boundaries, a small edge band gap appears and
is expected to be as small as B is.

In a similar fashion, we calculated the edge states localized
at the interface between two lattices with opposite contrast
[Fig. 5(a)]. The sample is composed of 40 unit cells with
periodic boundary conditions in the x direction and free
boundary conditions in the y direction. The first half of the

(a) B ——— (b) .
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FIG. 4. Bulk and edge spectra of a finite sample of 20 unit cells
under free (resp., periodic) boundary conditions in the y direction
(resp., x direction) for § = 0.1 (a) and 8 = —0.1 (b). In the latter
case, edge modes exist and the corresponding mass trajectories are
illustrated on (c) for g = £0.5.

unit cells below the interface y = 0 has a negative contrast
whereas the second half, above y = 0, has a positive contrast.
In Fig. 5(b), the bulk and edge spectra are illustrated. The mass
trajectories corresponding to these interface waves are plotted
in Fig. 5(c) and again are oppositely polarized.

| )

/@\

V<—17

N\—>7

[ [
FIG. 5. Bulk and edge spectra of a finite sample of 40 unit cells
under free (resp., periodic) boundary conditions in the y direction
(resp., x direction) with 8 = 0.2 for y > 0 and g = —0.2 for y <
0: (a) geometry, (b) diagram: continuous lines correspond to the
numerical result and circles correspond to the asymptotic result
[Egs. (29) and (30)], (c) mass trajectories of interface states for
g = £0.5.
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B. Continuum analysis

Using the asymptotic model of the previous section, the
calculated interface modes can be interpreted as Stoneley
waves, i.e., mechanical elastic waves localized at the interface
y = 0, separating two continua occupying the half-spaces
y >0 and y < 0. Stoneley waves typically exist within a
passing band and are characterized by elliptical particles
orbits. Here, Stoneley waves can be derived as solutions to
Eq. (19) recast in differential form. Thus, let 8 be a function
of y independent of x. By symbolically mapping ig, > d,,
we obtain a pair of continuum motion equations

—aB(y)E1(y) + b(gx + 0,)01(y) = 8¢,
b*(qx — 3)E(Y) + B (y) = 89Q%¢), (26)

governing (&, ¢;) and a similar pair of equations for (&, ).
Now consider an interface y = 0 separating between two
zones, one with 8 = B, > 0, say for y > 0, and the other with

B = —p, for y < 0. Then, a Stoneley wave solution localized
at y = 0 can be derived. It is given by
§1 =axlt =arArexp(Q+y), (27

where the sign +, resp. —, is adopted for y > 0, resp. y < 0.
This solution must satisfy four conditions, two ensuring expo-
nential decay at y = £00, and two ensuring continuity across
the interface y = 0. These can be satisfied as long as

Ay =A_= A, 0., <0, Q_>0.
(28)

oy =0 =0,

Injecting the expression of the Stoneley wave in the contin-
uum motion equations, the decay conditions imply

2 o (697 £aB)(6Q F B,)

= , 29
01 =gq; b2 (29)
whereas the continuity conditions reduce to
@By —892°) Q4 + (aB, + 820 = —2aB,q..  (30)

Consequently, Eq. (29) provides the range of existence of

Stoneley waves whereas Eq. (30) is a relationship between

8Q? and ¢, and corresponds to their dispersion relation.
Finally, the full Stoneley wave reads

@ = A(ap +di)exp (Qry)expli(gx —21)], (D

where A is a complex amplitude. We highlight that another
Stoneley wave with an opposite group velocity exists based on
the modes p; and d,. It can be deduced from the one exhibited
above by time-reversal symmetry ¢ — —¢. Alternatively, it is
given by

® = A(apz + dz)exp (Qzy)expli(—gex — Q1)) (32)

The dispersion relation of the Stoneley waves is plotted in
Fig. 5(b), based on Egs. (29) and (30) and their decay profile
is depicted on Fig. 6. Both figures show good agreement
between asymptotic and full models.

V. TRANSIENT ANALYSIS

The interface Stoneley waves given in Egs. (31) and (32)
are practically uncoupled: small defects that do not break

lu, |

|u

)l
Jugl

= = =Continuum

— 06

J

FIG. 6. Decay profiles of the Stoneley wave at g, = 0 calculated
numerically (solid) and asymptotically (dashed). Each solid line
corresponds to one mass per unit cell indexed with the subscript j;
there are nine similar lines in total but only three of them are shown
for clarity. Integer n indexes unit cells: n = 0 corresponds to the
unit cell at the interface, n > 0 (resp. < 0) to unit cells above (resp.
below) the interface.

time-reversal symmetry cannot backscatter one mode into the
other. To illustrate that fact, transient numerical simulations of
a signal propagated along an interface featuring a sharp corner
are carried. The interface is M-shaped and separates one trivial

(@) B<0

B

FIG. 7. Immunity to backscattering at corners (60 — 120°): (a)
geometry; (b) snapshots of the displacement amplitude as a color
map for a positively polarized excited wave at ¢ = 200, 250, 300
respectively; (c) same as (b) for a negatively polarized excited wave.
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FIG. 8. Immunity to backscattering at corners (30 — 150°): (a)
geometry; (b) snapshots of the displacement amplitude as a color
map for a positively polarized excited wave at (b) t = 150, (¢) t =
250, (d) t = 350, (e) t = 450, and (f) t = 550.

and one topological domain as shown in Fig. 7(a). A tone-
burst loading of central frequency €2, is applied to the middle
tip and is calculated so as to excite the positively polarized

(a) N

~
(g}
~

-100

-150

A to B FRF (dB)

200} = Without defect
With defect

19 192 194 196 198 2 202 2.04 206

mode only. The loading thus excites a single wave going right,
shown in Fig. 7(b). At the next tip, the propagated wave makes
the turn following the interface with zero backscattering.
In Fig. 7(c), the negatively polarized wave is excited and
undertakes a similar scatterless path. In both cases, the tone-
burst loading’s band lies mostly within the bulk band gap so
as not to generate any bulk waves. Simulations were carried
under free boundary conditions using the discrete spring-mass
elements of the commercial software ANSYS [27].

Upon closely inspecting Fig. 7, it becomes clear that there
are two negligible tails lagging behind the main wave packet.
The first tail goes in the opposite direction and is due to the
fact that the load exciting S; bears a numerical error exciting
S, as well and vice versa; the second tail follows the main
packet but at a significantly smaller group velocity due to
dispersion and to the existence of a narrow edge band gap (see
Figs. 4 and 95).

The interface of Fig. 7 features sharp turns at 60—120°.
Immunity to backscattering by corners is expected to hold
at other angles however. As an illustration, we carried out
similar tests with an interface featuring turns at 30—150°.
The results are illustrated in Fig. 8. It is seen that backscat-
tering is negligible in this case as well. In comparison, the
QVHI previously investigated [17] failed when such cor-
ners were incorporated. Accordingly, it is concluded that as
far as scatterless transmission along interfaces with sharp
turns and corners is concerned, the QSHI is superior to the
QVHI making it a better suited candidate for wave guiding
applications.

(b)
B
A B=0
(d)
2
=
L
<
200F Without defect |;'
_____ With defect

-250
1.8 1.85 19 1.95 2 2.05 21

Q

FIG. 9. Assessing robustness of a topological. (a) A topological wave guide. (b) A trivial wave guide. (b), (c) Frequency response functions
in function of frequency with and without defects: displacement is imposed at A and collected at B and the ratio is ploted on a log scale; the
bulk band gap is highlighted; and the defect, when present, consists in removing half a unit cell where the red dot is located on (a) and (b).

Simulations carried with § = 0.2
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VI. ASSESSING ROBUSTNESS

It is of interest to quantify the extent of the topological
protection presented above. Thus, we calculate the end-to-
end frequency response function of a topological wave guide
[Fig. 9(a)] with and without a small defect consisting of
removing one half of the unit cell located midway at the
interface (red dot). For reference, the performance of the
topological wave guide is compared to that of a trivial wave
guide designed by sandwiching a thin slice of a uniform
kagome lattice (8 = 0) between two gapped but fopologically
equivalent lattices [e.g., B < 0 to both sides; see Fig. 9(b)].
The results are plotted on Figs. 9(c) and 9(d). Therein, the
A-to-B frequency response function is the log of the power
collected at point B when an excitation of unitary power is
applied at point A. Within the bulk band gap (highlighted
zone), it is observed that the topological wave guide with
and without defect performs mostly the same with response
levels of the same order of magnitude as outside the bulk band
gap. In contrast, the response levels of the trivial wave guide
significantly drop around the center of the gap without the
defect, and even more so in the presence of the defect. It is
clear then that the topological wave guide is immune to such
small defects whereas the trivial one is extremely sensitive to
their presence.

However, it should not be concluded that topological pro-
tection is absolute. As a matter of fact, the performance of
the topological wave guide can deteriorate while remaining
insensitive to defects. Consider for instance the plot of Fig. 10:
it shows the end-to-end frequency response function of the
topological wave guide of Fig. 9(a) for varying 8. It is seen
then that, although the response is little-to-no sensitive to
the presence of the defect, as 8 increases beyond 0.5, the
topological wave guide fails in fulfilling its duty in guiding
signals as its response drops to near zero levels. As a matter
of fact, as § increases, the edge band gap, previously observed
in Fig. 4(b), is enlarged and ultimately a total, bulk and edge,
band gap appears and forbids all signals to be transmitted.
There is therefore a seemingly unsurmoutable trade-off be-
tween transmission levels on one hand and degree of local-
ization on the other hand. As a matter of fact, the transmitted
edge states are as localized near the interface as the bulk band
gap is wide and both are proportional to 8 at leading order.
However, as f is increased to achieve more localized states,
the edge band gap widens and the transmission levels drop
drastically. The parametric study shown here suggests that
the optimal combination of localization and transmission is
achieved around g = 0.5, i.e., maximum contrast value for
which transmission is unharmed.

20 T T T T

20t
o “of

&

W 60f 1
14

L 80f ]
(a2]

o 100 ——  Without defect 1
< a0b 0 === With defect

-140 1

-160

B

FIG. 10. Frequency response function of a topological wave
guide with and without defect at the Dirac frequency for varying
contrast 8.

VII. CONCLUSION

As demonstrated, a mechanical analog of the QSHI for
classical mechanical waves can be realized in a fairly simple
system such as the kagome lattice. The coupling induced by
a periodic perturbation to the spring constants is enough to
make appear electronic or quantum mechanical features such
as pseudo-spins and helically polarized states. The carried
transient numerical simulations show that these states are
uncoupled and can be used to transmit signals around specific
defects, geometric or constitutive, without backscattering, i.e.,
with no loss of power. The edge of a QSHI, in a precise band-
width, therefore acts as a robust wave guide with consistent
high transmittance close to unity.
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