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Boundary-driven quantum spin chains are paradigmatic nonequilibrium systems featuring the presence of
particle currents. In general, it may not be possible to distinguish an incoherent type of particle transport from a
truly quantum coherent one through monitoring the mean current, as both ballistic as well as diffusive regimes
occur in either setting. Here, we show that genuine coherent features become manifest in large fluctuations which
allow a discrimination between incoherent and coherent quantum transport: in the former case, realizations that
are characterized by atypically large boundary activity are associated with larger than typical currents, i.e., an
enhanced number of events at the boundaries goes together with a large current. Conversely, in the coherent case
the Zeno effect leads to the suppression of current in trajectories with large activity at the boundary. We analyze
how these different dynamical regimes are reflected in the structure of rare fluctuations. We show moreover
that realizations supporting a large current are generated via weak long-range correlations within the spin chain,
typically associated with hyperuniformity. We further observe critical time-coexistence behaviors with intermittent
currents in rare fluctuations of the strongly interacting XXZ chain for completely asymmetric drivings.
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I. INTRODUCTION

Complex collective behavior of nonequilibrium systems
admits a simplified thermodynamiclike description in terms of
few macroscopic degrees of freedom [1–3]. These are usually
time-averaged observables accounting for the response of the
system to some quench or to some external driving [4–12]. For
boundary-driven chains [cf. Figs. 1(a) and 1(b)], a complete
characterization of the collective dynamics is achieved by
considering the integrated current Q(t ), the net number of
particles leaving the system through one of the boundaries up
to time t and the activity K (t ), the total number of jumps at the
same boundary. Typically, one is interested in average values
of these quantities; however, interesting collective phenomena
are often to be found in rare dynamical realizations [11,13–17].
Moreover, the majority of studies on nonequilibrium systems
focus on properties of the stationary state (see, e.g., [18–25]),
and only a minority analyze rare dynamical behaviors [15,26–
29], mainly focused on the statistics of currents. In particular,
much progress has been made in predicting the nonequilibrium
behavior of different quantum and classical systems, unifying
them in few classes according to the macroscopic emergent
type of particle transport (e.g., diffusive, ballistic).

In specific cases, quantum systems with coherent transport
have even been mapped to classical fully incoherent counter-
parts. For instance, it has been shown that the current statistics
of the XX chain in the presence of dephasing coincides, in
the thermodynamic limit, to the one of the classical symmetric
exclusion process (SSEP) [27,30]: the latter can be seen as
a fully incoherent type of particle transport in the quantum
spin chain, where the dynamics takes place among states that
are diagonal in the number basis, with no quantum coherent
features. The question that naturally arises from these results
is thus whether there exist universal features in the rare events
of quantum coherent nonequilibrium systems distinguishing

these from incoherent ones, or whether, at this macroscopic
level, the microscopic nature of the dynamics becomes irrele-
vant.

In this work, we show that there is indeed one marked dif-
ference between coherent and incoherent transport in quantum
boundary-driven chains and, irrespectively, of microscopic de-
tails of the dynamics and of the emergent collective behavior, a
clear distinction between these two regimes can be established
at the level of large fluctuations. We quantify the properties
of dynamical fluctuations through the probability πK,Q of a
dynamical realization with activity K and current Q. For long
times t , this probability obeys a so-called large deviation (LD)
principle [1,2], i.e., πK,Q ≈ e−t φ(k,q ), where k(t ) = t−1K (t )
and q(t ) = t−1Q(t ). The function φ(k, q ) is positive, and
becomes zero when both its arguments k and q take the
stationary state values 〈k〉 and 〈q〉. Similarly, the conditional
probability of a current Q, given an activity K is πQ|K ≈
e−tφ|k (q ), with φ|k (q ) = φ(k, q ) − φ(k), and φ(k) being the LD
function of the activity. In Figs. 1(c) and 1(d), we show this
conditional LD function for paradigmatic incoherent (SSEP)
and coherent (XX chain with dephasing) particle transport in
the quantum chain, where the difference becomes obvious: for
the incoherent case, an increasing activity leads to a larger
than stationary optimal current, i.e., the most likely observed
current for given activity. In the coherent case, instead, large
activities lead to a smaller than stationary optimal current.

In the following, we consider in detail both quantum
coherent boundary-driven spin chains (XX chain and XXZ
chain) and their incoherent counterparts, which are represented
by classical exclusion processes. For these models, we discuss
the full range of fluctuations focusing, in particular, on the
interplay between current and activity. Using perturbative
arguments, we moreover establish that the features displayed in
Fig. 1 are universal, i.e., they hold for any quantum spin chain

2469-9950/2018/98(9)/094301(9) 094301-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.094301&domain=pdf&date_stamp=2018-09-05
https://doi.org/10.1103/PhysRevB.98.094301


CAROLLO, GARRAHAN, AND LESANOVSKY PHYSICAL REVIEW B 98, 094301 (2018)
B

o
u

n
d

ar
y 

A
ct

iv
it

y 
k

Current q Current q 

eEe−E

H

Conditional LD function φ|k(q) = t−1 log πQ|K

(a)

(b)

(c) SSEP XX chain 
with dephasing

Optimal  
current

(d)

2(1 + μ)

2(1 − μ)

2(1 + μ)

2(1 − μ)

2(1 + μ)

2(1 − μ)

2(1 + μ)

2(1 − μ)

Stationary state Stationary state

Optimal  
current

FIG. 1. (a) Incoherent chain: an up arrow indicates the presence
of a particle. The latter jumps into neighboring sites only if these
are empty, and rates can be asymmetric in the presence of a field
E �= 0. Particle injection/ejection takes place with boundary driving
parameter μ ∈ [0, 1]. This dynamics is equivalent to that of classical
exclusion processes. (b) Coherent chain: transport is governed by
a Hamiltonian H . Arrows with different angles pictorially indicate
superposition states and the presence of quantum coherent effects.
(c), (d) Exact numerical results for conditional large deviation (LD)
function φ|k (q ) of a system of L = 6 sites, μ = 0.6. The dashed line
represents the most likely observed current q for different activities
k; bullets indicate the stationary state behavior. (c) SSEP with E = 0.
(d) XX chain with dephasing showing suppression of the current for
large activities.

Hamiltonian transport. Finally, we discuss how the distinct
fluctuation behavior in the coherent and in the incoherent
regime manifests in the spatial structure of particle trajectories.

II. SPIN CHAIN MODELS AND DYNAMICAL LARGE
DEVIATION FORMALISM

We briefly introduce the details of the formalism needed
to derive the statistical properties of events mediated by the
boundary driving. In order to obtain the joint current-activity
statistics, it is convenient to work with the moment generating
function Zs,h = ∑

K,Q e−sK+hQπK,Q. This function not only
provides all moments of the observables, but it can also be
interpreted as the dynamical partition function of an ensembles
of biased probabilities π

s,h
K,Q = e−sK+hQπK,Q, favoring or

disfavoring different realizations according to the value of the
outcomes. These ensembles are associated to rare dynamical
behaviors of the system, and are often used to describe
properties of large fluctuations [14,31–33]. Indeed, for long
times Zs,h � eψ (s,h) t , and ψ (s, h) is the cumulant generating
function (CGF) of the time-averaged quantities k(t ), q(t ) in
both typical and biased ensembles of trajectories. As an exam-
ple, while 〈q(t )〉 = ∂hψ (s, h)|s,h=0 is the average current in the
steady state, 〈q(t )〉s,h = ∂hψ (s, h) = (tZs,h)−1 ∑

K,Q Qπ
s,h
K,Q

is the current in the s, h ensemble of rare trajectories. The

LD function φ(k, q ) can then be obtained via the Legendre
transform φ(k, q ) = maxs,h [−sk + hq − ψ (s, h)].

We use this formalism here to study quantum spin- 1
2 chains

with L sites, and connected through their first and last sites to
thermal reservoirs [see Figs. 1(a) and 1(b)]. For a coherent type
of transport, we consider systems where the bulk dynamics is
due to the Hamiltonian

H =
L−1∑
k=1

(
σ (k)

x σ (k+1)
x + σ (k)

y σ (k+1)
y + δz σ (k)

z σ (k+1)
z

)
, (1)

where σ (k)
α is the α Pauli matrix of the kth spin. The external

driving, describing dissipative particle injection/ejection at the
boundary sites, is given by [34,35]

Ds,h[·] =
1∑

α=0

γα

(
L(1)

α · L(1)†
α − 1

2
{·, (L†

αLα )(1)}
)

+
1∑

α=0

γ1−α

(
e−s−(−1)αhL(L)

α · L(L)†
α

− 1

2
{·, (L†

αLα )(L)}
)

, (2)

respectively, L0/1 = σ±, and γ0/1 = 2(1 ± μ), with μ ∈ [0, 1]
being the driving parameter. The fields s and h, conjugated
respectively to the activity and to the current, are used, in the
LD formalism, to obtain the CGF ψ (s, h) [15,26–28,36]. The
latter is given by the eigenvalue with the largest real part of the
so-called tilted operator Ls,h[·] = −i[H, ·] + Ds,h[·].

We want to compare the fluctuations of the current due to
the above Hamiltonian to those of a fully incoherent process.
The latter, represented in Fig. 1(a), consists of classical particle
jumps between different configurations which are diagonal in
the basis of the number operators n(k) = σ

(k)
+ σ

(k)
− . Hence, this

dynamics is clearly not characterized by any kind of quantum
coherent feature. Considering that particles can only jump onto
neighboring sites, such incoherent process is implemented by
the following classical generator:

WE =
L−1∑
k=1

[eEσ
(k+1)
+ σ

(k)
− + e−Eσ

(k+1)
− σ

(k)
+

− eEn(k)(12 − n)(k+1) − e−En(k+1)(12 − n)(k)], (3)

where 12 is the 2 × 2 identity matrix, and the presence of an
external field E �= 0 creates an asymmetry between the rates
of bulk particle jumps to the left and to the right.

The effect of the boundary injection and ejection of particles
are accounted for by the term

W bound
s,h = γ0[σ+ − (12 − n)](1) + γ1[σ− − n](1)

+ γ1[e−s−hσ+ − (12 − n)](L)

+ γ0[e−s+hσ− − n](L). (4)

For this incoherent process, the generator W tot = WE +
W bound

0,0 implements the dynamics of the probability vector
of the particle configurations. The modified operator W tot

s,h =
WE + W bound

s,h , on the other hand, constitutes the tilted operator
from which all cumulants of the chosen observables are
extracted.
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It is important to notice that the incoherent processes
presented here are nothing but classical simple exclusion
processes: in particular, for E = 0 the dynamics is that of
the SSEP, while for E �= 0 one has the asymmetric simple
exclusion process (ASEP). Notice also that, as discussed in
[36–38], these processes could be equivalently represented
in a fully quantum framework by means of a specific,
uniquely dissipative, bulk dynamics. This highlights how the
classical simple exclusion dynamics represents the incoher-
ent counterpart of the bulk dynamics governed by quantum
Hamiltonians.

III. CURRENT FLUCTUATIONS IN THE XX CHAIN

We start by considering the XX chain, where the coherent
bulk dynamics is governed by the Hamiltonian given by Eq. (1)
with δz = 0. This is a noninteracting ballistic system. In order
to compute ψ (s, h), we exploit that the map Ls,h[·] can be cast
into the non-Hermitian operator [26,39,40]

L̂s,h = a · U †

(
X 0

0 −XT

)
U · a − 4, U = 1√

2

(
1 −i

1 i

)
.

(5)

Here, a is a 4L-dimensional vector, whose entries ai are
fermionic Majorana operators, {ai , aj } = δi,j , and the matrix
X contains the details of the tilted dynamics (see Appendix A
for details). The operator can then be brought into a diagonal
form L̂s,h = 2

∑2L
m=1 �m b′

mbm − 4, in terms of normal modes
bm, b′

m, where �m are the eigenvalues of the matrix X [39,40].
The CGF is therefore ψ (s, h) = 2

∑
m∈�+ Re(�m) − 4, with

�+ being the set of m for which Re(�m) > 0. Associated
to this, one has the left and right eigenvectors 〈Ls,h| =
〈0̃| ∏m∈�+ bm, |Rs,h〉 = ∏

m∈�+ b′
m|0〉, with 〈0̃|, |0〉 being the

left, respectively, right vacuum.
Using this formalism one can show that, in the large-L limit,

the magnitude of the current is always bounded by the value
4/π . This was noticed in [26] for the current statistics, but we
see here that this bound is present for any activity, even when
the latter is atypically large. Moreover, Fig. 2(a) shows the same
suppression of the optimal current for increasing activities that
we already discussed in presence of dephasing [Fig. 1(d)]. This
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FIG. 2. Exact numerical results for the conditional LD function
φ|k (q ): the dashed lines indicate the most likely value of the current,
points instead the stationary state behavior. (a) XX chain L = 100 for
μ = 0.5. (b) Classical ballistic asymmetric exclusion process (ASEP),
for L = 6, μ = 0.5, and E = 0.75.

appears to be a signature of the coherent nature of the quantum
transport in these large fluctuations, independent on whether
currents are ballistic or diffusive.

IV. CURRENT FLUCTUATIONS AND THE ZENO EFFECT

We will now investigate to what extent the previous findings
generalize, and, in particular, whether they apply also to
interacting systems. To address this situation, it is convenient
to move from the description of events with fixed k and q,
given by the LD function φ(k, q ), to the one based on biased
ensembles of probabilities, where average values are under
control [14,32,33,41]. This means that we focus on the CGF
ψ (s, h). With this description, we can compute the current
〈q(t )〉s,h in biased ensembles and recover our previous findings
observing its behavior for different values of the biases: the XX
chain displays an eventual current suppression in ensembles
with increasing activities (s < 0) [see Fig. 3(a)], while for the
SSEP, representing the incoherent transport in the quantum
chain, a larger average number of events at the boundary favors
an increased net flow of particles [see Fig. 3(b)].

Let us now consider the quantum XXZ chain for μ �= 1,
whose Hamiltonian is the one of Eq. (1) with finite value of
δz. This system undergoes a phase transition controlled by
the anisotropy δz [12,28], from ballistic (δz < 1) to diffusive
(δz > 1) transport, and further presents anomalous current
fluctuations in the diffusive regime [28]. It is the simplest, yet
nontrivial, model that we can exploit to understand whether
the presence of interactions in the Hamiltonian changes the
rare behavior of quantum spin chains. For μ = 0, we observe,
in the ballistic phase, that active and inactive ensembles,
characterized by the same |s|, show the same suppressed
value of the current as it happens for the XX chain. In the
diffusive regime [Fig. 3(c)], for small biases towards active
realizations, currents tend to increase with the activity, as it
happens for incoherent processes. However, in very active
ensembles, there is a departure from the incoherent diffusive
behavior, manifested in the suppression of the current. Since we
observe the same for the XX chain with dephasing at the same
μ = 0, this particular behavior with s seems to be related to the
diffusive regime more than to the presence of interactions in
the Hamiltonian. We further considered the ASEP with finite
field E. This model is ballistic [42–44], but, contrary to the
coherent ballistic case, larger activities are associated to larger
currents [cf. Fig. 2(b)].

All these findings lead us to the following conclusion:
in boundary-driven spin chains quantumness manifests in a
particular behavior of dynamical fluctuations, which is not
dependent on whether the average transport is ballistic or
diffusive. The origin of this is the Zeno effect: this not
only affects stationary properties (see also, e.g.. [45,46]), but
also very active dynamical realizations, where sites at the
boundaries of the chain are repeatedly disturbed by particle
injection or ejection from the reservoir and, as a consequence,
the quantum coherent transport is frozen. Via perturbation
theory on the tilted operator, we can extend our numerical
findings to quantum spin chains with generic Hamiltonians.
Indeed, we find that, with or without bulk dephasing, ∀ μ �= 1
and ∀ L, particle transport is suppressed for ensembles with
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FIG. 3. Exact numerical results for the current 〈q(t )〉s,h computed with probabilities π
s,h
K,Q, biasing dynamical realizations according to

the value of current and activity. Thick black lines are for typical (nonbiased) activity. (a) XX chain μ = 0.6, |s| = 1, 2, 3: dashed lines are
for active ensembles, solid lines for inactive ones. (b) SSEP L = 21, |s| = 0.5, 1, 2, μ = 0: dashed lines are for active ensembles, solid lines
for inactive ones. (c) XXZ chain δz = 4, L = 8, μ = 0. Active ensembles: for small |s| currents increase while for large |s| are suppressed.
(d) XXZ chain δz = 4, L = 6, μ = 1. Crossover from small to large current regime. A dynamical trajectory at the critical point shows that
fluctuations, breaking the clustered insulating structure of the density profile, are sustained for finite time windows and determine intermittency
of the current.

very large average activity (s → −∞) (see Appendix B):

lim
s→−∞〈q(t )〉s,h = 0.

As this result is independent of the specific system’s Hamilto-
nian, we have shown that this current suppression is a universal
feature of spin chains with a truly quantum coherent particle
transport in the bulk. Moreover, for |s|  h, the time-averaged
activity 〈k(t )〉s,h ∝ e−s , and one has 〈q(t )〉s,h ∝ 1

〈k(t )〉s,h , show-
ing a diffusivelike scaling of the particle transport with the
average rate of events at the boundary.

We conclude this section by highlighting a critical behavior
in the current fluctuations of the XXZ chain. The current
suppression for coherent quantum transport that we have
discussed so far takes only place when μ �= 1. Indeed, if μ = 1
the rightmost boundary can only extract particles [Fig. 1(b)]
and thus fluctuations with larger activity are clearly sustaining
larger than stationary currents: for this value of μ, current and
activity are the same observable. While, in general, current
fluctuations in this case do not show particular behaviors (see,
e.g., [26]), in this case, we found that the strongly interacting
XXZ chain displays a critical behavior reminiscent of first-
order phase transitions: current fluctuations undergo a steep
crossover from typical low current [25] to atypical large current
regime [Fig. 3(d)]. At the critical point we observe intermittent
currents: the cluster structure of the density profile, responsible
for very small currents [25], alternates in time with fluctuations
breaking the clusters and allowing for particle transport.

V. COMPETITION BETWEEN CURRENT SUPPRESSION
IN ACTIVE FLUCTUATIONS AND EMERGENT

INCOHERENT TRANSPORT

Many quantum coherent models display emergent incoher-
ent dynamics in some limiting case. A common scenario is
when the coherent bulk dynamics is affected by the presence
of an environment which introduces strong dephasing. It is thus
of interest to investigate how the competition between current
suppression, intrinsic in the coherent nature of boundary-
driven transport models, and the current enhancement of
incoherent processes manifests in dynamical fluctuations.

In this section we explore this by considering a well-known
example: the boundary-driven XX chain in the presence of
dephasing. The dynamics of this system is generated by the
following master equation:

∂tρt = −i[H, ρt ] + D0,0[ρt ] + LD[ρt ] ,

where the Hamiltonian H is as in Eq. (1) with δz = 0 and LD

describes the presence of a dephasing environment in the bulk,
which is accounted for by the term

LD[ρ] = γD

L∑
m=1

(
n(m)ρ n(m) − 1

2
{ρ, n(m)}

)
.

For γD = 0 this quantum model can be considered as purely
coherent, while in the presence of strong dephasing rates γD 
1 it is known that its dynamics is effectively equivalent to that
of the incoherent SSEP (see, e.g., [47]). Therefore, by varying
the strength of dephasing, it is possible to interpolate between
a fully quantum coherent behavior (γD = 0) and an emergent
incoherent one (γD  1).

In Fig. 4, we compare the conditional large deviation
functions φk (q ) obtained for different values of the dephasing
rate γD . This figure clearly displays how for increasing de-
phasing rates the suppression of the optimal current is moved
towards larger and larger values of the boundary activity.
This fact is witnessing the competition between the quantum
Zeno effect affecting the coherent particle transport and the
emergent incoherent behavior of the model. The latter delays
the appearance of the current suppression and makes current
fluctuations of this system behave like those of an incoherent
process in larger and larger parameter regions above the
stationary activity value.

VI. SPATIAL STRUCTURE OF TRAJECTORIES

Now that we know how large fluctuations allow to dis-
criminate between coherent and incoherent particle transport
in boundary-driven quantum spin chains, it is interesting to
understand their spatial configuration. A key quantity capturing
relevant features of density correlations is the structure factor
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FIG. 4. Plot of the conditional large deviation function φk (q ) for an XX chain of L = 4 qubits in the presence of bulk dephasing with
rate γD , and driving parameter μ = 0.3. When γD = 0 (fully coherent case), for this value of μ we see that the stationary state current is also
the largest possible optimal current, so that fluctuations with larger than typical boundary activity can only lead to current suppression. For
larger and larger γD , instead, it is possible to identify an increasing region of active fluctuations where the optimal current is enhanced with
respect to the stationary one. Eventually, for very large boundary activities the Zeno effect manifests and leads to current suppression. The fact
that the optimal current suppression starts to appear for larger and larger boundary activities when increasing the dephasing rate γD is thus a
manifestation of the emergent classical incoherent behavior of the quantum XX chain with strong dephasing competing with the quantum Zeno
effect.

[10,17,30,48]

S(p) := 2

L

L∑
m,k=1

sin(k p) sin(m p) Cmk (s, h),

with p = π
L
p′, for p′ = 1, 2, . . . , L − 1, and Cmk (s, h) the

density-density covariance matrix in the biased s, h en-
semble of trajectories. Defining the expectation 〈O〉s,h =
Tr (O �

1/2
s,h rs,h�

1/2
s,h ), with �s,h, rs,h the left, respectively right,

eigenmatrix of the tilted operator Ls,h associated to the
eigenvalue ψ (s, h), the density-density correlations can be
computed as [15,30,36]

Cmk (s, h) = 〈nmnk〉s,h − 〈nm〉s,h〈nk〉s,h.
For the XX chain, reconstructing the matrices rs,h, �s,h from
the fermionic formulation is not an easy task. Nonetheless, we
can very well approximate these correlations with Cmk (s, h) ≈
〈〈nmnk〉〉s,h − 〈〈nm〉〉s,h〈〈nk〉〉s,h (see Appendix C), where
〈〈O〉〉s,h = Tr (�s,h O rs,h). This functional can be computed in
the fermionic language as 〈〈O〉〉s,h = 〈Ls,h|O(a)|Rs,h〉, with
O(a) being the operator O written in terms of Majorana
fermions.

Density correlations in the typical steady-state dynamics
of the XX chain are extended at most to nearest neighbors
[18]. Very different is the behavior for increasing values of
the current bias h: in these ensembles, characterized by large
currents, we observe very weak but longer range correlations
spread all along the chain. These have the usual anticorrelated
structure suppressing density fluctuations and signaling hype-
runiformity [10,49] (see Fig. 5). Conversely, when favoring
trajectories with a large number of boundary events, density
correlations are destroyed. In very active ensembles (|s| 
|h|), the system tends to be completely uncorrelated, with an
almost flat structure factor. The same happens also for δz > 0

and in the presence of dephasing: large activities break the
long-range correlations necessary to sustain efficient particle
transport. In stark contrast, in very active realizations of
boundary-driven quantum spin chains with incoherent bulk
transport density correlations are not diminished.

The strongly interacting XXZ chain shows also here an
anomalous behavior. In dynamical fluctuations with large
currents, one witnesses the buildup of anticorrelations between
nearest neighbors. However, the presence of strong interactions
leaves all other sites positively correlated, as it happens in the
stationary state [50], and, as a consequence, the structure factor
is not signaling hyperuniformity.

FIG. 5. (a) Density correlations Cmk for μ = 0.6, bias s = −3,
L = 100, and different values of h. Favoring realizations with large
currents we observe how long-range (anti)correlations are developed.
(b) Structure factor S(p) with a linear behavior, for small p in large
current events, signaling hyperuniformity. Top: s = −3, μ = 0.6,
and h = 0, 3, 5, 7, 10, L = 100. Bottom: s = 0, μ = 0.8, and h =
0, 1, 3, 5, 7, L = 50.
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VII. CONCLUSIONS

We conducted a systematic exploration of large fluctuations
in quantum spin chains characterized by both a coherent and
an incoherent type of particle transport in the bulk. Our results
show that the coherent/incoherent nature of the particle trans-
port is not apparent from the typical behavior of the dynamics
but only becomes apparent after a careful examination of
dynamical fluctuations. We have further highlighted a critical
behavior appearing in the current fluctuations of the strongly
interacting XXZ chain for fully asymmetric driving. For this
system, current fluctuations feature a first-order transitionlike
behavior, with critical dynamical realizations that are a mixture
of two very different dynamical phases.
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APPENDIX A: CUMULANT GENERATING FUNCTION OF
THE XX CHAIN

In this appendix, we will briefly show how to write the tilted
operator for the XX chain in the third quantization formalism
[26,39,40] and compute its eigenvalue with largest real part.
Introducing, via Jordan-Wigner transformation, the Majorana
operators for k = 1, 2, . . . L,

w2k−1 = σ (k)
x

k−1∏
h=1

σ (h)
z , w2k = σ (k)

y

k−1∏
h=1

σ (h)
z , (A1)

such that {wk,wh} = 2δk,h, one can write the XX-chain Hamil-
tonian as

H = −i

L−1∑
k=1

(w2kw2k+1 − w2k−1w2k+2).

Also, jump operators appearing in the boundary dissipative
contribution can be written in the following way:

σ
(1)
+ = 1

2 (w1 + iw2), σ
(1)
− = 1

2 (w1 − iw2),

σ
(L)
+ = −Z(w2L−1 + iw2L), σ

(L)
− = −Z(w2L−1 − iw2L),

(A2)

where Z, the parity operator, is Z = ∏L
k=1 σ (k)

z .
With the help of the Majorana fermions, we can as well

construct a basis for the space of operators. A generic element
of such a basis reads as

B�α =
2L∏
k=1

w
αk

k , with αk = 0, 1.

Through these elements, one can define a vector space formed
by the vectors |B�α〉, and embedded with the inner product
〈B �β |B�α〉 = 1

2L Tr (B†
�β B�α ). Focusing on the even subspace of

these operators B�α (namely, the ones for which
∑

k αk is an
even number), which is preserved by the action of the tilted
operator Ls,h, and on which the action of Z is trivial, one can
show [26,39,40] that Ls,h can be written as a linear map

L̂s,h = â · A · â − 4,

acting on the corresponding (even) vector subspace. A is the
so-called shape matrix, and the vector â is a vector of 4L new
Majorana operators {âh, âk} = δh,k , such that

√
2 â2k−1|B�α〉 = |wk B�α〉, k = 1, 2, . . . , 2L.

The shape matrix A, for the considered tilted operator,
assumes the following form (coinciding for s = 0 to what is
found in [26]):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̂0,0(−μ) Ĥ 0 . . . . . . 0

Ĥ 0 Ĥ
. . .

. . . 0

0 Ĥ 0
. . .

. . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0 Ĥ

0 0 0 . . . Ĥ B̂s,h(μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with Ĥ = iσy ⊗ 12, and

B̂s,h(μ) = f 1
s,h(μ) σy ⊗ σz + f 2

s,h(μ) σy ⊗ σx

+ f 3
s,h(μ) 12 ⊗ σy,

together with

f 1
s,h(μ) = −μ,

f 2
s,h(μ) = −ie−s[μ cosh(h) + sinh(h)],

f 3
s,h(μ) = −e−s[cosh(h) + μ sinh(h)]. (A3)

This matrix can be written in a tensor product form

A = f 1
0,0(−μ) D1 ⊗ σy ⊗ σz + f 2

0,0(−μ) D1 ⊗ σy ⊗ σx

+ f 3
0,0(−μ) D1 ⊗ 12 ⊗ σy + H̃ ⊗ Ĥ

+ f 1
s,h(μ) DL ⊗ σy ⊗ σz + f 2

s,h(μ) DL ⊗ σy ⊗ σx

+ f 3
s,h(μ) DL ⊗ 12 ⊗ σy,

where (DN )m,k = δk,Nδk,m and with H̃ being the L × L matrix
whose nonzero elements are only H̃k,k+1 = H̃k−1,k = 1. All
terms have, as second entry of the tensor product, either an
identity or a σy. It proves therefore convenient to reshape the
above matrix moving the second and the third entries of the
tensor product to the first, respectively, second position. In this
new representation the matrix reads as

A′ = f 1
0,0(−μ) σy ⊗ σz ⊗ D1 + f 2

0,0(−μ) σy ⊗ σx ⊗ D1

+ f 3
0,0(−μ) 12 ⊗ σy ⊗ D1 + iσy ⊗ 12 ⊗ H̃

+ f 1
s,h(μ) σy ⊗ σz ⊗ DL + f 2

s,h(μ) σy ⊗ σx ⊗ DL

+ f 3
s,h(μ) 12 ⊗ σy ⊗ DL.

Now, we apply a rotation on the first term of the tensor product,
bringing σy to its diagonal form (UσyU

† = σz, with U as in

094301-6
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the main text), obtaining

A′′ = 12 ⊗ σy ⊗ (
f 3

0,0(−μ)D1 + f 3
s,h(μ)DL

)
+ σz ⊗ (

f 1
0,0(−μ)σz ⊗ D1 + f 2

0,0(−μ)σx ⊗ D1

+ i12 ⊗ H̃ + f 1
s,h(μ)σz ⊗ DL + f 2

s,h(μ)σx ⊗ DL

)
.

We can then collect terms introducing a matrix X, so that one
has

A′′ =
(

X 0

0 −XT

)
;

the matrix X is given by X = 12 ⊗ iH̃ + �1 + �L, with �1 =
B0,0(−μ) ⊗ D1 and �L = Bs,h(μ) ⊗ DL, where

Bs,h(μ) =
( −μ −ie−(s+h)(μ − 1)

−ie−(s−h)(μ + 1) μ

)
.

The reordering that we performed on the tensor product
affects also the vector of Majorana fermions â. This can be
accounted for by introducing a new vector a, made as follows:

a = (â1, â5, â9, . . . , â1+4(L−1), â2, â6, â10, . . . , â2+4(L−1),

× â3, â7, â11, . . . , â3+4(L−1), â4, â8, â12, . . . , â4L)T .

This shows that the generator can be written as in Eq. (5) of
the main text:

L̂s,h = a · U †

(
X 0

0 −XT

)
U · a − 4.

We now want to find the largest real eigenvalue of the above
generator. Assuming X to be diagonalizable, there exists a
matrix P , such that X = P�P −1, with � diagonal; thus,

U †
(

X 0

0 −XT

)
U = U †

(
P 0

0 P −T

)

×
(

� 0

0 −�

)(
P −1 0

0 P T

)
U.

Defining V = (
P −1 0

0 P T
)U , with analogous calculation to those

of Ref. [40], one finds

L̂s,h = a · V T

(
0 −�

� 0

)
V · a − 4.

The matrix V implements a generalized rotation acting on the
vector a, in such a way that it introduces 4L almost canonical
fermionic creation and annihilation operators(

b

b′

)
= V · a,

obeying {bh, b
′
k} = δh,k , and with all other anticommutation

relations being zero. These creation and annihilation operators
are the normal master modes of the tilted operator. With these,
one finds

L̂s,h =
2L∑
j=1

�j (b′
j bj − bjb

′
j ) − 4,

and using the anticommutation relations

L̂s,h = 2
2L∑
j=1

�j b
′
j bj − 4 −

2L∑
j=1

�j = 2
2L∑
j=1

�j b
′
j bj − 4,

where the last equality comes from the fact that X is traceless.
The dependence on the biases s, h and on the parameter μ is
encoded in the eigenvalues �j of the matrix X, as well as in
the rotation matrix V . Introducing right and left vacuum |0〉,
〈0̃|, which are annihilated by bm and b′

m, respectively, one finds
that the eigenvalue with the largest real part corresponds to the
right eigenvector |Rs,h〉 = ∏

m∈�+ b′
m|0〉, as well as to the left

one 〈Ls,h| = 〈0̃| ∏m∈�+ bm, and is given by

ψ (s, h) = 2
∑

m∈�+
Re(�m) − 4,

with �+ being the set of m for which Re(�m) > 0.

APPENDIX B: PERTURBATION THEORY ON THE
TILTED OPERATOR

Let us start by writing explicitly all terms of the tilted
operator Ls,h with a generic Hamiltonian H :

Ls,h[ρ] = −i[H, ρ] + γ0σ
(1)
+ ρσ

(1)
− − γ0

2
{ρ, σ

(1)
− σ

(1)
+ }

+ γ1σ
(1)
− ρσ

(1)
+ − γ1

2
{ρ, σ

(1)
+ σ

(1)
− }

+ e−s[γ1e
−hσ

(L)
+ ρσ

(L)
− + γ0e

hσ
(L)
− ρσ

(L)
+ ]

− γ1

2
{ρ, σ

(L)
− σ

(L)
+ } − γ0

2
{ρ, σ

(L)
+ σ

(L)
− }. (B1)

For large negative s we see that there is a part of the above map
which is predominant. Defining

K[ρ] = [γ1e
−hσ

(L)
+ ρσ

(L)
− + γ0e

hσ
(L)
− ρσ

(L)
+ ],

and collecting in W[ρ] all remaining terms appearing on the
right-hand side of Eq. (B1), we can write the tilted operator as

Ls,h[ρ] = e−sK[ρ] + W[ρ].

When considering large negative s, Ls,h = e|s|(K + e−|s|W ),
with e−|s| a small number, showing that we can apply perturba-
tion theory in order to consider the correction to the dominant
term K due to the map W . To proceed, one needs first to
diagonalize the map K. This acts in a nontrivial way only on
the last site of the chain; we therefore consider operators of the
form x ⊗ y, where x is an operator acting on the first L − 1
sites of the chain, while y acts only on the last one. We thus
have

K[x ⊗ y] = x ⊗ K̂[y],

K̂[y] = [γ1e
−hσ+yσ− + γ0e

hσ−yσ+].

It can be shown that the largest eigenvalue of the map K̂ is
given by

√
γ0γ1, with associated right eigenmatrix r and left

one � being as follows:

r =
⎛
⎝

√
γ1√

γ1+e−h
√

γ 0
0

0
√

γ0√
γ0+eh

√
γ1

⎞
⎠,
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FIG. 6. Comparison between the exact structure factor S(p) and the approximated one SA(p) for an XX chain with L = 10 and different
combinations of the various parameters. The good agreement between the two quantities shows that one can rely on this approximation to gain
insight on the structure of the various ensembles.

� = 1

2

⎛
⎝

√
γ1+e−h

√
γ 0√

γ1
0

0
√

γ0+eh√γ1√
γ0

⎞
⎠.

Given any operator x acting on the first L − 1 sites of the
chain, one has K[x ⊗ r] = √

γ0γ1x ⊗ r . This shows that the
eigenvalue

√
γ0γ1 is highly degenerate. Taking into account

this degeneracy when applying perturbation theory, one has
that the eigenvalue with the largest real part of the tilted
operator, which is the cumulant generating function ψ (s, h),
is given by

ψ (s, h) = √
γ0γ1e

|s| + w(h) + O(e−|s|), (B2)

where w(h) is the (possibly h-dependent) eigenvalue with the
largest real part of the matrix

wij = Tr(e†i ⊗ �W[ej ⊗ r]),

with ei being an element of an operator basis for the first L − 1
sites of the chain, such that Tr (e†i ej ) = δi,j . Because of the fact
that �r = r� = 12/2, and because of the shape of the map W ,
it is straightforward to show that the matrix [wij ] actually does
not depend on h and nor does its largest eigenvalue w(h). The
same holds true even if one considers the presence of an extra
dephasing term in the Lindblad generator given by

LD[ρ] = γD

L∑
m=1

(
n(m)ρ n(m) − 1

2
{ρ, n(m)}

)
. (B3)

Since w(h) does not depend on h, for large biases towards
active realizations (−s  1), the current, given by the first

derivative with respect to h of ψ (s, h) [cf. Eq. (B2)], is of
order 〈q(t )〉s,h = ∂hψ (s, h) ∼ O(e−|s|).

Given also that 〈k(t )〉s,h = −∂sψ (s, h) ≈ e|s|, one recovers,
for large negative s, the diffusivelike scaling of the current with
the average activity 〈q(t )〉s,h ∝ 1

〈k(t )〉s,h .

APPENDIX C: APPROXIMATION OF DENSITY-DENSITY
CORRELATIONS FOR THE COMPUTATION OF THE

STRUCTURE FACTOR

We show here by numerical evidence that, concerning the
computation of the structure factor for the XX chain, we can
approximate the expectation 〈O〉s,h = Tr (O �

1/2
s,h rs,h�

1/2
s,h ) with

the functional 〈〈O〉〉s,h = Tr (�s,h O rs,h).
We verified this for systems with up to L = 10 sites,

always obtaining a satisfactory agreement between the
structure factor S(p) computed via the exact correlations
〈nmnk〉s,h − 〈nm〉s,h〈nk〉s,h and the approximated structure
factor SA(p) computed with the correlations 〈〈nmnk〉〉s,h −
〈〈nm〉〉s,h〈〈nk〉〉s,h. Indeed, as it is possible to appreciate from
Fig. 6, there is a very nice agreement between the two.
Moreover, from numerical results, we observed that the error
made in computing density-density correlations between bulk
sites with the approximated functional is smaller than the
one made computing density correlations for sites next to
the boundaries. Because of this, we expect the agreement
between S(p) and SA(p) to persist also for larger L, as bulk
contributions become predominant.
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